KR20140099509A - 하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치 - Google Patents

하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치 Download PDF

Info

Publication number
KR20140099509A
KR20140099509A KR1020147017282A KR20147017282A KR20140099509A KR 20140099509 A KR20140099509 A KR 20140099509A KR 1020147017282 A KR1020147017282 A KR 1020147017282A KR 20147017282 A KR20147017282 A KR 20147017282A KR 20140099509 A KR20140099509 A KR 20140099509A
Authority
KR
South Korea
Prior art keywords
skin
laser diode
diode bar
treatment
laser
Prior art date
Application number
KR1020147017282A
Other languages
English (en)
Other versions
KR102138736B1 (ko
Inventor
하베이 이흥 리우
토빈 씨. 아일랜드
Original Assignee
트리아 뷰티, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 트리아 뷰티, 인코포레이티드 filed Critical 트리아 뷰티, 인코포레이티드
Publication of KR20140099509A publication Critical patent/KR20140099509A/ko
Application granted granted Critical
Publication of KR102138736B1 publication Critical patent/KR102138736B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20361Beam shaping or redirecting; Optical components therefor with redirecting based on sensed condition, e.g. tissue analysis or tissue movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/208Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with multiple treatment beams not sharing a common path, e.g. non-axial or parallel

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)

Abstract

피부 치료 장치는 장치 몸체; 조직의 타깃 구역에 전달하기 위한 레이저 방사선을 생성하도록 구성되고 충전율이 적어도 50%인 레이저 다이오드 바; 전원; 및 레이저 다이오드 바가 레이저 빔을 생성하도록 전원으로부터 상기 레이저 다이오드 바에 전력을 제공하도록 구성된 제어 전자장치를 포함하고, 상기 장치는 피부 치료를 제공하기 위해 상기 생성된 레이저 빔을 조직의 타깃 구역에 전달하도록 구성된다.

