KR20140119125A - 세레울라이드 및 그 유도체의 제조 방법, 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체 - Google Patents

세레울라이드 및 그 유도체의 제조 방법, 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체 Download PDF

Info

Publication number
KR20140119125A
KR20140119125A KR1020147022990A KR20147022990A KR20140119125A KR 20140119125 A KR20140119125 A KR 20140119125A KR 1020147022990 A KR1020147022990 A KR 1020147022990A KR 20147022990 A KR20147022990 A KR 20147022990A KR 20140119125 A KR20140119125 A KR 20140119125A
Authority
KR
South Korea
Prior art keywords
nmr
cdcl
mmol
tlc
reaction
Prior art date
Application number
KR1020147022990A
Other languages
English (en)
Other versions
KR101951379B1 (ko
Inventor
미츠노리 기리하타
고키 우에하라
Original Assignee
스텔라파머 가부시키가이샤
고리츠다이가쿠호징 오사카후리츠다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스텔라파머 가부시키가이샤, 고리츠다이가쿠호징 오사카후리츠다이가쿠 filed Critical 스텔라파머 가부시키가이샤
Publication of KR20140119125A publication Critical patent/KR20140119125A/ko
Application granted granted Critical
Publication of KR101951379B1 publication Critical patent/KR101951379B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K11/00Depsipeptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K11/02Depsipeptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof cyclic, e.g. valinomycins ; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/08Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/24Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/12Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/12Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K11/00Depsipeptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

세레울라이드 및 그 유도체의 새로운 제조 방법, 세레울라이드의 중간체 및 신규 세레울라이드 유도체를 제공하는 것을 목적으로 한다. 신규 디뎁시펩티드, 테트라뎁시펩티드, 옥타뎁시펩티드 및 도데카뎁시펩티드를 조제한다. 그리고, 이들의 신규 뎁시펩티드로 구성되는 세레울라이드 또는 그 유도체의 선상 전구체의 분자 내 아미드 결합 형성에 의한 환화 반응을 행하게 한다.

