KR20140109534A - Hybrid tandem solar cell and method of manufacturing the same - Google Patents
Hybrid tandem solar cell and method of manufacturing the same Download PDFInfo
- Publication number
- KR20140109534A KR20140109534A KR1020130021746A KR20130021746A KR20140109534A KR 20140109534 A KR20140109534 A KR 20140109534A KR 1020130021746 A KR1020130021746 A KR 1020130021746A KR 20130021746 A KR20130021746 A KR 20130021746A KR 20140109534 A KR20140109534 A KR 20140109534A
- Authority
- KR
- South Korea
- Prior art keywords
- semiconductor layer
- solar cell
- type semiconductor
- intrinsic
- doped
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000004065 semiconductor Substances 0.000 claims abstract description 193
- 239000012535 impurity Substances 0.000 claims abstract description 53
- 239000010409 thin film Substances 0.000 claims abstract description 49
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 53
- 239000010408 film Substances 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 28
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 20
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 11
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 claims description 10
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 6
- XLVKXZZJSTWDJY-UHFFFAOYSA-N [SiH4].[Si] Chemical compound [SiH4].[Si] XLVKXZZJSTWDJY-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 181
- 150000003376 silicon Chemical class 0.000 description 29
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 14
- 238000005215 recombination Methods 0.000 description 12
- 230000006798 recombination Effects 0.000 description 12
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000004770 highest occupied molecular orbital Methods 0.000 description 8
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000001272 nitrous oxide Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 229920000547 conjugated polymer Polymers 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- VHKYSTBJXRZDPB-UHFFFAOYSA-N [SiH4].[Si]=O Chemical compound [SiH4].[Si]=O VHKYSTBJXRZDPB-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
- H10K30/57—Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
본 발명은 태양광으로부터 전기를 발생시킬 수 있는 유무기 하이브리드 적층형 태양전지 및 이의 제조방법에 관한 것이다. The present invention relates to an organic / inorganic hybrid laminated solar cell capable of generating electricity from sunlight and a method of manufacturing the same.
일반적으로 태양전지는 p-n접합으로 구성된 다이오드를 사용하며, 광흡수층으로 사용되는 물질에 따라 다양한 종류로 구분된다. 특히, 광흡수층으로 실리콘을 사용하는 태양전지는 결정질 기판형 태양전지와, 비정질의 박막형 태양전지로 구분된다. 결정질 기판형 태양전지의 경우 고가의 실리콘 웨이퍼를 사용하여 생산 원가가 높다는 문제가 있어, 건물의 외장재나 모바일 기기 등에 적용할 수 있는 박막형 태양전지에 대한 연구가 활발하다.In general, solar cells use diodes composed of p-n junctions and are classified into various types according to the materials used as the light absorbing layer. Particularly, a solar cell using silicon as a light absorbing layer is classified into a crystalline substrate type solar cell and an amorphous thin film type solar cell. Crystalline plate type solar cells have a problem of high production cost due to the use of expensive silicon wafers, and research on thin film type solar cells applicable to exterior materials of buildings and mobile devices is actively conducted.
적층형 태양전지(tandem solar cell)는 태양전지의 광전변환효율을 높이기 위하여 제안된 것으로서, 서로 다른 광학적 밴드갭을 갖는 물질을 2층 이상 적층함으로써 넓은 파장범위를 갖는 태양광을 효과적으로 이용하려는 것이다. 적층형 태양전지는 태양광이 먼저 흡수되는 상부에 높은 밴드갭을 갖는 물질로 만들어진 태양전지층을 형성하고, 그 하부에 상대적으로 낮은 밴드갭을 갖는 물질로 만들어진 태양전지층을 순차적으로 위치시킨다.A tandem solar cell has been proposed in order to increase the photoelectric conversion efficiency of a solar cell and is intended to effectively utilize solar light having a wide wavelength range by stacking two or more layers having different optical bandgap. In a stacked solar cell, a solar cell layer made of a material having a high band gap at an upper portion where solar light is absorbed first is formed, and a solar cell layer made of a material having a relatively low band gap is sequentially placed thereunder.
한편, 유기 태양전지는 공액고분자를 이용해서 태양광 발전을 하는 태양전지를 말한다. 공액고분자는 도핑을 통해서 전도성이 크게 증가하는 특성이 있어 플라스틱 도체로 응용하기 위한 연구가 활발하였으며, 전기를 가해주었을 때 빛을 내는 고분자 발광소자로 많은 연구가 진행되었다. 유기 태양전지는 얇은 소자로 제작이 가능하고 재질이 고분자이기 때문에, 무기 태양전지와 함께 유무기 적층형 태양전지에 적용될 수 있다. On the other hand, organic solar cells refer to solar cells that generate solar power using conjugated polymers. Conjugated polymers have a characteristic that the conductivity increases greatly through doping, and researches for applying them as plastic conductors have been actively conducted, and many studies have been conducted as polymer light emitting devices that emit light when electricity is applied. Organic solar cells can be fabricated as thin devices, and because they are polymers, they can be applied to inorganic and organic stacked solar cells together with inorganic solar cells.
하지만, 직렬 연결 유무기 적층형 태양전지에서는 낮은 밴드갭 영역의 유기 태양전지 낮은 분광특성으로 인하여 낮은 전류 밀도를 가지므로, 고효율의 유무기 적층형 태양전지를 개발하기 위해서는 무기 태양전지의 개방 전압(Voc)를 향상시킬 필요가 있다. In order to develop a high efficiency organic-inorganic hybrid solar cell, the open-circuit voltage (Voc) of an inorganic solar cell is increased, .
본 발명의 일 목적은 개방 전압이 향상된 무기 태양전지 유닛을 구비하는 유무기 적층형 태양전지를 제공하는 것이다. It is an object of the present invention to provide an organic / inorganic multilayer solar cell having an inorganic solar cell unit with an improved open-circuit voltage.
본 발명의 다른 목적은 상기 유무기 적층형 태양전지를 제조하는 방법을 제공하는 것이다. It is another object of the present invention to provide a method for manufacturing the organic-inorganic hybrid solar cell.
본 발명의 실시예에 따른 유무기 하이브리드 적층형 태양전지는 투명 도전막, 제1 무기 태양전지 유닛, 제2 무기 태양전지 유닛, 중간 전극층 및 유기 태양전지 유닛을 포함할 수 있다. 상기 투명 도전막은 투명 기판 상부에 위치할 수 있다. 상기 제1 무기 태양전지 유닛은 상기 투명 도전막 상부에 위치하는 제1 p-형 반도체층, 상기 제1 p-형 반도체층 상부에 위치하는 제1 진성 반도체층 및 상기 제1 진성 반도체층 상부에 위치하는 제1 n-형 반도체층을 포함할 수 있고, 상기 제1 p-형 반도체층은 상기 투명 도전막 상부에 위치하고 p-형 불순물이 도핑된 아몰포스 수소화 실리콘으로 이루어진 제1 박막 및 상기 제1 박막 상부에 위치하고 p-형 불순물이 도핑된 아몰포스 수소화 실리콘 산화물로 이루어진 제2 박막을 포함할 수 있다. 상기 제2 무기 태양전지 유닛은 상기 제1 n-형 반도체층 상부에 위치하는 제2 p-형 반도체층, 상기 제2 p-형 반도체층 상부에 위치하는 제2 진성 반도체층 및 상기 제2 진성 반도체층 상부에 위치하는 제2 n-형 반도체층을 포함할 수 있다. 상기 중간 전극층은 상기 제2 n-형 반도체층 상부에 위치할 수 있다. 상기 유기 태양전지 유닛은 상기 중간 전극층 상부에 위치할 수 있다. The organic / inorganic hybrid solar cell according to an embodiment of the present invention may include a transparent conductive film, a first inorganic solar cell unit, a second inorganic solar cell unit, an intermediate electrode layer, and an organic solar cell unit. The transparent conductive film may be located on the transparent substrate. The first inorganic solar cell unit includes a first p-type semiconductor layer located on the transparent conductive film, a first intrinsic semiconductor layer located on the first p-type semiconductor layer, Type semiconductor layer, and the first p-type semiconductor layer may include a first thin film which is located on the transparent conductive film and is made of amorphous silicon hydride doped with a p-type impurity, 1 thin film and a second thin film made of amorphous hydrogenated silicon oxide doped with p-type impurity. The second inorganic solar cell unit includes a second p-type semiconductor layer located on the first n-type semiconductor layer, a second intrinsic semiconductor layer located on the second p-type semiconductor layer, And a second n < - > -type semiconductor layer located on the semiconductor layer. The intermediate electrode layer may be located above the second n-type semiconductor layer. The organic solar battery unit may be located above the intermediate electrode layer.
하나의 실시예로, 상기 제1 박막은 3 내지 5 nm의 두께를 갖고, 상기 제2 박막은 5 내지 7 nm의 두께를 가질 수 있다. In one embodiment, the first thin film may have a thickness of 3 to 5 nm and the second thin film may have a thickness of 5 to 7 nm.
하나의 실시예로, 상기 제1 진성 반도체층은 진성 아몰포스 수소화 실리콘 또는 진성 아몰포스 수소화 실리콘 산화물로 이루어질 수 있고, 80 내지 150 nm의 두께를 가질 수 있다. 이 경우, 상기 제2 진성 반도체층은 게르마늄이 도핑된 수소화 실리콘으로 이루어질 수 있다. In one embodiment, the first intrinsic semiconductor layer may be made of intrinsic amorphous silicon hydride silicon or intrinsic amorphous silicon hydride oxide, and may have a thickness of 80 to 150 nm. In this case, the second intrinsic semiconductor layer may be made of hydrogenated silicon doped with germanium.
하나의 실시예로, 상기 제2 p-형 반도체층은 p-형 불순물 도핑된 아몰포스 수소화 실리콘 또는 p-형 불순물 도핑된 미세결정 수소화 실리콘으로 이루어지고, 상기 p-형 불순물은 1 내지 3% 도핑될 수 있다. In one embodiment, the second p-type semiconductor layer is made of p-type impurity-doped amorphous hydrogenated silicon or p-type impurity-doped microcrystalline hydrogenated silicon, and the p-type impurity is 1 to 3% Lt; / RTI >
본 발명의 실시예에 따른 유무기 하이브리드 적층형 태양전지의 제조방법은 투명 기판 상부에 투명 도전막을 형성하는 단계; 상기 투명 도전막 상부에 진성 아몰포스 수소화 실리콘 또는 진성 아몰포스 수소화 실리콘 산화물로 이루어진 제1 진성 반도체층을 구비하는 제1 무기 태양전지 유닛을 형성하는 단계; 상기 제1 무기 태양전지 유닛 상부에 게르마늄(Ge)이 도핑된 수소화 실리콘으로 이루어진 제2 진성 반도체층을 구비하는 제2 무기 태양전지 유닛을 형성하는 단계; 상기 제2 무기 태양전지 유닛 상부에 중간 전극층을 형성하는 단계; 및 상기 중간 전극층 상부에 유기 태양전지 유닛을 형성하는 단계를 포함할 수 있다. A method of fabricating a hybrid organic / inorganic hybrid solar cell according to an embodiment of the present invention includes: forming a transparent conductive film on a transparent substrate; Forming a first inorganic solar cell unit having a first intrinsic semiconductor layer made of intrinsic amorphous silicon hydride silicon or intrinsic amorphous silicon hydride oxide on the transparent conductive film; Forming a second inorganic solar cell unit having a second intrinsic semiconductor layer made of hydrogenated silicon doped with germanium (Ge) on the first inorganic solar cell unit; Forming an intermediate electrode layer on the second inorganic solar cell unit; And forming an organic solar cell unit on the intermediate electrode layer.
하나의 실시예로, 상기 제1 무기 태양전지 유닛을 형성하는 단계는 상기 투명 도전막 상부에 p-형 불순물이 도핑된 아몰포스 수소화 실리콘을 증착하여 제1 박막을 형성하는 단계; 상기 제1 박막 상부에 p-형 불순물이 도핑된 아몰포스 수소화 실리콘 산화물을 증착하여 제2 박막을 형성하는 단계; 상기 제2 박막 상부에 상기 제1 진성 반도체층을 형성하는 단계; 및 상기 제1 진성 반도체층 상부에 제1 n-형 반도체층을 형성하는 단계를 포함할 수 있다. In one embodiment, the forming of the first inorganic solar cell unit comprises: depositing amorphous silicon hydride doped with a p-type impurity on the transparent conductive film to form a first thin film; Depositing an amorphous silicon hydride oxide doped with a p-type impurity on the first thin film to form a second thin film; Forming the first intrinsic semiconductor layer on the second thin film; And forming a first n-type semiconductor layer on the first intrinsic semiconductor layer.
하나의 실시예로, 상기 제2 무기 태양전지 유닛을 형성하는 단계는 상기 제1 무기 태양전지 유닛 상부에 p-형 불순물이 1 내지 3% 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H) 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)을 증착하여 제2 p-형 반도체층을 형성하는 단계; 상기 제2 p-형 반도체층 상부에 상기 제2 진성 반도체층을 형성하는 단계; 및 상기 제2 진성 반도체층 상부에 제2 n-형 반도체층을 형성하는 단계를 포함할 수 있다. In one embodiment, the step of forming the second inorganic solar cell unit may include forming an amorphous silicon hydride (a-Si: SiC) film doped with 1 to 3% p-type impurity on the first inorganic solar cell unit, H) or microcrystalline hydrogenated silicon (μc-Si: H or nc-Si: H) to form a second p-type semiconductor layer; Forming the second intrinsic semiconductor layer on the second p-type semiconductor layer; And forming a second n < - > -type semiconductor layer on the second intrinsic semiconductor layer.
본 발명에 따르면 광학적 밴드갭 에너지(band gap energy)와 분광반응이 다른 전지를 접합하기 위하여 상부에 무기 적층형 박막 태양전지를 배치하고 하부에 유기 태양전지를 배치함으로써 넓은 파장 범위의 태양광을 효과적으로 이용할 수 있고, 그 결과 태양전지 변환효율을 향상시킬 수 있다. 또한 초기 변환효율 대비 안정화 효율이 낮은 유기 태양전지와 상부의 얇은 광흡수층을 갖는 비정질 적층형 태양전지를 접합함으로써 상대적으로 광안전성을 높일 수 있다. According to the present invention, an inorganic stacked thin film solar cell is disposed on an upper portion and an organic solar battery is disposed on an upper portion in order to bond a cell having different band gap energy and spectral response to each other, thereby effectively utilizing sunlight in a wide wavelength range And as a result, solar cell conversion efficiency can be improved. Also, the light stability can be relatively increased by bonding an organic solar cell having a low stabilization efficiency to an initial conversion efficiency and an amorphous stacked solar cell having a thin light absorbing layer on the top.
도 1은 본 발명의 실시예에 따른 유무기 적층형 태양전지를 설명하기 위한 사시도이다.
도 2는 제1 p-형 반도체층의 형태에 따른 전압-전류 관계를 나타내는 그래프이다.
도 3은 제2 p-형 반도체층에 도핑되는 p-형 불순물의 농도에 따른 제1 및 제2 무기태양전지 유닛 전체의 개방 전압(Voc), 단락 전류(Jsc), 충진률(FF) 및 변환효율(Eff)을 나타내는 그래프들이다.
도 4는 제1 진성 반도체층과 제2 진성 반도체층의 물질에 따른 전압-전류 관계를 나타내는 그래프이다.
도 5는 본 발명의 실시예에 따른 유무기 적층형 태양전지의 제조방법을 설명하기 위한 순서도이다. 1 is a perspective view illustrating an organic-inorganic hybrid solar battery according to an embodiment of the present invention.
2 is a graph showing a voltage-current relationship according to the shape of the first p-type semiconductor layer.
FIG. 3 is a graph showing the relationship between the open-circuit voltage (Voc), the short-circuit current (Jsc), the filling rate (FF), and the open-circuit voltage of the first and second inorganic solar battery units according to the concentration of the p-type impurity doped in the second p- And the conversion efficiency (Eff).
4 is a graph showing a voltage-current relationship according to the materials of the first and second intrinsic semiconductor layers.
5 is a flowchart illustrating a method of manufacturing an organic / inorganic hybrid solar cell according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It is to be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but on the contrary, is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Like reference numerals are used for like elements in describing each drawing. In the accompanying drawings, the dimensions of the structures are enlarged to illustrate the present invention in order to clarify the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprises ", or" having ", and the like, are intended to specify the presence of stated features, integers, steps, operations, elements, or combinations thereof, , Steps, operations, elements, or combinations thereof, as a matter of principle, without departing from the spirit and scope of the invention.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.
<유무기 하이브리드 적층형 태양전지><Organic-inorganic hybrid solar cell>
도 1은 본 발명의 실시예에 따른 유무기 하이브리드 적층형 태양전지를 설명하기 위한 단면도이다. 그리고 도 2는 제1 p-형 반도체층의 형태에 따른 전압-전류 관계를 나타내는 그래프이고, 도 3은 제2 p-형 반도체층에 도핑되는 p-형 불순물의 농도에 따른 제1 및 제2 무기태양전지 유닛 전체의 개방 전압(Voc), 단락 전류(Jsc), 충진률(FF) 및 변환효율(Eff)을 나타내는 그래프들이며, 도 4는 제1 진성 반도체층과 제2 진성 반도체층의 물질에 따른 전압-전류 관계를 나타내는 그래프이다. 1 is a cross-sectional view illustrating an organic / inorganic hybrid solar cell according to an embodiment of the present invention. FIG. 3 is a graph showing voltage-current relationships between the first and second p-type semiconductor layers according to the concentration of the p-type impurity doped in the second p- 4 is a graph showing the open-circuit voltage (Voc), the short-circuit current (Jsc), the filling factor (FF) and the conversion efficiency Eff of the entire inorganic solar battery unit. And FIG.
도 1을 참조하면, 본 발명의 실시예에 따른 유무기 하이브리드 적층형 태양전지(100)는 투명 기판(110), 투명 도전막(120), 제1 무기 태양전지 유닛(130), 제2 무기 태양전지 유닛(140), 중간 전극층(150), 유기 태양전지 유닛(160) 및 후면전극(170)을 포함할 수 있다. 1, an organic / inorganic hybrid solar cell 100 according to an embodiment of the present invention includes a
투명 기판(110)으로는 통상의 태양전지용 기판이 제한 없이 사용될 수 있다. 예를 들면, 투명 기판(110)으로는 규소(Si) 기판, 산화규소(SiO2) 기판, 산화알루미늄(Al2O3) 기판, STO(SrTiO3) 기판, 수정 기판 등이 사용될 수 있다.As the
투명 도전막(120)은 투명 기판(110) 상부에 위치할 수 있다. 하나의 실시예로, 투명 도전막(120)은 투명한 전도성 산화물로 이루어질 수 있다. 구체예로서, 투명 도전막(120)은 ITO(Indium Tin Oxide), AZO(Al-doped Zinc Oxide), SnO2:F 등으로 이루어질 수 있다. The transparent conductive film 120 may be located on the
제1 무기 태양전지 유닛(130)은 투명 도전막(120) 상부에 위치할 수 있다. 하나의 실시예로서, 제1 무기 태양전지 유닛(130)은 제1 p-형 반도체층(131), 제1 진성 반도체층(132), 제1 n-형 반도체층(133)을 포함할 수 있다. The first inorganic
제1 p-형 반도체층(131)은 투명 도전막(120) 상부에 위치할 수 있다. 하나의 실시예로서, 제1 p-형 반도체층(131)은 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H) 또는 아산화질소(N2O) 가스를 주입하여 형성도고 p-형 불순물이 도핑된아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)로 형성될 수 있다. 제1 p-형 반도체층(131)에 도핑되는 p-형 불순물은 보론(B)을 포함할 수 있다. 제1 p-형 반도체층(131)은 약 5 내지 10nm의 두께를 가질 수 있다. 제1 p-형 반도체층(131)의 두께가 10nm를 초과하는 경우, 제1 p-형 반도체층(131)에서의 광흡수량이 증가하여 태양전지 전체의 효율이 감소되는 문제점이 발생할 수 있고, 제1 p-형 반도체층(131)의 두께가 5nm 미만인 경우, 제1 p-형 반도체층(131)의 균일도가 저하되거나 재현성이 떨어지는 문제점이 발생할 수 있다. 하나의 예로서, 제1 p-형 반도체층(131)은 약 7 내지 10nm의 두께를 가질 수 있다.The first p-
본 발명의 일 실실시예 있어서, 제1 p-형 반도체층(131)은 단일층 또는 복수의 층으로 이루어질 수 있다. 하나의 실시예로서, 제1 p-형 반도체층(131)은 투명 도전막(120) 상부에 위치하는 제1 박막 및 제1 박막 상부에 위치하는 제2 박막을 포함할 수 있다. 제1 박막은 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H)으로 이루어질 수 있고, 제2 박막은 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)로 이루어질 수 있다. 일례로, 제1 박막은 약 3 내지 5 nm의 두께를 가질 수 있고, 제2 박막은 약 5 내지 7 nm의 두께를 가질 수 있다. 이와 같이 제1 p-형 반도체층(131)이 상기 제1 박막 및 제2 박막을 포함하는 경우, 도 2에 나타난 바와 같이, 제1 p-형 반도체층(131)이 단일층으로 구성되는 경우보다 개방 전압(Voc)을 증가시킬 수 있다. 도 2에 있어서, 검은색 실선은 제1 무기 태양전지 유닛(130)만으로 구성된 태양전지의 전압-전류 관계를 나타내고, 빨강색 점선은 제1 및 제2 무기 태양전지 유닛(130, 140)으로 구성된 적층형 태양전지에 있어서 제1 p-형 반도체층(131)이 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H)으로 이루어진 박막과 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)로 이루어진 박막으로 구성된 적층 구조를 갖는 경우의 전압-전류 관계를 나타내며, 파란색 점선은 제1 및 제2 무기 태양전지 유닛(130, 140)으로 구성된 적층형 태양전지에 있어서 제1 p-형 반도체층(131)이 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)로 이루어진 단일층 구조인 경우의 전압-전류 관계를 나타낸다. 도 2를 참조하면, 제1 p-형 반도체층(131)이 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H)으로 이루어진 박막과 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)로 이루어진 박막으로 구성된 적층 구조를 갖는 경우에 가장 큰 개방 전압(Voc)을 달성할 수 있음을 알 수 있다. In one embodiment of the present invention, the first p-
제1 진성 반도체층(132)은 제1 p-형 반도체층(131) 상부에 위치할 수 있다. 제1 진성 반도체층(132)은 진성 아몰포스 수소화 실리콘(i-type a-Si:H) 또는 아산화질소(N2O) 가스를 주입하여 만든 진성 아몰포스(amorphous) 수소화 실리콘 산화물(i-type a-SiOx:H)로 형성될 수 있다. 일례로, 제1 진성 반도체층(132)은 약 80 내지 150 nm의 두께를 가질 수 있다. 제1 진성 반도체층(132)의 두께가 150 nm를 초과하는 경우, 제1 무기 태양전지 유닛(130) 및 유기 태양전지 유닛(160)으로 전달되는 광량이 현저히 감소하는 문제점이 발생할 수 있고, 제1 진성 반도체층(132)의 두께가 80 nm 미만인 경우 제1 무기 태양전지 유닛(130)의 효율이 저하되는 문제점이 발생할 수 있다. 하나의 예로서, 제1 진성 반도체층(132)는 유무기 하이브리드 적층형 태양전지(100) 전체의 효율을 향상시키기 위하여 약 50 내지 100 nm의 두께를 가질 수 있다. The first
제1 n-형 반도체층(133)은 제1 진성 반도체층(132) 상부에 위치할 수 있다. 제1 n-형 반도체층(133)은 n-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)으로 이루어질 수 있다. 제1 n-형 반도체층(133)은 약 10 nm의 두께를 가질 수 있다. 하나의 실시예로, 제1 n-형 반도체층(133)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 단일접합 박막 실리콘 태양전지의 n-형 반도체층에 비해 높은 농도로 n-형 불순물이 도핑될 수 있다. 예를 들면, 제1 n-형 반도체층(133)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 제2 무기 태양전지 유닛(140)의 제2 n-형 반도체층(143)보다 높은 농도로 n-형 불순물이 도핑될 수 있다. The first n-
제2 무기 태양전지 유닛(140)은 제1 무기 태양전지 유닛(130) 상부에 위치할 수 있다. 하나의 실시예로, 제2 무기 태양전지 유닛(140)은 제2 p-형 반도체층(141), 제2 진성 반도체층(142) 및 제2 n-형 반도체층(143)을 포함할 수 있다. The second inorganic
제2 p-형 반도체층(141)은 제1 n-형 반도체층(133) 상부에 위치할 수 있다. 하나의 실시예로, 제2 p-형 반도체층(141)은 p-형 불순물 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H) 또는 p-형 불순물 도핑된 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)으로 이루어질 수 있다. 제2 p-형 반도체층(141)에 도핑되는 p-형 불순물은 보론(B)을 포함할 수 있다. 제2 p-형 반도체층(141)은 약 5 내지 7 nm의 두께를 가질 수 있다. 제2 p-형 반도체층(141)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 단일접합 박막 실리콘 태양전지의 p-형 반도체층에 비해 높은 농도로 p-형 불순물이 도핑될 수 있다. 예를 들면, 제2 p-형 반도체층(141)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 제1 무기 태양전지 유닛(130)의 제1 p-형 반도체층(131)보다 높은 농도로 p-형 불순물이 도핑될 수 있다. 하나의 구체예로서, 제2 p-형 반도체층(141)에는 약 1 내지 3%의 p-형 불순물이 도핑될 수 있다. p-형 불순물이 1% 미만으로 도핑되는 경우, 터널 재결합 접합(tunnel recombination junction, TRJ)을 형성하지 못하는 문제점이 발생할 수 있고, p-형 불순물이 3%를 초과하여 도핑되는 경우, 도 3에 나타난 바와 같이, 개방 전압(Voc), 변환효율(Eff) 등이 감소되는 문제점이 발생할 수 있다. 도 3은 제2 p-형 반도체층(141)에 p-형 불순물을 3%, 6% 및 9% 도핑한 경우에 측정된 개방 전압(Voc), 단락 전류(Jsc), 충진률(FF) 및 변환효율(Eff)을 각각 나타내는 그래프들로서, 도 3을 참조하면, 제2 p-형 반도체층(141)에 도핑되는 p-형 불순물의 양이 3%를 초과하면 p-형 불순물의 양이 증가할수록 개방 전압(Voc), 충진률(FF) 및 변환효율(Eff)이 모두 감소함을 알 수 있다. The second p-
제2 진성 반도체층(142)은 제2 p-형 반도체층(141) 상부에 위치할 수 있다. 제2 진성 반도체층(142)은 진성 아몰포스 수소화 실리콘(i-type a-Si:H) 또는 게르마늄(Ge)이 도핑된 수소화 실리콘(a-SiGe:H)으로 이루어질 수 있다. 제2 진성 반도체층(142)을 이루는 물질은 제1 무기 태양전지 유닛(130)의 제1 진성 반도체층(132)을 이루는 물질보다 낮은 밴드갭을 갖는 것이 바람직하다. 제1 및 제2 진성 반도체층(142)을 이루는 물질의 밴드갭은 수소의 함량을 변경함으로써 조절할 수 있고, 수소의 함량이 증가할수록 밴드갭이 증가한다. 제2 진성 반도체층(142)은 약 300 내지 400 nm의 두께를 가질 수 있다. The second
본 발명의 일 실시예로, 제1 진성 반도체층(132)이 진성 아몰포스 수소화 실리콘(i-type a-Si:H) 또는 아산화질소(N2O) 가스를 주입하여 만든 진성 아몰포스(amorphous) 수소화 실리콘 산화물(i-type a-SiOx:H)로 이루어진 경우, 제2 진성 반도체층(142)은 게르마늄(Ge)이 도핑된 수소화 실리콘(a-SiGe:H)으로 형성되는 것이 바람직하다. 이와 같이, 제1 및 제2 진성 반도체층(132, 142)의 물질을 조합하는 경우, 도 4에 나타난 바와 같이, 단락전류(Jsc) 값을 향상시킬 수 있다. 도 4에 있어서, 검은색 실선은 제1 및 제2 진성 반도체층(132, 142)이 각각 아몰포스 수소화 실리콘 및 아몰포스 수소화 실리콘으로 이루어진 경우의 전압-전류 관계를 나타내고, 빨강색 점선은 제1 및 제2 진성 반도체층(132, 142)이 각각 아몰포스 수소화 실리콘 산화물 및 아몰포스 수소화 실리콘으로 이루어진 경우의 전압-전류 관계를 나타내고, 파란색 점선은 제1 및 제2 진성 반도체층(132, 142)이 각각 아몰포스 수소화 실리콘 및 게르마늄이 도핑된 아몰포스 수소화 실리콘으로 이루어진 경우의 전압-전류 관계를 나타내며, 초록색 점선은 제1 및 제2 진성 반도체층(132, 142)이 각각 아몰포스 수소화 실리콘 산화물 및 게르마늄이 도핑된 아몰포스 수소화 실리콘으로 이루어진 경우의 전압-전류 관계를 나타낸다. In one embodiment of the present invention, the first
제2 n-형 반도체층(143)은 제2 진성 반도체층(142)의 상부에 위치할 수 있다. 제2 n-형 반도체층(143)은 n-형 불순물이 도핑된 아몰퍼스 실리콘 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)으로 이루어질 수 있다. 제2 n-형 반도체층(143)이 n-형 불순물이 도핑된 아몰퍼스 실리콘으로 이루어진 경우, 제2 n-형 반도체층(143)은 약 25 nm의 두께를 가질 수 있다. 이와 달리, 제2 n-형 반도체층(143)이 n-형 불순물이 도핑된 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)으로 이루어진 경우, 제2 n-형 반도체층(143)은 약 35 nm의 두께를 가질 수 있다.The second n-
중간 전극층(150)은 제2 n-형 반도체층(143) 상부에 위치할 수 있다. 하나의 실시예로, 중간 전극층(150)은 ITO 또는 ZnO:Al로 이루어질 수 있다. 중간 전극층(150)은 제2 무기 태양전지 유닛(140)과 유기 태양전지 유닛(160) 사이의 터널 재결합 접합을 형성하고 무기 태양전지 유닛의 산화를 방지할 수 있다. 중간 전극층(150)은 약 10 내지 30 nm의 두께를 가질 수 있다. The
유기 태양전지 유닛(160)은 중간 전극층(150) 상부에 위치할 수 있다. 유기 태양전지 유닛(160)은 공액고분자 물질로 이루어질 수 있다. 하나의 실시예로, 유기 태양전지 유닛(160)은 전자 주개형 유기반도체와 전자 받개형 유기반도체가 이루는 이종접합(donor-acceptor heterojunction)을 포함할 수 있다. 유기 태양전지 유닛(160)을 이루는 공액고분자 물질에 있어서, 분자 내에 존재하는 파이(π) 전자들은 낮은 에너지 준위부터 채우게 되는데, 파이 전자로 채워진 가장 높은 에너지 준위를 HOMO(highest occupied molecular orbital) 준위라 하고, 그 다음 에너지 준위는 채워지지 않은 준위 중 가장 낮은 준위로서 LUMO(lowest unoccupied molecular orbital) 준위라 한다. 공액고분자 물질의 HOMO 준위와 LUMO 준위 사이의 에너지 차이는 무기 반도체의 밴드갭과 같은 역할을 하는데, 본 발명에 있어서는, 유기 태양전지 유닛(160)은 HOMO 준위와 LUMO 준위 사이의 에너지 차이가 제2 진성 반도체층(142)의 밴드갭보다 작은 공액고분자 물질로 형성되는 것이 바람직하다. The organic
후면전극(170)은 유기 태양전지 유닛(160) 상부에 위치할 수 있다. 후면전극(170)은 알루미늄(Al) 또는 은(Ag)으로 이루어질 수 있다. 후면전극(170)은 태양전지 유닛들에서 발생된 전기를 외부로 전달할 수 있고, 또한 유기 태양전지 유닛(160)을 통과한 광을 다시 유기 태양전지 유닛(160) 방향으로 반사하여 태양광의 이용효율을 향상시킬 수 있다.
The
<유무기 하이브리드 적층형 태양전지의 제조방법>≪ Manufacturing Method of Organic / Inorganic Hybrid Laminated Solar Cell >
도 5는 본 발명의 실시예에 따른 유무기 하이브리드 적층형 태양전지의 제조방법을 설명하기 위한 순서도이다. 5 is a flowchart illustrating a method for fabricating an organic / inorganic hybrid laminated solar cell according to an embodiment of the present invention.
도 1 및 도 5를 참조하면, 본 발명의 실시예에 따른 유무기 하이브리드 적층형 태양전지(100)의 제조방법은 투명 기판(110) 상에 투명 도전막(120)을 형성하는 단계(S110), 투명 도전막(120) 상부에 제1 무기 태양전지 유닛(130)을 형성하는 단계(S120), 제1 무기 태양전지 유닛(130) 상부에 제2 무기 태양전지 유닛(140)을 형성하는 단계(S130), 제2 무기 태양전지 유닛(140) 상부에 중간 전극층(150)을 형성하는 단계(S140), 중간 전극층(150) 상부에 유기 태양전지 유닛(160)을 형성하는 단계(S150) 및 유기 태양전지 유닛(160) 상부에 후면전극(170)을 형성하는 단계(S160)를 포함할 수 있다. 1 and 5, a method of manufacturing an organic / inorganic hybrid solar cell 100 according to an embodiment of the present invention includes forming a transparent conductive film 120 on a transparent substrate 110 (S110) A step S120 of forming a first inorganic
투명 기판(110)으로는 통상의 태양전지용 기판이 제한 없이 사용될 수 있다. 예를 들면, 투명 기판(110)으로는 규소(Si) 기판, 산화규소(SiO2) 기판, 산화알루미늄(Al2O3) 기판, STO(SrTiO3) 기판, 수정 기판 등이 사용될 수 있다.As the
투명 도전막(120)은 투명 기판(110) 상부에 투명한 전도성 산화물을 증착하여 형성될 수 있다. 예를 들면, 투명 도전막(120)은 ITO(Indium Tin Oxide), AZO(Al-doped Zinc Oxide), SnO2:F 등과 같은 투명 전도성 산화물을 투명 기판(110) 상부에 증착함으로써 형성될 수 있다. The transparent conductive film 120 may be formed by depositing a transparent conductive oxide on the
제1 무기 태양전지 유닛(130)은 투명 도전막(120) 상부에 제1 p-형 반도체층(131), 제1 진성 반도체층(132) 및 제1 n-형 반도체층(133)을 순차적으로 형성함으로써 형성될 수 있다. The first inorganic
제1 p형 반도체층은 투명 도전막(120) 상부에 p-타입 보론(B) 억셉터 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H) 또는 아산화질소(N2O) 가스를 주입하여 형성되고 보론 억셉터 불순물이 도핀된 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)을 증착하여 형성될 수 있다. 제1 p-형 반도체층(131)은 약 5 내지 10nm의 두께로 형성될 수 있다. 제1 p-형 반도체층(131)의 두께가 10nm를 초과하는 경우, 제1 p-형 반도체층(131)에서의 광흡수량이 증가하여 유무기 하이브리드 적층형 태양전지(100) 전체의 효율이 감소되는 문제점이 발생할 수 있고, 제1 p-형 반도체층(131)의 두께가 5nm 미만인 경우, 제1 p-형 반도체층(131)의 균일도가 저하되거나 재현성이 떨어지는 문제점이 발생할 수 있다. 일례로, 제1 p-형 반도체층(131)은 약 7 내지 10nm의 두께로 형성될 수 있다. The first p-type semiconductor layer may be formed of amorphous hydrogenated silicon (a-Si: H) or nitrous oxide (N 2 O) doped with p-type boron (B) acceptor impurities on the transparent conductive film 120, Type amorphous hydrogenated silicon oxide (p-type a-SiOx: H) which is formed by implanting a boron acceptor impurity and doped with boron acceptor impurities. The first p-
하나의 실시예에 있어서, 제1 p-형 반도체층(131)을 형성하기 위하여 투명 도전막(120) 상부에 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H)으로 이루어진 제1 박막을 형성한 후 제1 박막 상부에 아산화질소(N2O) 가스를 주입하여 형성되고 p-형 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)로 이루어진 제2 박막을 형성할 수 있다. 제1 박막은 약 3 내지 5 nm의 두께로 형성될 수 있고, 제2 박막은 약 5 내지 7 nm의 두께로 형성될 수 있다. 이와 같이 제1 p-형 반도체층(131)이 상기 제1 박막 및 제2 박막을 포함하도록 형성하는 경우, 도 2에 나타난 바와 같이, 제1 p-형 반도체층(131)이 보론(B) 억셉터 분순물이 도핑된 수소화된 아몰포스(amorphous) 실리콘(a-Si:H)으로만 형성되거나 p-형 아몰포스(amorphous) 수소화 실리콘 산화물(p-type a-SiOx:H)으로만 형성된 경우에 비하여 개방 전압(Voc) 값을 증가시킬 수 있다. In one embodiment, amorphous hydrogenated silicon (a-Si: H) doped with p-type impurities is formed on the transparent conductive film 120 to form the first p- Type amorphous hydrogenated silicon oxide (p-type a-SiOx) doped with p-type impurity and formed by injecting nitrous oxide (N 2 O) gas onto the first thin film after forming a first thin film comprising n- H) may be formed. The first thin film may be formed to a thickness of about 3 to 5 nm, and the second thin film may be formed to a thickness of about 5 to 7 nm. When the first p-
제1 진성 반도체층(132)은 제1 p-형 반도체층(131) 상부에 진성 아몰포스 수소화 실리콘(i-type a-Si:H) 또는 아산화질소(N2O) 가스를 주입하여 만든 진성 아몰포스(amorphous) 수소화 실리콘 산화물(i-type a-SiOx:H)을 증착함으로써 형성될 수 있다. 제1 진성 반도체층(132)은 약 80 내지 150 nm의 두께로 형성될 수 있다. 제1 진성 반도체층(132)의 두께가 150 nm를 초과하는 경우, 제1 무기 태양전지 유닛(130) 및 유기 태양전지 유닛(160)으로 전달되는 광량이 현저히 감소하는 문제점이 발생할 수 있고, 제1 진성 반도체층(132)의 두께가 80 nm 미만인 경우, 제1 무기 태양전지 유닛(130)의 광효율이 저하되는 문제점이 발생할 수 있다. 하나의 예로서, 제1 진성 반도체층(132)는 유무기 하이브리드 적층형 태양전지(100) 전체의 효율을 향상시키기 위하여 약 50 내지 100 nm의 두께로 형성될 수 있다. The first
제1 n-형 반도체층(133)은 제1 진성 반도체층(132) 상부에 n-타입 아몰포스(amorphous) 실리콘 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)을 증착하여 형성될 수 있다. 제1 n-형 반도체층(133)은 약 10 nm의 두께로 형성될 수 있다. 하나의 실시예로, 제1 n-형 반도체층(133)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 단일접합 박막 실리콘 태양전지의 n-형 반도체층에 비해 높은 농도로 n-형 불순물이 도핑될 수 있다. 예를 들면, 제1 n-형 반도체층(133)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 제2 무기 태양전지 유닛(140)의 제2 n-형 반도체층(143)보다 높은 농도로 n-형 불순물이 도핑될 수 있다. The first n-
제2 무기 태양전지 유닛(140)은 제1 n-형 반도체층(133) 상부에 제2 p-형 반도체층(141), 제2 진성 반도체층(142) 및 제2 n-형 반도체층(143)을 순차적으로 형성함으로써 형성될 수 있다. The second inorganic
제2 p-형 반도체층(141)은 제1 n-형 반도체층(133) 상부에 p-타입 불순물이 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H) 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)을 증착하여 형성할 수 있다. 제2 p-형 반도체층(141)은 약 5 내지 7 nm의 두께로 형성될 수 있다. 하나의 실시예로, 제2 p-형 반도체층(141)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 단일접합 박막 실리콘 태양전지의 p-형 반도체층에 비해 높은 농도로 p-형 불순물이 도핑될 수 있다. 예를 들면, 제2 p-형 반도체층(141)은 터널 재결합 접합(tunnel recombination junction, TRJ)을 위해 제1 무기 태양전지 유닛(130)의 제1 p-형 반도체층(131)보다 높은 농도로 p-형 불순물이 도핑될 수 있다. 하나의 구체예로서, 제2 p-형 반도체층(141)에는 약 1 내지 3%의 p-형 불순물이 도핑될 수 있다. p-형 불순물이 1% 미만으로 도핑되는 경우 터널 재결합 접합(tunnel recombination junction, TRJ)을 형성하지 못하는 문제점이 발생할 수 있고, p-형 불순물이 3%를 초과하여 도핑되는 경우, 도 3에 나타난 바와 같이, 개방 전압(Voc), 단락 전류(Jsc), 변환효율(Eff) 등이 감소되는 문제점이 발생할 수 있다. The second p-
제2 진성 반도체층(142)은 제2 p-형 반도체층(141) 상부에 진성 아몰포스 수소화 실리콘(i-type a-Si:H) 또는 게르마늄(Ge)이 도핑된 수소화 실리콘(a-SiGe:H)을 증착함으로써 형성될 수 있다. 제2 진성 반도체층(142)을 이루는 물질은 제1 무기 태양전지 유닛(130)의 제1 진성 반도체층(132)을 이루는 물질보다 낮은 밴드갭을 갖는 것이 바람직하다. 제2 진성 반도체층(142)은 약 300 내지 400 nm의 두께로 형성될 수 있다. The second
하나의 실시예로, 제1 진성 반도체층(132)이 진성 아몰포스 수소화 실리콘(i-type a-Si:H) 또는 아산화질소(N2O) 가스를 주입하여 만든 진성 아몰포스(amorphous) 수소화 실리콘 산화물(i-type a-SiOx:H)로 이루어진 경우, 제2 진성 반도체층(142)은 게르마늄(Ge)이 도핑된 수소화 실리콘(a-SiGe:H)으로 형성되는 것이 바람직하다. 이와 같이, 제1 및 제2 진성 반도체층(132, 142)의 물질을 조합하는 경우, 도 4에 나타난 바와 같이, 단락전류(Jsc) 값을 향상시킬 수 있다. In one embodiment, the first
제2 n-형 반도체층(143)은 제2 진성 반도체층(142)의 상부에 n-형 아몰퍼스 실리콘 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)을 증착함으로써 형성될 수 있다. 제2 n-형 반도체층(143)이 n-형 아몰퍼스 실리콘으로 형성된 경우, 제2 n-형 반도체층(143)은 약 25 nm의 두께로 형성될 수 있다. 이와 달리, 제2 n-형 반도체층(143)이 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)으로 형성된 경우, 제2 n-형 반도체층(143)은 약 35 nm의 두께로 형성될 수 있다.The second n-
중간 전극층(150)은 제2 n-형 반도체층(143) 상부에 ITO 또는 ZnO:Al를 증착함으로써 형성될 수 있다. 중간 전극층(150)은 제2 무기 태양전지 유닛(140)과 유기 태양전지 유닛(160) 사이의 터널 재결합 접합을 형성하고 무기 태양전지 유닛의 산화를 방지할 수 있다. 중간 전극층(150)은 약 10 내지 30 nm의 두께로 형성될 수 있다. The
유기 태양전지 유닛(160)은 중간 전극층(150) 상부에 공액 유기화합물을 코팅함으로써 형성될 수 있다. 예를 들면, 유기 태양전지 유닛(160)은 전자 주개형 유기반도체와 전자 받개형 유기반도체가 이루는 이종접합(donor-acceptor heterojunction)을 포함할 수 있다. 유기 태양전지 유닛(160)을 이루는 공액 유기화합물에 있어서, 분자 내에 존재하는 파이(π) 전자들은 낮은 에너지 준위부터 채우게 되는데, 파이 전자로 채워진 가장 높은 에너지 준위를 HOMO(highest occupied molecular orbital) 준위라 하고, 그 다음 에너지 준위는 채워지지 않은 준위 중 가장 낮은 준위로서 LUMO(lowest unoccupied molecular orbital) 준위라 한다. 공액 유기화합물의 HOMO 준위와 LUMO 준위 사이의 에너지 차이는 무기 반도체의 밴드갭과 같은 역할을 하는데, 본 발명의 실시예에 있어서, 유기 태양전지 유닛(160)을 이루는 공액 유기화합물의 HOMO 준위와 LUMO 준위 사이의 에너지 차이는 제2 진성 반도체층(142)의 밴드갭보다 작은 것이 바람직하다. The organic
후면전극(170)은 유기 태양전지 유닛(160) 상부에 알루미늄(Al) 또는 은을 증착함으로써 형성될 수 있다. 후면전극(170)은 태양전지 유닛들에서 발생된 전기를 외부로 전달할 수 있고, 또한 유기 태양전지 유닛(160)을 통과한 광을 다시 유기 태양전지 유닛(160) 방향으로 반사하여 태양광의 이용효율을 향상시킬 수 있다. The
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention as defined by the following claims. It can be understood that it is possible.
100: 유무기 하이브리드 적층형 태양전지
110: 투명 기판 120: 투명 도전막
130: 제1 무기 태양전지 유닛 140: 제2 무기 태양전지 유닛
150: 중간 전극층 160: 유기 태양전지 유닛
170: 후면전극100: Organic-inorganic hybrid solar cell
110: transparent substrate 120: transparent conductive film
130: first inorganic solar cell unit 140: second inorganic solar cell unit
150: intermediate electrode layer 160: organic solar cell unit
170: rear electrode
Claims (10)
상기 투명 도전막 상부에 위치하는 제1 p-형 반도체층, 상기 제1 p-형 반도체층 상부에 위치하는 제1 진성 반도체층 및 상기 제1 진성 반도체층 상부에 위치하는 제1 n-형 반도체층을 포함하는 제1 무기 태양전지 유닛;
상기 제1 n-형 반도체층 상부에 위치하는 제2 p-형 반도체층, 상기 제2 p-형 반도체층 상부에 위치하는 제2 진성 반도체층 및 상기 제2 진성 반도체층 상부에 위치하는 제2 n-형 반도체층을 포함하는 제2 무기 태양전지 유닛;
상기 제2 n-형 반도체층 상부에 위치하는 중간 전극층; 및
상기 중간 전극층 상부에 위치하는 유기 태양전지 유닛을 포함하고,
상기 제1 p-형 반도체층은 상기 투명 도전막 상부에 위치하고 p-형 불순물이 도핑된 아몰포스 수소화 실리콘으로 이루어진 제1 박막 및 상기 제1 박막 상부에 위치하고 p-형 불순물이 도핑된 아몰포스 수소화 실리콘 산화물로 이루어진 제2 박막을 포함하는 것을 특징으로 하는 유무기 하이브리드 적층형 태양전지.A transparent conductive film disposed on the transparent substrate;
A first p-type semiconductor layer located above the transparent conductive film, a first intrinsic semiconductor layer located above the first p-type semiconductor layer, and a first n-type semiconductor layer located above the first intrinsic semiconductor layer, A first inorganic solar cell unit including a first layer;
A second p-type semiconductor layer located on the first n-type semiconductor layer, a second intrinsic semiconductor layer located on the second p-type semiconductor layer, and a second intrinsic semiconductor layer located on the second intrinsic semiconductor layer, a second inorganic solar cell unit including an n-type semiconductor layer;
An intermediate electrode layer located on the second n-type semiconductor layer; And
And an organic solar battery unit located above the intermediate electrode layer,
The first p-type semiconductor layer may include a first thin film formed on the transparent conductive film and made of amorphous silicon hydride doped with a p-type impurity, and a first thin film formed on the first thin film and doped with p- And a second thin film made of silicon oxide.
상기 p-형 불순물은 1 내지 3% 도핑되는 것을 특징으로 하는 유무기 하이브리드 적층형 태양전지. The semiconductor device according to claim 1, wherein the second p-type semiconductor layer is made of p-type impurity doped amorphous silicon hydride or p-type impurity doped microcrystalline hydrogenated silicon,
Wherein the p-type impurity is doped by 1 to 3%.
진성 아몰포스 수소화 실리콘 또는 진성 아몰포스 수소화 실리콘 산화물로 이루어진 제1 진성 반도체층을 구비하고, 상기 투명 도전막 상부에 위치하는 제1 무기 태양전지 유닛;
게르마늄(Ge)이 도핑된 수소화 실리콘(a-SiGe:H)으로 이루어진 제2 진성 반도체층을 구비하고, 상기 제1 무기 태양전지 유닛 상부에 위치하는 제2 무기 태양전지 유닛;
상기 제2 무기 태양전지 유닛 상부에 위치하는 중간 전극층; 및
상기 중간 전극층 상부에 위치하는 유기 태양전지 유닛을 포함하는 유무기 하이브리드 적층형 태양전지.A transparent conductive film disposed on the transparent substrate;
A first inorganic solar battery unit having a first intrinsic semiconductor layer made of intrinsic amorphous silicon hydride silicon or intrinsic amorphous silicon hydride oxide and located above the transparent conductive film;
A second inorganic solar cell unit having a second intrinsic semiconductor layer made of germanium (Ge) -doped hydrogenated silicon (a-SiGe: H), and located above the first inorganic solar cell unit;
An intermediate electrode layer located above the second inorganic solar cell unit; And
And an organic solar cell unit located above the intermediate electrode layer.
상기 투명 도전막 상부에 진성 아몰포스 수소화 실리콘 또는 진성 아몰포스 수소화 실리콘 산화물로 이루어진 제1 진성 반도체층을 구비하는 제1 무기 태양전지 유닛을 형성하는 단계;
상기 제1 무기 태양전지 유닛 상부에 게르마늄(Ge)이 도핑된 수소화 실리콘으로 이루어진 제2 진성 반도체층을 구비하는 제2 무기 태양전지 유닛을 형성하는 단계;
상기 제2 무기 태양전지 유닛 상부에 중간 전극층을 형성하는 단계; 및
상기 중간 전극층 상부에 유기 태양전지 유닛을 형성하는 단계를 포함하는 유무기 하이브리드 적층형 태양전지의 제조방법. Forming a transparent conductive film on the transparent substrate;
Forming a first inorganic solar cell unit having a first intrinsic semiconductor layer made of intrinsic amorphous silicon hydride silicon or intrinsic amorphous silicon hydride oxide on the transparent conductive film;
Forming a second inorganic solar cell unit having a second intrinsic semiconductor layer made of hydrogenated silicon doped with germanium (Ge) on the first inorganic solar cell unit;
Forming an intermediate electrode layer on the second inorganic solar cell unit; And
And forming an organic solar cell unit on the intermediate electrode layer.
상기 투명 도전막 상부에 p-형 불순물이 도핑된 아몰포스 수소화 실리콘을 증착하여 제1 박막을 형성하는 단계;
상기 제1 박막 상부에 p-형 불순물이 도핑된 아몰포스 수소화 실리콘 산화물을 증착하여 제2 박막을 형성하는 단계;
상기 제2 박막 상부에 상기 제1 진성 반도체층을 형성하는 단계; 및
상기 제1 진성 반도체층 상부에 제1 n-형 반도체층을 형성하는 단계를 포함하는 것을 특징으로 하는 유무기 하이브리드 적층형 태양전지의 제조방법. 9. The method of claim 8, wherein forming the first inorganic solar cell unit comprises:
Depositing amorphous silicon hydride doped with a p-type impurity on the transparent conductive film to form a first thin film;
Depositing an amorphous silicon hydride oxide doped with a p-type impurity on the first thin film to form a second thin film;
Forming the first intrinsic semiconductor layer on the second thin film; And
Forming a first n-type semiconductor layer on the first intrinsic semiconductor layer; and forming a first n-type semiconductor layer on the first intrinsic semiconductor layer.
상기 제1 무기 태양전지 유닛 상부에 p-형 불순물이 1 내지 3% 도핑된 아몰포스(amorphous) 수소화 실리콘(a-Si:H) 또는 미세결정 수소화 실리콘(μc-Si:H or nc-Si:H)을 증착하여 제2 p-형 반도체층을 형성하는 단계;
상기 제2 p-형 반도체층 상부에 상기 제2 진성 반도체층을 형성하는 단계; 및
상기 제2 진성 반도체층 상부에 제2 n-형 반도체층을 형성하는 단계를 포함하는 것을 특징으로 하는 유무기 하이브리드 적층형 태양전지의 제조방법. The method according to claim 8, wherein forming the second inorganic solar cell unit comprises:
(Amorphous hydrogenated silicon (a-Si: H) or microcrystalline hydrogenated silicon (μc-Si: H or nc-Si: Si) doped with 1 to 3% H) to form a second p-type semiconductor layer;
Forming the second intrinsic semiconductor layer on the second p-type semiconductor layer; And
And forming a second n-type semiconductor layer on the second intrinsic semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130021746A KR101465317B1 (en) | 2013-02-28 | 2013-02-28 | Hybrid tandem solar cell and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130021746A KR101465317B1 (en) | 2013-02-28 | 2013-02-28 | Hybrid tandem solar cell and method of manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140067616A Division KR101420077B1 (en) | 2014-06-03 | 2014-06-03 | Method of manufacturing hybrid tandem solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140109534A true KR20140109534A (en) | 2014-09-16 |
KR101465317B1 KR101465317B1 (en) | 2014-12-01 |
Family
ID=51756018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130021746A KR101465317B1 (en) | 2013-02-28 | 2013-02-28 | Hybrid tandem solar cell and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101465317B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106058058A (en) * | 2016-08-12 | 2016-10-26 | 中国科学院重庆绿色智能技术研究院 | Semi-transparent perovskite solar cell |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101018319B1 (en) * | 2009-08-24 | 2011-03-04 | 성균관대학교산학협력단 | Method for manufacturing a organic-inorganic hybrid tandem solar cell |
KR101632451B1 (en) * | 2011-02-22 | 2016-06-21 | 엘지전자 주식회사 | Thin flim solar cell |
-
2013
- 2013-02-28 KR KR1020130021746A patent/KR101465317B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106058058A (en) * | 2016-08-12 | 2016-10-26 | 中国科学院重庆绿色智能技术研究院 | Semi-transparent perovskite solar cell |
Also Published As
Publication number | Publication date |
---|---|
KR101465317B1 (en) | 2014-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100900443B1 (en) | Solar cell and method of manufacturing the same | |
US20070111368A1 (en) | Photovoltaic structure with a conductive nanowire array electrode | |
US8222517B2 (en) | Thin film solar cell | |
US8609982B2 (en) | Thin film solar cell with graded bandgap structure | |
US20110048533A1 (en) | Solar cell | |
KR101003808B1 (en) | Multiple solar cell having p-n juction and schottky juction, and fabricating method thereof | |
KR101018319B1 (en) | Method for manufacturing a organic-inorganic hybrid tandem solar cell | |
US20150228833A1 (en) | Temperature grading for band gap engineering of photovoltaic devices | |
KR20190007509A (en) | Solar cell | |
EP2413384A2 (en) | Photovoltaic device | |
KR101770267B1 (en) | Thin film solar cell module | |
EP2355173B1 (en) | Silicon thin film solar cell | |
KR101465317B1 (en) | Hybrid tandem solar cell and method of manufacturing the same | |
KR20120127910A (en) | Heterojunction solar cell and manufacturing method therefor | |
KR101420077B1 (en) | Method of manufacturing hybrid tandem solar cell | |
US20100212739A1 (en) | Solar cell and method of manufacturing the same | |
TW202240926A (en) | A solar cell | |
US20110186122A1 (en) | Solar cell | |
KR20230027628A (en) | Solar cell and method for manufacturing the same | |
CN115020519B (en) | Solar laminated battery, battery assembly and photovoltaic system | |
KR102690582B1 (en) | Tandum Solar Cell | |
KR101326539B1 (en) | Thin-film typed solar cell comprising wo3 buffer layer | |
KR20120122003A (en) | Hetero-Junction Solar Cell | |
US8859321B2 (en) | Mixed temperature deposition of thin film silicon tandem cells | |
WO2017204676A1 (en) | Thin-film solar module design, and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20171027 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180917 Year of fee payment: 5 |