Description

하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치{DERMATOLOGICAL TREATMENT DEVICE WITH ONE OR MORE LASER DIODE BAR}
이 출원은 모두 여기에 전체적으로 참조로서 통합된 2011년 3월 30일자 출원된 미국 임시출원 제61/469,316호와, 2011년 9월 12일자 출원된 미국 임시출원 제61/533,641 호와, 2011년 9월 12일자 출원된 미국 임시출원 제61/533,677 호와, 2011년 9월 12일자 출원된 미국 임시출원 제61/533,786 호와, 2011년 10월 10일자 출원된 미국 임시출원 제61/545,481 호와, 2011년 11월 23일자 출원된 미국 임시출원 제61/563,491 호의 이익을 향유한다.
본 개시는 하나 이상의 레이저 다이오드 바, 예를 들면 고 충전율 레이저 다이오드 바를 포함하는 피부 치료 장치에 관한 것이다.
레이저를 이용한 조직의 치료는 다양한 분야들, 예를 들면 제모, 피부 재생, 주름치효, 여드름 치료, 혈관성 병변(예, 거미 정맥류, 광범성 발적 등)의 치료, 셀룰라이트의 치료, 색소 집단(예, 검버섯, 주근깨, 기태 등)의 치료, 문신 제거, 및 다양한 기타 치료들에 사용된다. 이러한 치료들은 일반적으로 특별한 적용에 따라서, 조직을 다른 성질들 중에서, 절제 또는 비절제일 수 있는, 광화학적, 광생물학적, 열적 또는 기타 방식으로 치료하기 위하여, 인체의 조직의 구역, 예를 들면 피부 도는 내부 조직에 레이저 방사선을 전달하는 것을 포함한다.
레이저-계 치료장치들은 임의의 적절한 형태의 레이저, 예를 들면 레이저 다이오드, 섬유 레이저, 빅셀(VCSEL Vertical Cavity Surface Emitting Laser), LED 등을 포함할 수 있다. 장치는 단일 레이저 또는 복수의 레이저들, 예를 들면 한 줄로 배열된 복수의 구별된 이미터들, 또는 일렬 또는 어레이로 배열된 복수의 섬유 레이저들을 포함하는 레이저 다이오드 바를 포함할 수 있다.
다이오드 레이저는 일부 치료들 및 이러한 치료들을 제공하기 위한 장치들에 특히 적합하다. 예를 들면, 다이오드 레이저는 모든 필요한 부품들을 포함하는 하나의 칩에 전형적으로 배치되기 때문에 소형이다. 또한, 다이오드 레이저는 전형적으로 최대 50%에 이르는 효율을 제공하며, 그래서 일부 다른 레이저들에 비하여 낮은 전력으로 구동될 수 있다. 게다가, 다이오드 레이저는, 종래의 트랜지스터계 회로들이 레이저에 동력을 공급하는데 사용될 수 있도록, 작은 전류로 직접 여기(勵起)를 가능케 한다.
다이오드 레이저의 기타 특징들은 일부 다른 레이저들과 비교하여 고온 감도/가변성 및 높은 발산성 빔을 포함한다. 다이오드 레이저는 전형적으로 레이저의 광축을 가로지르는 평면에 축-비대칭 프로파일을 갖는 빔을 방출한다. 특히, 방출된 빔은 직교 제2축("저속 축(slow axis)"이라 지칭함)에서 보다 제1축("고속 축(fast axis)"이라 지칭함)에서 훨씬 더 빠르게 발산한다. 대조적으로, 다른 형태들의 레이저들, 예를 들면 파이버 레이저들은 전형적으로 가로 면에서 축-대칭 프로파일을 갖는 빔을 방출한다.
레이저-계 치료 장치들은 전형적으로, 클리닉 또는 기타 오피스의 의사 또는 기타 전문가에 의해 조작되는 대규모 장치들, 및 사용자들이 자신들에게 치료를 제공할 수 있도록 하는 가정용 핸드-헬드(hand-held) 장치들을 포함한다. 일부 핸드-헬드 레이저-계 장치들은, 예를 들면 리튬 이온 배터리 셀(또는 복수의 셀들)을 사용하는 배터리 구동형이다. 이러한 배터리 구동형 장치들은 사용중에 벽 속에 박힌 결합 유닛의 A/C 벽 콘센트 내에 직접 또는 도킹(docking)을 통해 끼워넣음으로써 재충전될 수 있다.
일부 레이저-계 치료 장치들은 조직에 방사선 조사 구역들(radiated areas)의 패턴(예, 점, 선 또는 기타 형상들)을 생성하기 위하여 레이저 소스로부터 타깃 조직까지 직접 레이저 방사선을 공급한다. 기타 레이저-계 치료 장치들은 레이저 소스와 타깃 조직 사이에 광학물품을 포함한다. 이러한 광학물품은 빔의 광학적 매개변수들, 예를 들면 빔의 방향, 형상(예, 수렴, 발산, 평행됨(collimated), 점 크기, 각 분포, 시간적 및 공간적 간섭성, 및/또는 세기 프로파일을 제어하기 위한 렌즈, 거울 및 기타 반사 및/또는 투과 요소들을 포함할 수 있다. 일부 장치들은 조직에 방사선 조사 구역들의 패턴(예, 점, 선 또는 기타 형상들)을 생성하기 위하여 레이저 빔을 주사하기 위한 시스템들을 포함한다. 일부 적용예에서, 조직의 타깃 구역의 대체로 완전한 범위(coverage)를 제공하기 위해 방사선 조사 구역들의 주사 패턴은 서로 중첩되거나, 서로 실질적으로 매우 근접하거나, 또는 연속적이다. 다른 적용예들, 예를 들면 일부 주름 치료 및 기타 피부 재생 치료에 있어서, 주사된 방사선 조사 구역들은 조직의 전체 타깃 구역의 일 부분만이 조사되도록 서로 이격될 수 있다. 이 경우, 일반적으로 치료된 조직의 구역들 사이에 치료되지 않은 조직의 구역들이 있게 된다. 이 후자 형태의 치료는 타깃 구역의 일부분만이 조사되기 때문에 "부분(fractional)" 치료(또는 보다 구체적으로는, 부분 광열융해(photothermolysis))로서 알려졌다.
레이저-계 치료 장치들은 연속파(CW) 방사선, 수동으로 펄스화된(pulsed) 방사선, 자동으로 펄스 방사선, 또는 임의의 기타 수단의, 그리고 임의의 적절한 매개변수들, 예를 들면 파장, 전류, 전력 레벨 등에 따른 방사선을 전달할 수 있다. 예를 들면, 약 650nm와 약 1100nm 사이(예, 일부 적용예에서 약 810)의 파장이 제모 치료에 사용될 수 있다. 또 다른 예로서, 피부에서 수분에 의해 흡수되는, 예를 들면 1400nm와 2000nm 사이의 파장이 일부 치료들에 사용될 수 있다. 일부 “부분” 피부 치료들에서, 약 1450 ∼ 1550 nm ± 50 nm의 파장은 각 치료 존, 또는 마이크로 열적 존(MTZ)에서의 타깃 조직에 전달된 약 2 mJ와 약 30 mJ 사이의 총 에너지에 맞추어 사용될 수 있다.
본 발명은 하나 이상의 레이저 다이오드 바, 예를 들면 고 충전율 레이저 다이오드 바를 포함하는 피부 치료 장치에 의해 생성된 레이저 빔을 조직의 타깃 구역에 전달하여 피부 치료를 제공하고자 하는 것이다.
본 개시의 일부 양태들 또는 실시예들에서, 피부 치료 장치는, 장치 몸체, 조직의 타깃 구역으로 전달되는 레이저 방사선을 생성하기 위해 구성되고 적어도 50%의 충전율을 갖는 레이저 다이오드 바, 및 레이저 다이오드 바가 레이저 빔을 생성하도록 전원으로부터 레이저 다이오드 바로 전력을 제공하도록 구성된 제어 전자장치를 포함하고, 여기서 피부 치료 장치는 생성된 레이저 빔을 조직의 타깃 구역에 전달하여 피부 치료를 제공하도록 구성된다.
본 개시의 일부 양태들 또는 실시예들에서, 피부 치료 장치는, 장치 몸체, 조직의 타깃 구역에 전달되는 레이저 방사선을 생성하도록 구성된 레이저 다이오드 바, 및 레이저 다이오드 바가 레이저 빔을 생성하도록 레이저 다이오드 바에 전력을 제공하도록 구성된 전원 및 제어 전자장치를 포함하고, 여기서 피부 치료 장치는 생성된 레이저 빔을 조직의 타깃 구역에 전달하여 피부 치료를 제공하도록 구성되고, 그리고 피부 치료 장치는 레이저 다이오드 바의 아래 쪽에 광학물품을 포함하고 있지 않다.
본 개시의 일부 양태들 또는 실시예들에서, 피부 치료 장치는, 장치 몸체, 조직의 타깃 구역에 전달되는 레이저 방사선을 생성하도록 구성된 레이저 다이오드 바, 레이저 다이오드 바가 조직의 타깃 구역에 전달되는 레이저 빔을 생성하도록 레이저 다이오드 바에 전력을 제공하도록 구성된 전원 및 전자 제어장치, 및 피부 치료를 제공하기 위해 레이저 빔을 조직의 타깃 구역에 전달하는 동안 피부의 표면을 가로질러 이동되도록 구성된 적용(application) 단부를 포함한다.
본 발명의 피부 치료 장치는 레이저 빔을 조직의 타깃 구역에 전달함으로써 아래에 설명하는 바와 같은 다양한 피부 치료들을 달성할 수 있다.
본 개시의 일부 실시예들은 다음의 설명 및 첨부된 도면들을 일부 참조하여 이해될 수 있다.
도 1은 하나 이상의 레이저 다이오드 바 라인 소스들을 포함하는, 특정 실시예들에 따른 예시적인 치료 장치의 구성들을 도시한다.
도 2는 본 개시의 예시적인 실시예들에 따른, 예시적인 레이저 다이오드 바의 측 단면도를 도시한다.
도 3은 충전율의 형태를 나타내는, 본 개시의 예시적인 실시예들에 따른 레이저 다이오드 바의 첨단부의 정면도를 도시한다.
도 4는 충전율 69%(고 충전율)의 예시적인 레이저 다이오드 바에 의해 타깃 평면에 생성된 모의 빔 형상을 도시한다.
도 5는 충전율 29%(저 충전율)의 예시적인 레이저 다이오드 바에 의해 타깃 평면에 생성된 모의 빔 형상을 도시한다.
도 6은 본 개시의 특정 실시예들에 따른, 예시적인 레이저 엔진의 일 부분에 대한 3차원 도면을 도시한다.
도 7은 연속파(CW)를 제공하도록 구성되고 수동 글라이딩 모드로 작동되는, 본 개시의 예시적인 실시예들에 따른 고 충전율 레이저 다이오드 바를 갖는 예시적인 장치에 의해 생성된 예시적인 치료 패턴을 도시한다.
도 8은 펄스 방사선을 제공하도록 구성되고 수동 글라이딩 모드로 작동되는, 본 개시의 예시적인 실시예들에 따른 고 충전율 레이저 다이오드 바를 갖는 예시적인 장치에 의해 생성된 예시적인 치료 패턴을 도시한다.
도 9는 레이저 다이오드 바를 포함하며 직접 노출 장치로서 형성된, 본 개시의 예시적인 실시예들에 따른 예시적인 치료 장치를 도시한다.
도 10은 레이저 다이오드 바 및 빔-주사 시스템을 포함하는 특정 실시예들에 따른 예시적인 치료 장치의 양태들을 도시한다.
도 11은 치료 장치의 빔 치료 광학물품에 관한 특정 실시예들에 따른 예시적인 양태들을 도시한다.
도 12a 및 12b는 회전 주사 요소를 포함하는 빔 전달 시스템에 관한 특정 실시예들에 따른 평면도 및 측면도를 각각 도시한다.
도 13a 및 13b는 빔 주사 시스템을 포함하는 장치에 의해 광선을 한 차례 주사하여 전달되는, 장치의 정지 모드(예, 검인 모드)에서의 치료 구역들의 예시적인 패턴들을 도시한 것으로, 치료 구역들 간에 서로 다른 치료 구역 폭들 또는 측면 간격에 따른 예시적인 패턴들을 도시한다.
도 14는 빔-주사 시스템을 포함하는 장치에 의해 광선을 3차례 주사하여 전달되는, 장치의 수동 글라이딩 모드에서의 치료 구역들의 예시적인 패턴을 도시한다.
도 15는 빔-주사 시스템을 위한 예시적인 회전 요소의 일부 실시예들에 따른 기본 구조를 도시한다.
본 개시의 일부 실시예들은 아래의 설명 및 첨부된 도면들을 일부 참조하여 이해될 수 있으며, 여기서 동일 또는 유사한 부분들에 대해서는 동일한 참조번호를 부여한다.
치료 커버율(Treatment coverage rate)은, 예를 들면 레이저 제모 장치들과 같은 많은 피부 치료 장치들에서 전형적으로 중요한 성능 매개변수이다. (여기서 “방사선 라인 소스(radiation line source)”로 지칭되는) 연속 또는 불연속선의 방사선을 전달하도록 구성된 방사선 소스에 따른 “글라이딩(Gliding)”치료(여기서, 치료 장치는 예를 들면 면도칼과 유사한 피부 표면을 따라 수동으로 글라이딩 또는 슬라이딩된다)는 높은 커버율을 달성하기 위한 효과적인 방법일 수 있다. 빔 균일성(Beam uniformity)은 일부 광 기반 피부과학 시스템들에서, 예를 들면 치료 효율 및/또는 안정성을 위해 또한 중요한 성능 매개변수이다. 또한, 일부 시스템들에서, 증가된 또는 극대화된 광 처리량은 타깃 피크 레이저 출력(peak laser power)을 얻기 위해 및/또는 비용을 절감하기 위해 중요할 수 있다. 또한, 눈 안전성은 많은 광 기반치료 장치들, 특히 소비자 사용 장치들에서 중요한 요소이다. 따라서, 여기에 개시된 특징들 및 실시예들은 상술한 하나 이상의 문제들을 처리할 수 있다.
본 개시의 일부 실시예들에서, 피부 치료 장치 및 방법은 여기에 “레이저 다이오드 바 라인 소스”로 지칭된 방사선 라인 소스로서의 적어도 하나의 레이저 다이오드 바를 통합한다. 일부 적용예들에서, 레이저 다이오드 바 라인 소스(들)의 사용은, 예를 들면 높은 커버율, 빔 균일성, 및/또는 광 처리량을 제공하는 개개의 레이저 다이오드들과 비교할 때 하나 이상의 장점들을 제공할 수 있다. 레이저 다이오드 바 라인 소스(들)을 포함하는 장치들은 특정 실시예에 따르면 “직접 노출(direct exposure)” 또는 “간접 노출(indirect exposure)”용으로, 및/또는 “매우 근접(close proximity)” 또는 “원격 근접(remote proximity)” 장치들로서 구성될 수 있다. “직접 노출” 및/또는 “매우 근접” 장치들로서 구성된 일부 실시예들은 상술한 바람직한 특징들 중 특히 적어도 일부를 제공할 수 있다.
일부 실시예들에서, 레이저 다이오드 바 라인 소스 (또는 각각의 레이저 다이오드 바 라인 소스)는 “고 충전율” 레이저 다이오드 바일 수 있다. 여기에 사용된 “고 충전율”은 50% 미만의 충전율로 정의된 “저 충전율”과 비교되는 것으로서, 적어도 50%의 충전율을 의미한다. 충전율은 전체 레이저 다이오드 바의 폭에 의해 분할된 레이저 다이오드 바의 전체 이미터 작동 부분으로서 정의된다. 일부 적용예에서, 고 충전율 레이저 다이오드 바의 사용은 저 충전율 레이저 다이오드 바와 비교하여 하나 이상의 장점, 예를 들면 타깃에 전달되는, 바람직할 수 있는 증가된 빔 균일성을 제공할 수 있다.
하기의 특정한 예시적인 실시예는 제모 치료용 눈 안전 레이저 라인 소스를 생성하기 위해 고 충전율 레이저 다이오드 바를 사용하는 소형의 직접 노출 장치이다.
기본 동작
전형적인 레이저 다이오드 바는 에피텍셜 성장 축(epitaxial growth axis; 고속 축으로 지칭됨)과 평행한 일 방향으로 거의 40°의 최대각의 빔 발산을 갖는다. 특히, 레이저 다이오드 바의 복수의 분리된 이미터들의 각각으로부터 방출된 빔렛(beamlets)은 고속 축 방향으로 거의 40°의 빔 발산을 갖는다. 그에 반해, 레이저 다이오드 바의 복수의 분리된 이미터들의 각각으로부터 방출된 빔렛은 (고속 축과 직각인) 저속 축에서, 예를 들면 약 10°의 최대 발산각으로 훨씬 더 느리게 발산한다.
고속 축 방향으로의 빠른 발산으로 인해 레이저 다이오드 바는, 레이저 다이오드 바의 아래쪽에 제공되는 광학 요소들이 없을 경우, 이 고속 축 방향으로 커다란 빔 발산을 제공한다. 따라서, 일부 실시예들은 빔 에너지의 필요한 부분을 캡쳐(및/또는 요구된 빔 강도를 유지)하기 위해 “매우 근접”장치들로 구성되며, 여기서 “근접 갭 간격(proximity gap spacing)”은 10mm 미만이거나 그와 동일하다. 여기에 사용된 “근접 갭 간격” 또는 “PGS" 는 방사선 소스(이 경우, 레이저 다이오드 바)의 방사면과 장치(10)의 피부 접촉면 사이의 거리, 즉 피부에 대한 장치(10)의 치료 상태 동안 레이저 다이오드 바의 방사면과 피부 사이의 거리로서 정의된다.
일부 실시예들에서, 근접 갭 간격은 10mm, 5mm, 2mm, 또는 심지어 1mm보다 작거나 그와 동일하다. 특정 실시예들에서, 근접 갭 간격은 500미만, 200미만, 또는 심지어 100미만이다. 근접 갭 간격은 하나 이상의 매개변수, 예를 들면 피부상의 치료 구역들의 원하는 크기 및/또는 강도, 및/또는 제조 제약들 또는 비용에 기초하여 선택될 수 있다.
그러나, 매우 근접 구성들에서, 전달된 빔 프로파일은, 레이저 다이오드 바의 복수의 분리된 이미터들로부터 방출된 개개의 빔렛의 저속 축에서의 비교적 느린 발산으로 인해, 저속 축 방향에서 불균일할 수 있다. 예를 들면, 전달된 방사선은 도 5에 보여진 바와 같이 레이저 다이오드 바의 복수의 분리된 이미터들 중 하나와 각각 대응하는 복수의 기본적으로 구별된 이미지들을 포함할 수 있다. 이러한 방사선 프로파일은 일부 적용예들에 적합하거나 바람직할 수 있으나, 기타 적용예들, 예를 들면 빔 균일성이 바람직한 적용예들에는 적합하지 않거나 불리할 수 있다.
30W에 가가운 타깃 피크 전력을 갖는 배터리 구동형 장치의 일 실시예에서, 장치는 1.5mm 미만의 근접 갭 간격을 갖는 매우 근접 장치로서 구성된다. 이 공간에서, 50% 미만의 충전율을 갖는 레이저 다이오드 바는 분리된 레이저 이미터 소스 이미지들을 타깃 평면에 생성할 것이다. 예를 들면, 아래에 기술된 29%의 충전율을 갖는 전형적인 808-nm 레이저 바는 도 5에 보여진 바와 같이 균일하지 않은 치료 구역 패턴을 생성할 수 있다. 이 불균일한 치료 구역 패턴은 피부 표면에 및/또는 피부 표면 아래에 임의의 형태의 치료를 효과적으로 제공하는데 적합하지 않거나 바람직하지 않을 수 있으며, 및/또는 눈 안정성 및/또는 피부 안정성의 이유로 적합하지 않거나 바람직하지 않을 수 있다.
그에 반해, 고 충전율 레이저 바(즉, 적어도 50%의 충전율을 갖는)는 타깃 표면에 보다 균일한 치료 구역 패턴을 제공할 수 있다. 예를 들면, 아래에 기술된 69% 충전율 바를 갖는 레이저 다이오드 바에 의해 제공된 예상 치료 구역은 도 4에 도시되어 있다. 도시된 바와 같이, 고 충전율 레이저 다이오드 바에 의한, 심지어 매우 근접 배치에서의 치료 구역은 여기에 선분(line segment)로 지칭된, 실질적으로 균일한 가늘고 긴 형상이다. 이러한 균일한 선분은 특정한 적용들 또는 치료들, 예를 들어 선분 방향과 수직한 수동 글라이딩 치료(예, 레이저 제모, 벌크 히팅을 통한 피부 탄력화, 또는 다른 적당한 치료들)에 적합하거나 바람직할 수 있다. 일부 실시예들에서, 고 충전율의 레이저 다이오드 바는 치료제가 비교적 넓은 영역에 걸쳐 균일하게 투여되도록 변형 센서(예를 들어, 변위 센서 또는 동작/속도 센서)와 결합되어 이용된다.
본 개시의 일부 실시예들은 “직접 노출” 및/또는 “간접 노출” 형태의 고 충전율 레이저 다이오드 바(들)을 포함한다. 이러한 실시예들은 타깃 표면에서의 균일한 선분 치료 구역 또는 이미지를 제공할 수 있다. 일부 직접 노출 및/또는 매우 근접 실시예들은 비-정밀 정렬 광학물품을 요구할 수 있으며, 높은 광 처리량을 제공할 수 있고 소형 배터리 구동형 장치에서 높은 출력 소스를 생성할 수 있다. 일부 직접 노출 및/또는 매우 근접 실시예들은 특히 소형일 수 있다. 또한, 일부 실시예들에서, 레이저 다이도드 바는 효과적인 피부 열 관리를 위해 레이저 구멍에 밀접한 불투명하고 높은 열 전도성을 갖는 금속물질을 제공할 수 있다. 아래에 기술된 “간접 노출”형태로 지칭된 기타 실시예들은 레이저 다이오드 바로부터 방출된 빠르게 발산되는 고속 축 빔 프로파일을 캡쳐 및/또는 집속하기 위한 하나 이상의 고속 축 광학 요소들을 포함할 수 있다.
일부 실시예들에서, 여기에 개시된 레이저 다이오드 바는, 여기에 전체적으로 참조로서 결합된 2012.2.3자 출원된 미국 특허출원번호 제13/366,246호에 개시된 다양한 치료들 중 일부를 제공하기 위한 임의의 다양한 특징들, 기능, 및 작동 형태가 결합된 임의의 다양한 실시예들 및 형태들에 레이저 다이오드 바가 이용될 수 있다.
도 1은 일부 실시예들에 따른 예시적인 치료 장치(10)의 구성요소들을 도시한다. 치료 장치(10)은 하나 이상의 레이저 빔을 생성하도록 구성된 하나 이상의 레이저 다이오드 바(14), 타깃 구역(40)(예, 조직의 구역)에 레이저 빔을 전달하는 광학물품(16), 제어 시스템(18), 하나 이상의 전력 공급장치(20), 및 하나 이상의 팬(34)을 포함하는 레이저 엔진(12)을 포함할 수 있다.
아래에 기술된 “직접 노출” 실시예들은 타깃 조직의 직접적인 노출을 위해 레이저 다이오드 바(14)와 타깃 표면 사이에 광학물품이 제공되지 않도록 광학물품(16)을 제거할 수 있다. 일부 직접 노출 실시예들에서, 레이저 다이오드 바(14)는 타깃 피부 표면에 매우 근접하게 위치된다(예를 들면, 타깃 피부 표면으로부터 10 mm 미만, 2 mm 미만, 또는 심지어 1 mm 미만).
장치(10)의 구성요소들은 분리된 구조물들 또는 하우징들에 제공될 수 있으며, 임의의 적합한 수단에, 예를 들면 광섬유 또는 기타 케이블류를 통해 연결될 수 있다. 하우징(24)은 타깃 구역(40)의 치료 동안 타깃 표면(예, 피부)과 접촉 상태에 놓이도록 구성된다. 적용 단부(42)는 사용자에게 출력 빔(94)을 전달하기 위한 치료 전달 인터페이스를 포함하는 다양한 사용자 인터페이스와, 또한 타깃 표면의 다양한 특성들 및/또는 장치(10)에 의해 전달된 치료를 감지하는 하나 이상의 센서(26)를 포함하거나 수용할 수 있다. 일부 실시예들에서, 적용 단부(42)는 타깃 표면에 전달되는 레이저 빔이 통과하는 구멍 또는 창(44)을 포함할 수 있으며, 또는 대안적으로 광학 요소(16)(예, 렌즈)는 적용 단부(42)에 위치될 수 있으며, 치료 동안 피부와 직접 접촉하거나 매우 근접하여 형성될 수 있다. 장치(10)는 여기에 기술된 임의의 기능성 또는 이 기술분야에서 통상의 지식을 가진 자에게 공지된 다른 관련 기능성을 제공하기에 적합한 임의의 다른 구성요소들을 포함할 수 있다.
레이저 엔진(12)은 하나 이상의 레이저 다이오드 바(14)를 포함할 수 있다. 여기서 장치(10)는 복수의 레이저 다이오드 바(14)을 포함하고, 복수의 레이저 다이오드 바(14)는 서로 근접 배치 및/또는 서로 연결될 수 있으며, 또는 서로에게서 떨어져 이격되어 있을 수 있다.
장치(10)의 레이저 다이오드 바(들)(14)는 원하는 치료를 제공하기 위하여 임의의 적합한 파장에 맞추어 구성되거나, 및/또는 이 파장에서 동작될 수 있다. 예를 들면, 레이저 다이오드 바(들)(14)는 제모 치료를 제공하기 위해 약 810nm(예, 810nm ± 30nm)의 파장으로 구성 및/또는 작동될 수 있다. 또다른 예로, 레이저 다이오드 바(들)(14)는, 예를 들어 1400nm와 2000nm 사이에서, 예를 들면 일부 광열융해(photothermolysis) 치료들을 위해 피부의 수분에 의해 흡수되는 파장에 맞추어 구성되거나, 및/또는 이 파장에서 동작될 수 있다. 일부 실시예들에서, 레이저 다이오드 바(들)(14)는, 예를 들어 여드름 치료 또는 특정 부분의 비-절제 피부치료를 위해, 1400nm와 1550nm 사이의 파장에 맞추어 구성되거나 및/또는 이 파장에서 동작되는 레이저일 수 있다. 다른 실시예들에서, 레이저 다이오드 바(들)(14)는, 예를 들어 여드름과 같은 피지선(sebaceous gland) 관련 치료를 위해, 1700nm와 1800nm 사이의 파장에 맞추어 구성되거나 및/또는 이 파장에서 동작될 수 있다. 또 다른 실시예들에서, 레이저 다이오드 바(들)(14)는, 예를 들어 일광 흑색점(solar lentigo)과 같은 색소성 병변 치료를 위해 1900nm와 1950nm 사이의 파장에 맞추어 구성되거나 및/또는 이 파장에서 동작될 수 있다.