Description

세레울라이드 및 그 유도체의 제조 방법, 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체{Method for producing cereulide and derivative thereof, intermediate for production of cereulide, and cereulide derivative}
본 발명은 세레울라이드 및 그 유도체의 제조 방법에 관한 것이다. 또한, 본 발명은 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체에 관한 것이다.
토양 중에 생식하는 바실러스 세레우스(Bacillus cereus) 균은 쌀밥, 필라프, 스파게티 등의 전분계 식품 중에 번식하여 사람 등의 동물에 대해 구토 작용을 야기하는 세레울라이드를 산생한다. 모든 세레우스균이 세레울라이드를 산생하는 것이 아니라, 세레울라이드 합성 유전자를 획득한 세레우스균만이 이 독성 물질을 만들어 내는 것도 알려져 있다.
현재 세레울라이드에 의한 식중독이 의심된 경우, 그 식품 추출물 중의 세레울라이드를 HPLC나 LC/MS로 동정(同定)하는 방법이 행해지고 있다. 세레울라이드의 세포 공포화(空胞化) 작용을 지표로 하여 세포를 이용하는 바이오 어세이를 행하는 방법도 있다.
이러한 세레울라이드는 내열성, 내산성, 내소화효소 저항성이 높아 조리나 소화 과정에서 실활하지 않고 소장 신경계에 작용하여 구토 현상을 유발하는 것이 알려져 있으며, 나아가 간장 장해, 미토콘드리아 독성, 세포의 형태 변화 유도, 아포토시스 유도 등이 보고되어 있는데, 구토 현상의 분자 기구나 그 밖의 독성에 대한 분자 수준에서의 연구는 진전되지 않았다.
식중독 판정 등을 위해 검체 중의 합성 효소 유전자의 검출에 의한 방법(특허문헌 1 및 2)도 제안되어 있다.
그러나, 고가의 분석 기기나 숙련된 기술을 필요로 하는 방법이 아니며, 간편한 분석 방법의 개발이 바람직하다.
세레울라이드에 의한 식중독 판정을 위한 정성 또는 정량 분석이나 나아가 세포 혹은 분자 수준에서의 독성 평가나 기구 해명을 위해 순수한 세레울라이드 표준품이 필요하게 되는 경우가 많다. 현재 시판되고 있는 세레울라이드는 세레우스균의 배양액으로부터 추출되어 메탄올 용액으로서 입수할 수 있다.
이러한 세레울라이드를 얻는 방법으로서 세레울라이드와 그 유도체를 합성하는 방법도 제안되어 있다(비특허문헌 1 및 2).
특허문헌 1: 국제공개 3/097821호 공보 특허문헌 2: 일본공개특허 2006-6256호 공보
비특허문헌 1: Bioorganic & Medicinal Chemistry Letters, Vol. 5, No. 23, 2855-2858(1995) 비특허문헌 2: Synthesis 2009, No. 13, 2184-2204
현재 시판되고 있는 세레울라이드는 매우 고가이고 배양액 유래이기 때문에 순도도 그다지 높지 않다. 간이하게 고순도의 세레울라이드를 제조하는 것이 요구된다.
그래서, 본 발명의 목적은 세레울라이드 및 그 유도체의 제조 방법과 세레울라이드 유도체를 제공하는 것에 있다.
본 발명자들은 면밀히 연구를 거듭한 결과, 이하에 나타내는 세레울라이드 및 그 유도체의 제조 방법, 그 중간체 및 세레울라이드 유도체에 의해 상기 목적을 달성할 수 있는 것을 발견하고 본 발명을 완성하는 데에 이르렀다.
즉, 본 발명은 이하의 식:
Figure pct00001
Figure pct00002
Figure pct00003
(여기서, Y는 OH 또는 NH(CH2)5COOH를 나타낸다)
으로 이루어지는 군에서 선택되는 세레울라이드 또는 그 유도체의 전구체에 관한 것이다.
또, 본 발명은
Figure pct00004
또는
Figure pct00005
(여기서, X는 이소프로필, (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)로 나타나는 디뎁시펩티드에 관한 것이다.
또, 본 발명은 이하에 나타내는 뎁시펩티드
Figure pct00006
(여기서, l은 0~2의 정수, n은 0~2의 정수, m은 0 또는 1의 정수를 나타내고, l, m 및 n은 동시에 0이 되지 않고, l+m+n은 2 이하이다)에 관한 것이다.
또, 본 발명은
Figure pct00007
(여기서, X는 이소프로필, (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)
로 나타내는 세레울라이드 또는 그 유도체를 제조하는 방법으로서, 상기 세레울라이드 또는 그 유도체의 전구체의 분자 내 아미드 결합 형성에 의한 환화 반응을 포함하는 제조 방법에 관한 것이다.
상기 제조 방법에 있어서, 상기 디뎁시펩티드를 조제하는 공정을 더 포함하는 것이 바람직하다.
상기 제조 방법에 있어서, 상기
Figure pct00008
의 뎁시펩티드를 조제하는 공정을 더 포함하는 것이 바람직하다.
또, 본 발명은 이하의 식:
Figure pct00009
(여기서, R은 (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)로 나타나는 세레울라이드 유도체에 관한 것이다.
본 발명의 세레울라이드 및 그 유도체의 제조 방법에 의하면, 간이하게 순도가 높은 세레울라이드 또는 그 유도체를 얻을 수 있다. 나아가 본 발명의 세레울라이드 유도체는 세레울라이드 검출을 위한 항체 작성에 유용하다.
도 1은 본 발명의 옥타뎁시펩티드의 1H-NMR(CDCl3) 스펙트럼을 나타내는 도면이다.
도 2는 본 발명의 도데카뎁시펩티드의 1H-NMR(CDCl3) 스펙트럼을 나타내는 도면이다.
도 3은 본 발명의 도데카뎁시펩티드의 1H-NMR(CDCl3) 스펙트럼을 나타내는 도면이다.
도 4는 본 발명의 도데카뎁시펩티드의 1H-NMR(CDCl3) 스펙트럼을 나타내는 도면이다.
도 5는 본 발명의 세레울라이드의 1H-NMR(CDCl3) 스펙트럼을 나타내는 도면이다.
세레울라이드는 6개의 아미노산과 6개의 히드록시산이 아미드 결합과 에스테르 결합으로 교대로 연결한 36원환의 대환상 화합물(마크로라이드)로서, 시클로도데카뎁시펩티드라고도 부를 수도 있다. 세레울라이드는 2종류의 아미노산, L-발린(L-Val)과 D-알라닌(D-Ala) 및 2종류의 α-히드록시산의 D-로이신산(D-O-Leu)과 L-발린산(L-O-Val)으로 구성되는 이하와 같은 구조를 가지고 있다.
Figure pct00010
대부분의 경우, 세레울라이드는 K+, Na+, NH4 +의 이오노포어로서 기능한다. 이러한 포착 작용이 생물 활성의 원인이라고도 생각된다.
발명자들은 세레울라이드의 전체 합성에 있어서 직선상 전구체를 환화하여 36원환 구조를 구축하는 공정이 가장 중요한 주요 단계라고 생각하고, 이 환화 반응을 달성하기 위해 종래 에스테르 결합의 형성에 의한 방법이 취해지고 있는 것에 착안하였다. 세레울라이드와 유도체에 관해 종래 알려져 있는 합성 방법은 모두 이하의 개략도에 도시된 바와 같은 환화 공정을 포함한다.
Figure pct00011
본 발명에서는 세레울라이드의 반복 구조 단위로서의 테트라뎁시펩티드 L-Val-D-O-Leu-D-Ala-L-O-Val에 착안하였다. 즉, 세레울라이드는 이 반복 구조 단위가 3개 연결되어 환상이 된 마크로라이드로서, (L-Val-D-O-Leu-D-Ala-L-O-Val)3이라고 써서 나타낼 수도 있다.
본 발명은 종래법과는 달리 아미드 결합 형성에 의한 대환상 구축을 주요 반응으로 하는 신규 제조 방법에 관한 것이다. 본 발명의 제조 방법에서의 출발 원료는 모두 시판되고 있고, 2개의 히드록시산, 즉 D-류신산(D-O-Leu)과 L-발린산(L-O-Val)은 시판되는 D-류신 및 L-발린으로부터 문헌에 이미 알고 있는 방법으로 조제하여 이후의 프래그먼트 합성에 이용할 수 있다.
나아가 본 발명에서는 뎁시펩티드 합성에 있어서 펩티드쇄가 길어짐에 따라 입체 장해가 커지고 유기 용매에 대한 용해도가 저하되어 반응 수율의 저하를 초래하는 문제점에 유의하여, 이러한 문제를 회피하기 위해 먼저, 반복 구조 단위의 테트라뎁시펩티드를 합성하고, 다음에 이 구조 단위를 2개 결합시켜 옥타뎁시펩티드(2x 구조 단위)를 얻은 후, 나아가 테트라뎁시펩티드와 결합시켜 3 구조 단위의 직쇄상 도데카뎁시펩티드(전구체)를 작성하여 환화시킨다는 수법을 취하기로 하였다.
본 발명에서의 아미드 결합 구축에 의한 전구체의 분자 내 환화 반응은 축합제, 용매, 온도 등의 여러 가지 반응 조건을 바꾸어 행하여 높은 수율을 실현하기 위한 최적화를 도모하는 것도 가능하다.
본 발명의 방법에 의하면, 세레울라이드 및 그 유도체 합성을 시판 원료(아미노산)에 요구할 수 있다. 즉, 세레울라이드 합성에는 L-발린, D-류신, D-알라닌을, 또한 유도체 합성에서는 이들에 L-글루타민산과 6-아미노헥산산을 가하여 행할 수 있다.
이하, 본 발명의 방법을 프래그먼트 합성 단계마다 상술한다. 또, 제조에 사용하는 보호기로서는 WILEY-Interscience 출판「Protective Groups in Organic Synthesis(1999)」에 기재되어 있는 보호기 등이 적절히 사용된다.
우선, 합성에 필요한 아미노산으로서 L-발린은 임의의 보호기를 붙여 합성에 제공할 수도 있고, 보호기를 붙인 상태에서의 시판품을 그대로 이용할 수도 있다. 시판품으로서는 예를 들어 도쿄 화성 제품의 tert-부톡시카르보닐기로 보호한 Boc-L-발린이 있다.
다음으로 D-류신산 및 L-발린산은 각각 D-류신 및 L-발린으로부터 합성할 수 있다. D-류신산이나 L-발린산과 같은 히드록시산은 D-류신산 및 L-발린산의 아미노기를 수산기로 변환할 수 있는 방법이면 어떠한 방법으로도 사용할 수 있다.
대표적으로는 예를 들어 D-류신 또는 L-발린을 아질산염과 반응시키는 방법을 들 수 있다. 이 반응에 앞서서 D-류신 또는 L-발린은 황산 혹은 염산과 같은 강산 중에 용해시켜 이용하는 것이 바람직하다.
또, 이와 같이 하여 얻어진 히드록시산을 다음 반응에 대비하여 보호기를 붙여 둘 수도 있다. 보호기로서는 벤질기 등이 바람직하게 이용된다.
Figure pct00012
마찬가지로 D-알라닌에 보호기를 부가하여 다음 반응에 대비할 수도 있다.
다음으로, 이와 같이 하여 얻어진 아미노산 및 히드록시산을 이용하여 디뎁시펩티드를 합성한다.
디뎁시펩티드는 탈수 반응에 의한 에스테르화를 달성할 수 있는 조건이면 어떠한 조건으로 합성해도 된다. 한정되지는 않지만, 특히 바람직한 것은 디클로로메탄 용액 등의 용매에 디메틸아미노피리딘 등의 강염기와 디시클로헥실카르보디이미드를 가하여 행하는 반응이다.
L-발린과 D-류신산을 결합시키고, 그 후 카르복실기를 보호하는 기를 제거하여 다음의 테트라뎁시펩티드 합성에 제공하는 것이 바람직하다. 한편, D-알라닌과 D-발린산을 결합시키고, 그 후 아미노기를 보호하는 기를 제거하여 다음 테트라뎁시펩티드 합성에 제공할 수 있다.
Figure pct00013
다음으로, 얻어진 디뎁시펩티드를 결합시켜 테트라뎁시펩티드를 합성한다. 이 때, 아미드 결합을 달성할 수 있는 조건이면 어떠한 조건으로 행해도 된다. 바람직하게는 중성 조건 하에서 각종 축합제를 작용시키는 방법을 채용할 수 있다. 테트라뎁시펩티드는 세레울라이드 합성을 위한 반복 단위가 되는 것으로, 다음 합성의 용이함을 위해, 예를 들어 말단의 각각 별개의 개소에 보호기를 부가한 프래그먼트 A 및 프래그먼트 B의 2종류를 작성해 두는 것도 바람직하다.
Figure pct00014
세레울라이드 합성의 주요 중간체인 보호된 반복 구조 단위 프래그먼트 A(12)와 프래그먼트 B(13)를 상기의 경로로 합성하였다.
또, 이와 같이 하여 얻어진 프래그먼트끼리를 아미드 결합시킴으로써 옥타뎁시펩티드를 합성하고, 나아가 도데카뎁시펩티드를 합성한다.
이와 같이 하여 얻어지는 선상 도데카뎁시펩티드를 분자 간 반응을 막으면서 환화시켜 세레울라이드를 합성하는 것이 바람직하다.
Figure pct00015
보다 상세하게는, 분자 내 환화 반응은 축합제, 용매, 온도 등의 여러 가지 조건을 최적화함으로써 효율적으로 진행시키는 것이 가능하다.
축합제로서는 한정되는 것은 아니지만, 예를 들어 디페닐포스포릴 아지드(DPPA), 디에틸포스포릴 시아니데이트, 아지드 트리스(디메틸아미노)포스포늄헥사플루오로 인산염 등의 유기 인 화합물, N-에톡시카르보닐-2-에톡시-1,2-디하이드로퀴놀린(EEDQ), 1-이소부틸-2-이소부틸-1,2-디히드록시퀴놀린 등의 퀴놀린계 펩티드 축합제, O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트(HATU), O-(벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트(HBTU) 등의 우로늄계 축합제, 디이소프로필카르보디이미드(DIC), 디시클로헥실카르보디이미드(DCC), N-(3-디메틸아미노프로필)-N'-에틸카르보디이미드 등의 카르보디이미드류, (벤조트리아졸-1-일 옥시) 트리스(디메틸아미노)포스포늄 헥사플루오로포스페이트, (벤조트리아졸-1-일 옥시) 트리스피롤리디노포스포늄 헥사플루오로포스페이트, 브로모트리피롤리디노포스포늄 헥사플루오로포스페이트 등의 포스포늄계 축합제를 들 수 있다. 나아가 이들 축합제를 1-히드록시-7-아자벤조트리아졸(HOAt)이나 1-히드록시벤조트리아졸(HOBt)과 같은 첨가제와 함께 사용할 수도 있다.
이 때에 이용되는 반응 용매로는 염화 메틸렌, 디메틸포름아미드 등을 들 수 있다.
환화 반응에 있어서는 통상의 상태에서는 분자 간 결합이 일어날 가능성도 있기 때문에 고도 희석법에 의해 환화 반응을 행하는 것이 바람직하다.
본 환화 반응에서는 분자 내 반응이 분자 간 반응에 우선하여 목적물의 단리 수율을 높이는 것이 가능하다. 즉, 부산물의 생성을 억제하고 분자 내 환화 반응을 우선하는 것이 바람직하다.
본 발명은 나아가 세레울라이드의 유도체(유도체) 합성에 높은 응용성을 가지고 있다. 즉, 반복 구조 단위 중의 구성 아미노산 혹은 히드록시산을 적절히 변경함으로써 간편한 유도체 합성이 가능하게 된다.
예를 들면, L-발린을 L-글루타민산으로 치환한 E-세레울라이드 및 E-세레울라이드에 아미노헥산산을 도입한 EAHA-세레울라이드 등의 신규한 유도체 합성을 행할 수 있다.
이들의 새로운 화합물은 항세레울라이드 항체의 제작을 비롯하여 불명한 부분이 많은 세레울라이드의 생리 활성 기구 해명의 유용한 툴 분자가 된다고 기대된다.
즉, E-세레울라이드는 세레울라이드 중 하나의 L-발린을 L-글루타민산으로 바꾼 유도체이며, EAHA-세레울라이드는 E-세레울라이드의 오메가카르복실기가 아미노헥산산으로 수식된 것이다. 이들 2개의 유도체는 36원환의 외측에 탄소쇄를 통해 반응성이 풍부한 카르복실기가 배치되어 있어 추가적인 화학 수식이 가능하고, 항세레울라이드 항체 제작을 위한 합텐 분자나 표지 분자로서 이용하는 것이 가능하다.
Figure pct00016
이러한 세레울라이드 유도체의 합성은 세레울라이드의 반복 단위인 3개의 테트라뎁시펩티드 L-Val-D-O-Leu-D-Ala-L-O-Val의 하나를 L-발린 대신에 L-글루타민산{R=(CH2)2COOH} 또는 L-글루타민산+아미노헥산산{R=(CH2)5COOH}으로서 작성함으로써 행할 수 있다.
즉, 구체적으로는 이하와 같은 방법으로 행하는 것이 가능하다. 예를 들어 시판되는 보호 L-글루타민산 유도체 등을 출발 물질로서 합성할 수 있다.
Figure pct00017
Figure pct00018
디뎁시펩티드는 탈수 반응에 의한 에스테르화를 달성할 수 있는 조건이면 어떠한 조건으로 합성해도 된다. 한정되지는 않지만, 특히 바람직한 것은 디클로로메탄 용액 등의 용매에 디메틸아미노피리딘 등의 강염기와 디시클로헥실카르보디이미드를 가하여 행하는 반응이다.
그 후, 카르복실기를 보호하는 기를 제거하여 다음 테트라뎁시펩티드 합성에 제공하는 것이 바람직하다. 한편, D-알라닌과 D-발린산을 결합시키고, 그 후 아미노기를 보호하는 기를 제거하여 다음 테트라뎁시펩티드 합성에 제공할 수 있다.
얻어진 디뎁시펩티드를 결합시켜 테트라뎁시펩티드를 합성한다. 이 때, 아미드 결합을 달성할 수 있는 조건이면 어떠한 조건으로 행해도 된다. 바람직하게는 중성 조건 하에서 각종 축합제를 작용시키는 방법을 채용할 수 있다. 다음 합성의 용이함을 위해 프래그먼트 C 및 프래그먼트 D의 2종류를 작성해 두는 것이 바람직하다.
또, 이와 같이 하여 얻어진 프래그먼트끼리를 아미드 결합시킴으로써 옥타뎁시펩티드를 합성하고, 나아가 도데카뎁시펩티드를 합성한다. 그 일례를 이하에 나타내는데, 테트라뎁시펩티드끼리를 연결하는 방법, 보호기 위치 등은 적절히 변경할 수 있고, 이에 한정되지 않는다.
Figure pct00019
여기서, 뎁시펩티드를 합성할 때에 L-글루타민산(Series a) 또는 L-글루타민산+아미노헥산산(Series b)을 가지는 34a, b는 프래그먼트 A와 프래그먼트 B에 끼워지도록 결합시켜도 되고, 나아가 보호기 위치를 적절히 바꿈으로써 34a, b의 카르복실기 말단에 프래그먼트 5의 아미노기 말단을 결합시킬 수도 있다.
이와 같이 하여 얻어지는 선상 도데카뎁시펩티드는 분자 간 반응을 막으면서 환화시켜 세레울라이드 유도체를 합성하는 것이 바람직하다.
Figure pct00020
(여기서, R은 (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)
이러한 세레울라이드 유도체는 용이하게 수식이 가능하여 항체 제조를 위한 항원 제조에 유용하다. 또, 세레울라이드의 생리 기능 해명의 툴로 하기 위해 표지화하는 것도 가능하다.
항체의 제조를 위한 항원으로 하려면 세레울라이드 유도체의 카르복실기 부분에 소 알부민(BSA)이나 투구게 헤모시아닌(KLH) 등의 고분자를 결합시키는 것이 바람직하다.
생리 기능 해명의 툴이 되는 표지화 세레울라이드는 예를 들어 세레울라이드 유도체의 카르복실기 부분에 비오틴 등의 표지 물질을 공유 결합시킴으로써 달성될 수 있다.
세레울라이드의 생리 활성을 분자 수준에서 명확히 하기 위한 툴로서 E-세레울라이드의 측쇄에 비오틴을 도입한 광 표지체를 합성하였다.
