KR20140112983A - Fabrication method of stream generator tubing with stress corrosion cracking - Google Patents

Fabrication method of stream generator tubing with stress corrosion cracking Download PDF

Info

Publication number
KR20140112983A
KR20140112983A KR1020130027748A KR20130027748A KR20140112983A KR 20140112983 A KR20140112983 A KR 20140112983A KR 1020130027748 A KR1020130027748 A KR 1020130027748A KR 20130027748 A KR20130027748 A KR 20130027748A KR 20140112983 A KR20140112983 A KR 20140112983A
Authority
KR
South Korea
Prior art keywords
heat transfer
heat treatment
stress corrosion
tube
manufacturing
Prior art date
Application number
KR1020130027748A
Other languages
Korean (ko)
Inventor
김홍덕
김인철
김성우
김홍표
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020130027748A priority Critical patent/KR20140112983A/en
Publication of KR20140112983A publication Critical patent/KR20140112983A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing a stress corrosion crack tube for a steam generator with a nondestructive signal property which is similar to a stress corrosion crack generated in a nuclear power plant field by removing a sensitization tissue by additionally and thermally treating the tube manufactured with an existing room temperature crack manufacturing method. For achieving the purpose, the method for manufacturing the stress corrosion crack tube for the steam generator includes the steps of manufacturing the stress corrosion crack tube for the steam generator by the room temperature crack manufacturing method; removing the sensitization tissue of the tube through a solution treatment or a recovery thermal treatment; and removing a surface oxide film of the tube through a mechanic polishing or chemical cleaning process.

Description

증기발생기 응력부식균열 전열관 제조방법{Fabrication method of stream generator tubing with stress corrosion cracking}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to steam generator cracking,

본 발명은 증기발생기 응력부식균열 전열관 제조방법에 관한 것으로, 특히 발전소 증기발생기 전열관의 외면에서 발생하는 현장 균열과 유사한 형태, 비파괴 신호 특성이 있는 순수한 입계 응력부식균열을 갖는 전열관을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing steam cracking cracked heat transfer tubes, and more particularly to a method for manufacturing a heat transfer tube having a pure grain boundary stress corrosion crack having a shape similar to a field crack occurring on the outer surface of a steam generator heat transfer tube of a power plant, will be.

현재 국내외 원전 증기발생기 전열관에서 다양한 형태의 응력부식균열 결함이 발생하고 있다.Currently, various types of stress corrosion cracking defects are occurring in domestic and overseas NPS steam generator tubes.

이러한 결함 전열관에 대한 비파괴 검사기술을 개발하고, 누설률과 파열압력을 예측하는 일은 원전 안전 운전 방안 확립에 매우 중요한 항목이다.Development of nondestructive inspection technology for such defect heat pipes and prediction of leakage rate and burst pressure are very important items for establishing safe operation method of nuclear power plant.

따라서 원전 현장 결함 전열관의 가동 중 비파괴 검사 결과를 토대로 누설 및 파열 실험을 통해 파열압력을 측정하고, 파열된 전열관의 파괴검사를 통해 취득한 실제 균열의 정보를 비교 분석하여 예측모델을 수립하여야 한다.Therefore, it is necessary to measure the rupture pressure through leakage and rupture tests based on the results of nondestructive tests during the operation of the nuclear field defect heat pipe, and to establish a prediction model by comparing and analyzing the actual crack information obtained through the rupture inspection of the ruptured pipe.

이를 위해서는 현장의 전열관에서 발생한 자연결함의 견본이 다량 요구되지만, 누설 및 파열 실험 중 연구자의 피폭 문제뿐만 아니라 충분한 시편 수량 확보가 매우 어렵다는 한계가 있다.For this purpose, a large number of samples of natural defects occurred in the heat transfer tubes in the field are required, but there is a limitation that it is very difficult to obtain sufficient sample volume as well as the exposures of researchers during leakage and rupture experiments.