또한, 레이저 다이오드 바(들)(14)는 연속파(CW) 방사선, 펄스 방사선, 또는 임의의 다른 방식으로 전달하도록 구성 또는 작동될 수 있다. 일부 실시예들에서, 장치(120)는, 예를 들어 벌크 가열 피부 조임(bulk heating skin tightening), 제모, 또는 여드름 치료를 제공하기 위해, 장치(10)를 글라이딩 모드로 사용하는 CW 방사선을 제공하도록 레이저 다이오드 바(들)(14)를 제어한다. 다른 실시예들에서, 장치(10)는, 예를 들어 장치(10)를 스탬핑 모드로 사용하여 제모를 제공하기 위해, 수동으로 펄스 방사선이 제공되도록 레이저 다이오드 바(들)(14)를 제어한다. 또다른 실시예들에서, 장치(10)는, 예를 들어 장치(10)를 글라이딩 모드로 사용하여 선택적인 광열융해를 제공하기 위해, 자동으로 펄스 방사선이 제공되도록 레이저 다이오드 바(들)(14)를 제어한다. 예를 들면, 일부 실시예들에서, 장치(10)는 조직, 예를 들어 피부 재생, 주름 치료, 또는 색소성 병변(예, 검버섯, 주근깨, 기태 등)에 대한 부분 치료를 제공하기 위해, 일련의 레이저 빔들(구체적으로, 아래에 기술된 집합 빔(collective beams;94))을 타깃 구역(40)에 순차적으로 전달하여 인접 치료 구역들 간에 비-조사 피부의 영역에 의해 서로에게서 떨어져 이격된 치료 구역들(예, 연속 또는 불연속 선분들)이 생성되도록 구성될 수 있다.
장치(10)의 특정 실시예들은 타깃 표면에 도달하기 전 레이저 다이오드 바(14)로부터 방출된 빔(94)을 배향 또는 처리하기 위한 하나 이상의 광학물품(16)을 레이저 다이오드 바(14)의 하류에 포함한다. 광학물품(16)은 레이저 다이오드 바(14)가 치료 동안 피부에 접촉하는 장치의 적용 단부(42)로부터 임의의 원하는 거리에 (그에 따라 타깃 표면으로부터 임의의 원하는 거리에) 위치되도록 허용할 수 있다. 레이저 엔진(12)의 하류에 광학물품(16)을 포함하는 장치(10)의 실시예들은 여기서 "간접 노출" 실시예들로 지칭된다.
광학물품(16)은 레이저 엔진(12)에 의해 타깃 구역(40)에 발생된 광선을 전달하기 위한, 및 만일 바람직하다면 치료 구역 크기, 세기, 치료 구역 위치, 각분포(angular distribution), 응집성(coherence) 등을 조정하는 것과 같은, 임의의 수 및 형태들의 광학 요소들, 예를 들어 렌즈, 거울, 및 기타 반사하는 및/또는 전체적으로 또는 부분적으로 투과되는 요소들을 포함할 수 있다. 일부 실시예들에서, 광학물품(16)은 아래에 설명된 바와 같이 타깃 구역(40) 내 치료 구역들의 패턴을 주사하기 위한 주사시스템을 포함할 수 있다. 빔 치료 광학물품은 주사시스템의 앞 및/또는 뒤에 포함될 수 있으며, 또는 주사시스템의 스캐너 또는 일부와 흩어질 수 있다.
여기서 사용된 "광학물품" 또는 "광학요소"는, 광선 빔을 굴절시키거나, 적어도 한 축에서 레이저 빔의 각분포 프로파일(예, 수렴각, 발산각 또는 시준각)에 영향을 주거나, 적어도 한 축에서 빔의 초점에 영향을 주거나, 또는 그 외에 방사선의 성질에 영향을 주는 임의의 요소를 의미할 수 있다. 따라서, 광학물품은 거울 및 기타 반사 표면들, 렌즈, 프리즘, 광 가이드, 그레이팅(gratings), 필터 등을 포함한다. 이 개시의 목적으로, 광학물품은 투과 윈도우들 또는 필름들, 예를 들면 내부 부품들을 보호하는 투과 구경으로서 역할을 하는 윈도우 또는 필름과 같은 평면 또는 실질적인 평면 투과 요소들을 일반적으로 포함하지 않는다.
장치(10)의 다른 실시예들은 임의의 광학물품(16)을 레이저 다이오드 바(14)의 하류에 포함하지 않는다. 이러한 실시예들은 여기서 "직접 노출" 실시예들로서 지칭된다. “직접 노출” 실시예 또는 구성은 레이저 다이오드 바(14)에 의해 생성된 빔에 영향을 주거나 빔를 처리하기 위한 레이저 다이오드 바(14)의 하류에 임의의 광학물품을 포함하지 않는다. 일부 직접 노출 장치들은 빔에 실질적으로 영향을 주지 않는 윈도우(예를 들면, 레이저 다이오드 바 및/또는 장치의 다른 내부 구성요소들을 보호하기 위한)를 포함할 수 있다. 윈도우는 임의의 적합한 재료, 예를 들면 사파이어, 석영, 다이아몬드, 또는 레이저 다이오드 바(14)의 주파수에 투명하고 바람직하게는 또한 양호한 열적 계수를 갖는 기타 물질로부터 형성될 수 있다.
레이저 다이오드는 전형적으로 발산 빔을 방출하기 때문에, 레이저 다이오드 바(14)는 치료 동안 피부와 접촉하는 장치의 적용 단부(42)에 매우 가깝게 (그리고, 그에 따라 타깃 표면에 매우 가깝게) 위치될 수 있다. 예를 들면, 일부 직접 노출 장치들은 또한 “매우 근접” 방사선 용으로 구성되고, 직접 노출 장치들에서 레이저 다이오드 바(14)는 방출 표면(80)이 적용 단부(42)의 리드면으로부터 10 nm 미만에(그리고 그에 따라 적용 단부(42)가 피부와 접촉된 상태일 때 타깃 표면으로부터 10 nm 미만에) 있도록 위치된다. 일부 실시예들에서, 레이저 다이오드 바(14)는 방출 표면(80)이 적용 단부(42)의 리드면으로부터 2 mm 미만 / 타깃 표면으로부터 2 mm 미만에 있도록 위치된다. 특정 실시예들에서, 레이저 다이오드 바(14)는 방출 표면(80)이 적용 단부(42)의 리드면으로부터 1 mm 미만 / 타깃 표면으로부터 1 mm 미만에 있도록 위치된다. 또한, 일부 실시예들에서, 레이저 다이오드 바(14)는 방출 표면(80)이 적용 단부(42)의 리드면 또는 타깃 표면으로부터 500, 200, 또는 심지어 100미만에 있도록 위치된다. 제어 시스템(18)은 장치(10)의 하나 이상의 부품들(예, 레이저 엔진(12) 및/또는 빔 주사시스템(142))을 제어하도록 구성될 수 있다. 제어시스템(18)은 예를 들면 다음 중 임의의 하나 이상을 포함할 수 있다: 사용자로의 레이저 빔의 발생 및 전달의 양상들을 제어하기 위한 레이저 제어시스템; 타깃 피부 구역의 치료 구역들의 패턴을 생성하기 위해 빔을 주사하는 주사시스템을 갖는 실시예들에서, 주사시스템을 제어하는 주사시스템 제어 시스템; 피부를 가로지르는 장치(10)의, 예를 들면 앞서의 치료 위치에 대한 결정된 변위(예, 장치는 치료 동안에 피부를 가로질러 글라이딩되기 때문)에 기초하여 장치(10)의 양상들을 제어하기 위한 변위-계 제어시스템; 온도 제어시스템; 눈들(예, 각막들)의 치료 방사선에의 노출을 방지하는데 도움을 주기 위한 눈 안전 제어시스템(눈 안전 제어시스템은 장치(10)로부터 방출된 레이저 방사선이 고유적으로 눈에 안전한 실시예들, 예를 들면, 장치(10)의 특정 직접 노출 실시예들에서 생략될 수 있다); 및/또는 배터리/전력 제어시스템.
제어시스템(18)은 하나 이상의 센서들(26), 장치(10)와 사용자의 상호작용을 용이하게 하기 위한 사용자 인터페이스(28), 및 데이터(예, 센서들(26) 및/또는 사용자 인터페이스들(28)로부터의)를 처리하고 장치(10)의 다양한 부품들을 제어하기 위한 제어 신호들을 발생시키는 제어 전자장치(30)를 포함할 수 있다. 제어 전자장치(30)는 하나 이상의 프로세서 및 논리 명령 또는 알고리즘 또는 기타 데이터를 저장하기 위한 메모리 장치를 포함할 수 있다. 메모리 장치는 임의 형태의 RAM, ROM, 플래시 메모리, 또는 임의의 기타 적절한 휘발 및/또는 비휘발 메모리 장치들과 같은, 전자 데이터(논리 명령 또는 알고리즘들을 포함하는)를 저장하기 위한 임의의 하나 이상의 장치를 포함할 수 있다. 논리 명령 또는 알고리즘들은 소프트웨어, 펌웨어 또는 그것들의 임의의 결합으로서 구현될 수 있다. 프로세서들은 임의의 하나 이상의 장치들, 예를 들어, 여기서 설명한 장치(10)의 적어도 다양한 기능들을 수행하기 위하여 논리 명령 또는 알고리즘들을 실행하기 위한 하나 이상의 마이크로프로세서 및/또는 마이크로컨트롤러들을 포함할 수 있다. 제어 전자장치(30)는 전용 아날로그 전자장치 또는 아날로그와 디지털 전자장치들의 임의의 결합을 포함할 수 있다. 일부 실시예들에서, 제어시스템(18)은 미국특허 제13/366,246호에 개시된 임의의 다양한 센서들 및/또는 제어시스템들을 포함할 수 있다. 예를 들면, 제어시스템(18)은 미국특허 제13/366,246호에 개시된 바와 같이, 하나 이상의 변위 센서(100)(예, 변위 센서(100A, 100B, 100C, 또는 100D), 동작/속도 센서(102), 피부 접촉 센서(104), 압력(또는 힘) 센서(106), 온도 센서(108), 방사선 센서(110), 색깔/색소 센서(112), 눈 안전 센서(114), 드웰 센서(116), 및/또는 롤러 기반 센서(118)을 포함할 수 있다. 또 하나의 예로서, 제어시스템(18)은 미국특허 제13/366,246호에 개시된 바와 같이, 임의의 또는 모든 방사선 소스 제어시스템(130), 변위계 제어시스템(132), 사용자 인터페이스 제어시스템(34), 온도 제어시스템(136), 및/또는 배터리/전력 제어시스템(138)을 포함할 수 있다.
제어시스템(18)은 센서들(26)로부터의 피드백, 사용자 인터페이스들(28)를 통해 받은 사용자 입력, 및/또는 논리 명령/알고리즘에 기초하여 장치(10)의 부품들 또는 양상들을 제어할 수 있다. 예를 들면, 일부 실시예들에서, 제어시스템(18)은 장치가 피부를 가로질러 이동할 때 피부(40)에 대한 장치(10)의 변위를 감지하는 변위 센서로부터의 피드백에 적어도 기초하여 레이저 엔진(12) 및/또는 빔 주사시스템의 부품(들)(예, 회전 주사 요소)의 작동을 제어할 수 있다. 따라서, 예를 들면, 제어시스템(18)은 장치(10)가 이전 치료 위치로부터 타깃 구역(40)을 가로질러 특정 위치로 이동하였음을 지시하는 변위 센서로부터의 신호에 기초하여 레이저 엔진(12) 및/또는 회전 주사 요소를 제어할 수 있다. 또 하나의 예로서, 제어시스템(18)은 피부를 가로질러 이동하는 장치(10)의 속도를 감지하는 글라이드 속도 센서로부터의 피드백에 적어도 기초하여 레이저 엔진(12) 및/또는 빔 주사시스템의 부품(들)(예, 회전 주사 요소)의 작동을 제어할 수 있다. 따라서, 예를 들면, 제어시스템(18)은 장치(10)가 피부(40)를 가로질러 특정 속도로 이동하는 것을 지시하는 글라이드 속도 센서로부터의 신호에 기초하여 레이저 엔진(12) 및/또는 회전 주사 요소를 제어할 수 있다.
보다 상세하게는, 제어시스템(18)은 장치(10)의 하나 이상의 동작 매개변수들을 제어하도록 구성될 수 있다. 예를 들어, 제어시스템(18)은 치료 레벨(예, 저 전력 레벨, 중 전력 레벨, 또는 고 전력 레벨) 또는 치료 모드(예, 글라이딩 모드 대 스탬핑 모드; 또는 수동 펄스 모드 대 자동 펄스 모드; 또는 고속-펄스 모드 대 저속-펄스 모드; 또는 초기 치료 모드 대 후속 치료 모드 등), 레이저 다이오드 바(14)의 상태(예, 온/오프, 펄스-온 타임, 펄스-오프 타임, 펄스 듀티 사이클, 펄스 주파수, 시간 펄스 패턴 등), 방사선의 매개변수들(예, 방사선 파장, 세기, 전력, 플루엔스(fluence) 등), 하나 이상의 광학요소들의 구성 또는 동작(예, 아래 설명된, 회전-요소 빔 주사시스템(142)의 작동), 및/또는 장치(10)의 임의의 기타 양상들을 제어할 수 있다.
센서들(26)은 장치(10), 사용자, 작동 환경 또는 임의의 기타 관련 매개변수들에 대한 데이터를 감지 또는 검출하기 위한 임의의 하나 이상의 센서들 또는 센서 시스템들을 포함할 수 있다. 예를 들면, 도 2와 관련하여 아래에서 더 상세히 설명한 바와 같이, 센서들(26)은 다음 형태들의 센서들의 하나 이상을 포함할 수 있다: (a) 피부를 가로질러 장치(10)가 이동(예, 글라이드)될 때 피부에 대한 장치(10)의 변위를 결정하기 위한 하나 이상의 변위 센서, (b) 피부를 가로질러 이동하는("글라이딩하는") 장치(10)의 속도(speed), 율(rate) 또는 속도(velocity)를 결정하는 하나 이상의 글라이드 속도 센서, (c) 장치(10)와 피부 사이의 적절한 접촉을 검출하기 위한 하나 이상의 피부-접촉 센서, (d) 피부에 대고 눌러진 장치(10)의 압력을 검출하기 위한 하나 이상의 압력센서, (e) 피부의 온도, 피부의 구역, 및/또는 장치(10)의 부품들을 검출하기 위한 하나 이상의 온도센서, (f) 피부에 전달된 방사선의 하나 이상의 매개변수들(예, 세기, 플루엔스, 파장 등)을 검출하기 위한 하나 이상의 방사선 센서, (g) 피부에서의 색소의 컬러 또는 레벨을 검출하기 위한 하나 이상의 컬러/색소 센서, (h) 치료 동안 또는 치료 후에 피부에 대한 방사선의 영향(예, 홍반, 온도, 모낭 주위 부종(perifollicular edema))을 검출하기 위한 하나 이상의 치료 종점 센서, 예를 들면 컬러/색소 센서, (i) 레이저 다이오드 바(14)로부터의 광선에 원치않는 눈 노출을 방지하기 위한 하나 이상의 눈안전 센서, (j) 장치가 피부에 대하여 부동이거나 또는 필수적으로 부동인지를 검출하기 위한 하나 이상의 드웰 센서, (k) 장치(10)의 변위 및/또는 글라이드 속도를 검출하기 위한 하나 이상의 롤러-형 센서들, 및/또는 임의의 (l) 기타 적절한 형태의 센서들.
사용자 인터페이스들(28)은 장치(10)와 사용자 상호작용을 용이하게 하기 위한 임의의 시스템들을 포함할 수 있다. 예를 들면, 사용자 인터페이스들(28)은 버튼, 스위치, 손잡이, 슬라이더, 터치 스크린, 키패드, 진동 또는 기타 촉각 피드백을 제공하기 위한 장치, 가청 명령, 비프(beeps) 또는 기타 가청음을 제공하기 위한 스피커; 또는 사용자로부터의 명령, 설정값, 또는 기타 입력을 수신하고 정보 또는 출력을 사용자에게 제공하기 위한 임의의 기타 방법들을 포함할 수 있다. 사용자 인터페이스들(28)은 또한 하나 이상의 디스플레이들(32)을 포함할 수 있으며, 그것의 하나 이상은 사용자 입력을 수신하기 위한 터치 스크린일 수 있다. 하나 이상의 사용자 인터페이스들(28) 또는 그것들의 부분들은 스마트 충전 독(smart charging dock) 또는 퍼스널 컴퓨터에서와 같이, 치료 장치로부터 분리된 하우징에 포함될 수 있고, 치료 장치는 하드와이어(케이블 또는 잭과 같은), 무선 방법들(적외선 신호, 무선 신호, 또는 블루투스와 같은), 또는 기타 적절한 통신 방법들을 통해서 분리된 하우징과 통신할 수 있다.
전력 공급부(20)는 장치(10)의 다양한 부품들에 전력을 발생 또는 공급하기 위한 임의의 하나 이상의 형태 및 사례의 전력공급부 또는 전원을 포함할 수 있다. 예를 들면, 전력 공급부(20)는 하나 이상의 재충전되는 또는 재충전 불가능한 배터리, 커패시터, 수퍼-커패시터, DC/DC 어댑터, AC/DC 어댑터, 및/또는 아울렛(예, 110V 벽부착 콘센트)으로부터 전력을 받기 위한 연결부를 포함할 수 있다. 일부 실시예들에서, 전력 공급부(20)는 하나 이상의 재충전되는 또는 재충전 불가능한 배터리, 예를 들면, 하나 이상의 Li 함유 셀 또는 하나 이상의 A, AA, AAA, C, D, 대면적(prismatic), 또는 9V의 재충전가능한 또는 재충전 불가능한 셀을 포함한다.
도 2는 레이저 다이오드 바(14)를 구비한 예시적 레이저 엔진(12)를 포함하는, 본 개시의 예시적인 실시예들에 따른 장치(10)의 치료 팁(42)의 측단면도를 도시한다. 레이저 엔진(12)는 금속화(metalized) 세라믹 캐리어(54)에서 한 세트의 CuW 합금 접촉 서브마운트들(submounts)(52)에 이어서 조립된 레이저 다이오드 바(14)를 포함한다. 이 레이저 엔진(12)은 온도 조절을 위해 히트싱크 기둥(56)에 부착된다.
레이저 바(14)의 출력 표면 위쪽에는 플라스틱 스페이서(62)(레이저 바(14)의 출력 표면 위쪽에 직접 진공 또는 옥외 구역들(63)을 한정할 수 있는), 산광 디퓨저(64), 및 레이저 빔(94)이 방출되는 개구(68)를 한정하는 금속 팁(66)을 포함하는 스택(stack;60)이 있다. 기타 실시예들에서, 스택(60)은 다른 변형들 중에서 개구(68)보다 오히려 출력 윈도우(70)(점선으로 표시된)를 포함할 수 있다. 윈도우(70)는 적용 단부(42)의 외부 표면(218)을 지나서 돌출할 수 있고, 적용 단부(42)의 외부 표면과 같은 높이로 배열될 수 있으며, 적용 단부(42)의 외부 표면으로부터 오목할 수 있다. 윈도우(70)는 임의의 적절한 두께를 가질 수 있다. 예를 들면, 일부 실시예들에서, 윈도우(70)는 약 200㎛와 3mm 사이의 두께를 갖는다. 기타 실시예들에서, 윈도우(70)는 약 100㎛와 약 200㎛사이의 두께를 갖는다. 특정 실시예들에서, 윈도우(70)는 150㎛보다 얇은, 예를 들면 약 75㎛의 두께를 갖는 박막 필름이다.
또한, 개시된 물질들은 단지 예시적인 것이며, 임의의 다른 적합한 물질들이 이용될 수도 있음이 이해될 것이다.
금속 치료 팁(42)은 피부의 온도 조절, 예를 들어 레이저 노출 동안 또는 그 후에 레이저 노출 또는 열 전달 전에 예비 냉각을 가능하게 하기 위한, 분리된 히트싱크 시스템에 결합될 수 있다.
스택(60)은 레이저 다이오드 바(14)와 타깃 평면 사이에 근접 갭 간격을 형성한다. 위에서 설명한 바와 같이, 일부 실시예들에서, 근접 갭 간격은 10 mm, 5 mm, 2 mm, 또는 심지어 1 mm보다 작거나 동일하다. 특정 실시예들에서, 근접 갭 간격은 500㎛보다 작고, 200㎛보다 작으며, 또는 심지어 100보다 작다. 예를 들면, 디퓨저(64) 및 윈도우(70)를 포함하는 일부 실시예들에서, 디퓨저(64)는 약 200㎛와 약 1mm 사이의 두께를 가지며, 윈도우(70)는 약 200㎛와 약 2mm 사이의 두께를 가진다. 특정 예시적 실시예에서, 디퓨저(64)는 약 0.4mm의 두께를 가지며, 윈도우(780)는 약 1mm 사이의 두께를 가지며, 그에 따라 스택(60)은 2mm 보다 작은 근접 갭 간격(예, 약 1.4mm)을 형성한다.
팁 스택(tip stack;60) 내 산광 디퓨저(64)는 눈 안전 방사선(예, IEC 60825-1에 따른 클래스1M 또는 그 이상)에 대한 대체로 램버트 각 형상을 얻도록 구성될 수 있다. 기타 실시예들은 디퓨저(64)를 생략할 수 있으며, 따라서 그 결과 적게 산란된/보다 집속된 출력 빔이 생성되며, 이 출력 빔은 특정 치료들, 예를 들어 부분 치료들 또는 탈격 치료들에 적합하거나 유익할 수 있다.
일부 실시예들 또는 설정들에서, 장치(10)는 IEC 60825-1에 따른 클래스 1M 이상(클래스 1과 같은)의 눈 안전 등급을 충족한다. 기타 실시예들 또는 설정에서, 장치는 IEC 60825-1 클래스 1M 눈 안전 등급을 벗어나지만, 여전히 눈 안전의 레벨을 제공한다. 눈 안전 양상들은 “눈 안전”부분의 아래에 설명된다.
도 3은 본 개시의 예시적 실시예들에 따른, 도 2에 보여진 예시적인 장치 치료 팁(42)의 정면도를 도시한다. 보여진 바와 같이, 치료 팁(42)은 빔(94)이 방출되는 구멍(68)을 구성하는 금속 팁(66)을 포함한다. 레이저 다이오드 바(14)는 디퓨저(64) 아래쪽에 위치된다. 레이저 다이오드 바(14)는 비-활성 구역들(82)에 의해 분리된 임의의 적절한 수의 활성 이미터 구역들(간단히 “이미터들”로 지칭된)을 포함한다. 각 이미터는 폭 WE를 가지며, 인접한 이미터들(80)은 (인접한 이미터들의 중심에서 중심까지) 거리 WS 만큼 이격되어 있다.
레이저 다이오드 바(14)가 전력 공급장치(20)로부터 적절한 전력을 받을 때, 각각의 이미터(80)는 개개의 빔 조각(beamlet)을 방출한다. 레이저 다이오드 바(14)의 복수의 이미터들(80)의 빔 조각들은 함께 집합 빔(collective beam;94)으로 지칭된다. 각 빔 조각은 저속 축에서보다 고속 축에서 훨씬 빨리 발산하며, 이 축들의 방향은 도 3에 표시된다.
레이저 다이오드 바(14)는 모든 이미터들(∑E)의 총 폭을 레이저 다이오드 바(WLB)의 총 폭으로 나누어서 산출된 충전율을 갖는다.
일부 실시예들에서, 충전율은 약 50%와 동일하거나 그 이상(여기서 “고 충전율”로 지칭된)이다. 일부 실시예들에서, 충전율은 65% 이상이다. 일부 실시예들에서, 충전율은 75% 이상(예, 약 80%의 충전율)이다. 특정 실시예들에서, 충전율은 85% 이상(예, 약 90%의 충전율)이다. 고 충전율 레이저 다이오드 바는 연속되고, 실질적으로 균일하며, 레이저 다이오드 바의 방향으로 연장되는 가늘고 긴 치료 구역(즉, 연속 선분)을 나타내는 치료 영상을 생성할 수 있으며, 이 치료 영상은 위에서 설명한 바와 같이 특정 치료들에 대해 바람직할 수 있다. 예를 들어, 도 4는 시뮬레이션된 치료 영상(151)을 도시하며, 이 치료 영상은 약 70%의 충전율을 갖는 69개의 이미터들, 100-폭 WE의 이미터, 및 중심에서 중심까지 140-의 간격 WS을 갖는 이미터를 구비한 예시적인 레이저 다이오드 바(14)에 의해 생성된 타깃 평면에서의 연속선 구획으로 이루어진 단일 치료 구역(150)이다. 보여진 바와 같이, 치료 구역은 기본적으로 균일한 선분을 나타낸다.
기타 실시예들에서, 충전율은 50% 이하(여기서 ‘저 충전율“로 지칭된)이다. 이러한 레이저 다이오드 바는 특정 치료들에 유익할 수 있는 복수의 각 영상들을 나타내는 치료 구역을 생성할 수 있으며, 각 영상은 레이저 다이오드 바(14)의 각각 다른 이미터(80)에 대응한다. 일부 실시예들에서, 장치(10)는, 개개의 이미터들(80)로부터 방출된 빔 조각들이, 예를 들어 비-연속 선분의 형상으로 치료 영상을 나타내기 위해 서로 이격된 타깃 표면에 치료 구역들을 생성하도록 구성 또는 배열된, 저 충전율 레이저 다이오드 바를 포함한다. 일부 실시예들에서, 동일한 레이저 다이오드 바의 복수의 개별 이미터들(80)에 의해 생성된 복수의 치료 구역들은 효과적인 부분 치료(예, 피부 재 서페이싱, 주름 치료 등을 위한)를 제공할 수 있을 정도로 서로 이격된다.
예를 들면, 도면 5는 19개의 이미터들에 대해 약 29%의 충전율, 150-μm 의 이미터폭 WE 및 500-μm의 중심-대-중심 이미터 간격 Ws를 갖는 예시적 레이저 다이오드 바(14)에 의해서 생성된 타겟 평면에 있는 치료구역(150)의 시뮬레이션된 이미지(151)를 도시한다. 도시된 바와 같이, 이미지(151)는 따로 이격된 치료구역(15)으로 구성된 비 접촉 라인 세그먼트를 일반적으로 정의한다. 각 치료구역(150)은 레이저 다이오드 바(14)의 별개의 이미터(80)에 의해 생성된다. 도시된 바와 같이, 치료구역(150)은 본질적으로 비-조사 영역에 의해 서로로부터 이격된다. 인접한 치료구역의 간격은 레이저 다이오드 바(14)의 설계(예컨대, 충전율, 개별 이미터들(80)의 폭 WE 및 인접 이미터들(80)간의 중심-대-중심 간격 Ws), 이미팅 표면 및 타겟 평면간의 거리(예컨대, 근접 갭 간격), (만약 있다면) 레이저 다이오드 바(14)간의 광학물품들, 이미터에 의해 이미트된 전력, (예컨대, 파장이 특정된 깊이의 피부 치료에 의한)이미터들(80)에 의해 이미트된 파장 및/또는 임의의 다른 관련 파라미터에 근거해 선택될 수 있다.
어떤 실시예들에서, 저 충전율 레이저 다이오드 바(14)는 적어도 0.5mm 폭의 비-조사 영역에 의해 각각으로부터 떨어져 있는 (개별 이미터들(80)로 부터의) 치료구역(150)을 생성할 수 있다. 예를 들면, 어떤 예시적 실시예들에 있어서, 레이저 다이오드 바(14)는 다음과 같은 특징을 갖는다:
약 15% 로부터 약 30% 까지의 충전율,
약 1000μm로부터 약 500μm까지의 중심-대-중심 이미터 간격 Ws,