이상 합성의 각 공정에서는 모두 적절히 중화 공정, 정제 공정을 실시한 후에 다음 공정이 실시되어도 된다. 상기 각 공정에서의 각 생성물은 단리 정제되어도 되고 그대로 다음 공정에 제공해도 된다. 단리 정제 수단은 세정, 추출, 재결정법, 각종 크로마토그래피 등이 포함된다. 각 공정에서의 각 생성물은 이들 단리 정제 수단을 단독으로 혹은 적절히 2종 이상을 조합하여 사용하여 행할 수도 있다.
본 발명의 방법으로 얻어지는 세레울라이드 및 그 유도체는 고수율이고 순도가 높기 때문에 세레울라이드의 표품으로서 유용성이 높다. 본 발명에 있어서, 세레울라이드의 표품을 포함하는 세레울라이드 검출 키트를 제공할 수도 있다. 이러한 세레울라이드 검출 키트는 세레울라이드를 용해하는 용매, 배지 등과 함께 제공될 수 있다. 나아가 세레울라이드의 칼륨 이온 도입 성질을 이용한 칼륨 이온 선택 전극, 암 세포에의 아포토시스 작용을 이용한 제암제로서의 응용 등 폭넓게 사용할 수 있다. 나아가 약물 수송계(drug delivery system) 등과 조합하여 보다 특이적인 암 세포 선택성을 갖게 하는 것도 가능하다.
본 발명의 세레울라이드 유도체는 그대로 혹은 약학적으로 허용할 수 있는 염의 형태로 혹은 이들과 약학적으로 허용할 수 있는 캐리어와 혼합하여 당업자에게 공지의 제제(製劑)의 형태로 이용될 수 있다.
약학적으로 허용할 수 있는 염으로는 무기 염기와의 염, 유기 염기와의 염, 무기산과의 염, 유기산과의 염, 염기성 또는 산성 아미노산과의 염 등을 들 수 있다. 무기 염기와의 염의 적합한 예로서는 예를 들어 나트륨염, 칼륨염 등의 알칼리 금속염; 칼슘염, 마그네슘염 등의 알칼리 토류 금속염; 및 알루미늄염, 암모늄염 등을 들 수 있다. 유기 염기와의 염의 적합한 예로서는 예를 들어 트리메틸아민, 트리에틸아민, 피리딘, 피콜린, 에탄올아민, 디에탄올아민, 트리에탄올아민, 디시클로헥실아민, N,N'-디벤질에틸렌디아민 등과의 염을 들 수 있다. 무기산과의 염의 적합한 예로서는 예를 들어 염산, 브롬화 수소산, 질산, 황산, 인산 등과의 염을 들 수 있다. 유기산과의 염의 적합한 예로서는 예를 들어 포름산, 아세트산, 트리플루오로 아세트산, 푸마르산, 옥살산, 주석산, 말레산, 구연산, 호박산, 사과산, 메탄 술폰산, 벤젠 술폰산, p-톨루엔 술폰산 등과의 염을 들 수 있다. 염기성 아미노산과의 염의 적합한 예로서는 예를 들어 아르기닌, 리신, 오르니틴 등과의 염을 들 수 있고, 산성 아미노산과의 염의 적합한 예로서는 예를 들어 아스파라긴산, 글루타민산 등과의 염을 들 수 있다.
이하에 본 발명의 세레울라이드 및 그 유도체 제조의 구체적인 예를 실시예의 태양으로 나타내지만, 본 발명은 이에 한정되지 않는다.
실시예
하기 실시예에 있어서 화합물의 분석 및 분리 정제는 이하의 기종이나 시약을 이용하여 행하였다.
·NMR 스펙트럼: 니혼 전자 JMTC-400/54/SS 400MHz(니혼 전자사 제품).(특별히 명기하지 않는 한 액체 시료는 NaCl 필름, 고체 시료는 KBr 펠렛으로서 측정하고, 본문 중에는 흡수 파장을 cm-1로 나타내었다.) 또한, 하기 케미컬 시프트는 δ값으로 나타내었다.
·융점: BUCHI Melting point B-545를 이용하여 측정하였다(모든 융점은 보정하지 않았다).
·IR: JASCO FT/IR-460 plus를 이용하여 측정하였다.(특별히 명기하지 않는 한 액체 시료는 NaCl 필름, 고체 시료는 KBr 펠렛으로서 측정하고, 본문 중에는 흡수 파장을 cm-1로 나타내었다.)
·질량 분석: BRUKER DALTONICS사 제품 MALDI-TOF-MS를 이용하여 측정하였다.
·박층 크로마토그래피(TLC): MACHEREY-NAGEL DC-Fertigplatten SIL G-25 UV254 플레이트를 이용하고, 다음 용매계를 이용하여 전개하였다. 본문 중에서는 이하의 기호로 나타내었다.
(A)n-헥산:아세트산 에틸=3:1
(B)클로로포름:메탄올=9:1
(C)클로로포름:메탄올:아세트산=85:15:3
(D)클로로포름:메탄올:트리에틸아민=90:10:3
(E)톨루엔:아세트산 에틸=1:1
(F)n-헥산:아세트산 에틸=1:1
또, 이하 실시예 1에서 5는 본 발명의 세레울라이드의 합성을 나타내고, 실시예 6에서 10은 본 발명의 세레울라이드 유도체의 합성을 나타낸다.
(실시예 1)
Boc 아미노산의 합성
(1)Boc-L-발린(1)
시판(도쿄 화성 제품)품을 정제하지 않고 이용하였다.
·mp; 78℃
·[a]D -6.5°(c 1.0, AcOH)
(2)Boc-D-알라닌(2)
빙냉 하에서 탄산 나트륨(19.1g, 179.6mmol) 수용액(150mL)에 D-알라닌(11, 8.0g, 89.8mmol)을 용해하고, 여기에 이탄산 di-tert-부틸(Boc2O, 21.6g, 98.8mmol)의 THF(20mL) 용액을 적하하였다. 적하 종료 후, 반응액을 실온으로 되돌리고 하룻밤 교반을 계속하였다. 반응액을 분액 깔때기로 옮기고 과잉의 Boc2O를 디에틸에테르 추출하여 제거하였다. 물 층에 구연산을 가하여 pH 3으로 조정한 후, 아세트산 에틸로 3회 추출하였다. 합한 유기층을 포화 식염수로 1회 세정하고 유기층을 무수 Na2SO4로 건조, 감압 농축한 후, 농축 잔사를 아세트산 에틸-헥산으로부터 재결정화하여 무색 결정의 2(15.51g, 91.3%)를 얻었다.
·TLC; Rf=0.48(C)
·mp; 83.5℃
·1H-NMR(CDCl3); 1.40-1.45(12H, m), 4.24-4.38(1H, m, CHCH3), 4.98-5.10(1H, br s, NH)
·[a]D +25.1(AcOH, c 2.02, 26.6℃)
·IR; 3378, 2995, 2639, 2569, 1736, 1161
히드록시산(3, 5)과 그 벤질 에스테르(4, 6)의 합성
(3)D-O-류신{(2R)-2-히드록시-4-메틸 펜탄산}(3)1)
빙냉 하에서 D-류신(13.11g, 100mmol)을 1N 황산(150mL)에 용해하고, 여기에 아질산 나트륨(10.35g, 150mmol)의 수용액(50mL)을 적하 깔때기로부터 적하하였다. 반응액을 빙냉 하에서 3시간 교반한 후, 실온 하에서 추가로 6시간 교반하여 아세트산 에틸로 3회 추출하였다. 합한 유기층을 포화 식염수로 1회 세정, 무수 황산 나트륨으로 건조, 감압 농축하였다. 농축 잔사를 아세트산 에틸-헥산으로부터 재결정하여 무색 결정의 D-O-류신 3(9.60g, 72.7%)을 얻었다.
·TLC; Rf=0.33(C)
·mp; 80.1℃(lit.1) 78℃)
·1H-NMR(DMSO); 0.36(3H, d, J=6.34Hz, CH(CH 3 )2), 0.38(3H, d, J=6.34Hz, CH(CH 3 )2), 0.85-0.98(2H, m, CH 2 ), 1.17-1.32(1H, m, CH(CH3)2), 3.43(1H, dd J1=8.78, J2=4.88, CHCH2)
·13C-NMR(DMSO); 21.55, 23.24, 23.97, 42.98, 68.22, 176.41
·[a]D +11.7°(MeOH, c 1.03, 22.5℃){lit.1) +11.8°(MeOH, c 1.03)}
·IR; 3424, 2911, 1713
(4)L-O-발린{(2S)-2-히드록시-3-메틸 부탄산}(5)
L-O-발린(5)은 시판되는 L-발린을 원료로 하여 3의 합성과 마찬가지의 방법으로 조정하였다. 즉, 빙냉 하에서 L-발린(11.71g, 100mmol)의 1N 황산(150mL) 용액에 아질산 나트륨(10.35g, 150mmol) 수용액(50mL)을 적하하고, 적하 종료 후 빙냉 하에서 3시간, 다음에 실온 하에서 6시간 교반을 계속하였다. 반응액을 아세트산 에틸로 3회 추출하고, 합한 유기층을 포화 식염수로 1회 세정하여 혼재하는 미량의 황산을 제거하고 무수 황산 나트륨으로 건조, 감압 농축하였다. 농축 잔사를 아세트산 에틸-헥산으로부터 재결정하여 5(7.07g, 59.9%)를 무색 결정으로서 얻었다.
·TLC; Rf=0.37(C)
·mp; 64.1℃(lit.2) 66-68℃)
·1H-NMR(DMSO); 0.80(3H, d, J=3.17Hz, CH(CH 3 )2), 0.87(3H, d, J=3.17Hz, CH(CH 3 )2), 1.85-1.95(1H, m, CH(CH3)2), 3.72(1H, d, J=4.63Hz, CHCH(CH3)2), 5.02(1H, br, COOH)
·13C-NMR(DMSO); 16.89, 19.05, 31.55, 74.64, 175.51
·[a]D +16.8°(CHCl3, c 1.01, 23.5℃){lit.2); +20°(CHCl3, c 4)}
·IR; 3433, 2970, 2186, 1714
(5)D-O-류신 벤질 에스테르{벤질(2R)-2-히드록시-4-메틸펜타노에이트}(4)
D-O-류신(3, 3.36g, 25.4mmol), 벤질 알코올(7.9mL, 76.0mmol), 파라톨루엔 술폰산·1수화물(50mg, 0.26mmol) 및 톨루엔(100mL)의 혼합물을 Dean-Stark 장치를 장착한 가지형 플라스크 중에서 7시간 가열 환류하여 공비(共沸) 분리에 의해 발생한 물을 제거하였다. TLC로 원료의 소실을 확인한 후 반응액을 실온으로 되돌리고, 포화 탄산 수소 나트륨 수용액, 이어서 포화 식염수로 세정하였다. 유기층을 무수 황산 나트륨으로 건조, 증발기로 감압 농축하였다. 농축 잔사 중에 포함되는 벤질 알코올을 유리 튜브 오븐(bulb to bulb 증류) 장치를 이용하여 감압 하(8mHg<)에서 유거(留去)하였다. 이 잔사를 실리카 겔 칼럼 크로마토그래피(헥산:아세트산 에틸=90:10)에 의해 정제하여 담황색 유상물(油狀物) 4(4.95g, 80.8%)를 얻었다.
·TLC; Rf=0.38(A)
·1H-NMR(CDCl3); 0.91(3H, d, J=4.39Hz, CH(CH 3 )2), 0.94(3H, d, J=4.39Hz, CH(CH 3 )2), 1.56-1.62(2H, m, d, CH 2 ), 2.60-2.65(1H, m, OH), 4.18-4.26(1H, m, CHCH2), 5.19(2H, ABq, CH 2 Ph), 7.30-7.40(5H, m, ArH)
·13C-NMR(CDCl3); 21.52, 23.21, 24.39, 67.25, 69.15, 128.30, 128.30, 128.52, 128.64, 135.21, 175.71)
·[a]D +15.4°(CHCl3, c 1.02, 26.8℃)
·IR; 3475, 2956, 2872, 1736, 1607, 1497, 1140
(6)L-O-발린 벤질 에스테르{벤질(2S)-2-히드록시-3-메틸부타노에이트}(6)
벤질 에스테르(6)는 상기 4와 마찬가지의 방법으로 합성하였다.
L-O-발린(5, 3.0g, 25.4mmol), 벤질 알코올(7.9mL, 76.0mmol), p-톨루엔 술폰산·1수화물(50mg, 0.26mmol) 및 톨루엔(100mL)의 혼합물을 Dean-Stark의 장치를 장착한 반응 용기 중에서 7시간 가열 환류하고, 마찬가지의 처리와 정제를 행하여 담황색 유상물의 6(4.57g, 86.4%)을 얻었다.
·TLC; Rf=0.44(A)
·1H-NMR(CDCl3); 0.83(3H, d, J=6.09Hz, CH(CH 3 )2), 1.01(3H, d, J=6.09Hz, CH(CH 3 )2), 2.02-2.14(1H, m, CH(CH3)2), 2.69(1H, d, J=6.09, OH), 4.06-4.11(1H, m, CHCH), 5.22(2H, ABq, CH 2 Ph), 7.31-7.60(5H, m, ArH)
·13C-NMR(CDCl3); 15.82, 18.77, 32.14, 67.29, 74.98, 128.41, 128.56, 128.64, 135.16, 174.82
·[a]D -9.60°(CHCl3, c 2.19, 26.0℃)
·IR; 3505, 3065, 3034, 2965, 2934, 2876, 1733, 1497, 1460, 1137
(실시예 2)
디뎁시펩티드(7, 8)의 합성
(7)Boc-L-Val-D-O-Leu-OBn(7)
빙냉 하에서 D-O-류신 벤질 에스테르(4, 5.0g, 22.5mmol) 및 시판되는 Boc-L-발린(1, 5.38g, 24.8mmol)의 디클로로메탄(80mL) 용액에 디메틸아미노피리딘(DMAP, 0.55g, 4.50mmol), 이어서 N,N'-디시클로헥실카르보디이미드(DCC, 5.86g, 28.4mmol)를 가하였다. 이 반응액을 빙냉 하에서 하룻밤 교반한 후, 부생성된 DCurea를 흡인 여과하여 제거하고 여액을 감압 농축하였다. 농축 잔사를 아세트산 에틸에 녹여 포화 탄산 수소 나트륨 수용액, 이어서 포화 식염수로 세정하고, 유기층을 무수 황산 나트륨으로 건조, 감압 농축하였다. 이 농축 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 고체의 7(9.30g, 98%)을 얻었다.
·TLC; Rf=0.56(A)
·1H-NMR(CDCl3); 0.78-0.92(12H, m, CH(CH 3 )2), 1,37(9H, s, tert - Bu), 1.50-1.82(3H, m), 2.02-2.20(1H, m, CH(CH3)2), 4.18-4.32(1H, m, CHCH2CH(CH3)2), 4.91(1H, d, J=8.78Hz, NH), 5.04(1H, dd, J1=10.0Hz, J2=3.66Hz), 5.10(2H, ABq, CH 2 Ph), 7.28-7.36(5H, m, ArH)
·13C-NMR(CDCl3); 17.31, 19.04, 21.27, 23.04, 24.49, 28.30, 31.23, 39.62, 58.62, 67.04, 71.59, 79.72, 128.22, 128.41, 128.59, 135.22, 155.49, 170.12, 171.78
·[a]D +15.58°(CHCl3, c 0.40, 16.6℃)
·IR; 3384, 2964, 2875, 1746, 1717, 1501, 1462, 1177
(8)Boc-L-Val-D-O-Leu-OH(8)(가수소분해에 의한 벤질기 제거)
수소 첨가용 플라스크에 Boc-L-Val-D-O-Leu-OBn(7, 2.70g, 6.40mmol), 메탄올(30mL) 및 10% 팔라듐 탄소(135mg)의 혼합물을 넣고 수소 기류(3기압) 하에서 실온에서 3시간 교반하였다. TLC로 반응 진행을 확인한 후, 촉매를 여거(濾去)하고 여액을 감압 농축하여 무색 고체의 8(2.14g, quant)을 얻었다. 이는 더 이상 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.55(C)
·mp; 95.8℃
·1H-NMR(CDCl3); 0.86-1.06(12H, m, CH(CH 3 )2), 1.44(9H, s, tert - Bu), 1.72-1.80(2H, m, CH 2 CH(CH3)2), 1.80-1.86(1H, m, CHCH(CH3)2), 2.14-2.28(1H, m, CH2CH(CH3)2), 4.22-4.33(1H, m, CHCH2), 5.00-5.06(1H, m, NH), 5.06-5.14(1H, m, CHCH(CH3)2)
·13C-NMR(CDCl3); 17.49, 19.06, 21.17, 23.06, 24.54, 28.28, 30.93, 39.62, 52.49, 58.86, 69.99, 71.19, 80.19, 113.79, 121.42, 155.84, 174.30
·IR; 3516, 3396, 3093, 2961, 2606, 1726, 1520, 1463, 1409, 1178
(9)Boc-D-Ala-L-O-Val-OBn(9)4)
디뎁시펩티드(9)는 7의 합성과 마찬가지로 행하였다. 즉, Boc-D-알라닌(2, 4.46g, 23.6mmol), L-O-발린 벤질 에스테르(6, 4.10g, 19.7mmol) 및 디클로로메탄(50mL)을 빙냉 하에 교반하고, 여기에 DMAP(0.72g, 5.90mmol), 이어서 DCC(5.07g, 24.59mmol)를 가하여 빙냉 하에서 하룻밤 교반하였다. 부생성된 DCurea를 흡인 여거, 여액을 감압 농축하여 농축 잔사를 아세트산 에틸에 녹였다. 이 아세트산 에틸 용액을 포화 탄산 수소 나트륨 수용액, 이어서 포화 식염수로 세정하고, 유기층을 무수 황산 나트륨으로 건조, 감압 농축하였다. 농축 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 고체의 9(7.66g, quant)를 얻었다.
·TLC; Rf=0.56(A)
·mp; 63.4℃
·1H-NMR(CDCl3); 0.94(3H, d, J=6.83Hz, CH(CH 3 )2), 0.98(3H, d, J=6.83Hz, CH(CH 3 )2), 1.41(3H, d, J=7.07Hz, CHCH 3 ), 1.45(9H, s, tert-Bu), 2.22-2.34(1H, m, CH(CH3)2), 4.43-4.50(1H, m, CHCH3), 4.93(1H, d, J=4.39, CHCHCH3), 5.03(1H, br, NH), 5.18(2H, ABq, CH 2 Ph), 7.28-7.40(5H, m, ArH)
·13C-NMR(CDCl3); 17.01, 18.59, 18.70, 28.31, 30.12, 49.33, 66.97, 79.76, 128.32, 128.43, 135.22, 154.91, 169.06, 172.74
·IR; 3396, 2976, 1741, 1688, 1509, 1459, 1161
·[a]D -10.70°(CHCl3, c 1.02, 27.0℃)
(10)H2N-D-Ala-L-O-Val-OBn·TFA(10)(Boc기 제거)
빙냉 하에서 Boc-L-Val-D-O-Leu-OBn(9)(2.43g, 6.40mmol)의 디클로로메탄(7.5mL) 용액에 트리플루오로 아세트산(TFA, 7.5mL)을 가하였다. 이 반응액을 빙냉 하에서 30분간, 이어서 실온 하에서 30분간 교반하였다. TLC로 Boc기가 제거되었음을 확인한 후, 감압 농축하여 담황색 유상물의 10(2.41g, quant)을 TFA염으로서 얻었다. 이는 더 이상 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.51(B)