일반적으로 제작과 취급이 용이한 전기방전가공법 등의 기계적 방법으로 제작된 결함 전열관의 경우, 실제 현장에서 발생하는 자연결함의 비파괴 검사 신호 및 파열압력, 누설 특성을 대변하지 못하는 단점이 있다.In the case of a defect heat pipe manufactured by a mechanical method such as an electric discharge machining method which is generally easy to manufacture and handle, there is a disadvantage in that it can not represent the nondestructive inspection signal, rupture pressure, and leakage characteristic of a natural defect occurring in an actual site.

따라서 실제 자연결함과 유사한 비파괴 신호 특성을 가진 인공결함을 전열관에 구현, 제작하는 기술개발이 요구된다.Therefore, it is required to develop a technology to implement and manufacture an artificial defect having a nondestructive signal characteristic similar to a natural defect in a heat transfer tube.

증기발생기 전열관 자연 결함을 모사하기 위해서는 다양한 실험방법의 개발이 선행된 바 있는데, 대표적인 것이 상온균열 제작기술이다.In order to simulate the natural defects of the steam generator tube, various experimental methods have been developed. Typical examples are room temperature cracking technology.

상온균열제작 방법은 상온에서 전열관의 내면 또는 외면의 일부를 산성의 부식용액으로 노출시키고, 전열관 내부에 높은 압력의 가스를 주입하거나 외력을 가함으로써 전열관의 내면 또는 외면에 인장응력을 인가하여 응력부식균열을 제작하는 기술이다.At room temperature cracking, the inner or outer surface of the heat transfer tube is exposed to an acidic corrosion solution at room temperature, a high pressure gas is injected into the heat transfer tube, or an external force is applied to apply tensile stress to the inner or outer surface of the heat transfer tube, It is a technique to make cracks.

상온균열제작법을 활용한 특허로는 상온에서 산성용액에 전열관을 노출시키고 레디알 덴팅(radial denting) 하중 인가와 함께 내압하중법과 인장하중법을 조합하여 외력을 작용시키는 방법에 대한 대한민국 등록특허 제10-0579399호 및 전열관의 특정 위치에 상기 산성용액을 노출시켜 국부적으로 응력부식균열을 조장하는 방법에 대한 대한민국 등록특허 제10-1063344호가 있다.The patents utilizing the room temperature cracking method include a method of exposing a heat transfer tube to an acidic solution at room temperature, applying a radial denting load, and applying an external force by combining a pressure-proof load method and a tensile load method. Korean Patent Registration No. 10-1063344 discloses a method for locally causing stress corrosion cracking by exposing said acidic solution to a specific position of a heat transfer pipe.

상기한 종래의 발명에서는 대략 1∼4주의 짧은 기간에 응력부식균열을 제작할 수 있다는 장점이 있으나, 산성의 부식환경에서 응력부식균열을 유도하기 위해 전열관 재료를 예민화 열처리하게 되는데, 이 경우 예민화 조직에 의한 비파괴 신호의 왜곡이 발생하는 문제점이 있다.In the above-mentioned conventional invention, there is an advantage that a stress corrosion crack can be produced in a short period of about 1 to 4 weeks. However, in order to induce stress corrosion cracking in an acidic corrosion environment, the heat transfer pipe material is subjected to a sensitizing heat treatment. There is a problem that the nondestructive signal is distorted by the tissue.

일반적으로 원전 증기발생기 전열관으로 사용되는 니켈계 합금은 상온에서 응력부식균열을 제작하기 위해서 통상 600∼700℃에서 수시간∼수십 시간 동안 예민화 열처리를 수행하게 되는데, 이때 니켈계 합금 내부의 탄소와 크롬이 반응하여 크롬 탄화물이 결정립 계면에 형성된다.Generally, a nickel-based alloy used as a nuclear steam generator heat conduction tube is subjected to a sensitizing heat treatment at a temperature of 600 to 700 ° C. for several hours to several hours in order to produce a stress corrosion crack at room temperature. At this time, Chromium reacts to form a chromium carbide at the grain boundary interface.

따라서 결정된 계면 주위의 크롬의 농도는 결정립 내면의 평균 크롬 농도보다 낮게 되므로, 상온의 산성 부식용액에서 크롬 농도가 낮은 부위는 금속 이온 용출 등의 음극(anodic) 반응이, 크롬 농도가 높은 결정립 내면에서는 수소 발생 등의 양극(cathodic) 반응이 발생하므로, 결정립계에서 미세한 균열이 개시된다.Therefore, the concentration of chromium around the interface is lower than the average chromium concentration on the inner surface of the crystal. Therefore, in an acid corrosion solution at room temperature, anodic reaction such as elution of metal ions occurs at a low chromium concentration, A cathodic reaction such as hydrogen generation occurs, so that minute cracks are initiated in the crystal grain boundaries.

이때 내압하중법 및 인장하중법 등으로 전열관의 내면 또는 외면에 인장응력을 유발하게 되면 응력부식균열이 발생하게 된다.In this case, stress corrosion cracking occurs when tensile stress is generated on the inner or outer surface of the heat transfer tube by pressure-proof load method or tensile load method.

따라서 상온균열제작법을 통해 제작된 전열관은 최종적으로 내부에 예민화된, 즉 입계에 크롬 농도가 낮아지고 니켈 농도가 높은 조직을 갖게 된다.Therefore, the heat transfer tube manufactured through the room temperature cracking method finally has a structure that is internally sensitized, that is, the chromium concentration in the grain boundary is low and the nickel concentration is high.

니켈은 자성을 띠므로 와전류 검사법과 같은 비파괴 검사시 자화되어 신호를 왜곡시키고, 비파괴 신호의 진폭과 위상각으로부터 예측되는 균열의 길이와 깊이가 실제와는 다른 특성이 있으므로, 결함 깊이와 길이에 따른 누설률 및 파열압력 예측식의 오류를 가져올 수 있는 문제점이 있다.Since nickel is magnetized, it is magnetized during non-destructive testing such as eddy current test, distorting the signal, and crack length and depth predicted from amplitude and phase angle of nondestructive signal are different from actual ones. There is a problem that it may lead to errors in the leak rate and burst pressure prediction formula.

대한민국 등록특허 제10-0579399호Korea Patent No. 10-0579399 대한민국 등록특허 제10-1063344호Korean Patent No. 10-1063344

이에, 본 발명은 상기한 바와 같은 제문제점을 해결하기 위해 안출된 것으로, 종래의 상온균열제작법으로 제작한 전열관을 추가적인 열처리를 통해 예민화 조직을 제거함으로써, 원전 현장에서 발생하는 응력부식균열과 유사한 비파괴 신호 특성이 있도록 한 증기발생기 응력부식균열 전열관 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a heat transfer tube manufactured by a conventional room temperature cracking manufacturing method by removing the sensitized structure through additional heat treatment, The present invention provides a method of manufacturing a stress corrosion cracking heat transfer tube having a non-destructive signal characteristic.

상기한 목적을 달성하기 위한 본 발명에 따른 증기발생기 응력부식균열 전열관 제조방법은 상온균열제작법을 통한 증기발생기 응력부식균열 전열관 제조단계; 용체화 또는 회복 열처리를 통한 전열관 예민화 조직 제거단계; 기계적 연마 또는 화학적 세정을 통한 전열관 표면 산화피막 제거단계로 이루어짐을 특징으로 한다.According to another aspect of the present invention, there is provided a method of manufacturing a stress corrosion cracking heat transfer pipe of a steam generator, the method comprising: a step of manufacturing a steam cracking cracking heat transfer pipe through a room temperature cracking process; A step of removing the annealed tissue by heat treatment or heat treatment; And removing the oxide film on the surface of the heat transfer pipe through mechanical polishing or chemical cleaning.

이상에서 설명한 바와 같이, 본 발명에 따른 증기발생기 응력부식균열 전열관 제조방법은 다음과 같은 효과가 있다.INDUSTRIAL APPLICABILITY As described above, the method of manufacturing a steam cracking stress cracking heat transfer pipe according to the present invention has the following effects.

첫째, 본 발명을 통해 실제 원전 증기발생기 전열관에서 발생하는 응력부식균열과 유사한 비파괴 신호 특성을 가진 인공결함을 전열관 내부에 제작하여 비파괴 검사에 사용할 수 있다.First, through the present invention, an artificial defect having a nondestructive signal characteristic similar to a stress corrosion crack generated in an actual nuclear steam generator tube can be manufactured in a heat transfer tube and used for nondestructive inspection.

둘째, 현장 결함 전열관의 가동중 비파괴 검사 결과를 토대로, 누설 및 파열 실험을 통해 파열압력을 측정하고, 파열된 전열관의 파괴검사를 통해 취득한 실제 균열의 정보를 비교 분석하여 예측모델 수립에 활용할 수 있다.Second, based on the results of nondestructive tests during the operation of the field defect heat pipe, it is possible to measure the burst pressure through the leakage and rupture test, and to compare the information of the actual crack obtained through the fracture inspection of the ruptured heat pipe, .

셋째, 원전 증기발생기 전열관 가동중 검사를 위한 비파괴검사 기술과 균열탐지능력개발을 위한 표준시편으로 활용 가능하다.Third, it can be used as a standard specimen for the development of nondestructive inspection technique and crack detection ability for inspection during operation of steam generator tube.

도 1은 본 발명에 따른 증기발생기 응력부식균열 전열관 제조방법을 도시한 순서도,
도 2a, 2b는 예민화 열처리 후 상온균열제작법을 통해 응력부식균열을 제조한 전열관에 대해 와전류 검사를 통해 취득한 C 스캔도와 리사쥬(Lissajous) 화면도,
도 3a, 3b은 전열관을 회복 열처리단계를 거친 후 와전류 검사를 통해 취득한 C 스캔도와 리사쥬 화면도,
도 4a, 4b는 전열관의 표면 산화피막을 기계적 연마 및 화학 세정법으로 제거한 후 와전류 검사를 통해 취득한 C 스캔도와 리사쥬 화면도.
1 is a flowchart showing a method of manufacturing a steam cracking stress cracking heat transfer pipe according to the present invention,
FIGS. 2A and 2B are graphs of C scan and Lissajous obtained from the eddy current test for a heat transfer tube manufactured by a normal temperature cracking method after the annealing heat treatment,
FIGS. 3A and 3B are C scan and Rissaju screens obtained through an eddy current test after a heat treatment process of a heat transfer pipe,
FIGS. 4A and 4B are C scan and Risaj views obtained by removing the surface oxide film of the heat transfer pipe by mechanical polishing and chemical cleaning, and by conducting an eddy current test.

이하, 본 발명을 첨부한 예시도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 증기발생기 응력부식균열 전열관 제조방법을 도시한 순서도이다.1 is a flowchart showing a method of manufacturing a steam cracking stress cracking transfer tube according to the present invention.

이 도면에 도시된 바와 같이, 본 발명에 따른 증기발생기 응력부식균열 전열관 제조방법은 상온균열제작법을 통한 증기발생기 응력부식균열 전열관 제조단계; 용체화 또는 회복 열처리를 통한 전열관 예민화 조직 제거단계; 기계적 연마 또는 화학적 세정을 통한 전열관 표면 산화피막 제거단계로 이루어진다.As shown in this drawing, the method for manufacturing a steam generator stress corrosion cracking heat transfer pipe according to the present invention comprises: a step of manufacturing a steam cracking stress cracking heat transfer pipe by a room temperature cracking method; A step of removing the annealed tissue by heat treatment or heat treatment; Mechanical polishing or chemical cleaning to remove the oxide film on the surface of the heat transfer pipe.

즉, 본 발명에 따른 증기발생기 응력부식균열 전열관 제조방법은 종래의 상온균열제작법으로 제작한 전열관을 예민화 조직을 제거하는 용체화 열처리 내지 회복 열처리 중 적어도 하나를 수행하는 추가 열처리 단계와, 추가 열처리 단계에서 수반되는 전열관 표면 및 결함 내면의 산화피막 제거단계로 이루어진다.That is, a method of manufacturing a steam cracking cracking heat transfer pipe according to the present invention includes: an additional heat treatment step of performing at least one of a solution heat treatment and a recovery heat treatment for removing a sensitized structure from a heat transfer tube manufactured by a conventional room temperature cracking method; Removing the oxide film on the surface of the heat transfer pipe and on the inner surface of the defect.

여기서, 상기 전열관 내부의 예민화 조직을 제거하기 위한 수단 중 하나로 용체화 열처리 단계는 Alloy 600 재료의 경우 [식 1]과 같이 주어지는 탄소의 용해 온도 이상에서 수분∼수시간 동안 수행된다. Here, the solution heat treatment step as one of the means for removing the sensitized structure in the heat transfer tube is performed for a few minutes to over the dissolution temperature of carbon given as [Equation 1] for Alloy 600 material.

용체화 열처리는 결정립 계면의 탄화물을 용해시켜 크롬 농도를 평균값에 가깝게 회복시키는 것을 목적으로 한다.The solution heat treatment is intended to dissolve the carbide at the crystal grain interface to recover the chromium concentration close to the average value.

식 1Equation 1

T = 1,449 + 130.3 × ln(%C) T = 1,449 + 130.3 x ln (% C)

(T는 용체화 열처리 최소 온도(℃), %C는 합금의 평균 탄소 농도)(T is the minimum temperature for solution heat treatment (° C),% C is the average carbon concentration of the alloy)

또한, 전열관 내부의 예민화 조직을 제거하기 위한 수단 중 하나로 회복 열처리 단계는 700∼750℃에서 수시간∼수십 시간 동안 수행된다.Also, the recovery heat treatment step is performed for several hours to several hours at 700 to 750 ° C as one of means for removing the sensitized structure inside the heat transfer tube.

회복 열처리는 결정립 계면의 탄화물을 용해시키지는 못하지만, 결정립 내부에서 결정립 계면 주위로 크롬의 확산 속도를 증가시킴으로써, 결정립 계면 주위의 크롬 농도를 평균값에 가깝게 회복시키는 것을 목적으로 한다.The recovery heat treatment does not dissolve the carbide at the grain boundary, but aims at restoring the chromium concentration around the crystal grain interface to near the average value by increasing the diffusion rate of chromium around the grain boundary interface within the crystal grain.

상기 용체화 열처리 및 회복 열처리단계는 순차적으로 수행될 수도 있지만, 전열관 재료의 탄소 농도, 탄화물의 분포 특성에 따라 하나의 단계만 수행될 수도 있음을 밝혀둔다.Although the solution heat treatment and the recovery heat treatment step may be performed sequentially, it is noted that only one step may be performed depending on the carbon concentration of the heat transfer pipe material and the distribution characteristics of the carbide.

또한, 예민화 조직의 제거를 확인하기 위해서, 재료의 단면을 광학현미경, 주사전자현미경, 투과전자현미경 내지 휴이법(Huey test)을 수행할 수 있다.Further, in order to confirm the removal of the sensitized tissue, an optical microscope, a scanning electron microscope, a transmission electron microscope or a Huey test can be performed on the cross section of the material.

상기 예민화 조직 제거 열처리 단계는 고온에서 수행되므로 전열관 내부 및 외부 표면에 고온 산화피막 형성이 수반되는데, 이 또한 와전류 검사법과 같은 비파괴 검사시 신호의 왜곡을 조장하므로, 상기 용체화 열처리 및 회복 열처리 단계에서 산소와의 접촉을 최소화하여야 한다.Since the annealing process for removing the demagnetized tissue is performed at a high temperature, formation of a high-temperature oxidation film on the inner and outer surfaces of the heat transfer tube is accompanied by distortion of the signal during non-destructive inspection such as eddy current inspection, The contact with oxygen should be minimized.

이를 위해서 전열관을 질소, 아르곤과 같은 불활성 기체, 수소와 같은 환원성 기체, 또는 이들의 복합 기체를 주입한 밀봉 유리관 내에서 열처리를 하거나, 열처리로의 내부에 상기 기체를 지속적으로 주입시킬 수 있다.For this purpose, the heat transfer tube may be heat-treated in a sealed glass tube filled with an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a composite gas thereof, or the gas may be continuously injected into the heat treatment furnace.

또한, 상기 예민화 제거 열처리 단계 이후 전열관 내부 및 외부 표면의 고온 산화피막을 제거하기 위해서, 기계적 연마 또는 화학적 세정을 수행할 수 있다.In addition, mechanical polishing or chemical cleaning may be performed to remove the high temperature oxidation film on the inner and outer surfaces of the heat transfer pipe after the above-mentioned annealing removal heat treatment step.

고온 산화피막 제거를 위한 수단 중 하나로 기계적 연마는 SiC 또는 다이아몬드 미세입자를 포함하는 연마지, 연마 슬러리 등을 사용하여 수행할 수 있고, 샌드블라스트 방법을 사용할 수도 있다.Mechanical polishing as one of the means for removing the high-temperature oxide film can be carried out using a polishing paper containing SiC or diamond fine particles, a polishing slurry or the like, or a sandblasting method may be used.

또한, 고온 산화피막 제거를 위한 수단 중 하나로 화학적 세정은 EDTA(ethylenediaminetetraacetic acid), EDA(ethylenediamine acid), 하이드라진(hydrazine) 및 암모니아수를 적어도 하나 이상 포함하는 세정액에 전열관을 침지한 후 38℃∼199℃에서 수일∼수십 일간 세정액을 순환시키는 공정으로 이루어진다.The chemical cleaning is one of means for removing the high temperature oxidation film. The chemical cleaning is performed by immersing the heat transfer tube in a cleaning liquid containing at least one of ethylenediaminetetraacetic acid (EDTA), ethylenediamine acid (EDA), hydrazine and ammonia water, And circulating the cleaning liquid for several days to several tens of days.

상기 기계적 연마 및 화학적 세정 단계는 순차적으로 수행될 수도 있지만, 전열관 내부 및 외부 표면의 산화피막 두께와 분포특성에 따라 하나의 단계만 단독으로 수행될 수도 있음을 밝혀둔다.The mechanical polishing and chemical cleaning steps may be performed sequentially, but it is noted that only one step may be performed depending on the oxide film thickness and distribution characteristics of the inner and outer surfaces of the heat transfer tube.

기계적 연마에 비해 화학적 세정법은 응력부식균열 결함 내면의 고온 산화피막까지 제거할 수 있다는 장점이 있다.Compared to mechanical polishing, chemical cleaning has the advantage of removing high-temperature oxidation films on the inner surface of stress corrosion cracking defects.

또한, 상기 기계적 연마 또는 화학 세정법을 이용한 산화피막 제거시 전열관 모재의 손상은 최소화하도록 한다.In addition, damage to the heat transfer pipe base material is minimized when the oxide film is removed using the mechanical polishing or chemical cleaning method.

도 2a, 2b는 예민화 열처리 후 상온균열제작법을 통해 응력부식균열을 제조한 전열관에 대해 와전류 검사를 통해 취득한 C 스캔도와 리사쥬(Lissajous) 화면도이다.FIGS. 2A and 2B are C scan and Lissajous diagrams obtained through eddy current testing for a heat transfer tube that has been subjected to stress corrosion cracking through an ordinary temperature cracking method and then subjected to an ordinary temperature cracking method.

화살표로 표시한 균열 신호뿐만 아니라 예민화 조직의 자화로 인한 잡음(noise) 신호가 나타난다.A noise signal due to the magnetization of the sensitized tissue as well as the crack signal indicated by the arrow appear.

도 3a, 3b은 전열관을 회복 열처리단계를 거친 후 와전류 검사를 통해 취득한 C 스캔도와 리사쥬 화면도이다.3A and 3B are C scan and Risaju screen views obtained through an eddy current test after the heat transfer tube is subjected to a recovery heat treatment step.

예민화 조직이 제거됨에 따라 잡음신호가 전반적으로 감소하였으나, 표면 산화피막에 의하여 결함 신호가 꺾이는 현상이 나타난다.Although the noise signal is generally reduced as the sensitized structure is removed, defective signals are distorted by the surface oxide film.

도 4a, 4b는 전열관의 표면 산화피막을 기계적 연마 및 화학 세정법으로 제거한 후 와전류 검사를 통해 취득한 C 스캔도와 리사쥬 화면도이다.Figs. 4A and 4B are C scan and Risaju screens obtained by removing the surface oxide film of the heat transfer pipe by mechanical polishing and chemical cleaning, and then performing an eddy current test.

표면 산화피막이 제거됨에 따라 잡음신호가 대부분 사라졌고, 꺾였던 결함 신호가 정상적인 신호로 회복되었음을 알 수 있다.As the surface oxide film is removed, most of the noise signal is lost, and the defective signal is recovered as a normal signal.

Claims (5)

상온균열제작법을 통한 증기발생기 응력부식균열 전열관 제조단계;
용체화 또는 회복 열처리를 통한 전열관 예민화 조직 제거단계;
기계적 연마 또는 화학적 세정을 통한 전열관 표면 산화피막 제거단계로 이루어짐을 특징으로 하는 증기발생기 응력부식균열 전열관 제조방법.
Steam Generator Stress Corrosion Crack through the Cold Crack Manufacturing Process Heat Transfer Tube Manufacturing Stage;
A step of removing the annealed tissue by heat treatment or heat treatment;
And removing the oxide film on the surface of the heat transfer pipe through mechanical polishing or chemical cleaning.
제1항에 있어서,
상기 용체화 열처리 단계는 Alloy 600 재료의 경우, 아래 식과 같이,
T(℃) = 1,449 + 130.3 × ln(%C)
(T는 용체화 열처리 최소 온도, %C는 합금의 평균 탄소 농도) 주어지는 탄소의 용해 온도 이상에서 수분∼수시간 동안 수행함을 특징으로 하는 증기발생기 응력부식균열 전열관 제조방법.
The method according to claim 1,
In the case of the Alloy 600 material, the solution heat treatment step, as shown in the following equation,
T (占 폚) = 1,449 + 130.3 占 In (% C)
(T is the minimum temperature for the solution heat treatment, and% C is the average carbon concentration of the alloy) is carried out for a period of several minutes to several hours at a given carbon melting temperature or higher.
제1항에 있어서,
상기 회복 열처리 단계는 700∼750℃에서 수시간∼수십 시간 동안 수행함을 특징으로 하는 증기발생기 응력부식균열 전열관 제조방법.
The method according to claim 1,
Wherein the recovery heat treatment step is performed at 700 to 750 ° C for several hours to several hours.
제1항에 있어서,
상기 기계적 연마는 SiC 또는 다이아몬드 미세입자를 포함하는 연마지, 연마 슬러리를 사용하여 수행하거나 또는 샌드블라스트 방법을 사용함을 특징으로 하는 증기발생기 응력부식균열 전열관 제조방법.
The method according to claim 1,
Wherein the mechanical polishing is carried out using a polishing slurry comprising a SiC or diamond fine particle, a polishing slurry, or a sandblast method.
제1항에 있어서,
상기 화학적 세정은 EDTA(ethylenediaminetetraacetic acid), EDA(ethylenediamine acid), 하이드라진(hydrazine) 및 암모니아수를 적어도 하나 이상 포함하는 세정액에 전열관을 침지한 후 38℃∼199℃에서 수일∼수십 일간 세정액을 순환시키는 공정으로 이루어짐을 특징으로 하는 증기발생기 응력부식균열 전열관 제조방법.
The method according to claim 1,
The chemical cleaning includes a step of circulating the cleaning liquid for a few days to several tens of days at 38 ° C to 199 ° C after immersing the heat transfer tube in a cleaning liquid containing at least one of ethylenediaminetetraacetic acid (EDTA), ethylenediamine acid (EDA), hydrazine and ammonia water Wherein the steam cracking cracking heat transfer pipe is manufactured by a method comprising the steps of:
KR1020130027748A 2013-03-15 2013-03-15 Fabrication method of stream generator tubing with stress corrosion cracking KR20140112983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130027748A KR20140112983A (en) 2013-03-15 2013-03-15 Fabrication method of stream generator tubing with stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130027748A KR20140112983A (en) 2013-03-15 2013-03-15 Fabrication method of stream generator tubing with stress corrosion cracking

Publications (1)

Publication Number Publication Date
KR20140112983A true KR20140112983A (en) 2014-09-24

Family

ID=51757672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130027748A KR20140112983A (en) 2013-03-15 2013-03-15 Fabrication method of stream generator tubing with stress corrosion cracking

Country Status (1)

Country Link
KR (1) KR20140112983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106826114A (en) * 2017-01-18 2017-06-13 抚顺特殊钢股份有限公司 A kind of manufacturing process of GH3625 alloys cold-drawn material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106826114A (en) * 2017-01-18 2017-06-13 抚顺特殊钢股份有限公司 A kind of manufacturing process of GH3625 alloys cold-drawn material
CN106826114B (en) * 2017-01-18 2020-12-04 抚顺特殊钢股份有限公司 Manufacturing process of GH3625 alloy cold-drawn material

Similar Documents

Publication Publication Date Title
Hinds et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel
JP2007321765A (en) Repair method for turbine engine component
JP4901630B2 (en) Method and apparatus for testing fuel cladding
Persaud et al. Analytical electron microscopy of a crack tip extracted from a stressed Alloy 800 sample exposed to an acid sulfate environment
JP2018144105A (en) Method for repairing defect on hot component of turbomachine through hybrid hot isostatic pressing (hip) process
KR20140112983A (en) Fabrication method of stream generator tubing with stress corrosion cracking
US10899625B2 (en) Purifying diamond powder
KR101499643B1 (en) Preparing method of specimen having intergranular stress corrosion cracking and the specimen having intergranular stress corrosion cracking thereby
Ristori et al. Development at ANL of a copper-brazed joint for the coupling of the niobium cavity end-wall to the stainless steel helium vessel in the Fermilab SSR1 resonator
KR20110047825A (en) Mehtod to manufacture mockup specimen for performance validation of nondestructive test about stress corrosion crack originated from PWR pressurizer heater sleeve nozzle in high temperature and pressure
JP2008216232A (en) Method for detecting occurrence of stress corrosion cracking, pitting corrosion and the like
Wang et al. Study on the SCC behavior induced by creep cavities on scratched surface of Alloy 690TT in high temperature water
Kamerman et al. Formation and characterization of hydride rim structures in Zircaloy-4 nuclear fuel cladding tubes
JP2011064629A (en) Hollow metal tube for cracking test and method for manufacturing it
JPH10227754A (en) High temperature damage evaluation method for temper martensite stainless steel
JP2016057275A (en) Method for prediction of corrosion rate of heat transfer tube by use of eddy current test method
Song et al. A Study on Relationship between SCC and local micro-strain of Ni Alloy
CN109612792A (en) The new method of artificial stress corrosion cracking (SCC) is prepared using photoetching and PM technique
CN114799722B (en) Quick repairing method for local stress corrosion defect of pressure vessel
EP1275116A1 (en) A component including a zirconium alloy, a method for producing said component, and a nuclear plant including said component
Lee et al. Analysis of the small punch creep test results according to the normalized lifetime fraction
WO2021250968A1 (en) Creep life evaluation method for nickel alloy component
Scatigno Chloride-induced transgranular stress corrosion cracking of austenitic stainless steel 304L
Patel et al. Manufacturing Technologies for UHV Compatible 10 MW/m 2 High Heat Flux Components for Application in Fusion Devices
Rund et al. Small Size Specimens Methods for Evaluation of Mechanical Properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application