3mm보다 작은 근접 갭 간격,
이 특징들은 약 0.25㎟의 효과적인 점(spot)영역을 각각 갖는 (개별 이미터들(80)로 부터의) 치료구역을 생성하고, 0.5mm 로부터 약 0.2mm 의 폭을 갖는 비-조사 영역에 의해 서로로부터 떨어져 있다. 도면 6은 예시적 실시예에 따른, “간접 노출”구성에 배치된, 레이저 다이오드 바(14)( 실시예에 따라, 고 충전율 또는 저 충전율)를 갖는 예시적 레이저 엔진(12)의 한 부분의 3차원 관망을 도시한다. 레이저 엔진(12)은 레이저 다이오드 바(14), 히트 싱크(100), 고속 축 광학물질(102)및 고속 축 광학물질(102)을 고정하기위한 고정 시스템(104)을 포함할 수 있다. 레이저 엔진(12), 특히 히트 싱크(100)는 기판(PCB)에 장착되거나 접속될 수 있다. 레이저 다이오드 바(14)는 적절한 전기적 접속, 예컨대, 휘어지는 케이블에 의해 PCB상의 전자장치에 접속될 수 있다.
히트 싱크(100)는 레이저 다이오드 바(14)를 냉각하는 데 사용되고 압출 성형과정을 통해 또는 임의의 다른 적절한 방법으로 제조될 수 있다. 어떤 실시예들은 소망하는 수준으로 레이저 온도를 유지하는데 도움이 되는 하나이상의 팬들을 포함한다. 히트 싱크는 열 전달을 증진시키기 위해 핀들 또는 다른 구조물들을 포함할 수 있다. 어떤 실시예들에서는, 히트 싱크는 부동태(passive)일 수 있고 및/또는 전도(conduction)만에 의해 및/또는 자연적 대류(convection)와 함께 및/또는 복사(radiative) 열 전달과 함께 열을 흡수 및/또는 전달할 수 있다. 어떤 실시예들에서는, 완전히 조립된 장치의 히트 싱크(100)는 약 2.5°C/W 또는 미만의 등급(rating)을 갖는다. 특정 실시예들에서는, 완전히 조립된 장치의 히트 싱크(100)는 약 1.5°C/W 또는 미만의 등급을 갖는다.
어떤 실시예들에서는, 장치(10)는 또한 활동적으로 히트 싱크를 냉각시키기 위해, 나아가 레이저 다이오드 바(14) 및/또는 다른 장치(10)의 전력이 공급된 부품들로부터 열 전달을 증진하기 위해 하나 이상의 팬들(34)을 포함할 수 있다.
고속 축 광학물질(102)은 레이저 다이오드 바(14)로부터 이미트된 임의의 집합 빔도 포함할 수 있다. 예를 들면, 서술된 실시예에서, 고속 축 광학물질은(102)은 높은 수치의 구경(고 NA) 짧은 초점거리 원통형 렌즈( 또는“막대기 렌즈”)로서 고속 축에서 집합 빔의 각도상의 방사(divergence)를 감소시키기 위해 배치된다. 일 실시예에서, 원통형 렌즈(102)는 임의의 다른 적절한 치수를 가질 수 있다. 나아가, 다른 실시예들에서는, 렌즈(102)는 다른 형태의 렌즈를 포함할 수 있다. 예를 들면, 렌즈는 비구면(aspheric)렌즈 또는 구형(spherical)렌즈일 수 있다.
렌즈(102)는 임의의 적절한 방법으로 히트 싱크(100)에 고정될 수 있다. 예를 들면, 렌즈(100)는 한 쌍의 지지 구조물들 사이에 장착될 수 있고, 이로써 히트 싱크(100)에 원통형 렌즈들(102)을 고정하기 위한 고정 시스템(104)을 형성한다. 시스템(104)을 고정하는 지지 구조물들은 히트 싱크(100)의 본체와 합체될 수 있고, 또는 그렇지 않으면 히트 싱크(100)에 결합될 수 있다. 렌즈(102)는 임의의 적절한 방법으로 지지 구조물에 고정될 수 있다.예를 들면, 렌즈(102)는 지지 구조물들 사이에 위치할 수 있고 UV 접착제, 예컨대, UV 경화(curing)과정을 통해 경화된 UV 에폭시를 사용하여 지지 구조물들에 부착될 수 있다. 원통형 렌즈(102)는 레이저 다이오드 바(14)의 이미터 접합들/구경들로부터 임의의 적절한 거리에 위치할 수 있다. 일 실시예에서, 렌즈(102)는 레이저 다이오드 바(14)의 이미터 접합들/구경들로부터 약 260um에 위치한다.
장치(10)의 작동
위에 설명한 바와 같이, 장치(10)는 원하는 치료를 제공하기 위해 레이저 빔(94)(또는 다중 빔들(94)을 타깃 구역(40)으로 전달하도록 구성될 수 있다. 장치(10)는 다양한 치료 패턴들을 타깃 구역에 생성하기 위하여 빔(94)을 전달할 수 있다. 예를 들어, 다양한 치료 패턴들이 다음의 임의의 결합에 의해 생성될 수 있다: 장치(10)를 수동 글라이딩 모드로 동작시키는 것, 장치(10)를 스탬핑 모드로 동작시키는 것, 연속파(CW) 방사선을 제공하는 것, 펄스 방사선을 제공하는 것, 직접 노출 방사선을 제공하는 것, 또는 간접 노출 방사선, 예를 들면 레이저 다이오드 바(14)로부터 방출된 빔을 자동적으로 스캔하는 스캐닝 장치를 포함하는, 간접 노출 방사선을 제공하는 것.
일부 실시예들에서, 장치(10)는 예를 들어, 글라이딩 모드로 장치(10)를 동작시켜 벌크 가열 피부 조임, 제모, 또는 여드름 치료를 위해, CW 또는 준(quasi)-CW 방사선을 제공하는 레이저 다이오드 바(14)를 제어한다.
기타 실시예들에서, 장치(10)는 펄스 방사선을 제공한다. 펄스 방사선은 수동 펄스 방사선 또는 자동 펄스 방사선을 포함할 수 있다. 수동 펄스 방사선에서, 각 펄스는 예를 들어, 각 펄스를 개시하도록 버튼을 눌러서 수동으로 트리거될 수 있다. 일부 실시예들에서, 수동 펄스 방사선은 스탬핑 모드에서 사용된다. 수동 펄스 방사선은 임의의 적절한 치료, 예를 들어 특정 제모 치료에 사용될 수 있다.
대안적으로, 자동 펄스 방사선에서, 펄스들은 자동적으로, 예를 들어, 예정된 펄스 주파수에 따라서 또는, 예를 들어 피부를 가로질러 이동하는 장치(10)의 예정된 변위시의 자동 펄스 트리거링, 또는 예를 들어 장치(device tip)를 들어서 다른 지점(spot)에 위치시켜 정전용량형 피부 접촉센서의 재 트리거링(re-triggering)시의 자동 펄스 트리거링 등의 일부 트리거링 이벤트시에 자동적으로 개시되거나 또는 제어될 수 있다. 자동 펄스 방사선은 임의의 적절한 방식으로, 예를 들면 레이저 다이오드 바(14)에 의해 방출된 에너지 빔을 간헐적으로 차단하여 또는 다른 방법으로 레이저 다이오드 바(14)를 제어하여, 제공될 수 있다. 이러한 실시예들은 임의의 적절한 펄스 매개변수, 예를 들면 펄스 속도 또는 주파수, 펄스 온 타임, 펄스 오프 타임, 듀티 사이클, 펄스 프로파일 등을 이용할 수 있다. 일부 실시예들에서, 레이저 다이오드 바(14)는 0.5 Hz와 75 Hz 사이의 속도로 펄스화될 수 있다. 예를 들어, 레이저 다이오드 바(14)는 2 Hz와 30 Hz 사이의 속도로 펄스화될 수 있다. 특정 실시예들에서, 레이저 다이오드 바(14)는 10 Hz와 20 Hz 사이의 속도, 예를 들면 약 15 Hz의 속도로 펄스화될 수 있다. 주어진 치료 구역에서의 펄스당 에너지는 단일 펄스에 의해 또는 다중 반복 펄스들에 의해 얻어질 수 있다. 자동 펄스 방사선은 임의의 적절한 치료, 예를 들면 부분 치료에 사용될 수 있다.
여기서 사용된 “펄스”는 (a) 레이저 다이오드 바(14)로부터의 단일, 연속 방출(burst)의 방사선, 및 (b) 종종 변조 펄스(modulated pulse), 펄스 트레인 또는 수퍼 펄스라 지칭되는, 피부상의 실질적으로 동일한 장소에서의(즉, 피부 표면의 실질적으로 조사 중첩 구역(overlapping areas of irradiation)들에서) 하나 이상의 고주파수 펄스들(higher-frequency pulses)을 포함할 수 있다. 펄스 트레인에서 펄스들 사이의 시간 구간이 작용 기구(mechanism of action)의 이완 시간보다 더 짧다면 (예들 들어, 광 열분해 발색단 타깃(photothermolysis chromophore target)의 열적 이완 시간보다 더 짧다면), 그 때는 상기 펄스 트레인은 단일의 더 긴 펄스와 실질적으로 유사한 결과를 전달할 수 있다.
여기서 사용된 “치료 구역”(예를 들면, 치료 구역(150))은 피부의 그 장소에 원하는 치료를 제공하기에 전체적으로 충분한 정도로 -- 조사의 연속 주기 동안에 또는 펄스 동안에 (위에서 정의된) -- 하나 이상의 이미터들(80)에 의해 조사된 피부의 접촉부를 의미한다. 치료 구역의 경계선들은 “1/e2 폭”으로 정의될 수 있으며, 즉 치료 구역은 피부 표면상의 임의 지점에서의 최대 방사선 세기와 동일한 것에서부터 적어도 1/e2(또는 0.135)배 까지의 방사선 세기로 조사되는 피부 표면의 접촉부를 포함한다. 또한, “피부상의(on the skin)”치료 구역 또는 유사한 언어에 대한 언급은 방사선 패턴이 피부의 표면상에 치료 효과를 나타내는지 아닌지, 피부 내부에 방사선 패턴을 일반적으로 생성하는 피부상의 방사선을 지칭한다.
일부 실시예들, 예를 들면 도 4 및 도 5에 보여진 바와 같이, 치료 구역들은 다양한 인자들, 예를 들면 충전율 근접 갭 간격, 레이저 다이오드 바(14)와 치료 표면(있다면) 사이의 광학물품 등에 따라서, 접촉(도 4) 또는 비접촉(도 5)의 길쭉한 라인 세그먼트들을 정의할 수 있다. 치료 구역들은, 레이저 다이오드 바(14) 자체의 구조 및 치수들 및 유사한 인자들에 근거하여, 고속 축과 저속 축 방향으로 임의의 적절한 치수를 가질 수 있다.
치료 구역은 레이저 다이오드 바가 펄스 또는 연속파(CW) 방사선을 제공하든지 제공하지 않든지 되묻음(smearing), 흔들림(blurring) 또는 피부를 가로지르는 장치의 이동에 의한 임의의 하나 이상의 방향으로의 다른 늘어남(elongation)으로 인해 임의의 증가된 구역들을 포함한다. 예를 들면, 피부를 가로질러 피부상의 조사된 구역이 방사선의 전달 동안에 (예를 들면 장치의 글라이딩 모드 동작 동안에) 이동하는 실시예들 또는 상황들에서, 치료 영역은 피부에의 방사선 전달의 연속(즉, 비차단) 주기 전체를 통하여 이동하는 조사 구역(irradiated area)에 의해 스쳐 지나간 집합 구역(collective area)을 포함한다. 그래서, 장치(10)가 CW 방사선 동안에(예를 들면, 글라이딩 모드 동작시에) 피부를 가로질러 이동된다면, 치료 구역은, 예를 들면 도 7에 보여지고 아래에 설명된 바와 같이, 피부의 순간 조사 구역의 크기보다 여러 배 더 클 수 있다. 장치(10)가 펄스 방사선 동안에(예를 들어, 글라이딩 모드 동작시에) 피부를 가로질러 이동될 때, 치료 구역은, 예를 들어 다수의 인자들에 따라서, 피부의 순간 조사 구역의 크기보다 10% 내지 500% 더 클 수 있다. 대조적으로, 도 4 및 도 5에 보여진 예시적 치료 구역들(150)은 장치(10)가 피부상에 고정되게 유지되는(즉, 어떠한 되묻음 또는 흔들림도 표시되지 않음) 상황을 취한다.
피부의 표면상의 각 치료 구역은 미소 열적 구역(MTZ)으로 지칭될 수 있는, 피부의 표면 아래로 연장되는 3차원 체적의 열손상 피부를 일으킬 수 있다. 각 MTZ는 구현예, 장치 세팅들 또는 특정한 적용(application)에 따라서, 피부 표면으로부터 피부 아래로 확장되거나, 또는 피부 표면 아래로 다소의 깊이에서 시작하여 피부 속으로 더 아래로 확장될 수 있다. 각 MTZ의 측면 치수들은 대응하는 조사된 치료 구역의 치수들과 광범위하게 공존할 수 있고, 대응하는 조사된 치료 구역보다 더 작을 수 있고 또는 대응하는 조사된 치료 구역보다 더 클 수 있다(예를 들면, 열전도도에 의해).
MTZ들은 임의의 적절한 피부 치료, 예를 들어 여기서 설명된 치료들 중 임의의 치료를 제공하도록, 제공될 수 있다. 예를 들면, 제모 치료와 같은 일부 적용들에 있어서, MTZ는 모낭들(hair follicles)의 열적 손상을 일으키도록 생성될 수 있다. 예를 들어, 부분 치료와 같은 기타 적용들에서는, MTZ들은 피부에 열적 손상을, 예를 들어 절제 손상 또는 비 절제 손상(ablative or non-ablative lesions)을 일으키도록 생성될 수 있다.
일부 실시예들에서, 장치(10)는 “글라이딩 모드”로 사용되도록 구성되어 있으며, 여기서 장치는 연속파(CW), 펄스 및/또는 스캔 방사선을 타깃 구역(40)에 전달하여, 글라이딩 방향으로 연속 치료 구역들을 생성하거나, 또는 대안적으로 글라이딩 방향으로 이산 치료 구역들(간격을 두고, 접촉 또는 중첩되게)의 로우들(rows) 또는 어레이들(arrays)을 생성하면서 피부를 가로질러 수동으로 드래그되거나 또는 글라이딩된다.
기타 실시예들에서, 장치(10)는 “스탬핑 모드”로 사용되도록 구성되며, 여기서 장치(10)는 피부상의 서로 다른 장소들에 상대적으로 고정되게 유지된다. 피부상의 서로 다른 장소들에 상대적으로 고정되게 유지된다. 피부상의 각 장소에서, 장치(10)는 하나 이상의 빔들(또는 빔의 하나 이상의 자동 주사 로우들 또는 어레이들)을 피부에 전달하여 하나 이상의 치료 영역들을 생성한다. 그래서, 장치(10)는 제1 장소에 위치될 수 있고, 그래서 하나 이상의 치료 구역들이 피부로 전달될 수 있으며, 반면에 장치(10)가 상대적으로 고정되게 유지되고, 그래서 장치(10)가 새로운 장소로 -- 장치(10)를 들어서 장치를 재위치시키거나 또는 장치(10)를 피부의 표면을 가로질러 글라이딩시킴으로써 -- 이동될 수 있으며, 또한 그래서 하나 이상의 치료 구역들이, 원하는 대로 타깃 구역(40)을 덮기 위하여, 그 장소 등에서 생성될 수 있다.
직접 노출 실시예들
위에서 설명한 바와 같이, 장치(10)의 일부 실시예들은 빔을 발생시키거나 처리하기 위해 레이저 다이오드 바(14)의 하류측에 어떠한 광학 물품들(16)도 포함하지 않는 "직접 노출 장치들(direct exposure devices)"이다. 레이저 다이오드 바(14)로부터 조사된 빔(94)의 빠른 분기(rapid divergence)로 인해, 레이저 다이오드 바(14)는 치료 중에 피부와 접촉하는 장치의 적용 단부(또는 "팁")에 아주 가깝게(따라서 표적 피부에 아주 가깝게) 위치될 수 있다. 위에서 설명한 바와 같이, 예를 들면, 직접 노출 장치들에서, 레이저 다이오드 바(14)는, 조사 면(80)이 적용 단부(42)의 리드면으로부터 10mm, 2mm, 1mm, 500㎛, 200㎛, 또는 100㎛ 미만(따라서 적용 단부(42)가 피부와 접촉하에 위치될 때 표적 면으로부터 10mm, 2mm, 1mm, 500㎛, 200㎛ 또는 100㎛ 미만)이 되도록 위치될 수 있다.
상술한 바와 같이, 장치(10)의 일부 직접 노출 실시예들은 활주 모드(gliding mode)로 CW 방사선을 제공하도록 구성될 수 있다. 예를 들면, 레이저 다이오드 바의 폭과 대체로 대응하는 폭(WLB)을 갖는, 활주 방향으로 연속적인 치료 영역을 생성하기 위해, 고 충전율(high fill factor) 레이저 다이오드 바(14)를 포함하는 장치(10)의 직접 노출 실시예는, 장치가 수동으로 레이저 다이오드 바의 길이방향과 대체로 수직인 방향으로 피부를 가로질러 끌리거나 활주하는 동안 CW 모드로 작동될 수 있다. 장치는 원하는 표적 영역(40)을 처리하기 위해, 예를 들어 머리카락 제거 치료를 제공하기 위해 인접한 위치들에서 피부를 가로질러 여러 번 활주할 수 있다.
도 7은 레이저 다이오드 바의 길이방향과 대체로 수직인 활주 방향을 갖는 활주 모드로 CW 방사선을 제공하도록 형성된, 고 충전율 레이저 다이오드 바(14)를 포함하는 장치(1)의 직접 노출 실시예에 의해 발생된 예시적인 치료 패턴을 나타낸다. 도시된 패턴은 각각 도시된 활주 방향으로 개별적인 수동 활주(152)에 의해 형성된 3개의 치료 영역들(150)을 포함한다. 제1 활주의 시작 시점(즉, 레이저 다이오드 바(14)가 구동될 때의 순간)에서 초기 치료 이미지는 150A로 표시된다.
치료 영역들(150)은 서로 작은 간격으로 분리된 것처럼 도시된다. 그러나, 치료 영역들(150)이 임의의 원하는 양으로 서로 분리되거나, 임의의 원하는 양으로 서로 중첩되거나, 또는 중첩되고 처리되지 않는 틈들이 실질적으로 없도록 대체로 서로 맞대어 정렬되도록, 사용자는 장치(10)의 각각의 활주의 위치를 제어할 수 있다. 일부 적용들에서, 사용자는 장치(10)를 활주시켜 대체로 동일한 방향으로 적당한 횟수로 표적 영역(40)을 처리할 수 있다(예를 들면, 도 7 참조). 다른 적용들에서, 예를 들면 관련된 치료에 권장되는 바와 같이, 예를 들면 치료 표적 영역(40)의 십자형 패턴 또는 임의의 다른 원하는 패턴을 형성하기 위해, 사용자는 대체로 려어 방향들로 장치(10)를 활주시킬 수 있다.
일부 실시예들에서, 저 충전율 레이저 다이오드 바(14)를 포함하는 장치(10)의 직접 노출 실시예는 유사한 처리 패턴을 발생시키기 위해 동일한 방식으로 작동될 수 있지만, 여기서 각각의 처리 영역(150)은 활주 방향으로 일련의 연속적인 얇은 치료 라인들을 포함한다(각각의 라인은 레이저 다이오드 바(14)의 하나의 이미터(80)와 대응한다).
장치(10)의 다른 직접 노출 실시예들은 활주 모드로 펄스화된 방사선을 제공하도록 구성될 수 있다. 예를 들면, 고 충전율 레이저 다이오드 바(14)를 포함하는 장치(10)의 직접 노출 실시예는, 예를 들면 주름, 색소침착 및 광손상에 의한 거친 피부를 치료하기 위한 부분 치료를 제공하기 위해, 활주 방향으로 일련의 이격된 연속적인 분할 치료 영역들을 생성하도록, 장치가 레이저 다이오드 바의 길이방향과 수직인 방향으로 피부를 가로질러 수동으로 끌리거나 활주하는 동안 펄스화될 수 있다. 장치는 원하는 처리 영역(40)을 치료하기 위해 예를 들면 부분 치료를 제공하기 위해 인접한 위치들에서 피부를 가로질러 여러 번 활주할 수 있다. 대안적으로, 저 충전률 레이저 다이오드 바(14)를 포함하는 장치(10)의 직접 노출 실시예는 활주 방향으로 일련의 이격된 불연속적인 분할 치료 영역들을 생성시키기 위해 동일한 방식으로 작동될 수 있다.
도 8은 레이저 다이오드 바의 길이방향과 대체로 수직인 활주 방향을 갖는 활주 모드로 펄스화된 방사선을 제공하도록 구성된, 고 충전률 레이저 다이오드 바(14)를 포함하는 장치(1)의 직접 노출 실시예에 의해 생성된 치료 패턴의 일 예를 나타낸다. 도시된 패턴은 3개 열의 복수의 치료 영역들(150)을 포함하고, 각각의 열은 도시된 활주 방향으로 분리된 수동 활주(152)에 의해 형성되고, 따라서 이격된 치료 영역들(150)의 어레이(array)를 제공하고, 각각의 치료 영역(150)은 레이저 다이오드 바(14)의 단일 펄스에 의해 생성된다. 전술한 것처럼, 각각의 수동 활주(152)의 상대적인 간격 및 방향은, 예를 들면 관련된 치료(예를 들면, 부분 치료)에 권장되는 것처럼 사용자에 의해 원하는 대로 제어될 수 있다.
일부 실시예에서, 레이저 다이오드 바(14)는 장치가 수동으로 피부를 가로질러 활주하는 전형적인 또는 예상되는 속도("활주 속도")에 기초하여 설정되거나 선택된 펄스율로 펄스화될 수 있다. 특히, 전형적인 또는 예상되는 수동 활주 속도들의 범위에 대해, 인접한 치료 영역들이 치료되지 않는 피부의 영역들에 의해 서로 물리적으로 분리되도록(즉, 부분 치료가 제공되도록), 펄스율이 설정되거나 선택될 수 있다. 일부 실시예들에서, 전형적인 또는 예상되는 수동 이동 속도들에 대해, 인접한 치료 영역들이 미리 결정된 최소의 0이 아닌 간격으로, 예를 들면 500㎛로 서로 물리적으로 분리되도록, 펄스율이 설정되거나 선택될 수 있다.
일부 실시예들에서, 레이저 다이오드 바(14)는 0.5 ~ 75Hz의 비율로 펄스화될 수 있다. 예를 들면, 레이저 다이오드 바(14)는 2 ~ 30Hz의 비율로 펄스화될 수 있다. 특수한 실시예들에서, 레이저 다이오드 바(14)는 10 ~ 20Hz의 비율로, 예를 들면 대략 15Hz의 비율로 펄스화될 수 있다. 주어진 치료 영역의 펄스당 에너지는 단일 펄스 또는 복수의 반복 펄스들에 의해 얻어질 수 있다. 일부 실시예들에서, 장치는 예를 들면 하나 이상의 센서들(예를 들면, 드웰 센서(dwell sensor), 동작 센서(motion sensor), 변위 센서(displacement sensor), 및/또는 롤러 타입 센서(roller-type sensor))로부터의 피드백에 기초하여, 치료 영역의 중첩 발생 정도 및 가능성을 방지하거나 줄이기 위해 제어될 수 있다. 일부 실시예들에서, 펄스율은, 예를 들면 다른 수동 이동 속도들 및/또는 사용자의 다른 안전한 수준들 또는 페인 공차 수준(pain tolerance levels)들을 수용하기 위해, 장치에 의해 자동으로 조절되거나 사용자에 의해 수동으로 조절될 수 있다. 일부 실시예들은, 예를 들면 펄스 스태킹(pulse stacking), 동일 영역의 조사, 과도한 치료 영역(150) 밀도, 또는 다른 원치 않은 치료 상황들을 방지하기 위해, 개별적으로 또는 조합되어 과잉 치료 방지를 제공하는 다른 장치들이나 기술들을 포함한다. 예를 들면, 장치는 정지될 때 작동(예를 들면, 빔들의 발생)이 중지될 수 있다. 정지된 상황은 동작 또는 동작 결핍 용량, 광학 반사, 리미턴스(remittance) 또는 산란 변화, 음향 반사 변화, 음향 임피던스, 갈바니 전위차, 전위차, 유전 상수 변화, 열 변화 등에 의해 유도된 신호 변화에 의해 측정될 수 있다.
다른 예와 같이, 고정된 상황은 또한 국소 고온 측정법(local pyrometry)에 의해 측정될 수 있다. 치료 빔 영역은 "국소 열 이미징(local thermal imaging)"에 의해 광학적으로 측정된다. 한계점 위의 국소 가열은 동작 손실을 나타낸다., 고정된 상황은 또한 일괄 가열 측정법(bulk heating measurement)에 의해 측정될 수 있다. 치료 전달 장치의 팁이 한계점 위에서 가열을 시작하는 경우, 동작 손실이 감지되거나 영역의 과도한 치료가 감지된다.
다른 예와 같이, 장치는 정지된 경우, "권장 펄스(encouragement pulse)"를 발생시킬 수 있다. 사용자가 이동시키도록 하기 위해 장치가 정지된 경우, 정상 에너지 펄스보다 높은 단일 비-손상 펄스 트레인 또는 짧은 펄스 트레인이 조사된다.
다른 예와 같이, 장치는 동작을 조장하기 위해 가열 또는 냉각할 수 있다. 한 장소에 머무르는 것은 불편할 수 있다. 다른 예와 같이, 기계적인 롤러들은 비-동작 상황을 감지할 수 있다. 구동된 롤러들은 비=동작 상황을 피하기 위해 물리적으로 동작을 구동시킬 수 있다.
또 다른 예와 같이, 출력 펄스 주파수 또는 에너지는 치료 영역들의 충분하지 않은 간격, 펄스 스태킹, 또는 일반적인 과잉치료를 방지하도록 이동 속도 감소 또는 정지를 보상하기 위해 조절될 수 있다.
전술한 임의의 과잉 치료 방지 시스템들 또는 기술들(펄스 파라미터들과 직접 관련된 예상 시스템들 또는 기술들)은 마찬가지로, 예를 들면 머리카락 제거 장치용의 임의의 CW 방사선 실시예에 포함될 수 있다.
장치(10)의 일부 직접 노출 실시예들은 하나의 레이저 다이오드 바(14)를 포함한다. 일부 실시예들은 복수의 레이저 다이오드 바들(14)을 포함한다. 전술한 것처럼, 각각의 레이저 다이오드 바(14)로부터 조사된 빔(94)은 축(fast axis) 및 축(slow axis)으로 분기된다. 따라서, 상기한 실시예들에서, 장치가 레이저 다이오드 바(들)의 하류측에 광학 물품들을 포함하지 않는다면, 각각의 빔(94)은 장치의 적용 단부를 빠져 나가서, 분기된 빔으로서 표적 면에 도달한다. 이하에 기술되는 것처럼, 이것은 예를 들면 이하에 기술되는 것처럼 눈의 안전 측면을 제공한다. 일부 실시예들에서, 레이저 다이오드 바(들)(14)의 구성 및/또는 레이저 다이오드 바(들)(14)로부터 조사된 빔(들)(94)의 분기는, 예를 들면 이하에 기술되는 것처럼, 눈 안전 센서 또는 시스템이 생략될 수 있도록 충분히 눈이 안전한 방사선을 제공할 수 있다.