·1H-NMR(CDCl3); 0.82(3H, d, J=6.83Hz, CH(CH 3 )2), 0.87(3H, d, J=6.83Hz, CH(CH 3 )2), 1.54(3H, d, J=7.32Hz, CHCH 3 ), 2.12(1H, m, CH(CH3)2), 4.12(1H, q, J=7.32Hz, CHCH3), 4.91(1H, d, J=4.15, CHCH(CH3)2), 5.06(2H, ABq, CH 2 Ph), 7.20-7.30(5H, m, ArH)
·13C-NMR(CDCl3); 15.54, 16.77, 18.40, 30.05, 49.01, 67.39, 78.35, 128.45, 128.57, 128.60, 134.96, 168.69, 169.70
·IR; 3420, 3035, 2970, 1742, 1674, 1527, 1461, 1141
(실시예 3)
(11)테트라뎁시펩티드, 프래그먼트 A 및 프래그먼트 B의 합성(11) Boc-L-Val-D-O-Leu-D-Ala-L-O-Val-OBn(11) 빙냉 하에서 디뎁시펩티드 H2N-D-Ala-L-O-Val-OBn·TFA염(10, 2.41g, 6.40mmol)의 아세토니트릴(10mL) 용액에 N,N-diisopropylethylamine(DIPEA, 1.12mL, 6.43mmol)을 가하여 중화한 후, Boc-L-Val-D-O-Leu-OH(8, 2.14g, 6.40mmol)의 아세토니트릴 용액(5mL)을 가하고, 이어서 1-ethyl-3-(3-di메틸aminopropyl)carbodiimide(EDC) 염산염(1.35g, 7.04mmol)을 가하였다. 빙냉 배스를 제거하고 실온 하에서 하룻밤 교반한 후, 용매를 감압 유거하였다. 이 잔사를 아세트산 에틸에 용해하여 유기층을 10% 구연산 수용액, 포화 탄산 수소 나트륨 수용액 및 포화 식염수로 세정하고, 무수 황산 나트륨으로 건조, 감압 농축하였다. 이 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 유상물의 11(3.56g, 94%)을 얻었다.
·TLC; Rf=0.33(A)
·1H-NMR(CDCl3); 0.84-1.04(18H, m, CH(CH 3 )2), 1.41(9H, s, tert - Bu), 1.64-1.84(3H, m), 2.06-2.15(1H, m, CHCH(CH3)2), 2.18-2.30(1H, m, CH2 CH(CH3)2), 4.06-4.17(1H, m, CHCH3), 4.52-4.63(1H, m, CHCH2CH(CH3)2), 4.86-4.94(1H, m, CHCH(CH3)2), 5.00-5.05(1H, m, NH), 5.08-5.27(2H, m, CH 2 Ph), 5.26-5.34(1H, m, CHCH(CH3)2), 7.09-7.14(1H, br, NH), 7.28-7.38(5H, m, ArH)
·13C-NMR(CDCl3); 16.97, 17.24, 18.06, 18.68, 19.17, 21.38, 23.20, 24.33, 28.25, 30.10, 30.44, 34.54, 40.51, 48.53, 59.53, 63.52, 66.96, 72.66, 80.24, 100.55, 128.36, 128.40, 128.55, 135.27, 155.89, 169.11, 169.79, 170.43, 171.77
·[a]D +16.03(CHCl3, c 0.62, 23.5℃)
·IR; 3344, 2968, 2878, 1756, 1681, 1530, 1462, 1056
(12)H2N-L-Val-D-O-Leu-D-Ala-L-O-Val-OBn·TFA(12)(프래그먼트 A)
보호된 반복 구조 단위(11, 2.43g, 6.40mmol)를 디클로로메탄(7.5mL)에 용해하고 빙냉 하에 TFA(7.5mL)를 가하여 30분간 교반한 후, 실온에서 30분간 교반하였다. TLC로 반응 종료를 확인한 후, 반응액을 감압 농축하였다. 이 잔사에 소량의 톨루엔을 가하고 감압 농축하여 잔존하는 TFA를 톨루엔과의 동시증발(coevaporation)에 의해 제거하였다. 이 조작을 3회 반복하여 담황색 유상물의 12(2.42g, quant)를 얻었다. 이는 더 이상 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.59(C)
·1H-NMR(CDCl3); 0.88-1.16(18H, m, CH(CH 3 )2), 1.52(3H, d, J=7.32Hz, CHCH 3 ), 1.70-1.85(6H, m), 2.18-2.30(1H, m, CH2 CH(CH3)2), 2.38-2.51(1H, m, CH2 CH(CH3)2), 4.09-4.15(1H, m, CHCH3), 4.58-4.67(1H, m, CHCH2CH(CH3)2), 4.86-4.94(1H, m, CHCH(CH3)2), 5.00-5.05(1H, m, NH), 5.08-5.27(2H, m, CH 2 Ph), 5.26-5.34(1H, m, CHCH(CH3)2), 7.09-7.14(1H, br, NH), 7.28-7.38(5H, m, ArH)
·13C-NMR(CDCl3); 17.04, 17.08, 18.22, 18.35, 18.61, 21.52, 22.98, 24.30, 29.94, 30.14, 40.74, 48.47, 58.90, 67.02, 74.32, 128.32, 128.40, 128.54, 135.16, 168.33, 169.25, 169.40, 172.25
·IR; 3221, 2964, 1748, 1675, 1531, 1461, 1156
(13)Boc-L-Val-D-O-Leu-D-Ala-L-O-Val-OH(13)(프래그먼트 B)
보호된 반복 구조 단위(11, 2.70g, 6.40mmol)의 메탄올 용액(20mL) 및 10% 팔라듐 탄소(135mg)의 혼합물을 중압 수소 첨가용 플라스크에 넣고 수소 기류(3기압) 하에서 실온에서 4시간 교반하였다. TLC로 반응 진행을 확인한 후, 용매를 감압 유거하여 무색 유상물의 13(2.12g, quant)을 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.18(C)
·1H-NMR(CDCl3); 0.87-1.04(18H, m, CH(CH 3 )2), 1.42-1.50(12H, m), 1.60-1.81(3H, m), 2.09-2.18(1H, m, CHCH(CH3)2), 2.25-2.35(1H, m, CH2 CH(CH3)2), 4.13-4.23(1H, m, CHCH3), 4.52-4.62(1H, m, CHCH2CH(CH3)2), 5.04-5.12(2H, m), 5.32-5.38(1H, m, CHCH(CH3)2), 7.34-7.39(1H, d, J=7.56Hz, NH)
·13C-NMR(CDCl3); 16.78, 16.83, 17.87, 18.78, 19.12, 21.20, 23.20, 24.30, 28.21, 29.93, 30.39, 40.60, 48.28, 59.40, 72.80, 77.21, 80.64, 156.33, 170.45, 171.82, 171.94
·IR; 3341, 2968, 2882, 1748, 1688, 1531, 1464, 1371, 1249, 1162, 1057, 1016, 757
(실시예 4)
옥타뎁시펩티드 및 도데카뎁시펩티드의 합성
(14)Boc-(L-Val-D-O-Leu-D-Ala-L-O-Val)2-OBn(14)
빙냉 하에서 프래그먼트 A·TFA 염(12, 1.75g, 3.0mmol)의 아세토니트릴(15mL) 용액에 N,N-diisopropylethylamine(DIPEA, 1.03mL, 5.91mmol)을 가하고, 이어서 프래그먼트 B(13, 1.49g, 3.0mmol)의 아세토니트릴(5mL) 용액, O-benzotriazole-N,N,N',N'-tetra 메틸 uronium hexafluorophosphate(HBTU, 1.41g, 3.71mmol) 및 1-히드록시 benzotriazole(HOBt, 0.40g, 3.0mmol)을 가하였다. 반응액을 실온으로 되돌려 하룻밤 교반한 후, 용매를 감압 유거하였다. 이 잔사를 아세트산 에틸에 용해하고, 아세트산 에틸층을 10% 구연산 수용액, 포화 탄산 수소 나트륨 및 포화 식염수로 순차적으로 세정하여 무수 황산 나트륨으로 건조하였다. 이를 감압 농축하여 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 고체의 14(2.90g, quant)를 얻었다.
·TLC; Rf=0.14(A)
·mp; 57~59℃
·1H-NMR(CDCl3); 0.84-1.07(36H, m), 1.43(9H, s), 1.47(3H, d, J=7.56Hz), 1.49(3H, d, J=7.32Hz), 1.65-1.84(6H, m), 1.97-2.05(1H, m), 2.29-2.37(1H, m), 2.37-2.38(1H, m), 3.88(3H, t, J=6.59Hz), 4.08-4.13(1H, m), 4.38(1H, t, J= 7.81Hz), 4.58-4.63(1H, m), 4.85(1H, d, J=4.39Hz), 5.03(1H, d, J=5.85Hz), 5.09-5.20(4H, m), 5.37(1H, dd, J=3.17, 10.0Hz), 5.04-5.12(2H, m), 7.30-7.37(5H, m), 7.68(1H, d, J=7.32Hz), 7.68(1H, d, J=7.32Hz), 7.68(1H, d, J=6.10Hz)
·13C-NMR(CDCl3); 14.17, 16.43, 16.97, 17.51, 18.64, 18.93, 18.98, 19.31, 19.45, 20.80, 21.05, 21.10, 23.14, 23.36, 24.22, 24.34, 28.22, 29.82, 30.04, 30.09, 40.35, 40.99, 48.25, 49.52, 58.74, 60.34, 60.39, 66.73, 72.41, 72.73, 77.21, 78.68, 80.93, 128.24, 128.28, 128.49, 135.36, 156.45, 169.12, 170.00, 170.42, 170.67, 171.65, 171.91, 172.44
·IR; 3319, 2966, 2876, 1751, 1656, 1537, 1463, 1185
·[a]D +12.7°(CHCl3, c 1.01, 26.5℃)
(15)Boc-(L-Val-D-O-Leu-D-Ala-L-O-Val)2-OH(15)
보호된 옥타뎁시펩티드 14(1.00g, 1.02mmol), 메탄올(30mL) 및 10% 팔라듐 탄소(50mg)의 혼합물을 수소 첨가용 플라스크 안에 넣고 수소 기류(3기압) 하에서 실온에서 4시간 교반하였다. TLC로 반응 진행을 확인한 후, 팔라듐 촉매를 여거하고 감압 농축하여 무색 유상물의 15(0.88g, 97%)를 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.67(C)
·mp; 85~87℃
·1H-NMR(CDCl3); 0.80-1.06(36H, m), 1.43(9H, s), 1.47(3H, d, J=7.07Hz), 1.52(3H, d, J=7.07Hz), 1.62-1.84(6H, m), 1.96-2.08(1H, m), 2.19-2.38(3H, m), 3.93(1H, t, J=6.83Hz), 4.12-4.22(1H, m), 4.22-4.31(1H, m), 4.44-4.61(1H, m), 4.94-5.02(2H, m), 5.09(1H, d, J=6.09Hz), 7.65(1H, d, J=6.83Hz), 7.74(1H, d, J=5.85Hz), 7.83(1H, d, J=7.32Hz)
스펙트럼을 도 1에 나타낸다.
·13C-NMR(CDCl3); 16.28, 16.65, 16.87, 18.74, 19.01, 19.21, 19.26, 21.04, 23.22, 23.26, 24.35, 28.23, 29.53, 29.93, 30.18, 30.35, 40.41, 40.65, 48.00, 49.37, 59.28, 60.12, 72.69, 77.21, 78.82, 80.84, 156.46, 170.62, 170.71, 170.88, 171.12, 171.22, 171.53, 171.75, 172.33
·IR; 3060, 2966, 2876, 1751, 1658, 1535, 1465, 1389, 1370, 1301, 1241, 1155, 1058, 1010, 931, 877, 838, 782, 628
(16)Boc-L-Val-D-O-Leu-D-Ala-L-O-Val)3-OBn(16)
빙냉 하에서 프래그먼트 B(13)·TFA 염·(479mg, 0.81mmol)의 아세토니트릴(5mL) 용액을 넣고 DIPEA(0.14mL, 0.81mmol)를 가하여 중화한 후, 옥타뎁시펩티드 15(720mg, 0.81mmol)의 아세토니트릴(5mL) 용액을 가하였다. 이어서 O-(7-아자벤조트리아졸-1-yl)-N,N,N',N'-tetra 메틸우로늄 헥사플루오로포스페이트(HATU, 334mg, 0.88mmol)를 가하였다. 반응액을 실온으로 되돌려 하룻밤 교반한 후, 감압 농축하여 잔사를 아세트산 에틸에 용해하고, 아세트산 에틸층을 10% 구연산 수용액, 포화 탄산 수소 나트륨 수용액 및 포화 식염수로 순차적으로 세정하였다. 이 유기층을 무수 황산 나트륨으로 건조, 이어서 감압 농축하여 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸=7:3)에 의해 정제하여 무색 고체의 16(905mg, 82%)을 얻었다.
·TLC; Rf=0.33(F)
·mp; 71~73℃
·1H-NMR(CDCl3); 스펙트럼을 도 2에 나타낸다.
·13C-NMR(CDCl3); 14.06, 16.27, 16.34, 16.41, 16.53, 17.09, 17.15, 17.68, 18.57, 18.94, 18.98, 19.05, 19.17, 19.20, 19.31, 19.40, 20.69, 20.81, 21.12, 23.03, 23.15, 23.31, 24.20, 24.35, 28.23, 29.74, 30.02, 30.11, 30.15, 30.38, 40.53, 40.90, 41.18, 48.17, 49.36, 49.62, 58.27, 58.73, 60.40, 66.62, 72.41, 72.74, 77.21, 78.88, 79.09, 80.91, 128.20, 128.45, 135.41, 156.56, 169.22, 169.71, 169.96, 170.36, 170.51, 170.56, 170.81, 171.90, 172.45
·[a]D +6.12°(CHCl3, c 1.02, 25.9℃)
·IR; 3320, 2965, 2876, 1751, 1655, 1538, 1466, 1370, 1336, 1242, 1184, 1153, 1058, 1006, 933, 876, 747, 697
(17)Boc-(L-Val-D-O-Leu-D-Ala-L-O-Val)3-OH(17)
보호된 도데카뎁시펩티드 16(133mg, 97.7μmol), 메탄올(5mL) 및 10% 팔라듐 탄소(7mg)의 혼합물을 수소 첨가용 반응 용기에 넣고 수소 기류(3기압) 하에서 실온에서 3시간 교반하였다. TLC로 반응 진행을 확인한 후, 용매를 감압 유거하여 무색 고체의 17(120.2mg, 97%)을 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.33(B)
·mp; 97~99℃
·1H-NMR(CDCl3); 스펙트럼을 도 3에 나타낸다.
·13C-NMR(CDCl3); 16.33, 16.39, 16.48, 16.60, 16.78, 16.88, 18.78, 18.84, 18.94, 19.03, 19.18, 19.24, 19.26, 19.31, 20.92, 21.09, 23.18, 23.34, 24.32, 24.39, 28.28, 29.51, 29.86, 29.92, 30.21, 30.22, 40.52, 40.82, 48.26, 49.35, 49.54, 58.82, 59.06, 60.30, 72.77, 72.82, 73.02, 77.23, 77.58, 78.99, 79.04, 80.89, 156.55, 170.46, 170.65, 170.84, 170.97, 171.21, 171.55, 172.11, 172.36, 172.53
·IR; 3319, 3068, 2965, 2938, 2876, 1751, 1658, 1536, 1467, 1389, 1370, 1335, 1308, 1249, 1185, 1154, 1128, 1109, 1058, 1008, 933, 877, 755
(18)H-(L-Val-D-O-Leu-D-Ala-L-O-Val)3-OH(18)·TFA 염
빙냉 하에서 17(181mg, 142μmol)의 디클로로메탄(2mL) 용액에 TFA(2mL)를 가하고 1시간 빙냉 하에서 교반을 계속하였다. TLC로 반응 진행을 확인한 후, 반응액에 톨루엔을 가하여 감압 농축하였다. TFA를 완전히 제거하기 위해 농축 잔사에 톨루엔을 가하여 공비 유거하였다. 이 조작을 3회 반복하여 행하여 무색 고체의 18(181mg, quant)을 얻었다. 이는 정제하지 않고 다음 환화 반응에 이용하였다.
·TLC; Rf=0.45(B)
·mp; 118~121℃
·1H-NMR(CDCl3); 스펙트럼을 도 4에 나타낸다.
·IR; 3310, 3060, 2965, 2882, 2360, 1749, 1659, 1542, 1466, 1389, 1208, 1154, 1059, 1007
(실시예 5)
세레울라이드의 합성(환화 반응)
(19)세레울라이드
아르곤 치환한 반응 용기에 디페닐포스포릴아지드(DPPA)(9.8μL, 45.5μmol)를 무수 N,N-디메틸포름아미드(12mL)에 용해하고, 이어서 N,N-디이소프로필에틸아민(15.7μL, 90μmol)을 가하여 A액을 조제하였다. 별도로 전구체 18(40mg, 31.5μmol)을 무수 N,N-디메틸포름아미드(8mL)에 용해한 B액을 조정하였다. 실온 하에서 마이크로실린지를 이용하여 A액에 B액을 1시간 이상에 걸쳐 적하하고, 10일간 실온 하에서 교반을 계속하였다. 반응액을 감압 농축하여 N,N-디메틸포름아미드를 유거하고, 잔사를 아세트산 에틸에 용해하여 포화 탄산 수소 나트륨 수용액, 1N 염산 및 포화 식염수로 순차적으로 세정하였다. 이 유기층을 무수 황산 나트륨으로 건조, 감압 농축하여 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸=7:3)에 의해 정제하여 담황색 고체의 세레울라이드(5.2mg, 14%)를 얻었다. 이를 열 n-헥산으로부터 재결정하여 순수한 세레울라이드를 무색 결정으로서 얻었다.
·TLC; Rf=0.23(F)
·mp; 200℃(lit.5) 196-199℃)
·1H-NMR(CDCl3); 0.85-1.02(m, 45H), 1.06(d, J=6.59Hz, 9H), 1.46(d, J=7.07Hz, 9H), 1.59-1.85(m, 9H), 2.24-2.39(m, 6H), 4.10(dd, J=9.27, 7.81Hz, 3H), 4.37-4.42(m, 3H), 5.01(d, J=3.17Hz, 3H), 5.32(dd, J=7.81, 5.12Hz, 3H), 7.81(d, J=6.83Hz, 6H)
스펙트럼을 도 5에 나타낸다.
·13C-NMR(CDCl3); 15.75, 16.85, 18.55, 19.28, 21.20, 23.34, 24.37, 28.62, 30.48, 40.54, 48.78, 9.45, 72.69, 78.62, 170.49, 171.07, 171.49, 171.87
·[a]D +10.5℃(CHCl3, c 0.78, 25℃), {lit.5) +3.37°(CHCl3, c 1.03)}
·IR; 3303, 2963, 2875, 1744, 1656, 1539, 1467, 1246, 1190, 1149, 1057, 1008
·MALDI/TOFMS; 1175.576[M+Na]+, 1191.561[M+K]+
(실시예 6)
6-아미노헥산산(AHA) 및 L-글루타민산 유도체
(1)6-아미노헥산산 벤질 에스테르(AHA-OBn, 20)·p-TosOH염
Dean-Stark 장치를 장착한 가지형 플라스크에 시판되는 6-아미노헥산산(AHA, 19)(6.56g, 50.0mmol), 벤질 알코올(15.6mL, 150mmol), p-TosOH·1수화물(11.41g, 60.0mmol) 및 톨루엔(150mL)을 넣고 7시간 가열 환류하여 발생하는 물을 공비 분리에 의해 제거하였다. TLC로 원료 소실을 확인한 후, 반응액을 실온으로 되돌려 헥산을 가하고 석출한 결정을 흡인 여취하였다. 결정을 냉아세트산 에틸로 잘 세정하여 무색 고체의 20(18.71g, 95.1%)을 얻었다.
·TLC; Rf=0.35(D)
·mp; 107.9℃
·1H-NMR(CD3OD); 1.29-1.44(2H, m), 1.54-1.69(4H, m), 2.33-3.34(5H, m), 2.80-2.90(2H, m), 3.26-3.34(2H, m), 5.11(2H, s), 7.22(2H, d, J=7.81), 7.28-7.37(5H, m), 7.66-7.72(2H, m)
·13C-NMR(CD3OD); 21.31, 25.37, 26.79, 28.17, 34.60, 40.50, 67.21, 126.92, 129.92, 129.23, 129.26, 129.55, 129.85, 137.65, 141.75, 143.45, 174.86
·IR; 3050, 2945, 2634, 2042, 1730, 1622, 1476, 1248
(2)Troc-L-글루타민산 g-벤질 에스테르(22a)
빙냉 하에서 탄산 수소 나트륨(3.19g, 38.0mmol) 수용액(60mL)에 시판(와타나베 화학공업 제품)의 L-글루타민산 g-벤질 에스테르 21(3.00g, 12.6mmol)을 용해하고, 여기에 2,2,2-trichloroethyl chloroformate(Troc-Cl)(2.20mL, 16.0mmol)의 디에틸에테르(10mL) 용액을 적하하였다. 적하 종료 후, 반응액을 실온으로 되돌려 하룻밤 교반을 계속하였다. 반응액을 분액 깔때기로 옮겨 과잉의 Troc-Cl을 디에틸에테르 추출에 의해 제거하고, 물 층에 구연산을 가하여 pH3으로 조정한 후, 아세트산 에틸로 3회 추출하였다. 합한 유기층을 포화 식염수로 1회 세정하고, 무수 황산 나트륨으로 건조, 감압 농축하여 잔사에 무색 유상물의 22a(3.95g, 75.7%)를 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.56(A)
·1H-NMR(CDCl3); 2.07-2.19(1H, m), 2.18-2.29(1H, m), 2.31-2.43(1H, m), 2.46-2.65(2H, m), 4.54-4.63(1H, m), 4.66-4.78(2H, m), 5.14(2H, s), 5.72(1H, d, J=8.05Hz), 7.30-7.40(5H, m, ArH)
·IR; 3328, 3035, 2955, 2629, 1732, 1452, 1391, 1214
(3)Troc-L-글루타민산 a-tert-부틸 에스테르(24)
빙냉 하에서 시판(와타나베 화학공업 제품)의 L-글루타민산 tert-부틸 에스테르 23(1.00g, 4.92mmol)을 탄산 수소 나트륨(827mg, 9.84mmol) 수용액(10mL)에 용해하고, 여기에 Troc-Cl(0.80mL, 5.97mmol)의 디에틸에테르(3mL) 용액을 적하하였다. 22a와 마찬가지의 반응 처리를 행하여 무색 유상물의 24(1.61g, 86.4%)를 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.56(A)
·1H-NMR(CDCl3); 1.49(9H, s), 1.92-2.08(1H, m), 2.18-2.30(1H, m), 2.36-2.56(2H, m), 4.27-4.36(1H, m), 4.64-4.81(2H, m), 4.73(1H, d, J=7.81Hz)
·13C-NMR(CDCl3); 27.51, 27.93, 29.79, 53.79, 74.61, 83.03, 95.29, 154.21, 170.52, 178.12
·IR; 3336, 2980, 1720, 1528, 1452, 1395, 1370, 1230
(4)Troc-L-글루타민산(AHA-OBn) a-tert-부틸 에스테르(25)
빙냉 하에서 20 p-Tos-OH염(1.83g, 4.65mmol)의 아세토니트릴(7mL) 용액에 DIPEA(1.84mL, 10.6mmol)를 가하여 중화한 후, 여기에 24(1.60g, 4.23mmol)의 아세토니트릴 용액(3mL)을 가하고, 다음에 EDC 염산염(972mg, 5.04mmol) 및 HOBt(571mg, 4.23mmol)를 가하였다. 빙냉 배스를 제거하여 반응액을 실온 하에서 하룻밤 교반한 후, 용매를 감압 유거하였다. 이 잔사를 아세트산 에틸에 용해하여 유기층을 10% 구연산 수용액, 포화 탄산 수소 나트륨 수용액 및 포화 식염수로 세정하고, 무수 황산 나트륨으로 건조, 감압 농축하였다. 이 잔사를 실리카 겔 칼럼 크로마토그래피(클로로포름)에 의해 정제하여 무색 유상물의 25(1.82g, 74%)를 얻었다.
·TLC; Rf=0.69(B)
·1H-NMR(CDCl3); 1H-NMR(CDCl3); 1.30-1.40(2H, m), 1.43-1.56(11H, m), 1.62-1.70(2H, m), 1.91-2.03(1H, m), 2.17-2.30(3H, m), 4.37(2H, t, J=7.32Hz), 3.17-3.31(2H, m), 4.17-4.27(1H, m), 4.63-4.81(2H, m), 5.11(2H, s), 5.90(1H, d, J=7.56Hz), 7.31-7.39(5H, m)
·13C-NMR(CDCl3); 24.36, 26.25, 27.91, 28.71, 29.06, 32.42, 34.00, 39.31, 54.15, 66.13, 74.54, 82.71, 95.33, 128.16, 128.18, 128.51, 135.91, 154.56, 170.61, 171.68, 173.39
·IR; 3322, 3034, 2938, 2867, 1734, 1651, 1537, 1454, 1369, 1229
(5)Troc-L-글루타민산(AHA-OBn)(22b)
빙냉 하에서 25(913mg, 1.57mmol)의 디클로로메탄(5.0mL) 용액에 트리플루오로 아세트산(5.0mL)을 가하여 30분간 교반하고, 다음에 실온 하에서 2.5시간 교반하였다. TLC로 반응 종료를 확인한 후, 감압 농축하여 담황색 유상물의 22b·TFA 염(825mg, quant.)을 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.50(C)
·1H-NMR(CDCl3); 1.30-1.39(2H, m, CH2), 1.46-1.57(2H, m, CH2), 1.59-1.70(2H, m, CH 2 ), 2.06-2.14(1H, m, CHCH 2 CH2CO), 2.18-2.29(1H, m, CHCH 2 CH2CO), 2.34-2.46(4H, m, CH2), 3.20-3.30(2H, m, CH2), 4.32-4.39(1H, m, CHCH2CH2CO), 4.64-4.90(2H, m, CH 2 CCl3), 5.12(2H, s, CH 2 Ph), 6.28(1H, d, J=7.32, NH), 6.36-6.41(1H, m, NH), 7.30-7.40(5H, m, ArH)
·13C-NMR(CDCl3); 24.24, 26.15, 28.68, 28.99, 32.43, 33.98, 39.71, 54.43, 66.35, 74.65, 95.32, 128.22, 128.30, 128.60, 135.88, 154.52, 172.92, 173.73, 173.76
·[a]D +8.57°(CHCl3, c 0.46, 16.4℃)
·IR; 3341, 2942, 2602, 1733, 1626, 1541, 1450, 1230, 736
D-류신산 및 D-발린산 tert-부틸 에스테르
(6)D-OAc-류신{(2R)-2-아세톡시-4-메틸 펜탄산}(27)
빙냉 하에서 D-O-류신 26(3, 3.36g, 25.4mmol)에 염화 아세틸(13.4mL, 154mmol)을 적하 깔때기를 이용하여 가하였다. TLC로 원료 소실을 확인한 후, 반응액을 감압 농축하였다. 이 농축 잔사 중의 염화 아세틸을 완전히 제거하기 위해, 소량의 톨루엔과의 동시증발 조작을 3회 반복하여 행하여 무색 유상물의 27(6.52g, quant.)을 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.61(C)
·1H-NMR(CDCl3); 0.94(3H, d, J=6.34, CH(CH 3 )2), 0.97(3H, d, J=6.34, CH(CH 3 )2), 1.64-1.72(1H, m, CH(CH3)2), 1.75-1.86(2H, m, CH 2 CH(CH3)2), 2.15(3H, s, COCH 3 ), 5.01-5.07(1H, m, CHCH2)
·13C-NMR(CDCl3); 20.53, 21.41, 22.91, 24.57, 39.50, 70.55, 170.79, 176.70
(7)D-OAc-류신 tert-부틸 에스테르{tert-부틸(2R)-2-아세톡시-4-메틸펜타노에이트}(28)
실온 하에서 27(6.52g, 37.4mmol), tert-부탄올(40mL) 및 Boc2O(8.26g, 37.8mmol)의 혼합물에 DMAP(0.92g, 7.53mmol)를 천천히 가하였다. 실온에서 5시간 교반한 후, 반응액을 감압 농축하고, 농축 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 유상물의 28(6.56g, 70.1%)을 얻었다.
·TLC; Rf=0.54(A)
·1H-NMR(CDCl3); 0.92(3H, d, J=6.83, CH(CH 3 )2), 0.96(3H, d, J=6.58Hz, CH(CH 3 )2), 1.46(9H, s, tert - Bu), 1.55-1.64(1H, m, CH(CH3)2), 1.69-1.82(2H, m, CH 2 CH(CH3)2), 2.12(3H, s, COCH 3 ), 4.85-4.92(1H, m, CHCH2)
·13C-NMR(CDCl3); 20.70, 21.56, 22.99, 24.62, 27.91, 39.71, 71.52, 81.89, 169.94, 170.64
·IR; 2963, 2875, 1746, 1465, 1372
(8)D-O-류신 tert-부틸 에스테르{tert-부틸(2R)-2-히드록시-4-메틸펜타노에이트}(29)
D-OAc-류신 tert-부틸 에스테르(6.56g, 28.5mmol)의 메탄올(30mL) 용액에 탄산 칼륨(19.68g, 142.4mmol) 수용액(60mL)을 가하고 실온에서 1일간 격렬하게 교반하였다. 반응 종료 후, 메탄올을 감압 유거하고, 잔사를 분액 깔때기로 옮겨 디에틸에테르로 3회 추출하였다. 합한 유기층을 포화 식염수로 세정한 후, 무수 황산 나트륨으로 건조, 감압 농축하여 무색 유상물의 D-O-류신 tert-부틸 에스테르(4.35g, 81.1%)를 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.52(A)
·1H-NMR(CDCl3); 0.94(3H, d, J=2.68Hz, CH(CH 3 )2), 0.96(3H, d, J=2.44Hz, CH(CH 3 )2), 1.49-1.53(11H, m, tert - Bu and CHCH 2 CH), 1.81-1.95(1H, m, CH(CH3)2),
2.74(1H, d, J=5.85Hz, OH), 4.00-4.09(1H, m, CHCH2(CH3)2)
·13C-NMR(CDCl3); 21.59, 23.32, 24.49, 27.99, 43.59, 69.20, 82.23, 175.23
·[a]D -6.90°(CHCl3, c 1.06, 14.7℃)
·IR; 3493, 2959, 2873, 1729, 1465, 1273
(9)L-OAc-발린{(2R)-2-아세톡시-4-메틸 펜탄산}(30)
L-OAc-발린은 D-OAc-류신과 마찬가지의 방법으로 합성하였다. 즉, 빙냉 하에서 L-O-발린 5(5.00g, 42.3mmol)에 염화 아세틸(15.0mL, 211mmol)을 적하 깔때기로부터 가하였다. TLC로 원료의 소실을 확인한 후, 반응액을 감압 농축하였다. 이 잔사에 소량의 톨루엔을 가하고 감압 농축하여 잔존하는 염화 아세틸을 톨루엔과의 동시증발에 의해 제거하였다. 이 조작을 3회 반복하여 농축 잔사에 무색 유상물의 30(6.73g, quant)을 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.63(C)
·1H-NMR(CDCl3); 1.00-1.06(6H, m, CH(CH 3 )2), 2.16(3H, s, CH 3 CO), 2.20-2.33(1H, m, CH(CH3)2), 4.89(1H, d, J=4.39Hz, CHCH(CH3)2), 10.64(1H, br, COOH)
·13C-NMR(CDCl3); 17.03, 18.70, 20.48, 29.86, 170.92, 175.61
(10)L-OAc-발린 tert-부틸 에스테르{tert-부틸(2S)-2-아세톡시-3-메틸부타노에이트}(31)
L-OAc-발린 tert-부틸 에스테르는 D-OAc-류신 tert-부틸 에스테르와 마찬가지의 방법으로 합성하였다. 즉, L-OAc-발린(6.73g, 42.0mmol), tert-부탄올(40mL), Boc2O(9.17g, 42.0mmol)의 혼합물을 실온 하에서 교반하고, 여기에 DMAP(1.03g, 8.43mmol)를 천천히 가하였다. 실온에서 2시간 교반한 후, 반응액을 감압 농축하고, 농축 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 유상물의 L-OAc-발린 tert-부틸 에스테르(6.52g, 71.8%)를 얻었다.
·TLC; Rf=0.57(A)
·1H-NMR(CDCl3); 0.95-1.01(6H, m, CH(CH 3 )2), 1.47(9H, s, tert - Bu), 2.17(3H, s, CH 3 CO), 2.16-2.24(1H, m, CH(CH3)2), 4.72(1H, d, J=4.39Hz, CHCH(CH3)2)
·13C-NMR(CDCl3); 17.12, 18.71, 20.64, 27.96, 29.93, 60.37, 81.83, 168.78, 170.77
·IR; 2975, 2938, 2880, 1744, 1238
(11)L-O-발린 tert-부틸 에스테르{tert-부틸(2S)-2-히드록시-3-메틸부타노에이트}(32)
L-O-발린 tert-부틸 에스테르는 L-O-류신 tert-부틸 에스테르와 마찬가지로 합성하였다. 즉, L-OAc-발린 tert-부틸 에스테르(6.52g, 30.1mmol)의 메탄올(30mL) 용액에 탄산 칼륨(20.83g, 151.0mmol) 수용액(60mL)을 가하고 실온에서 1일간 교반하였다. 반응 종료 후, 메탄올을 감압 유거하여 물 층을 디에틸에테르로 3회 추출하였다. 합한 유기층을 포화 식염수로 세정, 무수 황산 나트륨으로 건조하고 감압 농축하여 무색 유상물의 L-O-발린 tert-부틸 에스테르(3.87g, 73.7%)를 얻었다. 이는 더 이상 정제하지 않고 다음 반응에 이용하였다.
·TLC; Rf=0.54(A)
·1H-NMR(CDCl3); 0.86(3H, d, J=6.83Hz, CH(CH 3 )2), 1.02(3H, d, J=7.07Hz, CH(CH 3 )2), 1.50(9H, s, tert - Bu), 3.92(1H, d, J=3.41, CHCH(CH3)2)
·13C-NMR(CDCl3); 15.72, 18.80, 25.58, 28.02, 32.08, 74.88, 82.31, 174.22
·[a]D +3.60°(MeOH, c 1.04, 15.1℃)
·IR; 3518, 2970, 2879, 1726, 1465, 1259
(실시예 7)
디뎁시펩티드의 합성
(12)Troc-L-글루타민산(OBn/AHA-OBn)-D-O-류신 tert-부틸 에스테르(33)
빙냉 하에서 N-보호 L-글루타민산 유도체 22(1.12mmol) 및 D-류신 tert-부틸 에스테르 29(1.35mmol)의 디클로로메탄(10mL) 용액에 DMAP(0.34mmol), 다음에 DCC(1.68mmol)를 천천히 가하였다. 이 반응액을 빙냉 하에서 하룻밤 교반한 후, 부생성된 DCUrea를 흡인 여거하여 제거하고 여액을 감압 농축하였다. 이 농축 잔사를 아세트산 에틸에 녹이고, 유기층을 포화 탄산 수소 나트륨 수용액, 다음에 포화 식염수로 세정하여 무수 황산 나트륨으로 건조, 감압 농축하였다. 농축 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 목적으로 하는 디뎁시펩티드 33을 얻었다.
33a(R=OBn);
·수율; 35%
·TLC; Rf=0.60(F)
·1H-NMR(CDCl3); 0.91(3H, d, J=6.59Hz), 0.94(3H, d, J=6.34Hz), 1.45(9H, s), 1.57-1.67(2H, m), 1.70-1.81(1H, m), 2.04-2.18(1H, m), 2.28-2.43(1H, m), 2.47-2.61(2H, m), 4.51-4.60(1H, m), 4.67-4.76(2H, m), 4.89-4.94(1H, m), 5.13(2H, s), 5.69(1H, d, J=8.29Hz), 7.30-7.40(5H, m)
·13C-NMR(CDCl3); 21.40, 23.01, 24.62, 26.97, 27.32, 27.88, 29.99, 39.46, 53.53, 66.59, 72.69, 74.45, 74.62, 82.43, 95.24, 128.22, 128.31, 128.57, 135.62, 154.04, 168.94, 172.38
·IR; 3340, 2959, 1739, 1525, 1453, 1389, 1370, 1259, 1206
33b(R=NH(CH2)5COOBn);
·수율; 93%
·TLC; Rf=0.42(F)
·1H-NMR(CDCl3); 0.89-0.95(6H, m, CH(CH 3 )2), 1.30-1.40(2H, m, CH2), 1.46(9H, s, tert - Bu), 1.47-1.55(2H, m, CH2), 1.59-1.80(6H, m), 2.06-2.16(1H, m, CHCH 2 CH2CO), 2.28-2.48(5H, m), 3.16-3.28(2H, m, CH2), 4.39-4.47(1H, m, CHCH2CH(CH3)2), 4.66-4.77(2H, m, CH 2 CCl3), 4.90-4.95(1H, m, NH), 5.11(2H, s, CH2Ph), 6.07-6.11(2H, m, NH), 7.33-7.37(5H, m, ArH)
·13C-NMR(CDCl3); 14.18, 21.05, 21.40, 23.03, 24.41, 24.55, 26.32, 27.90, 28.01, 29.07, 32.23, 34.04, 39.38, 39.57, 54.11, 60.39, 66.17, 72.49, 74.61, 82.57, 95.29, 128.20, 128.54, 129.01, 135.96, 154.37, 169.54, 170.86, 171.97, 173.38
·IR; 3322, 2956, 2871, 1741, 1653, 1537, 1239, 735
(13)Troc-L-글루타민산(OBn/AHA-OBn)-D-O-류신(34)
빙냉 하에서 33(0.85mmol)의 디클로로메탄(3.0mL) 용액에 TFA(3.0mL)를 천천히 가하고, 빙냉 하에서 30분간, 이어서 실온 하에서 1.5시간 교반하였다. TLC로 반응 종료를 확인한 후, 반응액을 감압 농축하여 담황색 유상물의 34(quant.)를 얻었다. 이는 정제하지 않고 다음 반응에 이용하였다.
34a(R=OBn)
·수율; quant
·TLC; Rf=0.56(C)
·1H-NMR(CDCl3); 0.92(3H, d, J=6.10Hz), 0.95(3H, d, J=6.34Hz), 1.65-1.78(2H, m), 1.80-1.91(1H, m), 2.02-2.16(1H, m), 2.26-2.38(1H, m), 2.41-2.60(2H, m), 4.49-4.58(1H, m), 4.62-4.78(2H, m), 5.06-5.12(1H, m), 5.13(2H, s), 5.74(1H, d, J=8.05Hz), 7.29-7.40(5H, m)
·13C-NMR(CDCl3); 21.29, 22.96, 24.62, 27.11, 29.97, 39.34, 53.54, 66.70, 71.61, 74.70, 95.19, 128.26, 128.36, 128.60, 135.55, 154.19, 170.84, 172.50
·IR; 3419, 2959, 1736, 1643, 1521, 1452, 1391, 1210, 1099
34b(R=NH(CH2)5COOBn)
·수율; quant
·TLC; Rf=0.52(C)
·1H-NMR(CDCl3); 0.88-0.99(6H, m, CH(CH 3 )2), 1.29-1.40(2H, m, CH2), 1.44-1.56(2H, m, CH2), 1.60-1.67(2H, m, CH2), 1.68-1.79(2H, m, CH2), 1.82-1.88(1H, m, CH(CH3)2), 2.10-2.19(1H, m, CHCH 2 CH2CO), 2.19-2.30(1H, m, CHCH 2 CH2CO), 2.35-2.42(4H, m, CH2), 3.19-3.28(2H, m, CH2), 4.39-4.47(1H, m, CHCH2CH(CH3)2), 4.67-4.77(2H, m, CH 2 CCl3), 5.09-5.11(1H, m, NH), 5.12(2H, s, CH2Ph), 6.29(1H, d, J=7.56Hz, NH), 6.45-6.52(1H, m, NH), 7.33-7.39(5H, m, ArH), 8.77(1H, br, COOH)
·13C-NMR(CDCl3); 21.30, 23.03, 24.34, 24.58, 26.17, 28.01, 28.67, 32.07, 34.05, 39.36, 39.53, 54.08, 66.47, 71.82, 74.64, 95.22, 128.21, 128.31, 128.58, 135.66, 154.56, 170.81, 172.67, 173.18, 174.17
·IR; 3351, 3062, 2957, 2871, 1734, 1630, 1539, 1453, 1386, 1211, 1099
(14)카르보벤질옥시-D-알라닌(Z-D-Ala)
빙냉 하에서 탄산 나트륨(21.45g, 202mmol) 수용액(225mL)에 시판되는 D-알라닌(6.00g, 73.5mmol)을 용해하고, 여기에 benzyl chloroformate(Z-Cl)(10.5mL, 73.5mmol)의 디옥산(60mL) 용액을 천천히 적하하였다. 적하 종료 후, 반응액을 실온으로 되돌려 하룻밤 교반을 계속하였다. 반응액을 분액 깔때기로 옮기고, 과잉의 Z-Cl를 디에틸에테르 추출로 제거하였다. 물 층에 구연산을 가하여 pH 3으로 조정한 후, 아세트산 에틸로 3회 추출하였다. 합한 유기층을 포화 식염수로 1회 세정하고, 유기층을 무수 황산 나트륨으로 건조, 감압 농축한 후, 농축 잔사를 아세트산 에틸-헥산으로부터 재결정화하여 무색 결정의 Z-D-알라닌(13.77g, 91.6%)을 얻었다.
·TLC; Rf=0.51(C)
·mp; 82.9℃
·1H-NMR(CDCl3); 1.47(3H, d, J=7.32Hz, CH 3 ), 4.38-4.48(1H, m, CHCH3), 5.13(2H, s, CH 2 Ph), 5.29(1H, br, NH), 7.30-7.38(5H, m, ArH)
·13C-NMR(CDCl3); 18.36, 49.52, 67.22, 128.10, 128.25, 128.53, 136.05, 155.92, 177.45
·IR; 3349, 3046, 1719, 1539, 1252
(15)Z-D-알라닌-L-O-발린 tert-부틸 에스테르(35)
빙냉 하에서 L-O-발린 tert-부틸 에스테르 32(2.50g, 14.3mmol) 및 Z-D-알라닌(3.52g, 15.8mmol)의 디클로로메탄(30mL) 용액에 DMAP(0.35g, 2.9mmol), 이어서 DCC(3.70g, 17.9mmol)를 천천히 가하였다. 이 반응액을 빙냉 하에서 하룻밤 교반한 후, 부생성된 DCUrea를 흡인 여과에 의해 제거하고 여액을 감압 농축하였다. 이 농축 잔사를 아세트산 에틸에 녹이고, 유기층을 포화 탄산 수소 나트륨 수용액, 이어서 포화 식염수로 세정하고, 무수 황산 나트륨으로 건조, 감압 농축하였다. 이 농축 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 무색 유상물의 35(4.26g, 78.3%)를 얻었다.
·TLC; Rf=0.36(A)
·1H-NMR(CDCl3); 0.92-1.02(6H, m, CH(CH 3 )2), 1.46(9H, s, tert - Bu), 1.47(3H, d, J=7.07Hz, CHCH 3 ), 2.18-2.29(1H, m, CH(CH3)2), 4.46-4.57(1H, m, CHCH3), 4.75(1H, d, J=4.15Hz, CHCH(CH3)2), 5.11(2H, s, CH 2 Ph), 5.35(1H, d, J=7.07Hz, NH), 7.29-7.40(5H, m, ArH)
·13C-NMR(CDCl3); 16.93, 18.73, 27.93, 30.00, 49.74, 66.84, 82.22, 128.11, 128.13, 128.50, 136.23, 155.46, 168.05, 172.34
·IR; 3342, 2974, 2937, 2879, 1734, 1528, 1254
·[a]D -18.04°(CHCl3, c 0.875, 15.7℃)
(16)D-알라닌-L-O-발린 tert-부틸 에스테르(36)·TFA 염
수소 첨가용 플라스크에 35(1.96g, 5.17mmol), 메탄올(30mL), TFA(0.46mL, 6.2mmol) 및 10% 팔라듐 탄소(100mg)의 혼합물을 넣고 수소 기류(3기압) 하에서 실온에서 3시간 교반하였다. TLC로 반응 진행을 확인한 후, 촉매를 여거, 여액을 감압 농축하고, 농축 잔사를 실리카 겔 칼럼 크로마토그래피(클로로포름/메탄올)에 의해 정제하여 담갈색 유상물의 36(1.65g, 93.3%)을 얻었다.
·TLC; Rf=0.34(B)
·1H-NMR(CDCl3); 0.96-1.04(6H, m, CH(CH 3 )2), 1.36(3H, d, J=8.54Hz, CHCH 3 ), 1.47(9H, s, tert - Bu), 2.20-2.29(1H, m, CH(CH3)2), 3.66(1H, q, J=7.07Hz, CHCH3), 4.76(1H, d, J=4.39Hz, CHCH(CH3)2)
·13C-NMR(CDCl3); 16.99, 18.80, 20.29, 27.97, 28.01, 30.02, 32.07, 49.97, 82.01, 168.52, 176.24
·IR; 3445, 2977, 1747, 1677, 1537, 1464, 1432, 1395, 1371, 1330, 1204
(실시예 8)
테트라뎁시펩티드의 합성
(17)Troc-L-글루타민산(OBn/AHA-OBn)-D-O-류신-D-알라닌-L-O-발린 tert-부틸 에스테르(37)
빙냉 하에서 N말단이 보호된 디뎁시펩티드 36·TFA 염(289mg, 0.84mmol)의 아세토니트릴(5mL) 용액에 DIPEA(0.15mL, 0.84mmol)를 가하여 중화한 후, C말단이 보호된 디뎁시펩티드 34(0.84mmol)의 아세토니트릴(5mL) 용액을 가하고, 이어서 HBTU(352mg, 0.93mmol) 및 HOBt(114mg, 0.84mmol)를 가하였다. 반응액을 실온으로 되돌려 하룻밤 교반한 후, 반응액을 감압 농축하였다. 이 농축 잔사를 아세트산 에틸에 용해하고, 아세트산 에틸층을 10% 구연산 수용액, 포화 탄산 수소 나트륨 수용액 및 포화 식염수로 순차적으로 세정하여 무수 황산 나트륨으로 건조, 감압 농축하였다. 이를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 담황색 유상물의 37을 얻었다.
37a(R=OBn);
·수율; 75%
·TLC; Rf=0.64(F)
·1H-NMR(CDCl3); 0.85-1.00(12H, m), 1.45(9H, s), 1.48(3H, d, J=7.32Hz), 1.60-1.83(3H, m), 1.99-2.15(1H, m), 2.15-2.36(2H, m), 2.41-2.62(2H, m), 4.43-4.52(1H, m), 4.60-4.81(4H, m), 5.14(2H, s), 5.27(1H, dd, J=5.61Hz, J=7.56Hz), 5.98(1H, d, J=7.56Hz), 6.83(1H, d, J=7.56Hz), 7.30-7.40(5H, m)
·13C-NMR(CDCl3); 16.88, 17.72, 18.69, 21.42, 23.09, 24.47, 26.52, 27.94, 30.02, 40.50, 47.95, 53.69, 66.73, 73.49, 74.74, 82.33, 95.18, 128.28, 128.38, 128.59, 135.49, 154.50, 168.28, 169.22, 170.47, 171.91, 172.37
·IR; 3421, 2964, 1739, 1674, 1538, 1455, 1391, 1370, 1256
37b(R=NH(CH2)5CO2Bn);
·수율; 55%
·TLC; Rf=0.31(F)
·1H-NMR(CDCl3); 0.85-1.00(12H, m), 1.30-1.40(2H, m), 1.45(9H, s), 1.49(3H, d, J=7.32Hz), 3.19-3.29(1H, m), 4.39-4.46(1H, m), 4.62-4.80(4H, m), 5.11(2H, s), 5.23(1H, dd, J=4.88Hz, J=9.02Hz), 6.03-6.11(1H, m), 6.59(1H, d, J=7.07Hz), 7.00(1H, d, J=7.56Hz), 7.30-7.40(5H, m)
·13C-NMR(CDCl3); 16.89, 17.59, 18.69, 21.39, 23.12, 24.33, 24.41, 26.25, 26.92, 27.92, 28.96, 30.00, 31.97, 33.99, 39.45, 40.46, 48.12, 54.22, 66.17, 73.24, 74.66, 77.68, 82.28, 95.27, 128.17, 128.22, 128.54, 128.55, 135.90, 154.72, 168.24, 169.68, 170.68, 171.96, 172.26, 173.44
·IR; 3335, 2962, 1757, 1680, 1538, 1455, 1108, 736
(18)L-글루타민산(OBn/AHA-OBn)-D-O-류신-D-알라닌-L-O-발린tert-부틸 에스테르(38)
C 및 N-말단이 보호된 테트라뎁시펩티드 37(0.24mmol)의 90% 아세트산 용액(3mL)에 아연(310.6mg, 4.74mmol)을 가하고 실온에서 하루 교반하였다. 반응 종료 후, 반응액에 다량의 물을 가하고 아세트산 에틸로 3회 추출하였다. 합한 유기층을 물, 포화 탄산 수소 나트륨 수용액 및 포화 식염수로 세정하였다. 유기층을 무수 황산 나트륨으로 건조, 감압 농축하여 38을 얻었다.
38a(R=OBn); 담황색 유상물
·수율; quant
·TLC; Rf=0.53(B)
·1H-NMR(CDCl3); 0.78-1.03(12H, m), 1.40-1.50(12H, m), 1.60-1.82(3H, m), 2.05-2.32(3H, m), 2.31-2.59(2H, m), 4.33-4.45(1H, m), 4.65-4.81(2H, m), 5.13(2H, s), 5.18-5.25(1H, m), 6.57(1H, d, J=7.56Hz), 6.88(1H, d, J=7.32Hz), 7.29-7.38(5H, m)
·13C-NMR(CDCl3); 16.94, 18.20, 18.74, 21.53, 23.13, 24.53, 27.96, 27.97, 30.05, 40.64, 47.72, 55.22, 66.39, 72.93, 77.24, 77.83, 82.38, 126.99, 128.20, 128.57, 135.83, 168.13, 168.97, 169.65, 172.22, 172.89
·IR; 3346, 2965, 2938, 2875, 1740, 1679, 1538, 1455, 1391, 1370
38b(R=NH(CH2)5COOBn); 담황색 비결정(amorphous)상 고체
·수율; 96%
·TLC; Rf=0.42(C)
·1H-NMR(CDCl3); 0.82-1.02(12H, m), 1.30-1.39(2H, m), 1.42-1.55(15H, m), 1.58-1.84(5H, m), 1.87-1.99(1H, m), 2.14-2.29(2h, m), 2.29-2.42(4H, m), 3.13-3.29(2H, m), 3.63-3.76(1H, m), 4.70(1H, d, J=7.56Hz), 4.73(1H, d, J=4.39Hz), 5.11(2H, s), 5.23(1H, dd, J=3.90Hz, J=9.51Hz), 6.12-6.24(1H, m), 7.04(1H, d, J=7.56Hz), 7.29-7.38(5H, m)
·13C-NMR(CDCl3); 14.16, 16.96, 18.00, 18.69, 21.47, 23.10, 24.42, 24.45, 26.32, 27.90, 29.14, 30.01, 32.42, 34.02, 39.25, 40.64, 47.76, 60.39, 66.14, 73.02, 82.39, 128.17, 128.20, 128.53, 135.91, 168.19, 169.73, 172.15, 172.29, 173.41
·IR; 3317, 3068, 2962, 2873, 1739, 1663, 1637, 1545, 1456, 1370, 1163
(실시예 9)
도데카뎁시펩티드(전구체)의 합성
(19)Boc-L-발린-D-O-류신-D-알라닌-L-O-발린-L-발린-D-O-류신-D-알라닌-L-O-발린-L-글루타민산(OBn/AHA-OBn)-D-O-류신-D-알라닌-L-O-발린tert-부틸 에스테르(39)
빙냉 하에서 C말단이 보호된 테트라뎁시펩티드 38(0.155mmol) 및 N말단이 보호된 옥타뎁시펩티드 15(137mg, 0.155mmol)의 아세토니트릴(5mL) 용액을 넣고, 여기에 DIPEA(27.0μL, 0.155mmol), HOAt(21.1mg, 0.155mmol) 및 HATU(88.2mg, 0.232mmol)를 가하였다. 반응액을 실온으로 되돌려 하룻밤 교반한 후, 감압 농축하여 잔사를 아세트산 에틸에 용해하고, 아세트산 에틸층을 10% 구연산 수용액, 포화 탄산 수소 나트륨 수용액 및 포화 식염수로 순차적으로 세정하였다. 이 유기층을 무수 황산 나트륨으로 건조, 감압 농축하고, 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸=3:2)에 의해 정제하여 무색 유상물의 39를 얻었다.
39a(R=OBn);
·수율; 40%
·TLC; Rf=0.64(F)
·1H-NMR(CDCl3); 0.74-1.09(48H, m), 1.32-1.53(27H, m), 1.60-1.86(9H, m), 1.92-2.04(1H, m), 2.13-2.26(2H, m), 2.27-2.44(4H, m), 2.45-2.52(2H, m), 3.84(1H, dd, J=5.85Hz, J=7.56Hz), 4.01-4.16(2H, m), 4.27(1H, t, J=7.56Hz), 4.48-4.56(1H, m), 4.60(1H, t, J=7.56Hz), 4.65(1H, d, J=4.15Hz), 4.97(1H, d, J=2.93Hz), 5.07(1H, d, J=2.68Hz), 5.27(1H, dd, J=3.90Hz, J=8.87Hz), 7.28-7.37(5H, m), 7.74(1H, d, J=7.32Hz), 7.87(1H, d, J=7.32Hz), 7.96(1H, d, J=5.85Hz), 8.10(1H, d, J=7.81Hz), 8.25(1H, d, J=6.10Hz)
·13C-NMR(CDCl3); 13C-NMR(CDCl3); 16.18, 16.34, 16.56, 17.02, 17.57, 18.67, 18.95, 19.00, 19.06, 19.22, 19.30, 20.78, 20.89, 21.17, 23.12, 23.13, 23.36, 24.29, 24.39, 24.42, 26.20, 27.93, 28.26, 29.66, 29.80, 29.98, 30.08, 30.19, 30.41, 40.53, 40.65, 40.76, 48.25, 49.43, 49.63, 52.06, 58.97, 60.40, 66.31, 72.69, 72.75, 73.04, 77.56, 78.65, 79.00, 81.00, 81.79, 128.09, 128.24, 128.47, 135.93, 156.56, 168.44, 169.99, 170.15, 170.44, 170.90, 170.93, 171.92, 172.19, 172.26, 172.44, 172.50
·IR; 3316, 2965, 2876, 1748, 1658, 1538, 1460, 1369, 1158
38b(R=NH(CH2)5COOBn);
·수율; 73.5%
·TLC; Rf=0.58(B)
·1H-NMR(CDCl3); 0.82-1.09(48H, m), 1.39-1.53(33H, m), 1.53-1.89(11H, m), 1.93-2.05(1H, m), 2.10-2.44(9H, m), 3.09-3.28(2H, m), 3.84(1H, dd, J=5.85Hz, J=7.56Hz), 4.03-4.19(2H, m), 4.30(1H, t, J=7.56Hz), 4.37-4.48(1H, m), 4.59-4.67(2H, m), 4.97(1H, d, J=3.17Hz), 5.02(1H, d, J=2.93Hz), 5.07-5.15(4H, m), 5.20-5.30(1H, m), 6.53(1H, s), 7.28-7.40(5H, m), 7.66(1H, d, J=7.32Hz), 7.87(1H, d, J=7.56Hz), 7.94-8.01(2H, m), 8.29(1H, d, J=6.10Hz)
·13C-NMR(CDCl3); 16.22, 16.33, 16.52, 17.07, 17.62, 18.63, 18.90, 18.96, 19.05, 19.20, 20.77, 20.85, 21.14, 23.06, 23.11, 23.33, 24.29, 24.37, 24.56, 26.46, 27.46, 27.90, 27.93, 28.24, 29.28, 29.69, 29.78, 29.97, 30.03, 30.16, 32.48, 34.13, 39.36, 40.50, 40.66, 40.75, 48.04, 49.28, 49.63, 52.21, 58.84, 60.39, 66.05, 72.70, 72.77, 73.06, 77.20, 77.54, 77.77, 78.82, 78.98, 80.96, 81.93, 128.13, 128.18, 128.50, 136.03, 156.51, 168.31, 169.85, 170.35, 170.59, 170.86, 170.91, 170.98, 171.87, 172.14, 172.23, 172.47, 173.45
·IR; 3319, 2965, 2875, 1748, 1656, 1539, 1460, 1370, 1158, 747
(20)L-발린-D-O-류신-D-알라닌-L-O-발린-L-발린-D-O-류신-D-알라닌-L-O-발린-L-글루타민산(OBn/AHA-OBn)-D-O-류신-D-알라닌-L-O-발린발린
빙냉 하에서 39(69μmol)의 디클로로메탄(2mL) 용액에 TFA(2mL)를 천천히 가하고, 1시간 빙냉 하에서 교반을 계속하였다. TLC로 반응 진행을 확인한 후, 반응액에 톨루엔을 가하여 감압 농축하였다. TFA를 완전히 제거하기 위해, 농축 잔사에 톨루엔을 가하여 공비 유거하였다. 이 조작을 3회 반복하여 행하여 담황색 고체의 40을 얻었다. 이는 정제하지 않고 다음 환화 반응에 이용하였다.
40a(R=OBn);
·수율; 94%
·TLC; Rf=0.43(B)
·1H-NMR(CDCl3); 0.83-1.09(48H, m), 1.39(3H, d, J=7.32Hz), 1.47(3H, d, J=7.07Hz), 1.51(3H, d, J=7.56Hz), 1.58-1.84(9H, m), 2.10-2.41(9H, m), 4.10-4.25(2H, m), 4.26-4.38(2H, m), 4.57-4.66(1H, m), 4.73-4.79(1H, m), 4.86(1H, d, J=3.42Hz), 4.93(1H, d, J=2.93Hz), 5.02(1H, s), 5.05-5.17(3H, m), 5.27(1H, dd, J=4.39Hz, J=7.56Hz), 7.31-7.41(5H, m), 7.64(2H, d, J=8.54Hz), 7.74(1H, d, J=3.17Hz), 7.77(1H, d, J=7.81Hz), 8.32(1H, d, J=5.61Hz), 8.64(1H, d, J=5.85Hz)
·13C-NMR(CDCl3); 14.98, 15.63, 16.31, 16.70, 17.05, 17.23, 17.44, 17.71, 18.41, 18.54, 18.66, 18.93, 19.12, 19.58, 20.95, 21.11, 21.62, 22.99, 23.10, 23.16, 23.22, 24.33, 24.48, 24.52, 27.84, 29.66, 30.35, 30.54, 40.03, 40.14, 40.38, 50.09, 53.42, 58.74, 66.56, 73.94, 75.13, 78.02, 79.18, 79.24, 82.03, 128.23, 128.58, 128.95, 135.53, 169.15, 170.45, 171.34, 171.54, 171.82, 171.94, 172.12, 172.36, 173.42
·IR; 3296, 3068, 2965, 2870, 1749, 1661, 1543, 1466, 1372, 1202
40b(R=NH(CH2)5COOBn);
·수율; quant
·TLC; Rf=0.36(B)
·1H-NMR(CDCl3); 0.80-1.09(48H, m), 1.24-1.33(11H, m), 1.36-1.42(4H, m), 1.43-1.52(3H, m), 1.55(2H, d, J=7.32Hz), 1.58-1.88(9H, m), 2.12-2.40(9H, m), 3.00-3.14(2H, m), 3.16-3.30(1H, m), 3.97(1H, d, J=4.63Hz), 4.05(1H, dd, J=7.07Hz, J=10.49Hz), 4.60(1H, t, J=7.56Hz), 4.65-4.79(4H, m), 4.83(1H, d, J=3.41Hz), 4.88(1H, d, J=2.68Hz), 5.02-5.09(2H, m), 5.11(2H, s), 5.33(1H, dd, J=3.41Hz, J=9.02Hz), 6.25(1H, s), 7.29-7.39(5H, m), 7.54-7.66(2H, m), 7.82(1H, d, J=7.56Hz), 8.58(1H, d, J=7.32Hz), 9.27(1H, s)
·13C-NMR(CDCl3); 15.37, 15.74, 16.60, 16.74, 16.86, 17.02, 17.39, 17.84, 18.39, 18.46, 18.86, 19.18, 19.38, 20.99, 21.17, 21.28, 22.94, 23.00, 23.24, 24.38, 24.44, 24.49, 26.29, 28.47, 29.04, 29.60, 29.65, 29.83, 30.53, 32.26, 34.00, 39.60, 40.13, 40.40, 47.67, 49.33, 53.17, 58.71, 66.22, 73.03, 75.19, 77.21, 78.90, 128.18, 128.21, 128.24, 128.55, 129.01, 135.89, 169.18, 170.62, 170.78, 171.03, 171.59, 171.63, 172.24, 172.69, 173.26, 173.46
·IR; 3300, 3081, 2965, 2876, 1748, 1657, 1545, 1462, 1374, 1203
(실시예 10)
E-세레울라이드 및 EAHA-세레울라이드(환화 반응)
(22)E-세레울라이드-OBn(41a) 및 EAHA-세레울라이드-OBn(41b)
전구체 40의 환화 반응은 세레울라이드 합성의 경우와 마찬가지의 방법으로 행하였다. 즉, 아르곤 치환한 반응 용기에 디페닐포스포릴아지드(DPPA)(9.8μL, 45.5μmol)를 무수 N,N-디메틸포름아미드(12mL)에 용해하고, 이어서 N,N-디이소프로필에틸아민(15.7μL, 90μmol)을 천천히 가하여 A액을 조제하였다.
별도로 전구체 40(31μmol)을 무수 N,N-디메틸포름아미드(8mL)에 용해한 B액을 조정하였다.
실온 하에서 마이크로실린지를 이용하여 A액에 B액을 1시간 이상에 걸쳐 천천히 적하하고, 10일간 실온 하에서 교반을 계속하였다. 반응액을 감압 농축하여 디클로로메탄을 유거하고, 잔사를 아세트산 에틸에 용해하여 포화 탄산 수소 나트륨 수용액, 1N 염산 및 포화 식염수로 순차적으로 세정하였다. 이 유기층을 무수 황산 나트륨으로 건조, 감압 농축하여 잔사를 실리카 겔 칼럼 크로마토그래피(헥산/아세트산 에틸)에 의해 정제하여 담황색 고체의 41을 얻었다.
41a(R=OBn);
·TLC; Rf=0.69(F)
·1H-NMR(CDCl3); 0.78-1.03(48H, m), 1.40-1.48(9H, m), 1.58-1.84(11H, m), 2.10-2.60(9H, m), 4.00-4.10(2H, m), 4.25-4.60(3H, m), 4.91-5.01(2H, m), 5.02(1H, d, J=3.17Hz), 5.10-5.14(3H, m), 5.23(1H, dd, J=3.90Hz, J=5.37Hz), 5.26-5.33(2H, m), 7.31-7.37(5H, m), 7.62(1H, d, J=6.59Hz), 7.74-7.80(3H, m), 7.84(1H, d, J=5.85Hz), 7.96(1H, d, J=7.56Hz)
·13C-NMR(CDCl3); 15.72, 15.80, 16.77, 16.89, 18.46, 18.52, 18.65, 19.26, 19.32, 21.11, 21.20, 21.73, 23.01, 23.32, 24.32, 24.36, 24.51, 28.52, 28.72, 30.28, 30.39, 30.47, 30.57, 40.39, 48.57, 48.79, 49.03, 51.78, 59.41, 59.55, 66.42, 72.58, 72.78, 73.30, 78.47, 78.64, 78.77, 128.20, 128.23, 128.53, 169.92, 170.42, 170.63, 171.02, 171.06, 171.33, 171.43, 171.53, 171.74, 171.84, 172.04, 172.18
·IR; 3433, 3310, 2964, 2872, 1742, 1654, 1538, 1463, 1389, 1371, 1198, 1160
·[a]D +7.17°(CHCl3, c 1.20, 25℃)
·MALDI/TOFMS; 1295[M+Na]+, 1311[M+K]+
41b(R=NH(CH2)5COOBn)
·TLC; Rf=0.23(F)
·mp; 64.7℃
·1H-NMR(CDCl3); 0.82-1.01(42H, m), 1.04(3H, d, J=6.34Hz), 1.06(3H, d, J=6.10Hz), 1.29-1.39(2H, m), 1.40-1.54(11H, m), 1.60-1.72(6H, m), 1.72-1.82(4H, m), 1.90-2.00(1H, m), 2.03-2.14(2H, m), 2.15-2.42(9H, m), 3.09-3.19(1H, m), 3.21-3.33(1H, m), 4.03-4.12(2H, m), 4.26-4.40(2H, m), 4.41-4.53(2H, m), 4.97(1H, d, J=3.17Hz), 5.02-5.05(2H, m), 5.11(2H, s), 5.15-5.22(1H, m), 5.25-5.33(2H, m), 6.42-6.47(1H, m), 7.29-7.40(5H, m), 7.63-7.77(3H, m), 7.84(1H, d, J=7.32Hz), 7.91(1H, d, J=7.07Hz)
·13C-NMR(CDCl3); 15.91, 16.70, 16.99, 18.47, 18.56, 19.07, 19.21, 19.30, 19.35, 21.04, 21.36, 21.50, 23.07, 23.27, 23.34, 24.34, 24.52, 26.41, 28.61, 28.74, 29.29, 30.29, 30.35, 30.49, 32.51, 34.09, 39.34, 40.27, 40.53, 48.31, 48.62, 48.90, 52.38, 59.10, 59.59, 66.11, 72.82, 73.17, 78.20, 78.61, 78.89, 128.16, 128.52, 135.97, 170.31, 170.43, 170.62, 170.89, 171.06, 171.25, 171.53, 171.68, 171.76, 173.36
·IR; 3298, 2963, 1744, 1657, 1538, 1461
·MALDI/TOFMS; 1409[M+Na]+, 1425[M+K]+
(22)E-세레울라이드 및 EAHA-세레울라이드(가수소분해 반응에 의한 벤질기의 제거)
수소 첨가용 플라스크에 41(20mg), 메탄올(5mL) 및 10% 팔라듐 탄소(2mg)의 혼합물을 넣고, 수소 기류(3기압) 하 실온에서 3시간 교반하였다. TLC로 반응 진행을 확인한 후, 촉매를 여거, 여액을 감압 농축하여 E-세레울라이드 및 EAHA-세레울라이드를 얻었다.
E-세레울라이드;
·수율; quant
·TLC; Rf=0.39(B)
·1H-NMR(CDCl3); 0.78-1.12(48H, m), 1.40-1.54(9H, m), 1.60-1.90(8H, m), 2.06-2.16(1H, m), 2.17-2.42(6H, m), 2.42-2.63(3H, m), 4.06-4.15(2H, m), 4.25-4.35(1H, m), 4.35-4.43(1H, m), 4.43-4.56(2H, m), 4.70-4.82(1H, m), 4.92-5.04(1H, m), 5.13-5.31(1H, m), 6.82(1H, s), 7.60-7.92(6H, m), 5.07(1H, d, J=3.17Hz), 5.09-5.15(1H, m), 5.17-5.25(1H, m), 5.25-5.33(1H, m), 7.34(1H, d, J=5.85Hz), 7.43-7.50(1H, m), 7.60-7.82(4H, m), 8.03(1H, s)
·13C-NMR(CDCl3); 16.28, 16.48, 16.65, 16.85, 16.94, 18.52, 18.56, 18.73, 19.05, 19.17, 19.24, 21.08, 21.34, 21.40, 21.52, 23.08, 23.22, 23.29, 24.39, 24.61, 24.64, 27.93, 28.73, 29.70, 30.12, 30.48, 40.44, 40.50, 48.26, 48.46, 48.57, 52.48, 59.42, 72.71, 72.88, 73.57, 77.22, 77.92, 78.22, 78.53, 170.00, 170.11, 170.84, 171.16, 171.22, 171.34, 171.45, 171.54, 171.95
·IR; 3435, 3316, 2964, 1742, 1654, 1538, 1466, 1383, 1198
·MALDI/TOFMS; 1205[M+Na]+, 1221[M+K]+
EAHA-세레울라이드;
·수율; quant
·TLC; Rf=0.32(B)
·1H-NMR(CDCl3); 0.75-1.00(42H, m), 1.06(6H, d, J=5.85Hz), 1.34-1.58(13H, m), 1.58-1.86(11H, m), 1.95-2.10(1H, m), 2.17-2.42(10H, m), 3.09-3.26(1H, m), 3.26-3.44(1H, m), 4.00-4.12(1H, m), 4.12-4.22(1H, m), 4.27-4.40(2H, m), 4.40-4.50(2H, m), 4.97(1H, d, J=3.17Hz), 4.99-5.08(2H, m), 5.13-5.31(1H, m), 6.82(1H, s), 7.60-7.92(6H, m)
·IR; 3304, 2963, 2938, 2875, 1743, 1655, 1539, 1466, 1373, 1197
·MALDI/TOFMS; 1319[M+Na]+, 1335[M+K]+

Claims (7)

  1. 이하의 식:
    [화학식 1]
    Figure pct00021

    [화학식 2]
    Figure pct00022


    [화학식 3]
    Figure pct00023

    (여기서, Y는 OH 또는 NH(CH2)5COOH를 나타낸다)
    으로 이루어지는 군에서 선택되는 세레울라이드 유도체의 전구체.
  2. [화학식 4]
    Figure pct00024

    또는
    [화학식 5]
    Figure pct00025

    (여기서, X는 (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)로 나타나는 디뎁시펩티드.
  3. 이하에 나타내는 뎁시펩티드.
    [화학식 6]
    Figure pct00026

    (여기서, Y는 OH 또는 NH(CH2)5COOH를 나타내고, l은 0~2의 정수, n은 0~2의 정수, m은 1이며, 단, l, m 및 n은 동시에 0이 되지 않고, l+m+n은 2 이하이다.)
  4. [화학식 7]
    Figure pct00027

    (여기서, X는 (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)에 나타내는 세레울라이드 유도체를 제조하는 방법으로서, 청구항 1에 기재된 세레울라이드 유도체의 전구체의 분자 내 아미드 결합 형성에 의한 환화 반응을 포함하는 제조 방법.
  5. 청구항 4에 있어서,
    청구항 2에 기재된 디뎁시펩티드를 조제하는 공정을 포함하는 제조 방법.
  6. 청구항 5에 있어서,
    청구항 3에 기재된 뎁시펩티드를 조제하는 공정을 더 포함하는 제조 방법.
  7. 이하의 식:
    [화학식 8]
    Figure pct00028

    (여기서, R은 (CH2)2COOH 또는 (CH2)2CONH(CH2)5COOH를 나타낸다)
    로 나타나는 세레울라이드 유도체.
KR1020147022990A 2012-02-08 2013-02-07 세레울라이드 및 그 유도체의 제조 방법, 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체 KR101951379B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012024722 2012-02-08
JPJP-P-2012-024722 2012-02-08
PCT/JP2013/052870 WO2013118823A1 (ja) 2012-02-08 2013-02-07 セレウリドおよびその誘導体の製造方法、セレウリド製造の為の中間体ならびにセレウリド誘導体

Publications (2)

Publication Number Publication Date
KR20140119125A true KR20140119125A (ko) 2014-10-08
KR101951379B1 KR101951379B1 (ko) 2019-02-22

Family

ID=48947580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147022990A KR101951379B1 (ko) 2012-02-08 2013-02-07 세레울라이드 및 그 유도체의 제조 방법, 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체

Country Status (7)

Country Link
US (1) US9422341B2 (ko)
EP (1) EP2813513B1 (ko)
JP (1) JP5947821B2 (ko)
KR (1) KR101951379B1 (ko)
HK (1) HK1199884A1 (ko)
SG (1) SG11201404764VA (ko)
WO (1) WO2013118823A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10633415B2 (en) * 2015-03-06 2020-04-28 Stealth Biotherapeutics Corp Processes for preparing pharmaceutically relevant peptides

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960701030A (ko) * 1993-02-19 1996-02-24 키타사토 이찌로 환상 데프시펩티드 pf 1022의 유도체
KR20000016536A (ko) * 1996-06-25 2000-03-25 쇼다 오사무 환상 뎁시펩티드 및 이를 유효성분으로 하는 의약
WO2003097821A1 (fr) 2002-05-17 2003-11-27 Bio Control Institute Limited Synthase de cereulide produite par bacillus cereus, gene codant pour celle-ci et procede de detection de cereulide
JP2006006256A (ja) 2004-06-29 2006-01-12 Meiji Milk Prod Co Ltd 嘔吐型Bacilluscereusの迅速検出法
KR20100065342A (ko) * 2007-09-28 2010-06-16 다이이찌 산쿄 가부시키가이샤 2 고리성 γ-아미노산 유도체
KR20100080741A (ko) * 2009-01-02 2010-07-12 중앙대학교 산학협력단 고리형 펜타뎁시펩타이드를 생산하는 푸사리움속 미생물
US20100261878A1 (en) * 2007-02-08 2010-10-14 Uwm Research Foundation, Inc. Sequences for fk228 biosynthesis and methods of synthesizing fk228 and fk228 analogs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665327B1 (ja) 2004-09-24 2005-06-29 小林製薬株式会社 消臭剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960701030A (ko) * 1993-02-19 1996-02-24 키타사토 이찌로 환상 데프시펩티드 pf 1022의 유도체
KR20000016536A (ko) * 1996-06-25 2000-03-25 쇼다 오사무 환상 뎁시펩티드 및 이를 유효성분으로 하는 의약
WO2003097821A1 (fr) 2002-05-17 2003-11-27 Bio Control Institute Limited Synthase de cereulide produite par bacillus cereus, gene codant pour celle-ci et procede de detection de cereulide
JP2006006256A (ja) 2004-06-29 2006-01-12 Meiji Milk Prod Co Ltd 嘔吐型Bacilluscereusの迅速検出法
US20100261878A1 (en) * 2007-02-08 2010-10-14 Uwm Research Foundation, Inc. Sequences for fk228 biosynthesis and methods of synthesizing fk228 and fk228 analogs
KR20100065342A (ko) * 2007-09-28 2010-06-16 다이이찌 산쿄 가부시키가이샤 2 고리성 γ-아미노산 유도체
KR20100080741A (ko) * 2009-01-02 2010-07-12 중앙대학교 산학협력단 고리형 펜타뎁시펩타이드를 생산하는 푸사리움속 미생물

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Applied and Environmental Microbiology, Vol. 76, No. 22, pp.7466-7472 (온라인 공개일: 2010.10.01.) *
Applied and Environmental Microbiology, Vol. 76, No. 22, pp.7466-7472 (온라인 공개일: 2010.10.01.) 1부. *
Applied and Environmental Microbiology, Vol. 76, No. 22, pp.7466-7472 (온라인 공개일: 2010.10.01.)* *
J. AM. CHEM. SOC., Vol. 128, pp. 10698-10699 (온라인 공개일: 2006.07.28.) *
J. AM. CHEM. SOC., Vol. 128, pp. 10698-10699 (온라인 공개일: 2006.07.28.) 1부. *
J. AM. CHEM. SOC., Vol. 128, pp. 10698-10699 (온라인 공개일: 2006.07.28.)* *
비특허문헌 1: Bioorganic & Medicinal Chemistry Letters, Vol. 5, No. 23, 2855-2858(1995)
비특허문헌 2: Synthesis 2009, No. 13, 2184-2204

Also Published As

Publication number Publication date
WO2013118823A1 (ja) 2013-08-15
US20150183831A1 (en) 2015-07-02
US9422341B2 (en) 2016-08-23
HK1199884A1 (en) 2015-07-24
EP2813513B1 (en) 2019-07-03
SG11201404764VA (en) 2014-10-30
JPWO2013118823A1 (ja) 2015-05-11
EP2813513A1 (en) 2014-12-17
KR101951379B1 (ko) 2019-02-22
JP5947821B2 (ja) 2016-07-06
EP2813513A4 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
Helms et al. Scytonemin A, a novel calcium antagonist from a blue-green alga
RU2637924C2 (ru) Способы синтеза аматоксинового структурного блока и аматоксинов
CN103642034B (zh) 温度敏感型树枝化多肽聚合物及其制备方法
Kurokawa et al. Synthetic studies on antifungal cyclic peptides, echinocandins. Stereoselective total synthesis of echinocandin D via a novel peptide coupling
Baraguey et al. Isolation, structure and synthesis of mahafacyclin B, a cyclic heptapeptide from the latex of Jatropha mahafalensis
Duléry et al. Ethoxyethylidene protecting group prevents N-overacylation in aminooxy peptide synthesis
Wen et al. Macrocyclization studies and total synthesis of cyclomarin C, an anti-inflammatory marine cyclopeptide
KR101951379B1 (ko) 세레울라이드 및 그 유도체의 제조 방법, 세레울라이드 제조를 위한 중간체 및 세레울라이드 유도체
EP3625243B1 (en) Tailored cyclodepsipeptides as potent non-covalent serine protease inhibitors
Obrecht et al. Design and synthesis of novel nonpolar host peptides for the determination of the 310‐and α‐helix compatibilities of α‐amino acid buildig blocks: An assessment of α, α‐disubstituted glycines
EP1923397B1 (en) Fluorinated amino acids and peptides
Arndt et al. Solution phase synthesis and purification of the minigramicidin ion channels and a succinyl-linked gramicidin
US4250086A (en) Method and composition for preparation of H-SAR-LYS-SAR-GLN-NH2
ten Brink et al. Ring-closing metathesis for the synthesis of side chain knotted pentapeptides inspired by vancomycin
Brückner et al. Solution phase synthesis of the 14-residue peptaibol antibiotic trichovirin I
CA3128862A1 (en) Method for producing peptide compound
US8981049B2 (en) Aziridine mediated native chemical ligation
Tanimura et al. Facile synthesis of (2R, 3R)-phenylalanine-2, 3-d2 and NMR study on deuterated gramicidin S.
Hasuoka et al. Synthesis and anti-Helicobacter pylori activity of pyloricidin derivatives I. Structure-activity relationships on the terminal peptidic moiety
Cuenoud et al. Synthesis of N-α-boc-N-ε-tribenzyl EDTA-L-lysine. An amino acid analogue suitable for solid phase peptide synthesis
Chiu et al. Cupric Ion Chelation Assisted Synthesis of N (α)-Protected N (ω)-Acridin-9-yl α, ω-Diamino Carboxylic Acids
Pinto et al. Straightforward, racemization-free synthesis of peptides with fairly to very bulky di-and trisubstituted glycines
US9765077B2 (en) Synthesis of duocarmycin analogues
KATAOKA et al. Syntheses of cyclic octapeptides and mediation by them of selective transport, including enantiomer recognition, through an organic liquid membrane
EP0018793B1 (en) Peptides and process for their preparation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant