KR20140107143A - 향상된 효율성의 수직 이방성을 갖는 자기 소자 - Google Patents

향상된 효율성의 수직 이방성을 갖는 자기 소자 Download PDF

Info

Publication number
KR20140107143A
KR20140107143A KR1020140023267A KR20140023267A KR20140107143A KR 20140107143 A KR20140107143 A KR 20140107143A KR 1020140023267 A KR1020140023267 A KR 1020140023267A KR 20140023267 A KR20140023267 A KR 20140023267A KR 20140107143 A KR20140107143 A KR 20140107143A
Authority
KR
South Korea
Prior art keywords
layer
free layer
magnetic
free
interface
Prior art date
Application number
KR1020140023267A
Other languages
English (en)
Inventor
로만 채플스키
드미트로 아팔코브
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/779,734 external-priority patent/US9082534B2/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20140107143A publication Critical patent/KR20140107143A/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Abstract

STT 구조(단일 또는 이중 MTJ 구조와 같은)의 자유층을 형성하기 위한 조성물은 CoxFeyMz를 포함한다. 여기서, M은 우수한 결정 배향의 형성하는 것 및 자유층과 MgO 계면 간의 매칭을 돕는 비자성 물질이다. 물질 M은 바람직하게 MgO 계면으로 분리되지 않거나, MgO 계면으로 분리되더라도 자유층의 수직 자기 이방성(PMA)을 심각하게 손상시키지 않는다. 자유층은 접속층을 더 포함하고, M은 어닐링 동안 접속층에 끌어 당겨진다. 자유층은 CoxFeyMz의 그레이디드(graded) 조성물을 포함할 수 있고, z는 자유층 내에서 변한다.

Description

향상된 효율성의 수직 이방성을 갖는 자기 소자{Magnetic element having perpendicular anisotropy with enhanced efficiency}
본 발명은 자기 물질 및 구조에 관한 것으로, 특히 적어도 하나의 자유 강자성층을 갖는 자기 물질들 및 구조들에 관한 것이다.
다양한 자기 물질들은 외부 자기장 또는 제어 전류에 의해 자기 방향이 변화될 수 있는 “자유층”으로 구성되는 적어도 하나의 강자성층을 갖는 다층 구조들을 사용한다. 자기 메모리 장치들은 자유층의 자기 방향에 기반하여 정보가 저장되는 다층 구조들을 이용하여 구성될 수 있다.
이러한 다층 구조의 일 예는 적어도 세 개의 층들(즉, 두 개의 강자성층들 및 두 개의 강자성층들 사이의 도전층)을 포함하는 스핀 밸브(SV)이다. 이러한 다층 구조의 다른 예는 적어도 세 개의 층들(즉, 두 개의 강자성층들 및 두 강자성층들 사이의 장벽층으로서의 비자성 절연체의 박막층)을 포함하는 자기 터널 접합(또는 자기저항성 터널 접합)(MTJ)이다. 중간 장벽층의 절연체는 전기적으로 전도되지 않기 때문에 두 강자성층들 사이에서 장벽층으로서 기능할 수 있다. 그러나, 절연체의 두께가 충분히 얇을 경우(예를 들면, 수 나노미터 이하), 두 강자성층들의 전자들은, 두 강자성층들에 인가되는 바이어스 전압 하에서의 터널링 효과에 기인하여, 장벽층을 가로질러 절연체의 얇은 박막을 “관통(penetrate)”할 수 있다.
특히, MTJ 또는 SV 구조들을 가로지는 전류에 대한 저항은 두 강자성층들의 자화들의 상대적인 방향에 따라 달라진다. 두 강자성층들의 자화들이 서로 평행한 경우, MTJ 또는 SV 구조들을 가로지는 저항은 최소값(RP)을 가진다. 두 강자성층들의 자화들이 서로 반평행한 경우, MTJ 또는 SV 구조들을 가로지는 저항은 최대값(RAP)을 가진다. 이런 효과의 크기는 보통 (RAP-RP)/RP로 정의되는 MTJ의 터널링 자기저항(tunneling magnetoresistance: TMR) 또는 SV의 자기저항(magnetoresistance: MR)에 의해 특징지어진다.
스핀 전달 토크에 기반한 자기 소자들의 성능을 개선할 수 있는 방법 및 시스템을 제공한다.
본 명세서는 적어도 수직 이방성을 갖는 피고정 자성층, 비자성 스페이서층, 및 자성층들의 면에 실질적으로 수직인 자화를 촉진하는 수직 이방성을 갖는 자유 자성층을 포함하는 자기 소자들을 이용하는 기술, 장치, 및 시스템들을 개시한다. 스퍼이서층은 피고정층과 자유층 사이에 배치된다. 자기 소자는 쓰기 전류가 자기 소자를 통과하여 흐를 때 스핀 전달을 이용하여 자유층이 스위칭 되도록 구성된다.
일 측면에서, 다층의 자기 소자에 수직 이방성을 제공하는 방법들 및 구조들이 개시된다. 일 실시예에서, 피고정층은 피고정층에 실질적으로 수직인 방향으로 고정된 자화를 갖도록 제공되고, 비자성 스페이서층은 피고정층 위에 제공되고, 자유층은 스페이서층이 자유층과 피고정층 사이에 위치하도록 피고정층 및 스페이서층에 대하여 위치한다. 자유층은 자유층에 실질적으로 수직이고 피고정층 자화에 대하여 변화가능한 자유층 자화를 갖는다. 계면층은 스페이서층과 접촉하는 자성층이다. 접속층은 계면층 및 자유층과 접촉한다. 접속층은 계면층에 실질적으로 수직하도록 계면층의 자화를 유지하는 자유층 및 계면층 사이의 자기 결합을 제공하고, 자유층과 계면층의 다른 물질 구조들이 가능하도록 자유층 및 계면층 사이의 분리를 제공하는 구조를 갖는다.
자유층 및/또는 피고정층은 수직 이방성을 가지도록 구성된다. 일 실시예들에서, 자유층 및/또는 피고정층은 강자성 (Ni, Fe, Co)100-y(Pd, Pt)y를 포함할 수 있다. 여기서, y는 20 내지 80의 원자 퍼센트의 범위 또는 50 내지 75의 원자 퍼센트 범위를 갖는다.
일 실시예들에서, 수직 이방성을 갖는 자유층 및/또는 피고정층은 비자성 물질(들)과 결합된 강자성 물질 (Ni, Fe, Co)50(Pd, Pt)50를 포함할 수 있다. 일 실시예들에서, 비자성 물질(들)은 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, 및 Cu 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 비자성 물질(들)은 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 비자성 물질(들)은 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag 및 Cu 중 적어도 하나, 및 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다.
일 실시예들에서, 수직 이방성을 갖는 자유층 및/또는 피고정층은 Ni, Fe, 또는 적어도 비자성 물질(들)과 결합된 Ni 및/또는 Fe를 포함하는 Ni, Fe, 및/또는 Co의 합금을 포함할 수 있다. 일 실시예들에서, 비자성 물질(들)은 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, Cu, B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, Gd, Tb, Dy, Ho, Nd, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다.
일 실시예들에서, 수직 이방성을 갖는 자유층 및/또는 피고정층은 비자성 물질(들)과 결합된 강자성 물질 (Ni, Fe, Co)를 포함할 수 있다. 일 실시예들에서, 비자성 물질(들)은 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Gd, Tb, Dy, Ho, 및 Nd 중 적어도 하나, 및 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, 및 Cu 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 비자성 물질(들)은 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Gd, Tb, Dy, Ho, 및 Nd 중 적어도 하나, 및 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다.
일 실시예들에서, 수직 이방성을 갖는 자유층 및/또는 피고정층은 자성 물질 층들 및 비자성 물질 층들의 교대층들을 포함하는 다층을 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 (Ni, Fe, Co)를 포함하고, 비자성 물질 층들은 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, 및 Cu 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 (Ni, Fe, Co)를 포함하고, 비자성 물질 층들은 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 (Ni, Fe, Co)50(Pd, Pt)50를 포함하고, 비자성 물질 층들은 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나와 결합된 (Ni, Fe, Co)를 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, 및 Pd 중 적어도 하나와 결합된 (Ni, Fe, Co)를 포함할 수 있고, 비자성 물질 층들은 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 B, C, N, O, Al, Si, P, S, Ga, Ge, In, 및 Sn 중 적어도 하나와 결합된 (Ni, Fe, Co)를 포함할 수 있고, 비자성 물질 층들은 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함할 수 있다. 일 실시예들에서, 자성 물질 층들은 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, 및 Pd 중 적어도 하나와 결합된 (Ni, Fe, Co)를 포함할 수 있고, 비자성 물질 층들은 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다.
다른 측면에서, 장치는 기판 및 기판 상에 형성된 자기 소자들을 포함하는 자기 소자 어레이를 포함하도록 제공된다. 각각의 자기 소자는 피고정층에 실질적으로 수직인 방향으로 고정된 피고정층 자화를 갖는 피고정층, 피고정층 위의 비자성 스페이서층, 스페이서층과 접촉하는 자성층인 계면층, 계면층과 접촉하는 접속층, 및 접속층과 접촉하고, 자유층에 실질적으로 수직하고 스핀 토크 전달에 기반하여 피고정층에 대해 변화가능한 자화를 갖는 자유층을 포함한다. 접속층은 계면층에 실질적으로 수직하도록 계면층의 자화를 유지하는 자유층 및 계면층 사이의 자기 결합을 제공하고, 자유층과 계면층의 다른 물질 구조들이 가능하도록 자유층 및 계면층 사이의 분리를 제공하는 구조를 갖는다. 이 장치는 자기 소자에 결합된 회로를 포함하고, 두 자화 방향들 사이에서 스핀 토크 전달에 기반한 자유층의 자화를 스위치 하도록 층들에 실질적으로 수직인 방향으로 각각의 자기 소자의 층들을 통과하여 흐르는 전류를 공급한다.
도면들은, 일부의 경우에, 자성층들에 인접하게 배치된 계면층들에 대해 구별되는 자화들을 도시하고 있지만, 자성층에 인접한 계면층이 있는 경우, 이 둘은 강하게 결합될 수 있고, 단일의 스위칭 소자로서 동작할 수 있음을 또한 주목해야 한다. 이에 더해, 자성층(피고정층 또는 자유층)이 계면층과 함께 구현될 때, 이 계면층은 효과적으로 인접한 피고정층 또는 자유층의 일부가 될 수 있고, 따라서, 자유층/피고정층에 플러스 된 별도의 계면층과는 반대로 자유층 또는 피고정층의 두 부분(예를 들면, “자유층 부분 A + 자유층 부분 B” 또는 “피고정층 부분 A + 피고정층 부분 B)”으로 간주될 수 있다.
이들 및 다른 실시예들은 도면들, 상세한 설명, 및 청구항들에서 더 상세하게 설명된다.
스핀 전달 토크에 기반한 자기 소자들의 성능을 개선한다.
도 1a는 스핀 밸브 형태의 자기 소자의 일례를 도시한다.
도 1b는 스핀 터널링 접합 형태의 자기 소자의 일례를 도시한다.
도 2a 및 도 2B는 비자성 스페이서층의 위 및 아래의 피고정층, 및 수직 이방성을 갖는 두 가지 자기 소자들의 예시들을 도시한다.
도 3a, 도 3B 및 도 3C는 하나 이상의 계면층에 기반한 수직 이방성을 갖는 자기 소자들의 예시들을 도시한다.
도 4a, 도 4B, 및 도 4C는 계면층 및 접속층에 기반한 수직 이방성을 갖는 자기 소자들의 예시들을 도시한다.
도 5는 각각 계면층 및 접속층에 기반한 수직 이방성을 갖는 자기 소자들의 어레이 장치의 일례를 도시한다.
도 6은 비트 라인 및 격리 장치에 연결된 수직 이방성 자유층 및/또는 피고정층을 갖는 자기 소자의 일례를 도시한다.
도 7은 수직 이방성 자유층 및/또는 피고정층을 갖고, 스핀 전달 토크 스위칭에 기반하여 장치를 동작시키는 회로를 도시하는 도 6의 장치의 예시적인 실시예를 도시한다.
도 8은 붕소(B)가 자유층 내의 다른 위치들에 배치되는 네 가지의 다른 구성들에 따른, Fe 및 B를 포함하는 자유층의 원자 구조를 도시하는 개략도이다.
도 9a 및 도 9b는 도 8에 도시된 네 가지의 다른 구조들 각각의 이방성 및 상대적 안정성을 도시하는 그래프들이다.
도 10은 본 발명 개념의 일 실시예에 따른 Ge을 함유하는 자유층들의 원자 구조들과 도 8의 자유층들의 원자 구조들을 비교하는 개략도이다.
도 11a, 도 11b, 및 도 11c는 각각 도 10에 도시된 구조들의 이방성, 상대적 안정성, 및 붕소(B)와 Ge의 농도들을 비교하는 그래프들이다.
도 12는 다른 두 온도들에서 격자간 붕소(B) 및 Ge을 포함하는 자유층들의 이방성을 비교하는 그래프이다.
도 13은 비정질화 물질 X를 갖는 여섯 가지의 다른 자유층 구조들의 원자 구조들을 도시하는 개략도이다.
도 14a, 도 14b, 도 14c는 각각 도 13의 여섯 가지의 다른 구조들 각각에 따라 배치된 다른 비정질화 물질들 X에 대한 이방성, 상대 안정성, 및 층 농도를 비교하는 그래프이다.
도 15는 다른 두 온도들에서 다른 비정질화 물질들 X의 이방성을 비교하는 그래프이다.
도 16은 본 발명의 실시예에 따른 메모리 카드를 도시하는 블록도이다.
도 17은 본 발명의 실시예에 따른 시스템을 도시하는 블록도이다.
비자성 스페이서층에 의해 분리되는 자유층 및 피고정층을 갖는 다층의 자기 소자들은, 기판 상에 모놀리식하게 성장할 때 양립 또는 매치(예를 들면, 격자 구조들의 매치)를 위해 인접한 층들의 특정 물질의 특성들을 필요로 한다. 이것은 그러한 구조들의 형성을 위해 적합한 물질들의 선택을 제한할 수 있고, 따라서 제조된 자기 소자들의 특성들에 영향을 미칠 수 있다. 본 명세서에서 설명된 다층의 자기 소자들의 예시들은 자유층 및 피고정층에 실질적으로 수직한 방향의 자화를 갖는다. 자유층 및 피고정층(기준층)은 TMR 비의 향상, 높은 스핀 전달 토크(Spin Transfer Toque: STT) 효율성의 달성, 및 감쇠 상수의 감소를 위해 몇몇의 강자성층들로 구성될 수 있다.
이하의 절들에서 먼저 자기 소자들의 구조에 대해 설명하고, 이 후 실질적으로 수직인 자화를 갖는 자기 소자들의 예시들, 및 자기 소자들을 엔지니어링 하기 위한 추가적인 층들을 제공한다.
도 1a 및 도 1b는 기판(1) 상에 형성된 예시적인 자기 소자들(10, 10A)을 도시한다. 자기 소자(10)는 반강자성층(AFM층, 12) 피고정층(14), 도전성 스페이서층((16), 및 자유층(18)을 포함하는 스핀 밸브이다. 씨드층 또는 캡핑층과 같은 다른 층들이 또한 사용될 수 있다. 피고정층(14) 및 자유층(18)은 강자성을 가진다. 자유층(18)은 변화 가능한 자화(19)를 갖는 것으로 도시된다. 자유층(18)의 자화는 외부 자기장, 구동 전류, 또는 이들의 조합에 대응하여 자유롭게 회전(rotate)한다. 도전성 스페이성층(16)은 비자성을 가진다. AFM층(12)은 특정 방향으로 피고정층(14)의 자화를 고정하는데 사용된다. 포스트 어닐링 후, 강자성층인 피고정층(14)은 고정된 자화(15)로 고정(pinned)된다. 자기 소자를 통과하는 전류가 구동될 수 있는 상부 콘택(20) 및 하부 콘택(22)이 또한 도시된다.
도 1b에 도시된 자기 소자(10A)는 자기 터널링 접합(MTJ)이다. 자기 소자(10A)는 AFM층(12a), 고정된 자화(15a)를 갖는 피고정층(14a), 절연 장벽층(16a), 및 변화 가능한 자화(19a)를 갖는 자유층(18a)을 포함한다. 장벽층(16a)은 전자들이 자기 터널링 접합(10A)을 통해 터널링될 수 있도록 충분히 얇다.
TMR 또는 MR 효과에서, MTJ 또는 SV를 가로질러 흐르는 전류에 대한 저항과, 두 강자성층들 사이의 상대적 자화 방향 사이의 관계는 자기 소자의 자기 상태에 정보를 저장하기 위한 비휘발성 자기 메모리 장치들에 사용될 수 있다. TMR 또는 MR 효과에 기반한 자기 랜덤 액세스 메모리(MRAM) 장치들은, 예를 들면, 전자 RAM 장치의 대안이 될 수 있고, 또한 이들과 경쟁할 수 있다. 이러한 장치들에서, 하나의 강자성층은 고정된 자화를 가지도록 구성되고, 다른 강자성층은 자기 방향이 고정된 방향에 평행 또는 반대되도록 변화될 수 있고, 따라서 기록층으로 동작할 수 있는 “자유층”이다. 정보는 MTJ 또는 SV의 장벽의 양 측의 두 강자성층들의 상대적인 자화 방향을 기반으로 저장된다. 일 예로, 이진수의 비트들 “1”과 “0”은 MTJ 또는 SV의 두 강자성층들의 평행 및 반평행 방향에 따라 기록될 수 있다. MTJ 또는 SV에 일 비트를 기록하거나 쓰는 것은, 예를 들어, 스트라이프 형상의 교차점에 배치된 쓰기 라인들에 전류들을 공급함으로써 생성된 기록 자기장, 스핀 전달 효과에 기반한 MTJ 또는 SV를 가로질러 흐르는 전류, 기록 자기장 및 전류를 모두 적용하는 조합, 또는 다른 수단들에 의해 자유층의 자화 방향을 스위칭 시킴으로써 달성될 수 있다.
스위칭에 스핀 전달 효과를 이용하는 자기 랜덤 액세스 메모리 장치들은 107 A/cm2 아래(예를 들면, 약 106 A/cm2 아래)의 낮은 스위칭 전류 밀도(Jc) 하에 동작될 수 있다. 이런 낮은 스위칭 전류 밀도는 높은 바이어스 전류를 갖는 고집적 메모리 셀들(예를 들면, 서브 마이크론 수준의 측면 치수)의 형성을 유리하게 가능하게 한다. 스핀 전달 스위칭 전류 밀도(Jc)의 감소는 빠른 동작 속도, 저 전력 소비, 및 메모리 셀들의 높은 공간 밀도를 특징으로 하는 MRAM 장치들의 제조에 매우 중요할 수 있다. 그러나, 메모리 장치들의 감소된 기술 노드와 함께 열적 안정성이 저하되고, 이들 장치들의 성능에 점점 영향을 미친다. MTJ가 저장된 자료들을 보존할 때 지연 시간(latency)의 기간 동안, 자유층의 자화는 완전하게 정적이지 않으며, 자유층 내의 자기 모멘트가 진동 또는 세차운동 하는 것을 가능하게 하는 열 변동으로 인하여 변화할 수 있다. 이러한 변동의 임의적 성질은 자유층의 자화의 반전을 일으키는 드물고, 비정상적인 큰 변동을 발생하게 한다.
수직 이방성을 갖는 자기 물질들은 스핀 전달 자기 장치들을 포함하는 자기 장치들의 증가된 열적 안정성을 제공하는데 사용될 수 있다. 이런 장치들에서, 열적 활성화 인자는 자기 소자의 부피, 및 자기 소자의 자유층의 수직 자기 이방성에 의존하며, 자기 소자 부피의 감소에 따라 열적 안정성이 저하된다. 큰 수직 이방성은 줄어든 장치 크기와 관련된 부피의 감소로 인해 저하된 열정 안정성을 보상할 수 있다. 이에 더해, 수직 이방성을 이용하는 스핀 전달 장치들의 경우, 면 내 형태의 이방성은 더 이상 장치 디자인에서 요구되지 않는다. 따라서, 장치의 형태는 메모리 장치의 면적 밀도를 향상시키기 위한 장방형 형태(elongated shape) 대신에 원형일 수 있다.
스핀 전달 모델에 기반한 스위칭 전류 밀도는, 외부 장(external field)의 부재 하에, 면을 벗어나는 또는 수직 방향이 우세한 이방성을 갖는 막들을 위해 다음과 같이 표현될 수 있다. Jc는 α Ms t(H-4πMs)/η에 따라 달라진다. 여기서, α는 현상학적인 길버트 감쇠(Gilbert damping)이고, t 및 Ms는 각각 자유층의 두께 및 포화 자화이다. H는 계면(또는 표면) 이방성, 및/또는 자기 탄성 에너지의 효과에 기인할 수 있는 고유의 수직 일축 이방성 장이다. η은 스핀 전달 효율성에 해당한다. 4πMs는 막의 면에 실질적으로 수직인 반자화 장(demagnetization field)에서 비롯된다.
H의 절대값은 면을 벗어나는 수직 이방성을 갖는 막의 경우의 4πMs의 절대값보다 일반적으로 더 크다. 따라서, (H- 4pMs) 항 및 관련된 스위칭 전류 밀도(Jc)는, 수직 이방성을 갖는 막의 경우에 있어 자유층의 H의 최적화를 통해 감소될 수 있다. 이에 더해, 자유층의 자화(Ms)의 감소는 스위칭 전류 밀도(Jc)를 감소시키는데 사용될 수 있다.
실질적으로 수직인 자화층들을 갖는 자기 소자에 기반한 자기 장치들은 스핀 전달 효과를 이용하여 스위칭 될 수 있다. 낮은 스핀 전달 스위칭 전류 및 높은 읽기 신호는 스핀 밸브 및 터널 접합 막들에서 실질적으로 수직인 자화를 이용함으로써 달성될 수 있다.
도 2a는 기판(1) 상의 자기 소자(100)의 일 실시예를 도시한다. 이 자기 소자(100)는 상단의 자유층(130), 및 하단의 피고정층(110)(둘 다 모두 수직 이방성을 갖는)을 포함한다. 비자성 스페이서층(120)이 층들(110, 130) 사이에 형성된다. 피고정층(110)은 피고정층(110)에 실질적으로 수직인 피고정층 자화(111)를 갖고, 자유층(130)은 자유층(130)에 실질적으로 수직인 가역적(reversible) 자유층 자화(131)을 갖는다. 자유층 자화(131)는 스핀 전달 효과를 이용하여 기록될 수 있다. 이 예에서, 피고정층(110)은 비자성 스페이서층(120)의 아래 및 기판(1)의 위에 있고, 자유층(130)은 비자성 스페이서층(120)의 위에 있다. 피고정층(110) 및/또는 자유층(130)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다. 비자성 스페이서층(120)은 Al2O3, MgO, TiO, TaO, 및 다른 산화물들과 같은 절연층들을 포함할 수 있다. 비자성 스페이서층(120)은 Cu와 같은 도전층들을 포함할 수 있다. 포스트 어닐링 후 원하는 방향으로 피고정층 자화(111)의 자화를 고정하기 위해 반강자성층이 포함될 수 있다.
도 2b는 자유층과 피고정층(둘 다 모두 수직 이방성을 갖는)을 가지는 기판(1) 상의 자기 소자(100A)의 다른 실시예를 도시한다. 자기 소자(100A)는 피고정층 자화(111a)를 갖는 피고정층(110a), 비자성 스페이서층(120a), 및 스핀 전달을 이용하여 기록될 수 있는 자화(131a)를 갖는 자유층(130a)를 포함한다. 피고정층(110a)은 비자성 스페이서층(120a) 위에 있고, 자유층(130a)은 비자성 스페이서층(120a)의 아래 및 기판(1)의 위에 있다. 피고정층(110a) 및/또는 자유층(130a)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다. 비자성 스페이서층(120a)은 Al2O3, MgO, TiO, TaO, 및 다른 산화물들과 같은 절연층들을 포함할 수 있다. 비자성 스페이서층(120a)은 Cu와 같은 도전층들을 포함할 수 있다. 포스트 어닐링 후 원하는 방향으로 피고정층 자화(111a)의 자화를 고정하기 위해 반강자성층이 포함될 수 있다.
도 2a의 자유층(130) 및 도 2b의 피고정층(110a)의 위에 캡핑층이 포함될 수 있다. 또한, 도 2a의 피고정층(110)과 기판(1) 사이, 및 도 2b의 자유층(130a)과 기판(1) 사이에 씨드층이 포함될 수 있다. 캡핑층 및 씨드층 모두는 단층 또는 다층 구조일 수 있고, 결정성 또는 비정질 상태일 수 있다. 또한, 캡핑층 및 씨드층 모두는 금속 또는 산화물일 수 있고, 자성 또는 비자성일 수 있으며, 면 내 또는 수직인 이방성을 가질 수 있다. 캡핑층 및/또는 씨드층은 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag 및 Cu 중의 적어도 하나, 또는 B, C, N, O, Al, Si, P, S, 또는 이들의 합금, 또는 산화물, 질화물, 또는 AlMg, CrTi, CrMo, CrRu, NiAl, NiP, NiFeCr, MgO, TaO, TiO, AlO, SiO, CuAlO, TiN, TaN, CuN, FeSi, CoO 및 NiO와 같은 전이 금속을 갖는 실리사이드일 수 있다. 캡핑층 및/또는 씨드층은 수직의 특성들을 위한 텍스쳐, 적층 성장을 위한 계면 특성들, 및 터널링 자기 저항(tunneling magnetoresistance)을 개선시키는 것, 내부 확산에 대한 방지층의 역할을 하는 것, 적층 안정성을 위한 보호 커버 또는 코팅을 제공하는 것, 및/또는 외부 자계로부터의 자성층들을 보호하는 것을 할 수 있다.
도 2a에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)을 얻기 위하여 강자성 물질 및 비자성 물질이 자유층(130) 및/또는 피고정층(110) 내에, 또는 이들을 위해 사용되는 단층의 강자성층에 결합될 수 있다. 따라서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질 및 비자성 물질들의 결합에 의해 형성될 수 있다. 게다가, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 또는 비자성층들의 다층을 포함하는 자유층을 제공함으로써 제공될 수 있다.
도 2b에서, 강자성 물질 및 비자성 물질을 포함하는 자유층 및/또는 피고정층을 제공함으로써 수직 이방성을 갖는 자성층이 구현될 수 있다. 수직 이방성을 갖는 자유층(130a) 및/또는 피고정층(110a)을 얻기 위하여 강자성 물질 및 비자성 물질이 자유층(130a) 및/또는 피고정층(110a) 내에, 또는 이들을 위해 사용되는 단층의 강자성층에 결합될 수 있다. 따라서, 수직 이방성을 갖는 자유층(130a) 및/또는 피고정층(110a)은 강자성 물질 및 비자성 물질들의 결합에 의해 형성될 수 있다. 게다가, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 또는 비자성층들의 다층을 포함하는 자유층을 제공함으로써 제공될 수 있다.
제1 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 (Ni,Fe,Co)100-y(Pd,Pt)y(여기서, y는 20 내지 80 원자 퍼센트 범위이거나, 50 내지 75 원자 퍼센트 범위이다)로 제공될 수 있다. 여기서, (Ni,Fe,Co)는 Ni, Fe, Co, 또는 Ni, Fe 및/또는 Co의 합금을 나타낸다. 마찬가지로, (Pd,Pt)는 Pd, Pt, 또는 Pd 및 Pt의 합금을 나타낸다. 일 예로, 이 실시예에서, 자유층(130) 및/또는 피고정층(110)은 Co50Pt50 또는 Co50Pd50으로 구성될 수 있다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제2 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 (Ni,Fe,Co)50(Pd,Pt)50과 물질 X(여기서, X는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag 및 Cu 중 적어도 하나를 포함한다)의 결합에 의해 제공될 수 있다. 일 실시예에서, X는 0 내지 50 원자 퍼센트의 함량 범위를 갖는다. 일 예로, 이 실시예에서 자유층(130)은 Co45Pd55, Co45Pd45Cu10, 또는 Co45Pd45Re10으로 구성될 수 있다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제3 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 (Ni,Fe,Co)50(Pd,Pt)50과 물질 X(여기서, X는 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물 또는 전이 금속 실리사이드 중 적어도 하나를 포함한다)의 결합에 의해 제공될 수 있다. 일 실시예에서, X는 0 내지 50 원자 퍼센트의 함량 범위를 갖는다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제4 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 Ni, Fe, 또는 Ni, Fe, 및/또는 Co의 합금(적어도 Ni 및/또는 Fe를 포함)과 물질 X(여기서, X는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, Cu, B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, Gd, Tb, Dy, Ho, Nd, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함한다)의 결합에 의해 제공될 수 있다. 일 실시예에서, X는 0 내지 80 원자 퍼센트의 함량 범위를 갖는다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제5 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 (Ni,Fe,Co)50(Pd,Pt)50과 물질 X 및 물질 Y(여기서, X는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag 및 Cu 중 적어도 하나를 포함하고, Y는 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함한다)의 결합에 의해 제공될 수 있다. 일 실시예에서, X는 0 내지 50 원자 퍼센트의 함량 범위를 갖고, Y는 0 내지 50 원자 퍼센트의 함량 범위를 갖는다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제6 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 (Ni,Fe,Co)와 물질 X 및 물질 Y(여기서, X는 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Gd, Tb, Dy, Ho 및 Nd 중 적어도 하나를 포함하고, Y는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag 및 Cu 중 적어도 하나를 포함한다)의 결합에 의해 제공될 수 있다. 일 실시예에서, X 및/또는 Y는 0 내지 80 원자 퍼센트의 함량 범위를 갖는다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제7 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 강자성 물질인 (Ni, Fe, Co)와 물질 X 및 물질 Y(여기서, X는 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Gd, Tb, Dy 및 Ho 중 적어도 하나를 포함하고, Y는 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함한다)의 결합에 의해 제공될 수 있다. 일 실시예에서, X 및/또는 Y는 0 내지 80 원자 퍼센트의 함량 범위를 갖는다. 자유층(130) 및/또는 피고정층(110)은 비자성 또는 산화물 층들을 갖는 다층의 자성 물질들을 포함할 수 있다. 이러한 다층의 자성 물질들에는 자기 서브층들이 반강자성적 또는 강자성적으로 결합될 수 있다.
제8 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 물질 Y의 교대층들(여기서, 자성 물질 층들은 (Ni,Fe,Co)를 포함하고, Y는 Ni, Fe, Co, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, 및 Cu 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. Y는 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제9 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 물질 Y의 교대층들(여기서, 자성 물질 층들은 (Ni,Fe,Co)를 포함하고, Y는 Ni, Fe, Co, B, C, N, O, Al, Si, P, S, Ga, Ge, In, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. Y는 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제10 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 비자성 물질의 교대층들(여기서, 자성 물질 층들은 강자성 물질인 (Ni,Fe,Co)50(Pd,Pt)50를 포함하고, 비자성 물질 층들은 물질 X를 포함하고, X는 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. 비자성 물질 층들은 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제11 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 비자성 물질의 교대층들(여기서, 자성 물질 층들은 강자성 물질인 (Ni,Fe,Co)와 물질 X의 결합에 의해 제공되고, X는 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. 비자성 물질 층들은 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제12 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 물질 Y의 교대층들(여기서, 자성 물질 층들은 강자성 물질인 (Ni,Fe,Co)와 물질 X의 결합에 의해 제공되고, X는 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, 및 Pd 중 적어도 하나를 포함한다. 그리고, Y는 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. Y는 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제13 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 물질 Y의 교대층들(여기서, 자성 물질 층들은 강자성 물질인 (Ni,Fe,Co)와 물질 X의 결합에 의해 제공되고, X는 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn 중 적어도 하나를 포함한다. 그리고, Y는 Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및 Cu 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. Y는 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제14 실시예에서, 수직 이방성을 갖는 자유층(130) 및/또는 피고정층(110)은 자성 물질 및 물질 Y의 교대층들(여기서, 자성 물질 층들은 강자성 물질인 (Ni,Fe,Co)와 물질 X의 결합에 의해 제공되고, X는 Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt,및 Pd 중 적어도 하나를 포함한다. 그리고, Y는 B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. Y는 자성층들의 두께보다 얇거나, 같거나, 또는 두꺼울 수 있다.
제15 실시예에서, 수직 이방성을 갖는 자유층 및/또는 피고정층은 물질 Mn을 포함하고, 그리고/또는 Ni, Al, Cr, Co, 및/또는 Fe(비자성 물질(들)과 결합된) 중 적어도 하나를 포함할 수 있다. 특정 실시예들에서, 비자성 물질(들)은 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Ag, Cu, B, C, N, O, Al, Si, P, S, Ga, Ge, In, Sn, Gd, Tb, Dy, Ho, Nd, 산화물, 질화물, 또는 전이 금속 실리사이드 중 적어도 하나를 포함할 수 있다.
상기 실시예들은 도 2b의 피고정층(110a) 및/또는 자유층(130a)에 적용될 수 있다.
스핀 전달 효과에 의해 자기 소자를 스위치 하기 위해 필요한 전류는 이방성 장(anisotropy field)과 자유 자성층의 반자화 장(demagnetization field) 간의 차이에 의존하기 때문에, 수직 이방성의 도입은 스핀 전달 스위칭 전류를 낮추는 이점을 제공할 수 있다. 또한, 일부 실시예들에서 자기 소자들의 조성물의 제어는 더 낮은 스핀 전달 스위칭 전류, 및 증가된 열적 안정성의 효용들을 얻을 수 있는 퀴리 온도 및 자성 물질의 자기 모멘트를 변형시킬 수 있다. 게다가, 일부 실시예들에서, 자기 소자들의 조성물의 제어는 자기 소자들 및 장치들의 전반적인 성능의 향상으로 이어질 수 있는 막 성장을 개선시킬 수 있다.
도 2a의 수직 자기 소자들에서, 자유층(130)은 스페이서층(120)과 직접적으로 접촉한다. 따라서, 자유층(130) 및 스페이서층(120)을 위한 물질들은 그 격자 구조들이 매치될 필요가 있다. 이런 제한은 그러한 구조들을 형성하기 위한 적합한 물질들을 제한할 수 있고, 따라서 제조된 자기 소자들의 특성들을 제한할 수 있다. 일 예로, 도 2a 및 도 2b의 디자인에 기반한 일부 수직 MTJ 장치들은 바람직하지 않은 높은 감쇠 상수, 낮은 STT 효율성, 및 낮은 TMR 비(ratio)를 나타내는 물질들을 사용한다. 결국, 낮은 TMR 비는 STT-RAM 칩의 바람직하지 않은 낮은 읽기 속도의 원인이 되고, 낮은 STT 효율성은 바람직하지 않은 높은 STT 스위칭 전류의 원인이 된다.
아래에 설명된 수직 자기 소자들의 실시예들은 피고정층의 면에 실질적으로 수직인 방향으로 고정된 자화를 갖는 피고정층, 피고정층 상의 비자성 스페이서층, 및 자유층을 포함한다. 이에 더해, 자기 소자들의 원하는 특성들(예를 들면, 스핀 전달 효율성을 증가시키는 것)을 설계하기 위하여 스페이서층과 자유층 사이 및/또는 스페이서층과 피고정층 사이에 하나 이상의 추가적인 층들이 포함될 수 있다. 이러한 하나 이사의 추가적인 층들은 다양한 자성 물질들이 자기 소자의 원하는 특성들을 달성하기 위하여, 자유층 또는 피고정층 중 어느 하나에 사용될 수 있도록, 자유층 및 피고정층 중 적어도 하나와 스페이서 층 사이에 중개층(intermediary)을 형성한다.
일부 실시예들에서, 하나 이상의 계면층들은 스페이서층과 접촉되도록 제공될 수 있다. 이러한 계면층은 계면층에 실질적으로 수직인 자화를 나타내는 자성 물질의 얇은 층이다. 이 계면층은 자유층 및 피고정층과의 자기 결합을 통하여 자기 소자의 층들에 실질적으로 수직인 자화를 유지하기 위하여 충분히 얇을(예를 들면, 약 1nm 이하) 수 있다.
도 3a, 도 3B 및 도 3C는 이러한 추가적인 층들을 갖는 수직인 자화의 자기 소자들의 세가지 예시들을 도시한다. 도 3a의 장치(200)에서, 자유층은 두 수직 방향들 사이에서 스위치 될 수 있는 수직 자화(251)를 갖는 자화층(250)이다. 피고정층은 실질적으로 수직인 고정된 자화(211)를 갖는 자화층(210)이다. 비자성 스페이서층(220)은 자유층(250)과 피고정층(210) 사이에 위치한다. 계면층인 추가적인 자화층(230)은 자유층(250)과 스페이서층(220) 사이에 제공되어, 자유층(250)과 스페이서층(220) 사이에 중개층을 제공하고, 실질적으로 수직인 자화(231)를 갖는다. 이러한 자화(231)는 스핀 토크 전달을 기반으로 자유층(250)을 스위치 하는 자유층(250)의 자화(251)에 자기적으로 고정된다. 계면층(230)의 두께는 자화(231)가 자유층(250)의 자화(251)에 강하게 결합되도록 충분히 얇다(예를 들면, 1nm 미만). 계면층(230)의 존재는 선택된 자기 물질들이 자유층(250)에 사용될 수 있도록 자유층(250)과 스페이서층(220) 사이의 직접적인 접촉 및 계면을 제거한다.
도 3b는 계면 자화층을 이용하는 다른 디자인을 도시한다. 이 장치(200A)는 실질적으로 수직인 자화(251a)를 갖는 자유층(250a), 스페이서층(220a), 스페이서층(220a)과 직접적으로 접촉하고 실질적으로 수직인 자화(261a)를 갖는 계면층(260a), 및 실질적으로 수직인 고정된 자화(211a)를 갖는 피고정층(210a)을 포함한다. 계면층(260a)은 스페이서층(220a)과 피고정층(210a) 사이에 위치하여, 피고정층(210a)과 스페이서층(220a) 사이의 직접적인 인터페이싱을 제거한다. 계면층(260a)의 자화(261a)는 피고정층(210a)의 고정된 자화(211a)에 자기적으로 결합되고, 고정된다.
도 3c는 스페이서층과 직접 접촉하는 자유층 및 피고정층을 분리하기 위한 스페이서층의 양측의 두 계면층들을 구현하는 장치의 예를 도시한다. 이 장치(200B)는 실질적으로 수직인 자화(251b)를 갖는 자유층(250b), 스페이서층(220b), 스페이서층(220b)과 직접적으로 접촉하고 실질적으로 수직인 자화(231b)를 갖는 제1 계면층(230b), 실질적으로 수직인 고정된 자화(211b)를 갖는 피고정층(210b), 및 실질적으로 수직인 자화(261b)를 갖는 제2 계면층(260b)을 포함한다. 제1 계면층(230b)은 자유층(250b)과 스페이서층(220b) 사이에 위치하여, 스페이서층(220b)과 자유층(250b) 사이의 직접적인 인터페이싱을 제거한다. 제1 계면층(260b)의 자화(231b)는 자유층(250b)의 자유 자화(251b)에 자기적으로 결합되어, 자유층(250b)과 함께 스위치된다. 제2 계면층(260b)은 스페이서층(220b)과 피고정층(210b) 사이에 위치하여, 피고정층(210b)과 스페이서층(220b) 사이의 직접적인 인터페이싱을 제거한다. 제2 계면층(260b)의 자화(261b)는 피고정층(210b)의 고정된 자화(211b)에 자기적으로 결합되고, 고정된다.
다른 실시예들에서, 스페이서층과 자유층 사이 및/또는 스페이서층과 피고정층 사이에 두 개의 추가적인 인접 층들의 막 스택들이 하나 이상 포함되어, 자기 소자들의 원하는 특성들을 조절한다. 하나의 막 스택의 두 추가적인 인접 층들 중, 제1 추가적인 층은 스페이서층과 직접적으로 접촉하는 계면층이다. 이 계면층은 상기 층에 실질적으로 수직이거나, 또는 다른 층들과의 상호 작용의 부재 하에 계면층에 평행하고 피고정층 자화에 실질적으로 수직인 “자연(native)” 자화를 갖는 자성층이다. 후자의 경우에서, 계면층의 자화는 다른 층들과 자기적으로 결합될 때 계면층에 실질적으로 수직이게 된다. 제2 추가적인 층은, 일 측면은 계면층과 접촉하고 다른 측면은 자유층 또는 피고정층과 접촉하는 접속층으로, 계면층에 실질적으로 수직이 되도록 계면층의 자화를 보장하는 자유층 또는 피고정층 중의 어느 하나와 계면층 사이의 자기 결합을 제공한다. 접속층은 실질적으로 수직인 층 및 계면층과 분리된 층이고, 실질적으로 수직인 층과 계면층 사이에서 물리적으로 성장된다. 계면층의 두께는 충분히 크게(예를 들면, 큰 TMR 비를 달성하기 위해 2-20 Å 보다 큰)형성될 수 있다.
도 4a는 이러한 추가적인 층들을 갖는 실질적으로 수직인 자화의 자기 소자(300)의 일 예를 도시한다. 자유층은 수직 방향과 그 반대 방향의 두 방향들 사이에서 스위치 될 수 있는 실질적으로 수직인 자화(251)을 갖는 자유층(250)이다. 피고정층은 수직의 고정된 자화(211)을 갖는 층(210)이다. 두 추가적인 층들은 자유층(250)과 스페이서층(220) 사이에 위치하는 자성층들(330, 340)이다. 자성층(330)은 높은 자화(331)를 제공하기 위해 충분한 두께를 갖는 계면층이다. 자성층(340)은 자유층(250) 및 계면층(330)에 접촉하는 접속층으로, 계면층(330)의 자화가 계면층(330)에 수직이 되도록 자기적으로 끌어 당긴다.
이 예에서 계면층(330)은, 층(330)이 독립되고 다른 층들과 자기적으로 결합되지 않을 때, 계면층(330)의 면 내의 자화(331)를 갖는다. 접속층(340)은 자유층(250)과 계면층(330) 사이의 자기 결합을 제공하는 구조를 갖고, 계면층(330)의 자화가 계면층(330)에 수직이 되도록 한다. 일 예로, 접속층(340)은 본래 면 내 방향에서 최종적으로 면에 수직인 방향으로 계면 자성층의 자화를 구동하는 자기 결합을 유발시키도록, 충분히 얇게 형성될 수 있다. 계면층(330)의 수직 자화는 자기 소자의 전반적인 수직 이방성을 강화시키고, 따라서 열적 및 자기적 교란들에 대하여 자유층(250)을 안정화시킨다. 접속층(340)은 높은 자화의 계면층(330) 및 자유층(250) 중 하나 또는 둘 모두의 감쇠를 감소시키기 위하여 선택될 수 있다.
이에 더해, 접속층(340)은 자유층(250) 및 계면층(330) 사이의 구조적 분리 또는 버퍼를 제공하여, 자유층(250) 및 계면층(330)이 다른 물질 구조들을 가지는 것을 가능하게 한다. 접속층(340)의 이런 기능은 자유층(250) 및 다른 층들에 대한 물질들을 선택하는데 있어 유연성을 제공하여, 최종 자기 소자(300)의 특성들을 최적화 및 향상시킨다. 접속층(340)은 자유층(250)의 결정 특성들이 스페이서층(220)(스페이서층이 절연 물질로 제조될 때)에 의해 형성된 터널링 접합 장벽의 결정도에 영향을 미치는 것을 방지할 수 있다. 본 디자인은 실질적으로 수직인 자유층(250) 및 장벽층(220) 사이의 직접적인 접촉을 제거하여, 자유층(250)과 장벽층(220)의 결정 특성들의 연관성을 피한다. 따라서, 층들(250, 220)의 다른 결정 특성들(예컨대, 격자 형태와 같은)은, 층들(250, 220)의 양립 가능성에 의해 부과되는 제한 사항들에 한정되지 않으면서, 스핀 토크 효율성 및 TMR을 강화하도록 디자인될 수 있다. 일 예로, 에피택시얼 MgO(001) 구조가 고품질의 터널링 접합 장벽으로서 사용되어, STT 장치에서 TMR 비를 개선할 수 있다. 접속층(340)은 또한 고분극(high-polarization) 계면층(330)에 원하는 수직 이방성을 유도하는 것을 용이하게 할 수 있고, 따라서, 실질적으로 수직인 자유층(250)이 고분극 계면층(330)의 자화를 면 내 방향에서 실질적으로 수직인 방향으로 끌어 당기도록 보조할 수 있다.
접속층(340)은 다양항 물질들로 형성될 수 있다. 일부 예들은 MgO/Mn, MgO/Cr, MgO/V, MgO/Ta, MgO/Pd, MgO/Pt, MgO/Ru, 및 MgO/Cu와 같은 스페이서층(220) 보다 낮은 저항-면적 곱(resistance-area product)을 갖는 MgO를 포함하는 결정성 물질들을 포함한다. 산화물인 SiOx, AlOx, 및 TiOx와 같은 비정질 물질들이 또한 접속층(340)을 형성하는데 사용될 수 있다. TiN, TaN, CuN, SiNx와 같은 질화물 물질들이 또한 접속층(340)을 형성하는데 적용될 수 있다. 접속층(340)은 또한 Mn, Cr, W, Mo, V, Ru, Cu, Pt, Pd, Au, 및 Ta와 같은 결정 매치 물질에 의해 형성될 수 있다.
계면 자성층(330)은 높은 스핀 분극 및 낮은 감쇠를 나타내도록 구성될 수 있다. 일 예로, 스페이서층(220)이 MgO일 때, 계면층(330)을 위한 물질은 높은 TMR 비를 만들어내도록 선택될 수 있다. 증착 시에 이 계면층(330)은 면 내 이방성을 가지고, 다층 구조가 형성될 때 그 이방성은 층에 실질적으로 수직이게 된다. 일 예로, 계면층(330)은 Fe, FeCo, CoFeB, 및 MgO와 결정도가 일치하고 높은 자화를 갖는 물질을 포함할 수 있다.
도 4b는 스페이서층의 양측에 계면층들을 갖는 자기 소자(300A)의 일 예를 도시한다. 이 장치(300A)는 실질적으로 수직인 자화(251a)를 갖는 자유층(250a), 스페이서층(220a), 스페이서층(220a) 및 자유층(250a) 사이에 있고 실질적으로 수직인 자화(331a)를 갖는 제1 계면층(330a), 실질적으로 수직인 고정된 자화(211a)를 갖는 피고정층(210a), 스페이서층(220a)과 접촉하는 제2 계면층(360), 및 제2 계면층(360)과 피고정층(210a) 사이의 접속층(370)을 포함한다. 제1 계면층(330a)은 스페이서층(220a)과 자유층(250a) 사이에 위치하여, 자유층(250a)과 스페이서층(220a)의 직접적인 인터페이싱을 제거한다. 계면층(330a)의 자화(331a)는 자유층(250a)의 자유 자화(251a)에 자기적으로 결합되어, 자유층(250a)과 함께 스위치된다. 접속층(370)은 계면층(360)의 자화(361)를 피고정층(210a)에 자기적으로 결합시키고, 따라서 자화(361)를 고정시킨다. 제2 계면층(360) 및 접속층(370)은 스페이서층(220a)와 피고정층(210a) 사이에 위치하여, 피고정층(210a)와 스페이서층(220a) 사이의 직접적인 인터페이싱을 제거한다.
도 4c는 자유층과 스페이서층 사이에 접속층 및 계면층을 갖는 것에 더해, 피고정층과 스페이서층 사이의 제2 접속층 및 제2 계면층을 구현하는 자기 소자(300B)의 다른 예를 도시한다. 도시된 바와 같이, 자시 소자(300B)는 실질적으로 수직인 자화(251a)를 갖는 자유층(250a), 비자성 스페이서층(220a), 및 실질적으로 수직인 자화(211a)를 갖는 피고정층(210a)을 포함한다. 도 4a의 디자인과 유사하게, 자유층(250a)과 스페이서층(220a) 사이에 제1 계면층(230a) 및 제1 접속층(240a)이 형성된다. 피고정층(210a)과 스페이서층(220a) 사이에 높은 분극을 갖는 제2 계면층(260a), 및 제2 계면층(260a)과 피고정층(210a) 사이의 결합을 제공하도록 스페이서층(220a) 보다 낮은 저항-면적 곱을 갖는 제2 접속층(270a)이 형성된다.
앞서 설명된 피고정층 및/또는 자유층 내의 계면층 및/또는 접속층은 스페이서층 위의 피고정층을 갖는 MTJ 구조들에 적용될 수 있다.
도 5는 수직 이방성을 갖는 적어도 하나의 자유층을 가지는 자기 소자들의 어레이(array)를 갖는 장치(400)의 일 예를 도시한다. 장치(400)는 기판 상에 형성되는 자기 소자들(410)의 어레이를 포함한다. 각각의 자기 소자(410)는 앞서 설명된 도 3a, 도 3b, 도 3c, 도 4a, 도 4b, 및 도 4c의 디자인들에 기반한 수직 이방성을 갖도록 구성될 수 있다. 장치(400)는 또한 격리 트랜지스터, 읽기 및 쓰기 라인들, 및 개별적인 자기 소자들(410)에 접근하기 위한 로직 회로를 갖는 전기 회로를 포함한다. 장치(400)는 자기 메모리 시스템들에 사용될 수 있다.
상기 자기 소자 디자인들은 스핀 토크 전달에 기반한 자유층의 스위칭을 위해 구현될 수 있다. 도 6 및 도 7은 스핀 토크 전달에 기반한 스위칭을 위한 전기 회로를 설명한다.
도 6은 단위 셀들의 어레이를 포함하는 예시적인 자기 장치(500)의 일부를 도시한다. 각 단위 셀은 스핀 전달 토크 효과에 기반한 자기 소자(501)를 포함한다. “비트 라인”으로 표시된 도전 라인(510)은 자기 소자(501)의 일단에 연결되어 자기 소자(501)에 전기적으로 결합됨으로써, 자기 소자(501)의 층들을 통과하여 구동 전류(540)를 공급하여, 자기 소자(501)에 스핀 전달 토크 효과를 유발한다. 격리 트랜지스터들과 같은 전기 격리 장치(530)는 자기 소자(501)의 일측에 연결되어, 트랜지스터(530)의 게이트에 인가된 제어 신호에 반응하여 전류(540)를 제어한다. “워드 라인”으로 표시된 제 2 도전 라인(520)은 트랜지스터(530)의 게이트에 전기적으로 연결되어, 제어 신호를 공급한다. 동작 중, 구동 전류(540)가 자기 소자(501)의 물질들 및 구조들의 의해 결정되는 스위칭 문턱 값(switching threshold)보다 더 클 때, 구동 전류(540)는 자유층의 자화 방향을 변화시키도록 자기 소자(501)의 층들을 가로질러 흐른다. 자기 소자(501)에서 자유층의 스위칭은 라인들(510, 520) 또는 다른 소스들에 의해 생성되는 자기장에 대한 의존 없이 오로지 구동 전류(540)에 의해서만 발생된 스핀 전달 토크에 기반한다.
스핀 전달 토크 효과에 기반한 자기 소자(501)는 MTJ, 스핀 밸브, MTJ 및 스핀 밸브의 조합, 두 개의 MTJ 및 다른 구성들의 조합과 같은 다양한 구성들로 구현될 수 있다. 자유층 및 피고정층의 각각은 단일 자성층 또는 자기적으로 함께 결합된 다층들의 복합 구조일 수 있다.
도 7은 스핀 전달 토크 스위칭에 기반하여 어레이 자기 메모리 장치를 동작하는 예시적인 일 회로를 도시한다. 각 셀(610)은 도 6의 격리 장치(530)에 해당하는 셀렉트 트랜지스터(620)에 직렬로 연결된다. 도시된 바와 같이, 비트 라인 셀렉터(601), 소스 라인 셀렉터(602), 및 워드 라인 셀렉터(603)는 각 셀의 동작들을 제어하기 위해 설 어레이에 결합된다.
추가적인 본 발명의 개념들이 순 이론적 계산을 통해 얻은 도 8 내지 도 15를 참조하여 설명될 것이다. 이전 실시예들과 마찬가지로, 이하의 본 발명의 개념들은 특히 수직 스핀 전달 토크(P-STT) 구조를 위한 단일 또는 이중 MTJ에 사용되는 것과 같은 다층의 자기 소자들의 자유층 구조들에 관한 것이다. 추가적인 응용은 하이브리드 자유층 실시예들(예를 들면, 함께 교환 결합된 두 개의 서브층들을 갖는), 또는 비정질화 물질에 당겨지는 내부에 배치된 접속층들을 갖는 자유층들을 위한 것이다. 다른 이점들은, 예를 들면, 스위칭 전류를 줄일 수 있는 면 내 구조들을 위해 양의 수직 이방성(Positive Perpendicular Magnetic Anisotropy: PPMA) 물질을 제공하는 본 발명의 개념들을 이용함으로써 달성될 수 있다.
많은 물질들이 다층의 자기 소자의 자유층을 제공하기 위해 개시되었다. 예를 들면, 앞서 논의 된 바와 같이, 수직 이방성을 갖는 자유층은 자기 물질과 물질 Y의 교대층들(여기서, 자기 물질 층들은 강자성 물질인 (Ni,Fe,Co)와 물질 X의 결합에 의해 제공되고, X는 B, C, N, O, Al, Si, P, S, Ga, Ge, In, 및/또는 Sn 중 적어도 하나를 포함한다. 그리고, Y는 Cr, Pt, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, 및/또는 Cu 중 적어도 하나를 포함한다)로 구성된 다층에 의해 제공될 수 있다. 일반적인 다층의 자기 구조들에서, 자유층의 자기 물질의 층들은 종종 CoFeB로 구성되는데, 이는 붕소(B)의 포함이 MgO와 좋은 격자 구조 매치를 만들기 때문이다. 그러나 불행하게도, 자유층 내의 붕소(B)의 존재는 수직 자기 이방성(Perpendicular Magnetic Anisotropy: PMA) 레벨을 감소시키는데, 특히 붕소(B)가 MgO 계면에 너무 가깝게 될 때 그러하다. 그리고, 붕소(B)는 MgO층의 근처에 있을 때 가장 낮은 에너지 상태(따라서, 가장 안정적인)를 갖기 때문에, 자유층 구조에 사용되는 붕소(B)는 Fe-O 혼성화를 방해하는 MgO 계면으로 마이그레이션(migration) 되는 경향이 있고, 따라서 PMA를 강하게 감소시킨다.
자유층 구조 내의 격자 간(interstitial) 붕소(B)의 존재는 순수한 철(Fe)의 사용보다 상대적으로 PMA를 감소시킨다. 도 8, 도 9a 및 도 9b는 자유층의 Fe 내에 격자 간 붕소(B)의 효과들을 도시한다. 도 8을 참조하면, 격자 간 붕소(B)가 자유층 구조 내에 다양한 위치에 존재하는 네 가지의 구조들이 도시된다. 구조 1에서 붕소는 MgO 계면에 위치하고, 구조 2 내지 4에서 붕소는 순차적으로 MgO 계면으로부터 멀어지고 자유층 또는 자유층 접속층의 벌크(또는 중심)에 가까워지도록 배치된다. 도 9a 및 도 9b에서, 다양한 구조들의 이방성 및 상대적 안정성을 도시하는 두 그래프가 제공된다.
도 9a 및 도 9b로부터 알 수 있는 바와 같이, 구조 1(붕소가 MgO 계면에 위치하는)은 가장 낮은 에너지 레벨을 갖고, 따라서 네 가지의 구조들 중 가장 높은 상대 안정성을 갖는다. 그러나 불행하게도, 최대 이방성은 도 4에서와 같이 붕소 원자들이 MgO 계면으로부터 최대한 멀리 떨어져 자유층의 중앙에 배치될 때 달성된다. MgO 경계의 근처에 배치되는 붕소 원자들을 갖는 구조 1은 최대 안정성을 제공하는 것은 물론 강한 면 내(음의) 이방성을 초래한다. 추가로 알 수 있는 바와 같이, 구조 2는 불량한 이방성(강한 음의 이방성)을 갖고, 구조 3은 단지 약간의 양의 이방성을 가짐으로 인해, 구조 2 및 구조 3은 불안정하다.
그러나, 자유층의 중심 근처에 배치된 붕소(B)를 갖는 구조 4에서, 양질의 양의 이방성을 얻을 수 있다. 이에 더해, 붕소 분리 프로파일은 MgO 계면 근처의 위치(구조 1)와 자유층의 중앙의 위치(구조 4) 사이에서 약 30 meV의 에너지 장벽을 나타낸다. 이 에너지 장벽은 운동 장벽(kinetic barrier)과 함께 붕소(B) 원자들이 자유층의 중앙에 머물게 함으로써 PMA를 보존한다. 붕소(B) 원자들이 자유충의 중심 근처에 위치하는 것과 같은 구성들의 경우, 자유층 구조에서 붕소(B) 원자들을 사용하는 것이 가능하고, 그럼에도 불구하고 좋은 PMA를 유지할 수 있다.
일 해결책은, 예컨대, 자유층의 중심 근처에 배치된 접속층을 통하여 자유층 구조에 탄탈륨(Ta) 또는 다른 적합한 물질(예를 들면, W, Mn, Nb, Cr, V, Ru, Cu, Pt, Pd, Au)을 접속시키는 것을 도입하는 것이다. 예를 들어 탄탈륨(Ta)을 포함하는 것과 같은 접속층의 사용은 MgO 계면으로부터 멀어지도록 붕소(B)를 끌어 당길 수 있고, 따라서 PMA 레벨들이 개선될 수 있다.
본 발명의 개념들의 원리들을 따르면, 붕소(B)(전체 또는 일부)를 하나 이상의 다른 비정질의 물질들로 대체하는 것은 증가된 PMA를 갖는 안정된 자유층 구조의 결과를 가져올 수 있다. 선호되는 대체 비정질화 물질들은 바람직하게는 다음 속성들 중 하나 이상을 가진다. 예를 들면, (1) 비정질화 물질들은 MgO 계면으로 분리(segregate)되지 않고, 대신에 자유층의 벌크/중심 또는 자유층 내부의 접속층 내에 분리된다; 또는 (2) MgO 계면으로 분리된다고 하더라도, 비정질화 물질들은 PMA의 강한 감소 또는 반전을 야기하지 않는다. 이러한 속성들을 갖기 때문에 붕소(B)의 유력한 대체로 쓰일 수 있는 것으로 확인된 일부 물질들은, 예를 들면, 게르마늄(Ge), 리튬(Li), 베릴륨(Be), 수소(H) 가스, 질소(N) 가스, 및 불소(F) 가스를 포함한다. 특히, Ge의 사용은, Ge이 MgO 계면의 근처로 분리 되더라도, PMA를 유지하는 것이 기대된다.
도 10, 도 11a, 도 11b, 도 11c 및 도 12는 STT 장치의 자유층 구조에서 붕소(B)를 Ge로 대체하는 것의 이점들을 설명한다. 도 10은 붕소(B)가 아닌 Ge을 포함하는 유사한 구조들을 가진 개략적인 원자 도면으로서, 도 8의 도시된 네 가지의 구조들과 비교하기 위한 도면이다. 도 11a, 도 11b 및 도 11c는 도 10의 네 가지 자유층 구조들(1, 2, 3, 4)의 이방성, 안정성, 및 붕소(B)와 Ge의 농도들을 비교하기 위한 차트들이다. 도 12는 다양한 온도들에서 붕소(B)의 구조들 대비 Ge의 구조들의 개선된 이방성 특성들을 요약한다.
이제 도 10, 도 11a, 도 11b, 도 11c 및 도 12를 참조하여, 자유층 구조에 사용을 위한 붕소(B) 및 Ge의 특성들이 비교될 것이다. 도 11b에서 알 수 있는 바와 같이, 붕소(B) 및 Ge의 분리 프로파일들은 유사하고, MgO 계면을 향하여 매우 이러한 추세가 강해진다. 따라서, 붕소(B) 및 Ge 둘 다 MgO 경계에 가장 가깝게 배치될 때 가장 안정한 상태를 가진다. 그러나, 도 11a에 도시된 바와 같이, MgO 계면에 가깝게 배치된 Ge 원자들은 MgO 계면 근처의 붕소(B) 원자들의 존재 만큼은 Ks(따라서, PMA)를 약화시키지 않는다. 도 12에 더 도시된 바와 같이, 격자 간 붕소(B) 원자들로부터 음의 PMA이 초래되는 것과 반대로, 자유층 구조에 Ge을 사용하는 것은 다양한 온도들에서 양의 PMA의 결과를 가져오게 할 수 있다. 따라서, Ge이 MgO 계면에 배치되더라도 자유층의 PMA를 크게 손상시키지 않기 때문에, Ge은 자유층 구조에서 붕소(B)를 대체하기 위한 강력한 후보(대체 물질)를 제공한다.
다른 기술들(즉, 스핀 밸브 구조들)에 사용된 CoFeGe에 관하여 수행된 연구들은 이러한 조성물을 사용하기 위한 추가적인 이점들(예를 들면, 제어 가능한 Ms, 높은 MR, 및 매우 낮은 감쇠를 포함하는)을 보여주고 있다.
도 13, 도 14a, 도 14b, 도 14c 및 도 15는 다른 잠재적인 자유층 비정질화 물질들(예를 들면, Li, Be, H 및 F를 포함하는)에 대한 이방성, 안정성, 및 농도 특성들을 도시한다. 도 14a, 도 14b 및 도 14c에서, 이런 다양한 물질들의 이방성, 상대 안정성, 및 농도들은 도 13의 다양한 구조들(-2, -1, 1, 2, 3, 4)에 대해 비교된다. 도 13에서, 구조들(-2, -1)은 비정질화 물질 X가 MgO 내부, 즉, 중심(구조 -2) 또는 계면들(구조 -1)에 배치되는 경우를 도시한다. 구조 1 내지 구조 4는 자유층 내의 비정질화 물질의 위치에 관하여 도 8 및 도 10에 도시된 이전의 구조 1 내지 구조 4와 유사하다.
도 13, 도 14a, 도 14b, 도 14c 및 도 15를 참조하면, 이 차트들 및 그래프들로부터 알 수 있는 바와 같이, 비정질화 물질로서 물질들 Li, Be, H, 및 F 중 어느 하나 이상의 사용은 상대적으로 안정된 구조를 가지면서 양의 PMA의 결과를 가져올 수 있다. 따라서, 이들 물질들의 각각은 본 발명의 개념들에 따라 자유층 구조에서 전체 또는 일부로서 붕소(B)를 대체하기 위한 잠재적인 대체 비정질화 물질로서의 가능성을 갖는다.
따라서, 본 발명의 개념들의 일 특정 양태에 따르면, STT 구조의 자유층을 형성하기 위한 조성물은 CoxFeyMz를 포함할 수 있다. 여기서, M은 Ge, Bi, Li, Be, F, N, 및 H로 구성된 그룹에서 선택된 비자성 물질이다. 비자성 물질 M은 바람직하게 우수한 결정 배향을 형성하는 것, 및 MgO(예를 들면, 물질 M은 바람직하게 증착 시에는 비정질이고, 어닐링 후에 결정성이 되는 비정질화 물질로서 작용을 한다)와 매칭하는 것을 도와주는 특성들을 갖는다. 물질 M은 또한 바람직하게 MgO 계면으로 분리되지 않고, MgO 계면으로 분리 되더라도 Fe 및 O의 혼성화를 크게 손상시키지 않으므로, 크게 PMA를 감소시키지 않는다.
본 발명의 개념들의 다른 양태에 따르면, STT 구조의 자유층을 형성하기 위한 조성물은 MgO/CoxFeyMz (접속층) 또는 CoxFeyMz/MgO를 포함할 수 있다. 여기서, M은 어닐링 동안 접속층에 끌어 당겨지는 물질이다. 예를 들면, 접속층은 탄탈륨(Ta)을 포함할 수 있다. 물질 M을 끌어 당기는 접속층을 제공하는 것에 의해, M이 MgO 계면을 향하여 마이그레이션 되는 것을 방지할 수 있고, 따라서 PMA를 보존할 수 있다.
본 발명의 개념들의 또 다른 양태에 따르면, STT 구조의 자유층을 형성하기 위한 물질은 CoxFeyMz의 그레이디드(graded) 조성물을 포함할 수 있다. 여기서, z는 자유층 내에서 변한다. 일 예로, M의 최대 농도(즉, 증가된 z)는 자유층의 중심 근처에서 배치될 수 있고, MgO 계면을 향하여 감소될 수 있다. 일 예로, 이는 코-스퍼터링(co-sputtering) 또는 다른 적합한 기술을 이용하여 달성될 수 있다. H 및 F와 같은 가스들을 위하여, 예들 들면, 반응성 스퍼터링 기술이 사용될 수 있다.
도 16은 본 발명의 개념의 실시예에 따른 메모리 카드(7000)를 나타내는 블록도이다.
도 16을 참조하면, 제어기(710) 및 메모리(720)는 전기적 신호들을 교환하도록 메모리 카드(7000)에 배치될 수 있다. 일 예로, 제어기(710)가 커맨드를 지시하면, 메모리(720)는 데이터를 전송할 수 있다. 메모리(720)는 전술 한 예시적인 실시예들 중 어느 하나에 따른 자기 장치를 포함할 수 있다. 본 발명의 개념에 따른 다양한 예시적인 실시예들에 따른 자기 장치는 본 발명이 속하는 기술 분야에서 공지된 기술인 대응 논리 게이트 디자인에 상응하는 다양한 형태를 갖는 아키텍쳐 메모리 어레이(미도시)에 배치될 수 있다. 복수의 로우 들(rows) 및 컬럼들(columns)이 배치되는 메모리 어레이는 하나 이상의 메모리 어레이 뱅크(미도시)를 형성할 수 있다. 메모리(720)는 메모리 어레이(미도시) 또는 메모리 어레이 뱅크(미도시)를 포함할 수 있다. 또한, 메모리 카드(7000)는 일반적인 로우 디코더(미도시), 컬럼 디코더(미도시), I/O 버퍼들(미도시), 및/또는 전술한 메모리 어레이 뱅크(미도시)를 구동하기 위한 제어 레지스터(미도시)를 더 포함할 수 있다. 메모리 카드(7000)는 메모리 스틱 카드들, 스마트 미디어(SM) 카드들, 시큐어 디지털(SD) 카드들, 또는 멀티미디어 카드들(MMC)과 같은 다양한 메모리 카드들에 사용될 수 있다.
도 17은 본 발명의 개념의 실시예에 따른 시스템(8000)을 나타내는 블록도이다.
도 17을 참조하면, 시스템(8000)은 제어기(810), 입/출력(I/O) 유닛(820), 메모리 유닛(830), 및 인터페이스 유닛(840)을 포함할 수 있다. 시스템(8000)은 모바일 시스템 또는 정보를 송수신하기 위한 시스템일 수 있다. 모바일 시스템은 PDA, 휴대용 컴퓨터, 웹 태블릿(web tablet), 무선 폰, 모바일 폰, 스마트 폰, 디지털 뮤직 플레이어, 또는 메모리 카드일 수 있다. 제어기(810)는 프로그램을 실행하고 시스템(8000)을 제어할 수 있다. 일 예로, 제어기(810)는 또한 마이크로프로세서, 디지털 시그널 프로세서, 마이크로컨트롤러, 또는 이와 유사한 장치일 수 있다. I/O 유닛(820)은 시스템(8000)의 데이터를 입력 또는 출력하는데 사용될 수 있다. 시스템(8000)은 I/O 유닛(820)을 이용하여 외부 장치들과 연결됨으로써 개인용 컴퓨터 또는 네트워크와 같은 외부 장치들과 데이터를 교환할 수 있다. 일 예로, I/O 유닛(820)은 또한 키패드, 키보드, 또는 디스플레이일 수 있다. 메모리 유닛(830)은 제어기(810) 및/또는 제어기(810)에 의해 처리되는 저장 데이터의 동작을 위한 코드들 및/또는 데이터를 저장할 수 있다. 메모리 유닛(830)은 전술한 예시적인 실시예들의 어느 하나에 따른 자기 메모리 장치 또는 메모리 소자를 포함할 수 있다. 인터페이스 유닛(840)은 시스템(8000)과 외부 장치들 간의 데이터 전송 통로일 수 있다. 제어기(810), I/O 유닛(820), 메모리 유닛(830), 및 인터페이스(840)는 버스(850)을 통하여 서로 통신할 수 있다. 일 예로, 시스템(8000)은 모바일 폰, MP3 플레이어, 네비게이션, 휴대용 멀티미디어 플레이어(PMPs), 솔리드 스테이트 디스크(SSDs), 또는 가전 제품일 수 있다.
명세서를 통하여, 일 실시예로 도시된 특징들은 본 발명의 사상 및 범위 내에서 다른 실시예들에 포함될 수 있다.
본 명세서의 전반에 걸쳐 언급된 “일 실시예” 또는 “하나의 실시예”와 같은 문구는 실시예와 관련되어 설명된 특정한 특징, 구조, 또는 특성이 본 발명의 적어도 하나의 실시예에 포함되는 것을 의미한다. 따라서, 본 명세서의 전반에 걸쳐 다양한 곳에서 언급된 “ 일 실시예에서” 또는 “하나의 실시예에서”의 문구는 반드시 모두 동일한 실시예를 지칭하는 것은 아니다. 나아가, 특정한 특징들, 구조들, 또는 특성들은 하나 이상의 실시예들에서 다른 적절한 방식으로 결합될 수 있다.
본 명세서는 많은 세부 사항들을 포함하나, 이들은 본 발명 또는 청구된 것들에 대한 범위를 제한하는 것으로 해석될 것이 아니라, 본 발명의 특정 실시예들에 대한 구체적인 특징들에 대한 설명들로 해석되어야 할 것이다.
별도의 실시예들의 맥락에서 본 명세서에 설명된 특정한 특징들은 또한 단일 실시예에서 결합되어 구현될 수 있다. 반대로, 단일 실시예의 맥락에서 설명된 다양한 특징들은 또한 개별적으로 또는 임의의 적절한 하위 조합으로 여러 실시예들에서 구현될 수 있다. 또한, 특징들은 앞서 특정 조합들에서 작용하는 것으로 설명될 수 있고, 심지어 처음에는 그와 같이 청구될 수 있지만, 청구된 조합에서의 하나 이상의 특징은 일부 경우에는 조합에서 삭제될 수 있고, 청구된 조합은 서브조합 또는 서브조합의 변형예로 지시될 수도 있다.
도면들은, 일부의 경우에, 자성층들에 인접하게 배치된 계면층들에 대해 구별되는 자화들을 도시하고 있지만, 자성층에 인접한 계면층이 있는 경우, 이 둘은 강하게 결합될 수 있고, 단일의 스위칭 소자로서 동작할 수 있음을 또한 주목해야 한다. 이에 더해, 자성층(피고정층 또는 자유층)이 계면층과 함께 구현될 때, 이 계면층은 효과적으로 인접한 피고정층 또는 자유층의 일부가 될 수 있고, 따라서, 자유층/피고정층에 플러스 된 별도의 계면층과는 반대로 자유층 또는 피고정층의 두 부분(예를 들면, “자유층 부분 A + 자유층 부분 B” 또는 “피고정층 부분 A + 피고정층 부분 B)”으로 간주될 수 있다.
또한, 여기에서 몇몇 실시예들만 개시되었지만, 설명된 실시예들에 대한 변형들 및 개선들이 이루어질 수 있고, 다른 실시예들은 본 명세서에서 설명되고 도시된 것들을 기반으로 하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 이해될 것이다. 따라서, 본 발명의 개념들은 여기에서 개시된 특정한 실시예들에 의해 제한되는 것으로 해석되어서는 안될 것이다.

Claims (25)

  1. 자기 장치의 자유층을 형성하기 위한 조성물에 있어서,
    CoxFeyMz을 포함하고, 상기 M은 상기 자기 장치의 MgO 계면과 상기 자유층의 결정 배향을 매칭하는 것을 돕는 비정질화 물질로서의 역할을 하는 비자성 물질이고,
    상기 M은 상기 MgO 계면으로 분리되지 않거나, 상기 MgO 계면으로 분리되더라도 상기 자유층의 수직 자기 이방성(PMA)을 심각하게 손상시키지 않는 조성물.
  2. 제 1 항에 있어서,
    상기 M은 Ge, Bi, Li, Be, F, N, 및 H로 구성된 그룹에서 선택되는 조성물.
  3. 제 1 항에 있어서,
    상기 M은 Ge을 포함하는 조성물.
  4. 제 1 항에 있어서,
    상기 자기 장치는 단일 자기 터널링 접합(MTJ) 구조를 포함하는 조성물.
  5. 제 1 항에 있어서,
    상기 자기 장치는 이중 자기 터널링 접합(dual MTJ) 구조를 포함하는 조성물.
  6. 제 1 항에 있어서,
    상기 자유층은 상호 교환 결합되는 두 개 이상의 서브층들을 갖는 하이브리드 자유층을 포함하는 조성물.
  7. 제 1 항에 있어서,
    상기 조성물은 상기 비자성 물질 M의 상기 농도 z가 상기 자유층 내에서 변하는 그레이디드(graded) 조성물을 포함하는 조성물.
  8. 제 7 항에 있어서,
    상기 농도 z는 상기 자유층의 중심을 향하여 가장 높고, 상기 MgO 계면을 향하여 더 낮은 조성물.
  9. 제 1 항에 있어서,
    상기 조성물은 면 내 자기 장치들을 위한 양의 수직 자기 이방성(PPMA) 물질로서 사용되는 조성물.
  10. 제 1 항에 있어서,
    상기 자유층은 접속층을 더 포함하고,
    상기 접속층은 상기 자유층의 중심 근처에 배치되고, 상기 MgO 계면으로부터 멀어지게 상기 비자성 물질 M을 끌어 당기도록 구성되는 조성물.
  11. 제 1 항에 있어서,
    상기 접속층은 Ta를 포함하는 조성물.
  12. 자유층 구조의 근처에 배치되는 MgO 계면을 포함하되,
    상기 MgO 계면은:
    CoxFeyMz를 포함하는 조성물; 및
    상기 CoxFeyMz 조성물 내에 배치되는 접속층을 포함하고,
    상기 M은 우수한 결정 배향을 형성하는 것 및 상기 MgO 계면과 매칭하는 것을 돕는 비정질화 물질로서의 역할을 하는 비자성 물질이고,
    상기 M은 어닐링 동안 상기 접속층에 끌어 당겨지는 STT 구조의 자유층.
  13. 제 12 항에 있어서,
    상기 접속층은 Ta를 포함하는 STT 구조의 자유층.
  14. 제 12 항에 있어서,
    상기 접속층은 상기 자유층 중심 근처에 배치되는 STT 구조의 자유층.
  15. 제 12항에 있어서,
    상기 비자성 물질 M은 붕소(B)를 포함하는 STT 구조의 자유층.
  16. 제 12항에 있어서,
    상기 조성물은 CoxFeyMz의 그레이디드(graded) 조성물을 포함하고, 상기 z는 상기 자유층 내에서 변하는 STT 구조의 자유층.
  17. 피고정층;
    상기 피고정층에 평행한 자유층; 및
    MgO층을 포함하고,
    상기 피고정층은 상기 피고정층에 수직인 방향으로 고정된 피고정층 자화를 가지고,
    상기 자유층은 상기 자유층에 수직하고 상기 피고정층 자화에 대하여 변화가능한 자유층 자화를 가지고,
    상기 MgO층은 상기 MgO층과 상기 자유층 사이에 MgO 계면을 제공하고,
    상기 자유층은 조성물을 포함하되, 상기 조성물은:
    CoxFeyMz를 포함하고, 상기 M은 우수한 결정 배향을 형성하는 것 및 상기 MgO 계면과 매칭하는 것을 돕는 비정질화 물질로서의 역할을 하는 비자성 물질이고,
    상기 M은 상기 MgO 계면으로 분리되지 않거나, 상기 MgO 계면으로 분리되더라도 상기 자유층의 수직 자기 이방성(PMA)을 심각하게 손상시키지 않는 자기 소자.
  18. 제 17 항에 있어서,
    상기 M은 Ge, Bi, Li, Be, F, N, 및 H로 구성된 그룹에서 선택되는 자기 소자.
  19. 제 17 항에 있어서,
    상기 자기 소자는 단일 자기 터널링 접합(MTJ) 구조를 포함하는 자기 소자.
  20. 제 17 항에 있어서,
    상기 자기 소자는 이중 자기 터널링 접합(dual MTJ) 구조를 포함하는 자기 소자.
  21. 제 17 항에 있어서,
    상기 자유층은 상호 교환 결합되는 두 개 이상의 서브층들을 갖는 하이브리드 자유층을 포함하는 자기 소자.
  22. 제 17 항에 있어서,
    상기 조성물은 상기 비자성 물질 M의 상기 농도 z가 상기 자유층 내에서 변하는 그레이디드(graded) 조성물을 포함하는 자기 소자.
  23. 제 22항에 있어서,
    상기 비자성 물질 M의 상기 농도 z는 상기 자유층의 중심을 향하여 가장 높고, 상기 MgO 계면을 향하여 더 낮은 자기 소자.
  24. 제 17 항에 있어서,
    상기 조성물은 면 내 자기 장치들을 위한 양의 수직 자기 이방성(PPMA) 물질로서 사용되는 자기 소자.
  25. 제 17 항에 있어서,
    상기 자유층은 접속층을 더 포함하고,
    상기 접속층은 상기 자유층의 중심 근처에 배치되고, 상기 MgO 계면으로부터 멀어지게 상기 비자성 물질 M을 끌어 당기도록 구성되는 자기 소자.
KR1020140023267A 2013-02-27 2014-02-27 향상된 효율성의 수직 이방성을 갖는 자기 소자 KR20140107143A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/779,734 2013-02-27
US13/779,734 US9082534B2 (en) 2009-09-15 2013-02-27 Magnetic element having perpendicular anisotropy with enhanced efficiency

Publications (1)

Publication Number Publication Date
KR20140107143A true KR20140107143A (ko) 2014-09-04

Family

ID=51369732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140023267A KR20140107143A (ko) 2013-02-27 2014-02-27 향상된 효율성의 수직 이방성을 갖는 자기 소자

Country Status (3)

Country Link
KR (1) KR20140107143A (ko)
CN (1) CN104009154B (ko)
TW (1) TWI643367B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160084317A (ko) * 2015-01-05 2016-07-13 삼성전자주식회사 스핀 전달 토크 자기 램의 응용 분야에서 사용될 수 있는 수직 자기 접합에 하부 기준층을 제공하는 방법 및 시스템
CN111868946A (zh) * 2018-03-30 2020-10-30 应用材料公司 具有可调的高垂直磁各向异性的磁隧道结

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522739B2 (en) 2015-06-26 2019-12-31 Intel Corporation Perpendicular magnetic memory with reduced switching current
KR20170047683A (ko) * 2015-10-23 2017-05-08 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
US8623452B2 (en) * 2010-12-10 2014-01-07 Avalanche Technology, Inc. Magnetic random access memory (MRAM) with enhanced magnetic stiffness and method of making same
JP2008205110A (ja) * 2007-02-19 2008-09-04 Fujitsu Ltd 磁気抵抗効果素子、磁気ヘッド、磁気記憶装置および磁気メモリ装置
US7826182B2 (en) * 2007-07-23 2010-11-02 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with CoFeGe ferromagnetic layers
US8154829B2 (en) * 2007-07-23 2012-04-10 Hitachi Global Storage Technologies Netherlands B.V. Tunneling magnetoresistive (TMR) device with improved ferromagnetic underlayer for MgO tunneling barrier layer
JP5103097B2 (ja) * 2007-08-30 2012-12-19 エイチジーエスティーネザーランドビーブイ 垂直磁気記録媒体及びそれを用いた磁気記録再生装置
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
US8057925B2 (en) * 2008-03-27 2011-11-15 Magic Technologies, Inc. Low switching current dual spin filter (DSF) element for STT-RAM and a method for making the same
US8072800B2 (en) * 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
US9196332B2 (en) * 2011-02-16 2015-11-24 Avalanche Technology, Inc. Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160084317A (ko) * 2015-01-05 2016-07-13 삼성전자주식회사 스핀 전달 토크 자기 램의 응용 분야에서 사용될 수 있는 수직 자기 접합에 하부 기준층을 제공하는 방법 및 시스템
CN111868946A (zh) * 2018-03-30 2020-10-30 应用材料公司 具有可调的高垂直磁各向异性的磁隧道结

Also Published As

Publication number Publication date
TWI643367B (zh) 2018-12-01
CN104009154B (zh) 2018-06-05
TW201444135A (zh) 2014-11-16
CN104009154A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
US9082534B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US9577181B2 (en) Magnetic junctions using asymmetric free layers and suitable for use in spin transfer torque memories
US9048411B2 (en) Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
EP2673807B1 (en) Magnetic element with improved out-of-plane anisotropy for spintronic applications
US8758909B2 (en) Scalable magnetoresistive element
EP2450903B1 (en) Method and system for providing hybrid magnetic tunneling junction elements with improved switching
EP2820680B1 (en) Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
KR102198034B1 (ko) 호이슬러 다중층을 포함하는 자기 접합을 제공하는 방법 및 시스템
US8374048B2 (en) Method and system for providing magnetic tunneling junction elements having a biaxial anisotropy
WO2014011950A1 (en) Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
KR102325455B1 (ko) 희토류-전이 금속층을 갖는 자기 접합부를 제공하기 위한 장치 및 그 방법
KR20180104539A (ko) 마그네틱 접합부, 마그네틱 접합부를 제공하는 방법 및 마그네틱 메모리
US20120319221A1 (en) Method and system for providing a magnetic junction configured for precessional switching using a bias structure
US8987006B2 (en) Method and system for providing a magnetic junction having an engineered barrier layer
KR20140107143A (ko) 향상된 효율성의 수직 이방성을 갖는 자기 소자
CN109427963B (zh) 磁性结、磁性存储器和提供磁性结的方法
US10003015B2 (en) Method and system for providing a diluted free layer magnetic junction usable in spin transfer torque applications
CN105762274B (zh) 用于提供包括无Co自由层的磁结的方法和系统
KR20180038944A (ko) 자기 장치에 사용 가능한 자기 접합 및 그 제조 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application