전술한 것처럼, 레이저 다이오드 바(14)는 임의의 적당한 파장, 힘, 그리고 네어지 레벨의 빔을 조사하도록 선택되거나 구성될 수 있다. 또한, 레이저 다이오드 바(14)로부터 조사된 총 에너지는 원하는 대로 선택되거나 구성될 수 있다.
직접 노출 실시예들의 일부 예에서, 레이저 다이오드 바(14)로부터 표적 면까지의 대략 70% ~ 90%의 총 광학 효율을 가정하면, 예를 들어 대략 1mm ~ 1cm의 희망 치료 영역 크기를 갖는 펄스화된 작업을 가정하면, 레이저 다이오드 바(14)는 치료 영역당 대략 40mJ ~ 2J의 총 에너지를 전달하도록 구성된다. 특수한 실시예들에서, 레이저 다이오드 바(14)는 (다시, 대략 1mm ~ 1cm의 치료 영역을 갖는 펄스화된 모드에 기초하여) 치료 영역당 대략 1J을 전달하도록 구성된다. 예를 들면, 하나의 예시적인 실시예들에서, 1-cm 폭의 레이저 다이오드 바로부터의 표적 피크 출력 레이저 동력원은 표적 면에서 대략 40W이다. 대략 4cm/s의 활주 속도를 예로 들면, 표적 면의 1-mm 폭의 순간 치료 영역에 대한 펄스-온 타임(pulse-on time)은 대략 25ms이다. 이것은 1mm ~ 1cm의 치료 영역에 대해 대략 1J에 대응하고, 대략 80%의 총 광학 효율을 예로 가정하면 레이저 다이오드 바(14)에 의해 조사된 대략 50W 및 1.25J에 대응한다.
일부 직접 노출 실시예들에서, 장치(10)는 스마트 차징 베이스 액세서리(smart charging base accessory)에 의해 또는 자체의 장치 상에 다른 값들을 부가적으로 설정할 수 있는 에너지 세팅을 갖는다. 장치(10)는 장치의 작동을 제어하는데 이용되는 하나 이상의 유형들의 센서들(26), 예를 들면 피부와의 접촉을 감지하는 피부 접촉 센서, 정지된 위치를 감지하는 드웰 센서, 장치의 동작 및/또는 속도를 감지하는 동작 센서, 및/또는 (만약에 있다면) 장치가 피부를 가로질러 이동한 거리를 측정하도록 구성된 변위 센서를 포함할 수 있다. 임의의 2개 이상의 이 센서들은 하나의 파라미터보다 많은 파라미터에 응답하는 하나의 센서로 결합될 수 있다. 장치(10)는 레이저 치료를 시작하기 위해 사용자가 활성화시키는 하나의 전원 버튼(기계식 또는 전자식)을 포함할 수 있다. 하나의 실시예에서, 장치(10)의 적용 단부가 피부와 접촉하면, 장치의 적용 단부는 피부 상에 정지되지 않고(예를 들면, 피부면을 가로질러 활주하거나 다르게 이동하고), 장치(10)는 전원 버튼이 활성화되는 한 치료 레이저 에너지(예를 들면, CW 또는 펄스화된 방사선)를 전달할 수 있다. 수동 이동은 피부를 가로지르는 장치(10)의 수동 이동에 기초하여, 치료된 피부 영역에 치료 영역들(150)의 대체로 임의의 패턴을 초래한다. 사용자는 원하는 치료 편의 수준을 얻기 위해 다른 속도들로 피부를 가로질러 장치(10)를 이동시킬 수 있다. 하나 이상의 센서들(26), 예를 들면, 드웰 센서, 변위 센서, 및/또는 동작 센서는 장치(10)의 이동 여부, 이동 속도, 및/또는 장치(10)의 이동 거리를 감지할 수 있다. 장치(10)는 피부의 같은 위치의 과잉 치료를 방지하기 위해 상기 감지된 데이터를 이용할 수 있다.
장치(10)의 직접 노출 실시예들의 특정한 예는, (예를 들면, 기계 모터들이 없는) 모든 고체 부품들이 수동 동작 양상(활주 또는 다른 이동) 및 CW 또는 펄스화된 광원을 통해 피부 영역 범위를 제공하는 휴대용, 배터리 구동식, 콤팩트 피부 치료 장치들이다.
눈 안전
장치(10)의 일부 실시예들은 디퓨저(diffusers) 또는 기타 광학물품을 사용하고, 하나 이상의 센서들(26)을 포함하는 눈 안전 제어시스템을 사용하며, 및/또는 임의의 기타 적합한 방식으로, 예를 들면 레이저 다이오드 바(들)(14)에 의해 방출된 빔(94)의 발산에 기반한 눈 안전 방사선을 제공한다. 예를 들면, 일부 실시예들 또는 설정들(특정 직접 노출 실시예들 및 특정 간접 노출 실시예들을 포함하는)에서, 장치(10)는 여기서는 편의상 "레벨 1 눈 안전(Level 1 eye safety)"으로 지칭되는, IEC 60825-1에 따른 레벨 1M 또는 그 이상(레벨 1과 같은)의 눈 안전 등급을 만족시킨다. 다른 실시예들 또는 설정들(특정 직접 노출 실시예들 및 특정 간접 노출 실시예들을 포함하는)에서, 장치는 여기서는 편의상 "레벨 2 눈 안전"으로 지칭되는, (700-1050 nm 파장 방사선에 대한) 관련 최대 허용가능 노출(MPE) 또는 50% 미만 만큼의 (1400-1500 nm 또는 1800-2600 nm 파장 방사선에 대한) 접근가능 방출 한계(AEL)를 초과한다. 또 다른 실시예들 또는 설정들(특정 직접 노출 실시예들 및 특정 간접 노출 실시예들을 포함하는)에서, 장치는 여기서는 편의상 "레벨 3 눈 안전"으로 지칭되는, (700-1050 nm 파장 방사선에 대한) 관련 MPE 또는 100% 미만 만큼의 (1400-1500 nm 또는 1800-2600 nm 파장 방사선에 대한) AEL을 초과한다. 최대 허용가능 노출(MPE) 및 접근가능 방출 한계(AEL)는 대응하는 관련 파장에 대하여 아래에 기술된다. 또 다른 실시예들 또는 설정들(특정 직접 노출 실시예들 및 특정 간접 노출 실시예들을 포함하는)에서, 장치는 IEC 60825-1에 따른, 레벨 1M 후의 다음으로 가장 높은 눈 안전 등급, 즉 편의상 여기서는 "레벨 4 눈 안전"으로 지칭되는 레벨 3B를 만족시킨다.
레이저 방사선의 직접 노출(및/또는 매우 근접 노출) 용으로 구성된 장치(10)의 일부 실시예들은 위에서 정의한 바와 같은 레벨 4의 눈 안전을 제공하고, 일부 직접 노출 실시예들은 위에서 정의한 바와 같은 레벨 3의 눈 안전을 제공하고, 일부 직접 노출 실시예들은 위에서 정의한 바와 같은 레벨 2의 눈 안전을 제공하며, 그리고 일부 직접 노출 실시예들은 위에서 정의한 바와 같은 레벨 1의 눈 안전을 제공한다. 레이저 방사선의 간접 노출(및/또는 매우 근접 노출) 용으로 구성된 장치(10)의 일부 실시예들은 위에서 정의한 바와 같은 레벨 4의 눈 안전을 제공하고, 일부 직접 노출 실시예들은 위에서 정의한 바와 같은 레벨 3의 눈 안전을 제공하고, 일부 직접 노출 실시예들은 위에서 정의한 바와 같은 레벨 2의 눈 안전을 제공하며, 그리고 일부 직접 노출 실시예들은 위에서 정의한 바와 같은 레벨 1의 눈 안전을 제공한다.
눈 안전의 이러한 레벨은 예를 들면 다음 중 하나 이상을 포함하는 인자들의 결합에 기초하여 제공될 수 있다: (a) 빔의 발산, (b) 방출 전력, (c) 방출된 빔의 파장, (d) 레이저 다이오드 바의, 및 장치(10)의 펄스 방사선 실시예들 또는 적용예들에서의 배치, (e) 펄스 지속시간, 및 (f)펄스당 총 에너지. 따라서, 일부 실시예들(특정 직접 노출, 매우 근접 실시예들; 특정 직접 노출, 원격 근접 실시예들; 특정 간접 노출, 매우 근접 실시예들; 및 특정 간접 노출, 원격 근접 실시예들을 포함하는)에서, 이러한 인자들 중의 하나, 일부 또는 모두가 위에서 설명한 바와 같이, 레벨 1, 레벨 2, 레벨 3, 또는 레벨 4의 눈 안전을 제공하도록 선택되거나 또는 조정될 수 있다.
IEC 60825-1 표준에 따른 눈 안전 분석은, 상기 표준이 서로 상이한 식들 및 서로 상이한 파장 범위에 대한 한계값들을 정의하기 때문에 레이저 방사선의 선택된 파장에 따른다. 다음 2개의 파장 범위에 대한 눈 안전 분석은 아래에 제공된다: (a) 700-1050 nm 파장 방사선, 및 (b) 1400-1500 nm 또는 1800-2600 nm 파장 방사선.
(a) 700-1050 nm 파장 방사선(예, 제모 치료용)
1400-nm 이하의 파장 범위에서, 망막의 열적 위험은 눈 안전에 가장 관련이 있다. 700-1050 nm 파장 방사선(예를 들어, 특정 제모 치료를 제공하기 위한)에서, IEC 60825-1에 따른 레벨 1M의 눈 안전 등급을 달성하기 위해, 확장된 소스로부터의 각막에서의 최대 허용가능 노출(MPE)은 펄스화된(단일 펄스로 추측되는) 및 CW 레이저 방사선(IEC 60825-1:2007의 표 A.2에 따른)에 대한 다음 식들에 의해 각각 주어진다.
MPEpulsed = 1.8x10-3 t0.75 C4C6 J/cm2 식 3
MPECW = 1.8x10-3 C4C6C7T2 -0.25 W/cm2 식 4
여기서, C4 = 100.002(-700)는 700 내지 1050 nm 범위의 파장 nm이고; 100 mrad 보다 큰 각도 대변(對邊)을 갖는 확장된 소스에 대하여 C6 = 66.7이며; 동일한 700 to 1050 nm 범위에서 C7 = 1이고; 동일한 크게 확장된 소스에 대하여 T2= 100 s.이다. 특정 제모에서 적용예에서 사용되는 확장된 소스의 전형적인 808-nm의 파장에 대하여, 식 3 및 4에서 대응 MPE들은
MPEpulsed = 20-ms 펄스당 10 mJ/cm2, 또는 = 500-ms 펄스당 117 mJ/cm2
MPECW = 62 mW/cm2 가 된다.
눈 안전 클래스 1의 레이저에 관한 IEC 60825-1 요구를 만족시키기 위해, 장치 소스 출력부로부터 명목상 10 cm 거리에 있는 7-mm 원형 구멍에서 측정된 플루엔스(fluence) 또는 방사 조도(irradiance)는 펄스된 또는 CW 방사선에 대한 식 3 또는 4로부터 각각 산출된 MPE 이하여야 한다.
특정 피부 치료들, 예를 들면 제모에 대하여, 피부 플루엔스는 펄스된 레이저당 5 J/cm2 이상일 수 있다. 예시적인 글라이드 속도 4 cm/s에서 동작하는 글라이딩 CW 레이저에 대하여, 대응 전력 밀도는 효과적인 치료를 제공하기 위해 20 W/cm2 이상일 수 있다. 그러나, 이러한 수치들은 위에서 보여진 각각의 MPE 한계값보다 훨씬 더 크다. 따라서, 일부 실시예들에서, 레이저 다이오드 바로부터 방출된 방사선은 MPE 한계값을 얻기 위해 약해질 수 있다. 예를 들면, 소스 레이저 방사선은, (a) 레이저 다이오드 바로부터 방출된 방사선의 발산, (b) 레이저 다이오드 바로부터의 하류측에 디퓨저 또는 기타 발산 광학물품을 도입함, 및/또는 (c) 임의의 기타 적합한 기술에 의해 약화될 수 있다. 이 약화는 약화인자 “A"에 의해 정의될 수 있으며, 여기서 A는 레이저 다이오드 바로부터 방출된 플루엔스 / ICE 표준에 명시된 공칭 눈 원근조절 거리인 10cm에서 수렴된 플루엔스이다.
위에 표기된 예시적인 플루엔스 값들(펄스화된 레이저 방사선당 5 J/cm2 및 CW 레이저 방사선당 20 W/cm2)에 대하여, 각각의 MPE 한계값 이상을 얻기 위한 요구 약화 인자 A는, 5 J/cm2 (즉, 5 J/cm2 / 0.117 J/cm2)의 플루엔스에서 500-ms 펄스당 A = 43; 5 J/cm2 (즉, 5 J/cm2 / 0.010 J/cm2) 플루엔스에서 20-ms 펄스당 A = 500; 및 A = 322 (즉, 20 J/cm2 / 0.062 J/cm2)이다.
직접 방사선(즉, 레이저 소스의 하류에 어떠한 광학물품도 포함하지 않는)에 대하여, 레이저 소스에 관한 감쇠율(attenuation factor) Adirect는 간단한 직접 발산 소스에 대해 10cm의 등급 측정 거리에서 예상될 수 있다. 이것은 식 2와 유사하게 도출되며 7-mm의 원형 테스트 구멍을 통해 주어진다.
Adirect = 2.1x103tan(F/2)tan(S/2) 식 5
여기서, FS는 각각 고속 및 저속 축에서의 빔 발산각이다. 약 40의 고속 축 발산 및 약 10의 저속 축 발산을 제공하는 레이저 다이오드 바에 대하여, 감쇠율 Adirect는 약 67이다. 따라서, 위에서 기술된 MPE 한계값(20-ms 펄스당 10 mJ/cm2, 500-ms 펄스당 117 mJ/cm2, CW 방사선당 62 mW/cm2)에 기초하여, 상기 레이저 다이오드 바로부터 방출된 방사선의 발산은 특정한 방사선 펄스 조건들에 대해서만 레벨 1의 눈 안전을 제공하며, CW 방사선에 대해서는 제공하지 않는다.
그러나, 소스 방사선의 램버트 각 분포(Lambertian angular distribution)에 제공되는 레이저 다이오드 바에 디퓨저를 추가하는 것으로 장치의 고유의 눈 안전성을 높일 수 있다. 램버트 디퓨저에 대하여, 감쇠율 Adirect는 다음과 같이 주어진다:
ALambertian = (10cm / 0.35cm)2 = 816 식 6
여기서, 10cm는 타깃 테스트 거리이고, 0.35cm는 타깃에서의 규정된 테스트 구멍 반경이며, 따라서 식 6은 역제곱 법칙(inverse square law)에 따른다.
따라서, 특정 실시예들은 요구된 고유의 눈 안전(예, 레벨 4, 레벨 3, 레벨 2 또는 레벨 1의 눈 안전)을 달성하기 위해, 심지어 CW 방사선에 대해서 조차도 램버트 또는 실질적으로 램버트 디퓨저를 이용할 수 있다. 예를 들면, 도 2에 도시된 디퓨저(64)는 램버트 또는 실질적으로 램버트 디퓨저일 수 있다. 일부 실시예들은 미국 특허 제7,250,045호, 미국 특허 제7,452,356호, 또는 미국 특허출원공보 US 2006/0009749호에 설명된 재산권 - 여기서 3개의 특허 명세서 모두는 여기에 전체로서 참조로 결합되어 있다 - 을 갖는 디퓨저를 채용할 수 있다.
아래의 표 1은 700-1050 nm 파장 범위의 방사선(레이저 제모 치료용)에 대하여, 레벨 1 또는 1M 등급을 갖는 고유의 눈 안전을 달성하기 위한 장치 구성들 및 설정들에 관한 여러 예시들을 제공한다.
Figure pct00001
(b) 1400-1500 nm or 1800-2600 nm 파장 방사선 (예, 부분 치료용)
1400-1500 nm 및 1800-2600 nm 범위의 파장(부분 치료 제공용)에서, 각막 손상은 눈 안전에 대해 전형적으로 가장 관련이 있다. 이러한 파장 범위에서 방사되는 일부 실시예들에서, 레이저 다이오드 바에 의해 본질적으로 홀로 또는 기타 눈 안전 특징들과의 조합으로 제공된 빔 발산은 장치(10)에 대한 요구된 눈 안전을 제공한다. 예를 들면, 전형적인 레이저 다이오드 바(단독으로 또는 기타 눈 안전 특징들과의 조합된)로부터의 빔 발산은 다른 선택된 매개변수들에 따라 레벨 1, 레벨 2, 레벨 3, 또는 레벨 4의 눈 안전을 제공할 수 있다. 관련 문제들의 분석은 아래에 설명된다.
높은 발산성의 강렬한 광원은 눈 안전 방사선을 제공할 수 있다. 1400 nm를 넘는 특정 파장(예를 들어, 부분 레이저 치료에 사용되는 전형적인 파장들을 포함하는)에 대해, 광원은 전안방(eye anterior chamber)에서의 물 흡수에 의해 크게 약해진다. 따라서, 이 파장 범위에서는 망막 위험이 거의 없거나 없다. 방사 한계는 잠재적인 각막 손상에 의해 결정된다. 특히, 손상 임계값은 각 국부의 이미터 소스의 최대 조사 노출에 의해 결정된다. 눈의 각막과 수정체의 초점조절 효율은 이 파장 범위(1400 nm 이상의)에서 관계가 없으며, 따라서 이 파장 범위에서는 눈 위험의 원인이 되지 않는다. 이 파장 범위(1400 nm 이상의)에 대하여, 레이저 다이오드 바에 대한 눈 안전 분석은 레이저 다이오드 바의 각 개별 이미터의 분석과 기본적으로 동일하다. IEC 60825-1에 따른 레벨 1M의 눈 안전 등급에 대해, 1400 - 1500 nm 및 1800 - 2600 nm의 파장 범위에서의 접근가능한 방사 한계는 EC 60825-1:2007에 관한 표 4의 간단한 식에 의해 설명된다.
AEL = 4.4t0 .25mJ 식 1
AEL 에너지는 직경 7 mm의 원형 구멍을 갖는 소스로부터 70 mm 거리에서 측정된다(IEC 60825-1:2007의 표 11에 설명되고, 발산 빔에 적용될 수 있는 조건 2 측정 셋업). 이 식에서, t(초 단위)는 1 ms 내지 350 ms 범위의 소스 펄스 지속시간이다. 레이저 다이오드 바에 대해, 이 펄스 지속시간은 1 내지 10 ms 범위내에 있을 수 있다. 따라서, 대응하는 AEL은 0.8 내지 1.4 mJ이다.
실제 소스 AE(접근 가능한 에너지)는 주어진 빔 발산 특성치에 대해 추정될 수 있다. 그것은 또한 적절한 구경 스톱(7-mm 폭) 및 측정 거리(소스로부터 70-mm)로 실험적으로 측정될 수 있다. 치료 구경으로부터 70-mm 거리에서의 AE는 다음에 의해 주어진다(이것은 회절 한계 레이저(diffraction limited laser)로부터의 가우스 빔에 대해 근사적으로 보정된다):
AE = 2.5x10-3Q/[tan(ΦF/2)tan(ΦS/2)]mJ 식 2
여기서 Q (mJ 단위)는 치료 평면에서의 소스 에너지이고, ΦF 및 ΦS는 고속 축 및 저속 축 각각에서의 빔 발산이다. 레벨 1M의 눈 안전 등급을 달성하기 위해서는, AE는 대응하는 펄스 지속시간 동안에 AEL 보다 더 낮아야 한다.
아래의 표 2는, 1400-1500 nm 또는 1800-2600 nm 파장 범위(예, 부분 치료용)의 펄스 방사선을 제공하는 예시적 실시예들에 대하여 레벨 1의 눈 안전(기준 IEC 60825-1에 따른 레벨 1M 또는 그 이상)을 제공하기 위한 예시적 구성들 및 장치 설정들을 제공한다.
Figure pct00002
특정 실시예들 또는 장치 설정들 -- 700-1050 nm, 1400-1500 nm, 및 1800-2600 nm 중 임의의 예시적 파장 범위들에 대한 -- 은 위에서 설명한 매개변수들의 적절한 선택에 기초하여 레벨 1, 레벨 2, 레벨 3, 또는 레벨 4의 눈 안전을 제공할 수 있기 때문에, 일부 이러한 실시예들에서 눈 안전 센서 또는 시스템이 생략될 수 있다. 그러나, 일부 이러한 실시예들은, 심지어 레벨 1 눈 안전을 제공하는 실시예들 조차도, 특정 규제 기준들을 만족시키기 위하여 또는 다른 이유들 때문에, 여분(redundancy)을 제공하도록 눈 안전 센서 또는 시스템을 포함할 수 있다.
적어도 일부 실시예들에서, 오직 피부에 접촉할 때만 레이저를 펄싱(pulsing)시킬 수 있는 접촉 센서를 결합시킴으로써 부가적인 눈 안전이 제공된다. 그래서, 이러한 실시예들에서, 망막 및/또는 각막 눈 손상의 가능성은 장치가 눈 표면에 완전히 눌러지지 않는 한 감소되거나 또는 실질적으로 제거될 수 있다.
일부 실시예들은 광학 디퓨저(optical diffuser, 예를 들어, 위에서 설명된 것과 같은), 하나 이상의 광학물품(예, 렌즈), 또는 증대된 눈 안전을 제공하기 위한 기타 요소들 및 구성들(예를 들면, 또는 증가된 눈 안전을 제공하기 위한 다른 요소들 및 구성들(예를 들면, 선택된 펄스 지속시간, 파장, 펄스 반복 주파수, 빔 프로파일 특성치, 및 빔 전달 특성치)을 포함할 수 있다. 다른 실시예들은, 예를 들어 위에서 설명한 바와 같이, 빔 소스의 적합한 동작 매개변수들과 결합된 레이저 다이오드 바의 내재된 또는 선택된 발산으로 인해, 이러한 요소들 없이, 그리고 직접 노출 구성(및/또는 매우 근접 구성)에 특정 눈 안전 레벨(예를 들면, 위에서 정의한 바와 같이 레벨 1, 레벨 2, 레벨 3, 또는 레벨 4)을 제공할 수 있다.
도 9는 레이저 다이오드 바(14)(고 충전율 또는 저 충전율)을 포함하고 직접 노출 장치로서 구성된, 본 개시의 예시적인 실시예들에 따른 예시적 치료 장치(20)를 도시한다. 예시적 장치는 장치 하우징(24) 내에 레이저 다이오드 바(14) 및 하나 이상의 배터리(20)를 포함하는 레이저 엔진(12)를 포함한다. 일부 실시예들에서, 배터리 또는 배터리들(20)은 레이저 엔진 내에 제공될 수 있다. 배터리 또는 배터리들(20)은 임의의 수 및 형태의 배터리들, 예를 들어 AA-사이즈 또는 그보다 작은 배터리들, 또는 재충전가능한 또는 재충전 불가능한 셀들(예, 리튬 이온 셀들), 또는 임의의 기타 형태의 배터리를 포함할 수 있다.
장치(10)가 치료 시간 동안 피부를 가로질러 움직이기 때문에, 장치(10)는 사용자의 피부에 접촉하도록 구성된 적용 단부(42)를 갖는다. 이 실시예에서, 적용 단부(42)는 장치 하우징(24)으로부터 돌출된 레이저 엔진(12)의 앞 단부(leading end)에 의해 한정된다. 적용 단부(42)는 레이저 엔진(12)에 의해 생성된 레이저 빔(96)이 사용자에게 전달될 때 통과하게 되는 레이저 치료 구멍(320)을 포함할 수 있다.
또한, 위에서 설명한 바와 같이, 하나 이상의 센서(26), 예를 들어 피부 접촉 센서, 드웰 센서, 동작 센서, 및/또는 변위 센서가 장치(10)에, 예를 들면 적용 단부(42)에 배치될 수 있다. 일부 실시예들에서, 이러한 센서들은, 예를 들면 미국 특허 제13/366,246호에 개시된 다양한 센서들(예, 하나 이상의 피부 접촉 센서(104), 드웰 센서(116), 동작/속도 센서(102), 및/또는 변위 센서(100A, 100B, 100C, 또는 100D)) 중 일부를 포함할 수 있다. 일부 실시예들에서, 장치(10)는 피부의 뜻하지 않은 노출 및/또는 과도한 노출을 방지하기 위한(예를 들어, 치료 구역(150)의 포개짐(stacking) 또는 오버래핑(overlapping)을 방지함으로써) 구성된 피부 접촉 센서 및 드웰 센서를 포함한다. 피부 접촉 센서 및 드웰 센서는 단일 결합형 접촉/드웰 센서에 의해 제공될 수 있으며, 또는 분리된 센서들로서 제공될 수 있다. 각각의 선택에서, 센서(들)은 다른 적합한 수단들에 기반하거나 그것들을 사용한 광학물품 또는 커패시턴스일 수 있다. 피부와의 접촉은 센서에 의해 발생된 광 반사율 또는 정전용량(capacitance) 신호의 증폭을 분석함으로써 감지될 수 있다. 또한, 피부상의 장치(10)의 체류는 피부를 가로질러 움직이는 장치(10)의 적용 단부(42)와 관련된 광 반사율 또는 정전용량 신호의 신호를 분석함으로써 또는 다른 적합한 수단에 의해 감지될 수 있다. 피부 표면이 완벽하게 매끄럽지 않고 장치의 수동 이동이 완벽한 정상 운동을 달성할 수 없기 때문에, 장치(10)과 피부 사이의 정지 마찰(static friction) 및/또는 기타 물리적 원리들은 센서와 피부 표면 사이에 미세한 변위(micro-displacement)를 일으킨다. 예를 들면, 정전용량 센서의 신호는 센서와 테스트 표면 사이의 상대 변위에 역비례한다. 스틱 및 슬립(stick-and-slip) 수동 이동으로 인한 임의의 미세 변위는 공칭상의 정상 상태 센서 신호의 상부에 대해 병진이동 신호를 일으킬 것이다. 이 신호는 장치(10)가 피부를 가로질러 움직이고 있는지, 아니면 동일 위치에 체류하고 있는지를 결정하기 위해 분석될 수 있다. 이러한 분석은, 예를 들어 하나 이상의 초기값들과 비교하는 임의의 적합한 알고리즘을 포함할 수 있다.
도 9에 도시된 예에서, 장치(10)는 전원 버튼(300)을 포함한다. 장치(10)는 전원 버튼(300)이 사용자에 의해 눌러질 때 펄스화 방법으로 피부에 빔의 전달이 가능하도록 하며, 센서(들)(26)는 장치(10)가 피부와 적절히 접촉되어 있고 피부를 가로질러 움직이고 있는지(즉, 피부상에 정지되어 있지 않음)를 감지한다.
구체적인 사용자 인터페이스 설계, 및 장치(10) 하우징의 형상 및 크기는 요구된 대로 선택될 수 있다. 일부 실시예들에서, 장치(10) 하우징의 형상 및 크기는 쥐기가 쉬우며, 간단하고 편리하게 위치된 전원 버튼(300) 및/또는 다른 사용자 인터페이스를 포함한다. 또한, 장치(10)의 형상은 인간공학적이며, 및/또는 타깃 구역(40)의 양호한 가시성을 제공하도록 구성될 수 있다.
빔 주사시스템을 갖는 실시예들
특정 간접 노출 실시예들은 피부에 전달되는 시계열적인(time-sequential) 일련의 출력 빔을 제공하기 위해 레이저 다이오드 바(14)에 의해 생성된 빔을 반복적으로 주사하는 자동 빔 주사시스템을 포함하며, 상기한 일련의 출력 빔은 서로에게서 한쪽으로 치우쳐(각지게 및/또는 병진방향으로) 있어 빔 주사시스템의 각 스캔(예를 들어, 회전되는 다면 주사 요소의 각 회전)당 한 줄 또는 일렬의 치료 구역들이 피부에 생성된다. 장치(10)는 빔 주사시스템에 의해 제공된 주사 방향(scan direction)에 일반적으로 가로지르는 방향으로 타깃 구역(40)을 가로질러 글라이딩(gliding)될 수 있으며, 그에 따라 수동 글라이딩과 자동화된 빔 주사의 조합은 피부에 생성된 치료 구역들의, 피부를 가로지르는 장치의 각 글라이드에 대한 2차원 어레이(array)로 나타난다.
도 10은 레이저 다이오드 바(14) 및 빔 주사시스템을 포함하는 특정 실시형태에 따른 예시적인 치료 장치(10)의 형태를 도시한다. 이러한 실시예들에서, 광학물품(16)은 빔 치료 광학물품(140) 및 주사 시스템(142)을 포함할 수 있다. 빔 치료 광학물품(140)은 레이저 다이오드 바에 의해 생성된 방사선의 하나 이상의 광학적 매개변수들, 예를 들어 방사선의 방향, 형상(예, 수렴, 발산, 또는 평행됨), 및/또는 세기 프로파일(intensity profile)을 제어하기 위한 렌즈, 거울과 같은 임의의 하나 이상의 광학 요소들, 및 기타 반사 및/또는 전체 또는 부분적으로 투과되는 요소들을 포함할 수 있다.
주사시스템(142)은 타깃 구역(40)내 치료 구역(150)(예, 점, 선, 또는 기타 형상들)의 패턴을 생성하기 위해, 빔의 순차적으로 전달된 어레이 내에 레이저 다이오드 바(14)에 의해 생성된 각각의 광선 빔(또는 복수의 각 광선 빔)을 주사도록 구성될 수 있다.
도 11은 치료 장치(10)의 빔 치료 광학물품(140)에 대한 특정 실시예들에 따른 예시적인 형태를 도시한다. 빔 치료 광학물품(140)은 입사 광선 빔의 서로 다른 광축들에서 서로 다르게 작용하는 축-비대칭 요소들을 포함할 수 있다. 예를 들면, 빔 치료 광학물품(140)은 제1 광축에서 입사 광선 빔에 주로 영향을 주도록 구성된 제1 광학물품, 및 제1축과 직교하는 제2 광축에서 광선 빔에 영향을 주도록 구성된 제2 광학물품을 포함할 수 있다. 특정 광축을 따라 빔에 영향을 주는 것은 특정 광축을 따라 빔의 세기 프로파일에 영향을 주는 것을 포함할 수 있다. 여기서 사용된, 빔의 특정 광축에 따른 세기 프로파일은 특정 광축에 따른 세기 프로파일의 형상(예, 가우스(Gaussian), 평정(flat-topped), 등); 빔이 수렴하는지, 발산하는지, 또는 평행하게 되는 지의 여부; 빔의 수렴 또는 발산의 정도 등을 나타낸다.
그래서, 도 11에 보여진 예시적인 실시예에서, 빔 치료 광학물품(140)은 분리된 고속 축 빔 치료 광학물품(144)(또는 고속 축 광학물품(144)) 및 저속 축 빔 치료 광학물품(146)(또는 저속 축 광학물품(146))을 포함한다. 고속 축 광학물품(144)은 빔의 고속 축 세기 프로파일에 영향을 주도록 구성된 하나 이상의 광학요소들(16)을 포함하며, 반면에 저속 축 광학물품(146)은 빔의 저속 축 세기 프로파일에 영향을 주도록 구성된 하나 이상의 광학요소들을 포함한다. 특정 실시예들에서, 고속 축 광학 물품(144)은 저속 축 세기 프로파일에 실질적으로 영향을 주지 않고 고속 축 세기 프로파일에 영향을 주도록 구성된다. 또한, 특정 실시예들에서, 저속 축 광학물품(146)은 고속 축 세기 프로파일에 실질적으로 영향을 주지 않고 저속 축 세기 프로파일에 영향을 주도록 구성된다. 특정 실시예들에서, 이 특징들의 모두가 제공된다: 고속 축 광학 물품(144)은 저속 축 세기 프로파일에 실질적으로 영향을 주지 않고 고속 축 세기 프로파일에 영향을 주며, 저속 축 광학 물품(146)은 고속 축 세기 프로파일에 실질적으로 영향을 주지 않고 저속 축 세기 프로파일에 영향을 준다.
대안적으로, 고속 축 광학물품(144)과 저속 축 광학물품(146)은 부분적으로 또는 완전히 통합될 수 있다. 예를 들면, 특정 광학요소(예, 거울 또는 렌즈)는 고속 축 세기 프로파일과 저속 축 세기 프로파일 모두에 영향을 줄 수 있다. 이러한 요소는 멀티-축 광학요소로서 지칭될 수 있으며, 모든 축들에 대칭적(예, 구형)일 수도 있고 또는 아닐 수도 있다. 일부 실시예들은, 하나 이상의 분리된 고속 축 광학요소들에 더하여 하나 이상의 멀티-축 광학요소들; 또는 하나 이상의 분리된 저속 축 광학요소들에 더하여 하나 이상의 멀티-축 광학요소들; 하나 이상의 분리된 저속 축 광학요소들과 하나 이상의 분리된 고속 축 광학요소들에 더하여 하나 이상의 멀티-축 광학요소들; 또는 그것들의 임의의 다른 결합을 포함할 수 있다.
또한, 고속 축 광학물품(144)과 저속 축 광학물품(146)의 각각은 주사 시스템(142)으로부터 분리되거나 또는 주사 시스템과 일체화될 수 있다. 다시 말하면, 주사 시스템(142)은 고속 축 세기 프로파일과 저속 축 세기 프로파일의 어느 하나 또는 모두에 영향을 주거나, 또는 어느 것에도 영향을 주지 않을 수 있다. 그래서, 예를 들면, 주사 시스템(142)은 고속 축 광학물품(144)을 제공할 수 있으며, 저속 축 광학물품(146)은 분리하여 제공된다. 대안적으로, 주사 시스템(142)은 저속 축 광학물품(146)을 제공할 수 있으며, 고속 축 광학물품(144)은 분리하여 제공된다. 대안적으로, 주사 시스템(142)은 고속 축 광학물품(144)과 저속 축 광학물품(146) 모두를 제공할 수 있다. 도 11A-11B에 보여진 예시적인 실시예에서, 저속 축 광학물품(146)은 주사 시스템(142)에 의해 제공되고, 반면에 고속 축 광학물품(144)은 분리하여 제공된다.
용어 "광학물품"(예를 들어, 빔 치료 광학물품(140)에 사용되는 고속 축 빔 치료 광학물품, 및 저속 축 빔 치료 광학물품(146))은 단일 광학요소 또는 복수의 광학요소들을 포함할 수 있다. 일부 실시예들에서, 장치(10)는 단지 단일 고속 축 광학요소와 단일 저속 축 광학요소를 포함한다.
도 12a 및 12b는 회전 주사 요소(200)를 포함하는 특정 실시예에 따른 빔 전달 시스템(160)의 평면도 및 측면도를 각각 도시한다. 빔 전달 시스템(160)은 빔을 생성하는 레이저 다이오드 바(14), 및 치료 구역(150)의 패턴을 형성하기 위해 타깃 구역(40)을 제어하고 타깃 구역에 빔을 주사하는 광학물품(16)을 포함할 수 있다. 광학물품(16)은 고속 축 광학물품(144), 및 모터(166)에 의해 회전된 주사 요소(200)를 포함하는 주사 시스템(142)을 포함할 수 있다. 일부 실시예들에서, 광학물품(16)은, 예를 들어 고속 축 프로파일을 이중 빔렛 프로파일에서 단일 빔 프로파일까지 초점을 다시 맞추기 위하여, 하류 고속 축 광학물품(144')을 또한 포함할 수 있다. 기타 실시예들에서는 하류 고속 축 광학물품(144‘)이 생략된다.
고속 축 광학물품(144), 예를 들면 로드 렌즈, 비구면 렌즈, 또는 임의의 기타 적합한 광학요소는, 도 11b에 보여진 바와 같이, 빔을 고속 축에서 신속하게 발산하는 것으로부터 타깃 구역(40)을 향해 덜 발산하게(예, 느리게 발산하거나, 평행하거나 또는 수렴하게) 전환시키도록 구성된다. 일부 실시예들에서, 고속 축 렌즈(64)는 도 12a에 보여진 바와 같이, 저속 축 빔 각분포 프로파일(예, 저속 축의 수렴/발산)에 영향을 주지 않는다.
도 12a에 보여진 바와 같이, 고속 축 광학물품(144)은 입력 빔(170)을 회전 주사 요소(200)에 전달하며, 이 회전 주사 요소는 연속적인 일련의 출력 빔(172)을 타깃 구역(40)을 향해 생성하는 다중 소형 렌즈들(lenslets;164)을 포함한다. 타깃 구역(40)에 치료 구역들의 원하는 패턴을 형성하기 위하여 다양한 출력 빔들을 주사 방향으로 편향시키는 것에 더하여, 회전 주사 요소(200)의 소형 렌즈들(164)은 또한 저속 축의 빔을 천천히 발산하는 것에서부터 천천히 수렴하는 것으로 전환시킨다. 따라서, 단일 요소(200)는 빔 주사 요소와 저속 축 광학물품(146) 모두로서 작동하고, 그래서 원하는 이러한 기능들을 위한 분리 부품들의 수를 감소시키거나 또는 최소화한다. 일부 실시예들에서, 요소(200)의 소형 렌즈들(164)은 도 12b에 보여진 바와 같이, 고속 축 빔 각분포 프로파일에 영향을 주지 않는다.
회전 주사 요소(200)의 고속 축 광학물품(144) 및 소형 렌즈들(164)은, 일부 실시예들에서, 각 출력 빔(172)이 피부의 표면에 또는 표면보다 약간 위에 놓인 초점 또는 초점면을 가지도록, 고속 축 및 저속 축 각각에서 빔을 수렴시키게 구성된다. 또한, 위에서 설명한 바와 같이, 일부 실시예들에서, 하류 고속 축 광학물품(144‘)은 출력 빔(172)의 추가 초점조정(focusing) 및/또는 이미징(imaging) 및/또는 가공(treatment)을 위해 제공된다.
주사 시스템의 작동
일부 실시예들에서, 장치(10)는, 치료 영역들의 하나 이상의 주사 열들 또는 어레이들(중첩 또는 비 중첩)이 장치(10)의 각 위치에 전달된 상태에서, 장치(10)가 피부의 각각 다른 위치들에 비교적 부동 상태로 유지되는 "스탬핑 모드"로 사용되도록 구성될 수 있다. 그래서, 원하는 대로 타깃 구역(40)을 덮기 위하여, 장치(10)는 피부의 제1 위치에 놓여질 수 있고, 그 후에 장치(10)가 비교적 부동 상태로 유지되는 동안에 치료 영역들의 하나 이상의 주사 열들 또는 어레이들이 피부에 전달될 수 있으며, 그리고 나서 장치(10)가 새로운 위치로 -- 장치(10)를 들고 그것을 재위치하거나 또는 피부의 표면을 가로질러 장치(10)를 글라이딩시킴(gliding)으로써 -- 이동될 수 있으며, 그 위치에서 그 후에 치료 영역들의 하나 이상의 주사 열들 또는 어레이들이 전달될 수 있다.
도 13a 및 13b는 장치(10)를 피부의 한 위치에 부동 상태로 유지한 상태에서(스탬핑 모드로 작동 중에), 빔 주사 시스템(142)에 의한 광선 빔의 한 번의 스캔에 의해 전달된 치료 구역들(150)의 예시적인 패턴을 도시하고, 서로 다른 치료 구역 폭들 또는 치료 구역들 간에 측면 간격으로부터 생성된 예시적인 패턴들을 도시한다.
특히, 도 13a는 치료 구역들(150)이 주사 방향으로 떨어져 이격된 예시적인 패턴을 도시하고, 반면에 도 13b는 연장선을 형성하도록 치료 구역들(150)이 주사 방향으로 한 줄로 정렬된 예시적인 패턴을 도시한다. 치료 구역들(150) 간에 상대 간격은 레이저 다이오드 바(14)의 형상 및 치수에 관한 인자, 주사 시스템(142)의 형상(예, 주사 요소(200)의 편향 섹터(104)의 형상 및/또는 방향), 근접 갭 간격 등으로 선택될 수 있다.
또한, 도 13a 및 13b는 주사 방향으로 정렬된 치료 구역들(150)의 연장된 방향을 보여주고 있지만, 치료 구역들(150)의 연장된 방향은, 예를 들어 레이저 엔진(12)을 장치 하우징(24)에 대하여 회전(예, 90°)시킴으로써, 주사 방향과 직교되거나 또는 그와 반대로 주사 방향에 대하여 정렬될 수 있다.
기타 실시예들에서, 위에서 설명한 바와 같이, 장치(10)는, 주사된 방사선을 타깃 구역(40)으로 전달하는 동안, 장치가 피부를 가로질러 수동으로 드래그(dragged)되거나 글라이드되는 “글라이딩 모드(gliding mode)”로 사용되도록 구성될 수 있다. 주사시스템(142)은, 장치(10)가 피부를 가로질러 글라이딩되고, 그래서 타깃 구역(40) 상에 치료 구역들의 일반적으로 2차원 어레이를 생성할 때, 타깃 구역(40)에 치료 구역들의 열들을 반복적으로 주사할 수 있다.
도 14는 빔 주사시스템을 포함하는 장치에 의한 광선 빔의 2회 주사를 통해 전달된, 상기 장치의 수동 글라이딩 모드에서의 치료 구역들(150)의 예시적인 어레이를 도시한다. 특히, 도면은 열들(154A, 154B)로서 표시된, 글라이딩 방향으로 정렬된 치료 구역들(150)의 2개의 주사 열들(152)을 보여주며, 이것은 치료 구역들(150)의 2차원 어레이(156)를 형성한다. 각 열(154)은, 각 열(154)에서 각각의 치료 구역들(150)의 연속적인 전달 동안에, 장치의 이동으로 인해, 주사 방향에 대하여 일반적으로 대각선으로 정렬된다.
각 열(72)이 주사 방향에 대하여 대각선으로 정렬되는 정도는, 글라이드 방향으로 정렬된 인접한 치료 구역들의 간격에 영향을 줄 수 있으며, 수동 글라이드 속력(즉, 장치(10)가 피부를 가로질러 글라이딩되는 속력) 및 주사율(즉, 치료 구역들이 피부에 연속적으로 전달되는 율(rate) 및 주사(scan)들 사이의 시간)을 포함하는 다중 변수의 인자들이다. 일부 실시예들에서, 주사율 또는 주사율의 특정 양상들(예, 펄스 온 타임, 펄스 오프 타임, 펄스 주파수 등)은 제어 시스템(18)에 의해 자동적으로 사용자에 의해 수동적으로, 또는 상기 자동 및 수동적으로 선택 또는 조정될 수 있다.
또한, 주사 방향의 인접한 치료 구역들 사이의 거리는 주사율, 인접한 치료 구역들의 중심점들 간에 거리, 및 각각의 치료 구역들의 크기 및 형상을 포함하는 다중 변수의 인자들이며, 이 변수들은 주사시스템(142)의 광학물품의 구성 또는 기타 인자들에 의해 정의될 수 있다. 일부 실시예들에서, 이들 변수들의 하나 또는 모두는 제어시스템(18)에 의해 자동으로, 사용자에 의해 수동으로, 또는 상기 자동 및 수동으로 선택 또는 조정될 수 있다. 일부 실시예들 또는 장치 설정들에서, 주사 방향의 인접한 치료 구역들은 비-조사 피부의 구역들만큼 서로 이격되어 있고, 그래서 부분 치료를 제공한다. 일부 실시예들 또는 장치 설정들에서, 주사 방향의 인접한 치료 구역들은, 방사선 조사 구역들의 접촉하고 있는 열들을 제공하기 위하여, 서로 에지-대-에지(edge-to-edge) 인접하거나 또는 서로 중첩될 수 있다. 이러한 접촉하고 있는 열들은 서로 글라이드 방향으로 이격되거나, 서로 에지-대-에지 인접하거나, 또는 서로 중첩하여, 위에 설명된 인자들과 같은 다양한 인자들에 의해 정의된, 완전 피복(즉, 비-부분) 조사 구역을 제공할 수 있으며, 이 인자들은 수동 및/또는 자동적으로 선택 또는 조정되거나 그렇지 않을 수도 있다.
그래서, 치료 구역들이 글라이드 방향과 주사 방향 모두에서 서로 이격되어 있는, 도 14에 보여진 치료 구역들의 부분 패턴은 단지 하나의 예시적 패턴이라는 것이 명백할 것이다. 장치(10) 및 특히 주사시스템(142)은 매우 다양한 치료 구역 패턴들을 제공하도록 구성될 수 있다.
주사시스템(142)은 타깃 구역(40)에 치료 구역들의 패턴을 형성하기 위하여 임의의 적합한 광학물품 및 각각의 광선 빔을 주사하여 빔들의 순차적으로 전달된 어레이로 주사하기 위한 다른 요소들을 포함할 수 있다. 예를 들면, 아래에 설명된 바와 같이, 주사시스템(142)은 연속적으로 전달된 출력 빔들의 어레이를 제공하도록 단일 입력 광선 빔을 연속적으로 편향시키는(예, 편향값으로 반사하거나 또는 전달하는) 다수의 편향 섹터들을 갖는 회전 요소를 포함할 수 있다. 일부 실시예들에서, 회전 요소는, 예를 들면 일반적으로 원판-형상, 또는 일반적으로 컵 형상일 수 있다. 편향 섹터들은 회전 요소의 원주 둘레에 배열될 수 있고, 편향 출력 빔들의 연속적인 어레이를 제공하기 위하여 입사 광선 빔을 각각 다른 각들로 연속적으로 편향시키도록 구성될 수 있다. 편향된 출력 빔들의 이 어레이는 타깃 구역(40)에 직접 전달되거나, 또는 타깃 구역(40)에 전달되기 전에 부가 광학물품에 의해 영향을 받을 수 있다. 예를 들면, 광학물품은 타깃 구역(40)에 전달되기 전에 편향된 빔들의 어레이를 평행하게 하기 위하여 제공될 수 있다.
위에서 설명된 예시적인 실시예들은 글라이딩 모드용으로 구성된 장치들, 및 스탬핑 모드용으로 구성된 장치들을 포함한다. 일부 실시예들에서, 장치(10)는 글라이딩 모드 및 스탬핑 모드에 모두 사용하도록 구성될 수 있다.
도 15는 일부 실시예들에 따른, 회전요소(200)의 기본 구조를 도시한다. 요소(200)는 축 A를 기준으로 회전하도록 구성된 본체(202)를 갖는다. 본체(202)는 본체(202)의 원주 또는 주위에 일반적으로 배열되며 입력 빔(110)을 서로 오프셋된 출력 빔들(172)의 어레이 내로 편향시키도록 구성된 복수의 섹터들(204)을 포함한다. 특정 실시예에 따라서, 각 섹터(204)는 예시적 화살표(210A)로 표시한 바와 같이, 입력 빔(170)을 투과시키지만 편향시키고(예, 투과 요소), 또는 예시적 화살표(210B)로 표시한 바와 같이, 입력 빔을 반사한다(예, 반사 요소). 각 개별적인 섹터(204)가 입력 빔(170)을 헤치고 회전할 때, 해당 출력 빔(172)의 편향이 일정하거나 또는 거의 일정하게 유지될 수 있고 따라서 각 출력 빔(172)은 장치(10)에 대하여 부동이거나 또는 거의 부동이다. 대안적으로, 각 출력 빔(172)의 편향은 해당 섹터(204)의 입력 빔(170)을 통한 회전 동안에 변할 수 있고 따라서 각 출력 빔(172)은 패턴, 예를 들면 선 또는 호를 그린다.
또한, 오프셋 출력 빔들(172)(예, 주사 방향에 따라 오프셋됨)의 어레이를 생성하기 위하여 입력 빔(170)을 편향시키는 것 이외에, 각 섹터(204)는 하나 이상의 축에서 입력 빔(170)에 추가로 영향을 줄 수 있다. 예를 들면, 각 섹터(204)는, 투과성 원판 또는 컵 형상 주사 요소들에 대하여 위에 제공된 예들과 유사하게, 광 출력을 제공하는 반사 표면에서 곡률을 가짐으로써 입력 빔(170)에 추가로 영향을 줄 수 있다. 예를 들어, 편향 이외에, 각 섹터(204)는 저속 축 광학물품 및/또는 고속 축 광학물품으로서 추가로 작동을 할 수 있다. 일부 실시예들에서, 각 섹터(204)는 입력 빔(170)을 저속 축 방향에서 편향시킬 수 있고, 또한 입력 빔(170)의 수렴/발산에 영향을 줄 수 있다. 예를 들면, 요소(200)는 저속 축 방향으로 발산하는 입력 빔(170)을 수광할 수 있으며, 그리고 각 섹터(204)는, 예를 들어, 각각의 평행하게 되거나, 집속되거나 또는 유사-집속된 출력 빔들(172)이 치료 구역들을 생성하기 위하여 타깃 구역에 전달될 수 있도록, (a) 특정 정도로 입력 빔(170)을 편향시키고, 그리고 (b) 발산 빔을 평행하거나 또는 수렴하는 빔으로 전환할 수 있다.
위에서 설명된 요소(100) 및 섹터들(204)의 다양한 양상들에 더하여, 일부 실시예들에서, 각각의 섹터들(204)은, 그 섹터(204)가 입력 빔(170)을 헤치고 회전할 때, 일정한 각 편향(angular deflection)을 갖는 출력 빔들(172)을 생성하도록 구성될 수 있다.
각 섹터(204)(또는 섹터들(204)중 적어도 일부)는 "일정한 각 편향" 섹터일 수 있고, 이 섹터는, 입력 빔(170)에 대한 출력 빔(172)의 각 편향이 이 섹터(204)가 입력 빔(170)을 헤치고 회전할 때 실질적으로 일정하게 유지되도록 입력 빔(170)을 편향시키는 섹터로서 정의된다. 달리 말하면, 각 출력 빔(172)의 각 방향(angular direction)은, 각 대응하는 섹터(204)가 입력 빔(170)을 헤치고 회전하는 시간 동안에, 입력 빔(170)에 대하여(및 장치(10)의 구조물에 대하여) 실질적으로 일정하게 유지된다. 일부 요소들(200)은 서로 각각 다른 일정한 각도들에서 전파되는 일정한 각 편향 출력 빔들(172)의 어레이를 생성한다.
그래서, 일정한 각 편향 섹터들(204)을 가지고, 장치(10)가 사용자의 피부에 대하여 부동의 상태로 유지된다면, 다음 연속적인 섹터(204)가 입력 빔(170)의 통로로 회전될 때까지 각 출력 빔(172)은 타깃 구역(40)에서 특정 점에 실질적으로 머물 것이고, 회전시 빔은 다음 연속적인 출력 빔(172)에 대응하는 새로운 위치로 “점프”한다. 그래서, 장치(10)가 사용자의 피부에 대하여 부동의 상태로 유지된다면, 일정한 각 편향 섹터들(204)은 피부에 실질적으로 부동의 치료 구역들을 제공한다.
그러나, 위에서 설명된 바와 같이, 적어도 일부 실시예들 또는 동작 모드들에서, 장치(10)는 피부를 가로질러 글라이딩되는 면도기와 유사한 방식으로, 동작 동안에 피부의 표면을 가로질러 글라이딩되도록 설계된다. 그래서, 일정한 각 편향 섹터들(204)을 갖는 시스템에서, 각 출력 빔(172)은 각 치료 구역이 피부에 대하여 이동하여, 그 결과 글라이딩의 방향에서 늘어나기(elongation), "되묻음(smearing)" 또는 "흔들림(blurring)"을 일으키도록, 장치(10)가 피부를 가로질러 글라이딩될 때, 피부에 대하여 이동한다. 그러나, 각각의 치료 구역들의 이 되묻음에도 불구하고, 충분한 열 에너지가 적어도 작동 매개변수들의 범위내에서, 타깃 구역(40)에 원하는 영향을 제공하도록 부피당 전달에너지에 근거하여 치료 구역들에 제공될 수 있다. 예를 들면, 장치(10)가 극히 빠르게 피부를 가로질러 글라이딩하지 않는 한, 원하는 효과가 제공될 수 있다. 또한, 선택된 설계 및/또는 동작 매개변수들(예, 치료 구역 크기 및/또는 형상, 빔 세기, 전달 출력 빔들의 플루엔스 및/또는 세기 프로파일, 펄스 지속시간 및/또는 주파수, 회전요소(200)의 회전속도, 등)의 함수로서, 방사선 조사된 또는 영향받은 조직의 부피 당 전달 에너지의 원하는 레벨을 얻는데 약간의 양의 되묻음이 실제적으로 유익할 수 있다. 그래서, 특정 실시예들에서, "일정한 각 편향" 섹터들이 원하는 치료 효과들을 얻는데 사용될 수 있다.
일부 실시예들에서, 글라이딩에 의해 생긴 되묻음은 부분적으로 또는 전체적으로 보상될 수 있다. 예를 들면, 섹터들(204)은 (a)(되묻음이 없는) 비-글라이드 방향에서 실질적으로 부동이도록 그리고 (b)글라이드 방향에서 글라이딩과 동일한 율 또는 거의 동일한 율로 (일반적으로 되묻음이 있는) 빔을 이동시켜, 되묻음을 보상하거나 또는 부분적으로 보상하도록, 구성될 수 있다. 이 실시예들에서, 되묻음 보상이 유효하도록 글라이딩 율이 예정된 범위들 내에 있다는 것을 확실히 하기 위하여, 글라이드 율(glide rate) 센서는 사용자 또는 장치에 피드백을 제공할 수 있다.
일부 예시적 실시예들 및 예시적 작동 매개변수들
여기에 설명된 임의의 다양한 특징들 및 구성들은 다양한 각각 다른 치료들을 제공하기 위하여, 임의의 적합한 수단에 결합될 수 있다. 예시적 매개변수 값들을 갖는 일부 예시적 구성들이 아래에 제공된다. 이것들은 단지 예시적인 것임이 이해될 것이다.
1. 예를 들어 제모 및 피부 조임과 같은 치료를 위한 연속파(CW) 방사선을 이용하여 장치를 레이저 다이오드 바의 장방향에 수직으로 글라이딩시키는 글라이딩 모드로 작동하는, 고 충전율 레이저 다이오드 바를 사용하는 직접 노출 실시예.
Figure pct00003

2. 부분 치료를 위한, 예를 들어 안티-에이징, 주름 치료, 피부 재 서페이싱, 등을 위한 펄스 방사선을 이용하여 장치를 레이저 다이오드 바의 장방향에 수직으로 글라이딩시키는 글라이딩 모드로 작동하는, 고 충전율 레이저 다이오드 바를 사용하는 직접 노출 실시예. 레이저 다이오드 바의 각 펄스는 복수의 이미터로부터의 집합 빔에 대응하는 하나의 치료 구역을 생성한다.
Figure pct00004

3. 부분 치료를 위한 펄스 방사선을 이용하여 장치를 레이저 다이오드 바의 장방향에 수직으로 글라이딩시키는 글라이딩 모드로 작동하는, 저 충전율 레이저 다이오드 바를 사용하는 직접 노출 실시예. 레이저 다이오드 바의 각 펄스는 레이저 다이오드 바의 이미터들 중 하나에 각각 대응하는 복수의 분리된 치료 구역들을 생성한다.
Figure pct00005

여기에 설명된 특정 실시예들은 단지 설명하기 위한 것이며, 본 발명은 변형되고 각각 다르게 실시될 수 있지만, 그와 대등한 수단들이 이 분야에서 통상의 기술을 갖고 여기서의 교훈의 이점을 갖는 자들에게 명백할 수 있다. 한편, 수치 변경들이 이 기술에서 통상의 기술을 가진 자들에 의해 이루어질 수 있으며, 이러한 변경은 첨부된 특허청구범위에 의해 정의된 바와 같이 본 발명의 사상 및 범주 내에서 포함된다. 또한, 여기에 보여진 세부 구성 또는 설계에 한정되지 않는다. 따라서, 위에서 설명된 특정한 예시적 실시예들은 변경되거나 변형될 수 있으며 이러한 변화들은 본 발명의 범주 및 사상 안에 있음이 확인된다.

Claims (27)

  1. 피부 치료 장치로서,
    장치 몸체;
    조직의 타깃 구역에 전달하기 위한 레이저 방사선을 생성하도록 구성되고 충전율이 적어도 50%인 레이저 다이오드 바;
    전원;
    레이저 다이오드 바가 레이저 빔을 생성하도록 전원으로부터 상기 레이저 다이오드 바로 전력을 제공하도록 구성된 제어 전자장치를 포함하고,
    상기 장치는 피부 치료를 제공하기 위해 상기 생성된 레이저 빔을 타깃 구역에 전달하도록 구성된 것을 특징으로 하는 피부 치료 장치.
  2. 제 1항에 있어서,
    상기 레이저 다이오드 바는 충전율이 적어도 75%인 피부 치료 장치.
  3. 제 1항에 있어서,
    상기 장치 몸체는 레이저 방사선의 전동 동안에 피부와 접촉되도록 구성된 적용 단부를 포함하고,
    상기 레이저 다이오드 바는, 상기 적용 단부가 피부와 접촉되어 있을 때 상기 레이저 다이오드 바의 방출 표면이 피부 표면으로부터 5 mm 미만으로 이격되도록 배치되며,
    상기 레이저 다이오드 바는 실질적으로 균일한 치료 구역을 피부 표면에 제공하는 피부 치료 장치.
  4. 제 1항에 있어서,
    상기 레이저 다이오드 바는 1400 650 nm와 2000 1100 nm 사이의 파장에서 방사선을 방출하는 피부 치료 장치.
  5. 제 41항에 있어서,
    상기 레이저 다이오드 바는 약 810 nm의 파장에서 방사선을 방출하는 피부 치료 장치.
  6. 제 1항에 있어서,
    상기 레이저 다이오드 바는 1400 nm와 2000 nm 사이의 파장에서 방사선을 방출하는 피부 치료 장치.
  7. 제 1항에 있어서,
    상기 장치 몸체는 치료 동안에 피부의 표면을 가로질러 이동되도록 구성된 적용 단부를 포함하고, 그리고
    상기 제어 전자장치는 상기 적용 단부가 피부의 표면을 가로질러 이동하는 동안 연속파(CW) 방사선을 생성하기 위해 레이저 다이오드 바를 제어하도록 구성되며, 그에 따라 피부를 가로지르는 장치의 이동 방향으로 연속 치료 구역이 형성되는 피부 치료 장치.
  8. 제 1항에 있어서,
    상기 장치는 조직에 부분 치료를 제공하기 위해, 인접한 치료 구역들 사이의 비-조사된 피부의 구역들에 의해 서로 이격된 치료 구역들을 피부에 생성하도록, 일련의 빔을 피부에 실질적으로 전달하도록 구성되는 피부 치료 장치.
  9. 제 1항에 있어서,
    상기 레이저 다이오드 바의 하류에 배치되고, 조직에 부분 치료를 제공하기 위해, 인접한 치료 구역들 사이의 비-조사된 피부의 구역에 의해 서로 이격된 치료 구역들의 패턴을 피부에 형성하도록 빔을 주사하도록 구성된 빔 주사시스템을 더 포함하는 피부 치료 장치.
  10. 제 1항에 있어서,
    상기 장치 몸체는 치료 동안에 피부의 표면을 가로질러 이동되도록 구성된 적용 단부를 포함하고, 그리고
    상기 제어 전자장치는 상기 적용 단부가 피부의 표면을 가로질러 이동하는 동안 치료 구역들을 피부에 생성하기 위해 피부에 일련의 빔을 실질적으로 전달하도록 상기 레이저 다이오드 바를 펄스화하도록 구성되며, 그에 따라 피부에 생성된 인접한 치료 구역들이 상기 인접한 치료 구역들 사이의 치료되지 않은 피부의 구역들에 의해 서로 이격되는 피부 치료 장치.
  11. 제 1항에 있어서,
    상기 장치 몸체는 치료 동안에 피부의 표면을 가로질러 이동되도록 구성된 적용 단부를 포함하고, 그리고
    상기 제어 전자장치는, 상기 적용 단부가 피부의 표면을 가로질러 이동하는 동안에 연속파(CW) 방사선을 생성하기 위해 상기 레이저 다이오드 바를 제어하도록 구성되고, 그에 따라 피부를 가로지르는 장치의 이동 방향으로 연속 치료 구역이 형성되는 피부 치료 장치.
  12. 제 1항에 있어서,
    상기 빔은 적어도 하나의 입사 방향으로 피부 표면에 발산되는 피부 치료 장치.
  13. 제 1항에 있어서,
    상기 장치는 레이저 다이오드 바의 하류에 광학 구동식 광학물품을 포함하지 않는 피부 치료 장치.
  14. 제 1항에 있어서,
    상기 레이저 다이오드 바의 하류에 디퓨저를 더 포함하는 피부 치료 장치.
  15. 제 14항에 있어서,
    상기 장치는 레이저 방사선의 전달 동안에 피부와 접촉되도록 구성된 적용 단부를 포함하고,
    상기 레이저 다이오드 바는, 상기 적용 단부가 피부와 접촉되어 있을 때 상기 레이저 다이오드 바의 방출 표면이 피부 표면으로부터 5 mm 미만 만큼 이격되도록 배열되는 피부 치료 장치.
  16. 제 14항에 있어서,
    상기 디퓨저의 하류에 윈도우를 더 포함하는 피부 치료 장치.
  17. 제 16항에 있어서,
    상기 장치는 레이저 방사선의 전달 동안에 피부와 접촉되도록 구성된 적용 단부를 포함하고,
    상기 레이저 다이오드 바는, 상기 적용 단부가 피부와 접촉되어 있을 때 상기 레이저 다이오드 바의 방출 표면이 피부 표면으로부터 5mm 미만 만큼 이격되도록 배열되는 피부 치료 장치.
  18. 피부 치료 장치로서,
    장치 몸체;
    조직의 타깃 구역에 전달하기 위한 레이저 방사선을 생성하도록 구성된 레이저 다이오드 바;
    레이저 다이오드 바가 레이저 빔을 생성하도록 상기 레이저 다이오드 바에 전력을 제공하도록 구성된 전원 및 제어 전자장치를 포함하고,
    상기 장치는 레이저 다이오드 바의 하류에 광학 구동식 광학물품을 포함하지 않는 피부 치료 장치.
  19. 제 18항에 있어서,
    상기 레이저 다이오드 바는 충전율이 적어도 50%인 피부 치료 장치.
  20. 제 18항에 있어서,
    상기 장치는 레이저 방사선의 전달 동안에 피부와 접촉되도록 구성된 적용 단부를 포함하고,
    상기 레이저 다이오드 바는 상기 적용 단부가 피부와 접촉되어 있을 때 상기 레이저 다이오드 바의 방출 표면이 피부 표면으로부터 5mm 미만 만큼 이격되도록 배열되는 피부 치료 장치.
  21. 제 18항에 있어서,
    상기 장치는 비자동화 이동 부품들을 구비한 완전 고체 상태인 피부 치료 장치.
  22. 제 18항에 있어서,
    상기 빔은 적어도 하나의 입사 방향으로 피부 표면에 발산되는 피부 치료 장치.
  23. 피부 치료 장치로서,
    장치 몸체;
    조직의 타깃 구역에 전달하기 위한 레이저 방사선을 생성하도록 구성된 레이저 다이오드 바;
    레이저 다이오드 바가 조직의 타깃 구역에 전달하기 위한 레이저 빔을 생성하도록 상기 레이저 다이오드 바에 전력을 제공하도록 구성된 전원 및 제어 전자장치;
    피부 치료를 제공하기 위해 레이저 빔이 조직의 타깃 구역에 전달되는 동안에 피부의 표면을 가로질러 이동되도록 구성된 적용 단부를 포함하는 피부 치료 장치.
  24. 제 23항에 있어서,
    상기 제어 전자장치는 피부의 표면을 가로지르는 상기 적용 단부의 이동 동안 연속파(CW) 방사선을 생성하기 위해 상기 레이저 다이오드 바를 제어하도록 구성되고, 그에 따라 피부를 가로지르는 상기 장치의 이동 방향으로 연속 치료 구역이 형성되는 피부 치료 장치.
  25. 제 23항에 있어서,
    상기 제어 전자장치는 피부의 표면을 가로지르는 상기 적용 단부의 이동 동안 피부에 치료 구역들을 생성하기 위해 일련의 빔을 피부에 실질적으로 전달하도록 상기 레이저 다이오드 바를 펄스화하도록 구성되고, 그에 따라 피부에 생성된 인접한 치료 구역들이 상기 인접한 치료 구역들 사이의 치료되지 않은 피부의 구역들에 의해 서로 이격되는 피부 치료 장치.
  26. 제 23항에 있어서,
    상기 레이저 다이오드 바는 충전율이 적어도 50%인 피부 치료 장치.
  27. 제 23항에 있어서,
    상기 레이저 다이오드 바는, 상기 적용 단부가 피부와 접촉되어 있을 때 상기 레이저 다이오드 바의 방출 표면이 피부 표면으로부터 5mm 미만 만큼 이격되도록 배열되는 피부 치료 장치.
KR1020147017282A 2011-11-23 2012-11-21 하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치 KR102138736B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161563491P 2011-11-23 2011-11-23
US61/563,491 2011-11-23
US13/426,206 2012-03-21
US13/426,206 US9173708B2 (en) 2011-03-30 2012-03-21 Dermatological treatment device with one or more laser diode bar
PCT/US2012/066261 WO2013078314A1 (en) 2011-11-23 2012-11-21 Dermatological treatment device with one or more laser diode bar

Publications (2)

Publication Number Publication Date
KR20140099509A true KR20140099509A (ko) 2014-08-12
KR102138736B1 KR102138736B1 (ko) 2020-07-29

Family

ID=47521135

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147017282A KR102138736B1 (ko) 2011-11-23 2012-11-21 하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치

Country Status (3)

Country Link
US (1) US9173708B2 (ko)
KR (1) KR102138736B1 (ko)
WO (1) WO2013078314A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083253A1 (ko) * 2017-10-25 2019-05-02 주식회사 루트로닉 치료용 레이저 장치

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406448B2 (en) * 2011-02-03 2022-08-09 Channel Investments, Llc Devices and methods for radiation-based dermatological treatments
EP2707929A4 (en) * 2011-05-10 2015-04-29 Obzerv Technologies Inc LOW INDUCTIVE LASER DIODE BAR MOUNT
JP5927351B2 (ja) * 2012-10-09 2016-06-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 皮膚治療装置
GB201220795D0 (en) * 2012-11-19 2013-01-02 Sagentia Ltd Hair removal device and method
US20150032092A1 (en) * 2013-07-26 2015-01-29 Yossef Ori ADANNY Image-based cosmetic skin treatment system
EP2915500A1 (en) * 2014-03-07 2015-09-09 Syneron Medical Ltd. A multi-wavelength laser device for skin treatment
US10568690B2 (en) * 2014-11-10 2020-02-25 Sanhe Laserconn Tech Co., Ltd. High power VCSEL laser treatment device with skin cooling function and packaging structure thereof
US10326252B2 (en) 2015-05-06 2019-06-18 Microsoft Technology Licensing, Llc Beam projection for fast axis expansion
FI20155784A (fi) 2015-11-02 2017-05-03 Cryotech Nordic Oü Automatisoitu järjestelmä laser-avusteiseen dermatologiseen hoitoon ja ohjausmenetelmä
WO2017215609A1 (en) * 2016-06-15 2017-12-21 Hong Kong Health And Beauty Limited Devices and methods to remove hair
WO2018068248A1 (en) 2016-10-13 2018-04-19 Stanley Black & Decker, Inc. Power tool
EP3586161A4 (en) * 2017-03-31 2020-02-26 Huawei Technologies Co., Ltd. SCANNING AND TELEMETRY APPARATUS AND METHOD WITH EYE SAFETY PATTERN
US11612760B2 (en) 2018-06-14 2023-03-28 Lumenis Be Ltd. Cosmetic method and apparatus for the treatment of skin tissue using two wavelengths of laser energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518612A (ja) * 2003-02-25 2006-08-17 スペクトラジェニクス インコーポレイテッド 目に安全な内蔵型毛再生抑制装置および方法
US20070198004A1 (en) * 2002-05-23 2007-08-23 Palomar Medical Technologies, Inc. Photocosmetic device
JP2008517279A (ja) * 2004-10-15 2008-05-22 トリコ プロダクツ コーポレーション オブ テネシー Vcsel型ダイオードアレイを用いた物体検出システム
WO2009111010A1 (en) * 2008-03-03 2009-09-11 Seminex Corp. Portable semiconductor diode laser for medical treatment
JP2009541002A (ja) * 2006-06-26 2009-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 皮膚の処理のためのデバイス及び方法、並びに当該デバイスの使用
WO2011010239A1 (en) * 2009-07-20 2011-01-27 Koninklijke Philips Electronics N.V. Light application apparatus for applying light to an object

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541949A (en) 1995-01-30 1996-07-30 Bell Communications Research, Inc. Strained algainas quantum-well diode lasers
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
EP1146617A3 (en) 2000-03-31 2003-04-23 Matsushita Electric Industrial Co., Ltd. High-powered semiconductor laser array apparatus
US20060004306A1 (en) * 2004-04-09 2006-01-05 Palomar Medical Technologies, Inc. Methods and products for producing lattices of EMR-treated islets in tissues, and uses therefor
GB2381752A (en) 2001-11-06 2003-05-14 Ezio Panzeri Laser skin treatment device with control means dependent on a sensed property of the skin to be treated
US7282047B2 (en) 2003-02-04 2007-10-16 Lumenis Ltd. Moving energy source
JP4361082B2 (ja) 2003-02-25 2009-11-11 トリア ビューティ インコーポレイテッド 内蔵型ダイオードレーザ利用皮膚病学的処置装置
US7452356B2 (en) 2003-02-25 2008-11-18 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus
US20060009749A1 (en) 2004-02-19 2006-01-12 Weckwerth Mark V Efficient diffuse light source assembly and method
US20090069741A1 (en) 2004-04-09 2009-03-12 Palomar Medical Technologies, Inc. Methods And Devices For Fractional Ablation Of Tissue For Substance Delivery
US20080077200A1 (en) 2006-09-21 2008-03-27 Aculight Corporation Apparatus and method for stimulation of nerves and automated control of surgical instruments
EP2032064A2 (en) * 2006-06-27 2009-03-11 Palomar Medical Technologies, Inc. Handheld photocosmetic device
JP5250552B2 (ja) 2006-07-13 2013-07-31 リライアント・テクノロジーズ・リミテッド・ライアビリテイ・カンパニー 調節可能な部分的光学皮膚科的治療のための装置および方法
US9072533B2 (en) 2011-03-30 2015-07-07 Tria Beauty, Inc. Dermatological treatment device with one or more multi-emitter laser diode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070198004A1 (en) * 2002-05-23 2007-08-23 Palomar Medical Technologies, Inc. Photocosmetic device
JP2006518612A (ja) * 2003-02-25 2006-08-17 スペクトラジェニクス インコーポレイテッド 目に安全な内蔵型毛再生抑制装置および方法
JP2008517279A (ja) * 2004-10-15 2008-05-22 トリコ プロダクツ コーポレーション オブ テネシー Vcsel型ダイオードアレイを用いた物体検出システム
JP2009541002A (ja) * 2006-06-26 2009-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 皮膚の処理のためのデバイス及び方法、並びに当該デバイスの使用
WO2009111010A1 (en) * 2008-03-03 2009-09-11 Seminex Corp. Portable semiconductor diode laser for medical treatment
WO2011010239A1 (en) * 2009-07-20 2011-01-27 Koninklijke Philips Electronics N.V. Light application apparatus for applying light to an object
KR20120049274A (ko) * 2009-07-20 2012-05-16 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 피사체에 광을 조사하는 광 조사 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083253A1 (ko) * 2017-10-25 2019-05-02 주식회사 루트로닉 치료용 레이저 장치
KR20190046223A (ko) * 2017-10-25 2019-05-07 주식회사 루트로닉 치료용 레이저 장치

Also Published As

Publication number Publication date
KR102138736B1 (ko) 2020-07-29
US20120253331A1 (en) 2012-10-04
US9173708B2 (en) 2015-11-03
WO2013078314A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
KR102138736B1 (ko) 하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치
JP6357201B2 (ja) 放射線ベースの皮膚科治療のデバイスおよび方法
US9072533B2 (en) Dermatological treatment device with one or more multi-emitter laser diode
JP6434940B2 (ja) 放射線ベースの皮膚科治療のためのデバイスおよび方法
KR20140147856A (ko) 하나 이상의 수직 캐비티 표면 방출 레이저(vcsel)를 구비한 피부 치료 장치
WO2013116603A1 (en) Dermatological treatment device with one or more multi-emitter laser diode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant