KR20140097746A - 플라즈마 공정챔버 - Google Patents

플라즈마 공정챔버

Info

Publication number
KR20140097746A
KR20140097746A KR1020130010166A KR20130010166A KR20140097746A KR 20140097746 A KR20140097746 A KR 20140097746A KR 1020130010166 A KR1020130010166 A KR 1020130010166A KR 20130010166 A KR20130010166 A KR 20130010166A KR 20140097746 A KR20140097746 A KR 20140097746A
Authority
KR
South Korea
Prior art keywords
light
wafer
optical
thickness
reflector
Prior art date
Application number
KR1020130010166A
Other languages
English (en)
Other versions
KR101453819B1 (ko
Inventor
우범제
김고은
윤석문
박노영
Original Assignee
우범제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우범제 filed Critical 우범제
Priority to KR1020130010166A priority Critical patent/KR101453819B1/ko
Publication of KR20140097746A publication Critical patent/KR20140097746A/ko
Application granted granted Critical
Publication of KR101453819B1 publication Critical patent/KR101453819B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명은 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버에 관한 것으로, 그 목적은 플라즈마 공정챔버에서 웨이퍼의 식각공정이 진행되는 동안에도 웨이퍼의 두께측정이 가능하도록 하는 것이다.
이러한 목적으로 이루어진 본 발명에 따른 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버는, 웨이퍼 두께를 측정하기 위해 필요한 광(光)을 출력하는 광출력장치와;
상기 광출력장치에서 출력되는 광을 반사시켜 상기 플라즈마 공정챔버 내부에 구비된 웨이퍼에 입사(入射)시키고, 그 입사된 광을 다시 반사시키는 반사체와;
상기 집광렌즈에서 반사된 광을 수광하고, 이 수광된 광을 분광하여 투과율과 흡수율을 측정하는 광측정장치와;
상기 광측정장치에서 측정된 흡수율과 투과율 데이터를 분석하고, 이를 통해 실시간으로 웨이퍼의 두께를 측정할 수 있도록 웨이퍼 두께 측정의 알고리즘이 구성된 컨트롤러로 이루어진다.
이에 따라, 플라즈마 공정챔버에서 웨이퍼의 식각공정이 진행되는 동안에도 웨이퍼의 두께측정이 가능함에 따라 웨이퍼의 종말점 검출이 용이하고, 공정이 진행되는 동안 플라즈마 상태를 모니터링할 수 있으므로, 웨이퍼의 불량원인을 원천적으로 제거할 수 있는 이점이 있다.

Description

실시간 공정진단 장치를 갖춘 플라즈마 공정챔버{A PLASMA PROCESS CHAMBER HAVE A REAL TIME PROCESS DIAGNOSIS EQUIPMENT}
본 발명은 플라즈마 공정챔버에 관한 것으로, 더욱 상세하게는 플라즈마 공정챔버 내에 구비된 웨이퍼에 시행되는 사진, 식각, 확산, 증착 등의 공정진행 중 실시간으로 웨이퍼 두께측정과 플라즈마 공정을 모니터링 할 수 있는 실시간 공정진단장치를 갖춘 플라즈마 공정챔버에 관한 것이다.
일반적으로, 공정챔버 내에 구비되는 웨이퍼에 시행하는 사진, 식각(Etching), 확산, 증착등의 공정을 시행하고, 각 공정별로 웨이퍼두께를 측정하는 기술에 대해서는 여러가지가 알려져 오고 있다.
예를 들면, 식각(Etching)공정이 그 대표적인 공정인데, 이 공정은 특정 박막을 식각(Etching)하면서 발생하는 부산물이나 식각에 관여하는 플라즈마의 광방출분석(OES : Optical Emission Spectroscopy)신호를 검출하여 특정박막이 다 드러나고 새로운 박막의 플라즈마 신호가 달라지는 것을 검출하여 식각 종말점을 검출하는 방식을 취하는 방식이다.
즉, 종래의 웨이퍼 두께 측정기술은 모든 공정이 종료(식각 또는 증착)된 후, 웨이퍼를 공정챔버에서 꺼내서 별도의 측정 장비에서 레이져나 할로겐 혹은 제논램프의 빛을 기판에 입사시켜 원래의 빛과 반사되어 나오는 빛을 검출함으로써, 웨이퍼의 두께를 측정하였다.
그러나, 상기한 바와 같은 종래의 기술은 웨이퍼상에 형성되는 식각 깊이를 실시간으로 측정하지 못함으로서, 공정도중 웨이퍼의 두께를 실시간으로 확인할 수 없는 문제가 있었다.
또한, 공정챔버에서 공정이 종료된 웨이퍼를 꺼내서 측정하고 소망하는 두께 형성이 되지 않을 때, 재 가공하는 과정에서 생산성이 현저히 저하되는 문제가 있었다.
또한, 상기한 공정완료 후, 챔버에서 꺼내서 두께를 측정하고 다시 챔버로 투입하여 재가공하는 과정에서 웨이퍼의 오염이 다발하는 문제가 있었다.
한편, 상기한 바와 같은 문제를 해결하기 위해 웨이퍼 두께를 실시간으로 측정할 수 있는 기술이 개시되었다.
예를 들면, 도 1에 도시한 바와 같이, 첫번째 레이져 빔은 식각하고자 하는 박막층(SI)에 입사시키고(1번 참조), 두번째 레이져 빔은 PR층에 입사시켜, 상기 박막층(Si)과 PR층에 반사되는 두 빛(3)(4)의 위상차를 이용하여 식각 깊이를 측정하였다.
그러나, 실제 식각(Etching)공정시 PR층도 미세하게 식각이 진행되어 정확한 식각 깊이를 측정하지 못하는 문제가 있었다.
또한, 상기한 바와 같이 PR층까지 식각이 진행됨으로서, 웨이퍼의 불량이 다발하는 문제가 있었다.
본 발명은 상술한 바와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 플라즈마 공정챔버의 공정 진행중에도 웨이퍼 두께를 측정할 수 있도록 하는데 있다.
또한, 본 발명의 다른 목적은 플라즈마 공정챔버의 플라즈마 상태를 실시간으로 모니터링할 수 있도록 하여, 플라즈마 공정챔버의 공정진행시 플라즈마 상태를 최적의 상태로 유지할 수 있도록 하는데 있다.
이러한 목적으로 이루어진 본 발명은;
웨이퍼 상에 패턴이 형성되도록 사진, 식각 또는 확산, 증착공정을 진행하는 플라즈마 공정챔버에 관한 것으로,
상기 플라즈마 공정챔버는,
내부에 구비된 웨이퍼 두께를 측정하기 위해 필요한 빛(光)을 출력하는 광출력장치와;
상기 광출력장치에서 출력되는 빛을 반사시켜 상기 플라즈마 공정챔버 내부에 구비된 웨이퍼에 입사(入射)시키고, 그 입사된 빛을 다시 반사시킬 수 있도록 수직방향으로 투광구를 갖춘 케이스 상부에 45도 각도로 구비된 반사체와;
상기 반사체에서 반사된 빛을 수광하고, 이 수광된 빛을 분광하여 투과율과 흡수율을 측정하는 광측정장치와;
상기 광측정장치에서 측정된 흡수율과 투과율 데이터를 분석하고, 이를 통해 실시간으로 웨이퍼의 두께를 측정할 수 있도록 웨이퍼 두께 측정의 알고리즘이 구성된 컨트롤러로 이루어진 실시간 공정진단 장치를 포함한다.
또한, 상기 두께측정장치는,
상기 반사체의 하측에 구비되어 상기 광출력장치에서의 광량을 조절하거나, 상기 웨이퍼에 조사되는 빔 Spot크기를 조절하는 광량조절장치를 더 포함한다.
또한, 상기 광량조절장치는,
상기 반사체의 케이스 중간부분에 구비된 볼록렌즈와;
상기 볼록렌즈와의 거리를 조절하는 위치조절수단으로 이루어진 것을 특징으로 한다.
또한, 상기 위치조절수단은,
상기 케이스에 형성된 투광구 내부에서 상, 하 방향으로 슬라이딩 할 수 있도록 원통형으로 형성된 슬라이더와, 상기 슬라이더의 상단에 구비된 오목렌즈로 이루어진 것을 특징으로 한다.
또한, 상기 광출력장치와 반사체는 제 1광파이버번들로 연결되고, 반사체와 광측정장치는 제 2광파이버 번들로 연결된다.
또한, 상기 광출력장치는, 백색광원램프인 것을 특징으로 한다.
또한, 상기 반사체는,
상기 광출력장치에서 보내지거나 상기 웨이퍼를 통해 반사된 광을 반사시킬 수 있도록 수직선상에서 45도 각도로 구비되는 거울인 것을 특징으로 한다.
또한, 상기 플라즈마 공정챔버는,
측방에 구비된 집광렌즈와, 상기 집광렌즈에 수집된 광을 분광하여 투과율과 흡수율을 측정한 데이터를 상기 컨트롤러로 전송하도록 상기 광측정장치와 제 3광파이버번들로 연결된 감시장치를 더 포함한다.
또한, 상기 광측정장치는,
상기 제 2, 3광파이버번들의 발광단에 근접설치된 슬릿과, 상기 슬릿을 투과한 빛을 반사시키는 거울과, 상기 거울을 통해 반사된 빛을 굴절시켜 스펙트럼을 발생시키는 격자체와, 상기 격자체를 통해 굴절된 일정 주파수 이상의 빛이 입사되면 도체 내부의 광전자가 방출되는 현상을 이용하여 빛으로 들어온 신호를 전기적 신호로 변환하는 CCD센서로 이루어진다.
또한, 상기 거울은,
금속 또는 유리 또는 합성수지중 어느 하나로 이루어진 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 의하면, 플라즈마 공정챔버 내에서의 공정 진행중에도 웨이퍼 두께를 측정할 수 있도록 함으로서, 웨이퍼의 식각 종말점을 검출할 수 있으므로 생산성이 향상되었으며, 불량율을 최소화하는 효과가 있다.
또한, 플라즈마 공정챔버 내부의 플라즈마 상태를 실시간으로 모니터링함으로서 플라즈마 공정챔버 내에서 진행되는 공정의 생산성을 향상시키는 효과가 있다.
또한, 하나의 광측정장치에 의해 웨이퍼의 두께측정과 플라즈마의 실시간 모니터링을 병행하여 생산성을 향상시키는 효과가 있다.
도 1은 종래 반도체 제조공정에서 박막이 식각되는 웨이퍼를 모식적으로 보인 도면이고,
도 2는 본 발명에 따른 두께측정장치와 감시장치를 갖춘 플라즈마 공정챔버를 보인 도면이고,
도 3은 도 2 "A"부분을 부분적으로 확대하여 보인 상세도면이고,
도 4는 본 발명에 따른 광측정장치의 구성을 모식적으로 보인 사시도이고,
도 5는 도 3 “B”선을 확대하여 광량조절장치의 구성을 보인 도면이고,
도 6은 본 발명에 따른 두께측정장치의 작용을 보인 도면이고,
도 7은 본 발명에 따른 감시장치의 작용을 보인 도면이다.
도 2 내지 도 5를 참조하면, 본 발명은 플라즈마 공정챔버(10)(이하, "공정챔버"라 칭한다)에 구비된 웨이퍼 두께측정장치(100)를 포함한다.
웨이퍼 두께측정장치(100)(이하, "측정장치"라 칭한다)는, 광출력장치(110)와 반사체(130)와 광측정장치(150)와 컨트롤러(170)로 이루어진다.
광출력장치(110)는 백색 광원램프로서, 후술하는 작용에서 웨이퍼(1)의 두께를 보다 정확하게 측정하기 위해서 구비된다.
다시 말해서, 상기한 백색광원램프는 자외영역에서 가시영역을 거쳐 적외영역에 걸치는 연속스펙트럼으로 이루어지며, 특히 자외영역에서 가시영역에 이르는 빛은 자연광에 가깝기 때문에 후술하는 작용에서 웨이퍼의 두께측정을 하는데 있어서, 측정부위를 정확하게 조사(照射)할 수 있다.
이 광출력장치(110)는 제 1광파이버 번들(111)을 통해 후술하는 케이스(135)의 내부에 구비된 반사체(130)에 빛을 조사한다.
반사체(130)는 유리 또는 금속 또는 합성수지재로 이루어진 거울로서, 도시한 바와 같이, 밀폐된 케이스(135)의 상측에 45도 각도로 구비된다.
케이스(135)는 공정챔버(10)의 상측중심에 구비된 투시창(11)에 하단이 결합되고, 상기한 반사체(130)의 일측 수평방향으로 제 1, 2광 파이버 번들(111)(113)이 하나로 결합된 단부를 고정할 수 있도록 고정공(135a)이 구비된다.
또한, 도시한 방향을 기준하여 단면상 수직방향으로 투광구(135b)가 형성되어 후술하는 작용에서 상기한 반사체(130)를 중심으로 빛이 통과한다.
도시한 바와 같이, 상기한 고정공(135a)에 구비된 제 1광파이버번들(111)의 일단이 발광단(發光端)이고, 제 2광파이버번들(113)은 수광단(受光端)이며, 후술하는 광측정장치(150)에 연결되는 제 2, 3광파이버번들(113)의 타단이 발광단이 된다.
제 2광파이버번들(113)은 도 3에 도시한 바를 기준하여, 수직방향으로 다수 구비됨으로서 후술하는 광측정장치(150)에 구비된 CCD센서(157)에 도시한 바와 같이, 수직방향으로 다수의 분할된 스펙트럼을 전달한다.
이와 같은, 제 2광파이버번들(113)의 단부와 광측정장치(150)가 연결된다.
광측정장치(150)는 도 4에 도시한 바와 같이, 육면체형상으로 이루어진 케이스(미도시)내에 슬릿(151)과 거울(153)과 격자체(155)와 CCD센서(157)로 이루어진다.
슬릿(151)은 상기한 제 2, 3광파이버번들(113)(220)의 발광단에 근접설치되어 상기한 다수의 제 2, 3광파이버번들(113)(220)로부터 발광되는 빛을 좁은 틈새로 투과시킴으로서 빛을 간섭시켜서 이 간섭된 빛의 간섭무늬 간격으로부터 파장이 형성된다.
이와 같은 빛은 거울을 통해 반사되고, 이 반사된 특정 파장의 빛은 격자체(155)를 통해 굴절되며 스펙트럼(Spectrum)이 형성된다.
상기한 격자체(155)를 통해 굴절된 일정 주파수의 이상의 스펙트럼은 본 발명에 따른 CCD센서(157)를 통해 전기적 신호로 변환된다.
이 원리는 굴절된 일정 주파수 이상의 빛이 입사되면 도체 내부의 광전자가 방출되는 현상인 광전효과를 이용하여 빛으로 들어온 신호를 전기적 신호로 변환하는 것이다.
이와 같은 역할을 하는 CCD센서(157)는 메모리 소자의 일종으로서, 다수의 미세한 콘덴서와 스위치의 연결로 이루어져 축적된 전하를 차례로 전송하는 기능을 갖고 있는데, 도시한 바와 같이, 제 2광파이버번들(113)이 조사되는 부분(상측)과 제 3광파이버번들(220)이 조사되는 부분(하측)이 각각 다른 방향으로 데이터가 리딩되므로, 후술하는 컨트롤러(170)를 통해 표시되는 데이터가 각각 다르다.
상기한 광측정장치(150)는 특정파장의 빛, 다시 말해서, 공정챔버(10)내의 플라즈마로부터 발생되는 빛의 스펙트럼을 수광하여 분석한 결과를 후술하는 컨트롤러(170)에 전달하여 진행중인 공정을 도시하지 않은 그래프를 통해 출력하여 실시간으로 공정을 진단할 수 있다.
컨트롤러(170)는 상기한 광측정장치(150)에서 측정된 흡수율과 투과율 데이터를 분석하고, 이를 통해 실시간으로 웨이퍼의 두께를 측정할 수 있도록 웨이퍼 두께 측정의 알고리즘이 구성되고, 그 얻어진 데이터를 그래프로 표시할 수 있도록 프로그램되어 있다.
따라서, 웨이퍼(1)의 두께를 계산하거나 플라즈마 빛의 다양한 스펙트럼으로 가스의 농도 및 종류를 분석하여 도시하지 않은 모니터를 통해 그래프로 표시하기 때문에 실시간으로 모니터링할 수 있다.
한편, 상술한 두께측정장치(100)는, 광량조절장치(140)를 더 포함한다.
도 5에 도시한 바와 같이, 광량조절장치(140)는, 상술한 케이스(135)의 투광구(135b)에 구비되는 것으로, 볼록렌즈(141)와 위치조절수단(143)으로 이루어진다.
볼록렌즈(141)는 케이스(135)의 투광구(135b) 하측 중간부분에 고정되며, 도시한 방향 기준하여 이 볼록렌즈(141)의 하측으로 위치조절장치(143)가 구비된다.
위치조절장치(143)는 슬라이더(143a)와 오목렌즈(143b)로 이루어진다.
슬라이더(143a)는 원통형으로 이루어지면, 상기한 케이스(135)의 투광구(135b)를 따라 상, 하로 슬라이딩한다.
이 슬라이더(143a)의 상단에 오목렌즈(143b)가 구비되는데, 상기한 볼록렌즈(141)와 오목렌즈(143b)의 작용에 의해 상기한 반사체(130)에 반사되는 광출력장치(110)에서의 백색광원 비임 초점(Beam Spot)의 크기를 조절할 수 있으므로, 광량도 용이하게 조절할 수 있다.
또한, 본 발명에 따른 두께측정장치(100)는 감지장치(200)를 더 포함한다.
도시한 바와 같이, 감지장치(200)는 집광렌즈(210)와 제 3광파이버번들(220)로 이루어진다.
집광렌즈(210)는 공정챔버(10) 내의 플라즈마 빛을 수광할 수 있도록 측방에 구비된 투시창(13)에 설치되며, 그 일측에는 수광된 빛을 전달할 수 있도록 제 3광파이버 번들(220)의 수광단(受光端)이 연결되며, 발광단(發光端)인 타단은 도 4에 도시한 바와 같이, 상술한 광측정장치(150)의 슬릿(151)에 근접하여 설치된다.
또한, 이 제 3광파이버번들(220)은 상기한 제 2광파이버번들(113)과 마찬가지로 수직방향으로 다수의 광파이버가 배열됨으로서 수직방향으로 분할된 빛을 광측정장치(150)에 전달한다.
따라서, 한 두께측정장치(100)의 구성인 제 2광파이버번들(113)과 동시에 제 3광파이버번들(220)을 통해 플라즈마 공정챔버(10)의 플라즈마 상태를 실시간으로 모니터링할 수 있다.
계속 해서, 도 6과 도 7에 도시한 바를 참조로 하여, 본 발명에 따른 웨이퍼 두께측정장치(100)와 감시장치(200)의 작용, 효과를 설명한다.
도 6에 도시한 것은 웨이퍼 두께측정장치(100)의 작용을 보인 도면으로서, 공정챔버(10) 내부에 구비된 웨이퍼(1)의 식각(Etching)공정 중 두께를 측정하는 방법에 대해 설명한다.(플라즈마 공정챔버(10)에서는 상기한 식각공정 이외에 다수의 공정을 수행하지만, 식각 공정을 예를 들어 설명한다)
우선, 광출력장치(110)에서 발광하는 빛은 제 1광파이버 번들(111)을 통해 공정챔버(10)의 상측중심에 구비된 반사체(130)를 통해 직각방향으로 반사된다.
이 반사된 빛은 공정챔버(10) 내부에 구비된 웨이퍼(1)에 입사되며, 이 빛은 다시 웨이퍼(1)에 반사된다.
이 반사된 빛은 상기한 반사체(130)로 다시 전달되며, 제 2광파이버 번들(113)을 통해 광측정장치(150)에 전달된다.
이와 같이, 광측정장치(150)는 도시하지 않은 센서에서 상기한 과정을 거쳐 전달된 특정파장의 광에너지를 분할하며, 이 분할된 광에너지는 센서를 거쳐 전기신호로 전환되어 컨트롤러(170)에 상기 파장에 대한 광량 정보를 제공한다.
이와 같이, 제공된 광량정보를 컨트롤러(170)에 프로그램된 알고리즘에 내장된 물질의 투과율과 흡수율을 바탕으로 분석하고, 이 분석된 데이터를 도시하지 않은 모니터를 통해 그래프로 표시한다.
즉, 상술한 광출력장치(110)는 200~850nm까지 빛의 파장을 갖춘 백색광원으로서 식각공정에서 식각되는 부분을 명확하게 조사(照射)하며, 반사된 반사광 스펙트럼을 유형에 적합하도록 컨트롤러(170)에 입력된 프로그램을 통해서 실시간으로 두께를 계산하고, 이와 같은 두께측정 결과는 도시하지 않은 모니터(미도시)를 통해 그래프로 표시한다.
또한, 컨트롤러(170)는 상기한 바와 같은 두께측정과정에서 사용자가 소망하는 두께에 도달하면 종말점이 검출되고, 이 검출된 종말점에 따라 해당 공정은 자동으로 종료되고, 다음 공정을 진행할 수 있도록 프로그램이 입력되어 있으므로, 각 공정별 공정전환이 용이하다.
계속해서, 도 7을 참조로 하여 상기한 두께측정장치(100)와 감지장치(200)를 이용해서 실시간으로 플라즈마 공정챔버(10)를 모니터링 하는 방법을 설명한다.
우선, 상기한 두께측정장치(100)의 반사체(130)와 측면에 구비된 집광렌즈(210)는 각각의 투시창(11)(13)을 통해 플라즈마 빛을 수광하고, 이 수광된 빛은 각각의 제 2, 3광파이버번들(113)(220)을 통해, 광측정장치(150)에 구비된 슬릿(151)의상, 하 방향으로 각각 다른 파장의 빛을 조사한다.
이 빛은 상기한 거울(153)을 통해 반사되고, 이 반사된 특정 파장의 빛은 격자체(155)를 통해 굴절되며 스펙트럼(Spectrum)이 형성된다.
상기한 격자체(155)를 통해 굴절된 스펙트럼은 본 발명에 따른 CCD센서(157)를 통해 전기적 신호로 변환되어 컨트롤러(170)에 전달하여 진행중인 공정을 도시하지 않은 그래프를 통해 출력하여 실시간으로 공정을 진단할 수 있다.
이와 같은, 컨트롤러(170)는 상기한 광측정장치(150)에서 측정된 흡수율과 투과율 데이터를 분석하고, 이 분석된 데이터는 컨트롤러(170)를 통해 두께측정장치(100)를 통해 측정된 파장과 감시장치(200)를 통해 측정된 파장의 변화가 그래프(미도시)의 x축에 표시되는 시간에 따라 y축에 표시되는 빛의 밝기가 표시됨으로서, 시간이 변화함에 따라 반사광의 밝기(Intensity: y축 값)가 보광, 상쇄 간섭 효과에 의해서 값의 높낮이가 변화하게 된다.
이 값의 변화는 사인파 곡선과 같은 형태로 나타나고, 이 곡선을 분석함으로써, 상술한 바와 같이 스펙트럼 유형에 적합하도록 컨트롤러(170)에 입력된 프로그램과는 또 다른 방식으로 실시간 두께가 측정 가능할 뿐만 아니라, 시간변화에 따른 플라즈마의 강도(Intensity) 변화 지점을 감지하여 종료점 검출도 가능하다
한편, 본 발명에 따른 두께측정장치(100)는 실시간으로 두께측정을 할 때에는 광출력장치(110가 작동하지만, 도 7에 도시한 바와 같이, 실시간으로 모니터링할 때에는 작동하지 않는다.
또한, 두께측정장치(100)를 통해 두께측정ㅇㄹ 한느 동안에 감시장치(200)를 통해 실시간 모니터링도 동시에 병행할 수 있다.
또한, 상술한 플라즈마 공정의 경우, 장시간 공정이 진행되는 과정에서 식각 또는 증착시 발생하는 공정가스에 의해 투시창(11)(13)(Viewport)이 불투명해지며 반사광 밝기(Intensity)의 감소가 초래되는 결과를 가져온다.
이럴 경우, 광출력장치(110)의 광량을 높임으로서 종전과 같은 반사광을 확보할 수 있다.
이와 같이, 광량을 높이는 것은 상술한 광량조절장치(140)의 구성중 오목렌즈(143b)가 구비된 슬라이더(143)를 상, 하 방향으로 조절함으로서 가능하다.
즉, 도 4에 도시한 바와 같이, 제 1광파이버번들(111)과 반사체(130)를 통해 웨이퍼(1)에 조사되는 광량의 조절 및 웨이퍼(1)에 조사되는 비임 초점 사이즈 조절은 상술한 슬라이더(143)을 통해 사용자가 용이하게 조절할 수 있다.
상기한 작용에서는 두께측정장치(100)에 의해 공정이 진행되는 웨이퍼(1)의 두께를 측정하고, 이와 별개로 백색광원램프로 이루어진 광출력장치(110)를 작동하지 않고 끈 상태에서 각 제 2, 3광파이어번들(113)(220)을 통해 각 광측정장치(150)로 전달되는 플라즈마 빛의 스펙트럼을 분석하는 실시간 모니터링이 가능하다.
또한, 두께측정장치(100)와 감지장치(200)를 동시에 구동함으로서, 실시간으로 웨이퍼(1)의 두께측정과 모니터링이 동시에 가능하다.
이와 같이, 본 발명에 따른 웨이퍼 두께측정장치(100)와 감시장치(200)와 연결된 컨트롤러(170)에 의하면 공정챔버(10)의 공정 진행중에도 웨이퍼(1)의 두께를 측정할 수 있도록 하며, 사용자가 소망하는 두께에 도달하면 종말점이 검출되고, 이 검출된 종말점에 따라 해당 공정은 자동으로 종료된다.
이에 따라, 다음 공정을 진행할 수 있도록 프로그램이 입력되어 있으므로, 각 공정별 공정전환이 용이하다.
또한, 공정챔버 내의 플라즈마 상태를 실시간으로 모니터링할 수 있으므로, 생산성이 향상되며, 불량원인을 원천적으로 제거하였다.
나아가, 웨이퍼 두께측정장치(100)에 의해 직접적으로 웨이퍼의 두께를 실시간으로 측정할 수 있으므로, 간접적으로 플라즈마 광원을 모니터링하여 종말점을 판단하는 종래의 검출 장치보다 정확성을 높였다.
더 나아가, 두께 측정에 의한 종말점 검출뿐만아니라, 상부와 측면의 투광부를 통해 챔버 내부의 플라즈마 모니터링을 동시에 시행하여, 플라즈마 내부의 케미컬 반응 분석 및 이를 이용한 공정 진단이 가능하다.
본 발명은 상술한 특정 바람직한 실시 예에 한정되지 아니하고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자 라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변형실시는 본 발명의 청구범위 기재 범위 내에 있게 된다.
10 : 플라즈마 공정챔버
100 : 웨이퍼 두께측정장치 110 : 광출력장치
130 : 반사체 140 : 광량조절장치
141 : 볼록렌즈 143 : 위치조절장치
150 : 광측정장치 170 : 컨트롤러
200 : 감시장치 210 : 집광렌즈
230 : 광측정장치

Claims (10)

  1. 웨이퍼 상에 패턴이 형성되도록 사진, 식각 또는 확산, 증착공정을 진행하는 플라즈마 공정챔버에 있어서,
    상기 플라즈마 공정챔버는,
    내부에 구비된 웨이퍼 두께를 측정하기 위해 필요한 빛(光)을 출력하는 광출력장치와;
    상기 광출력장치에서 출력되는 빛을 반사시켜 상기 플라즈마 공정챔버 내부에 구비된 웨이퍼에 입사(入射)시키고, 그 입사된 빛을 다시 반사시킬 수 있도록 수직방향으로 투광구를 갖춘 케이스 상부에 45도 각도로 구비된 반사체와;
    상기 반사체에서 반사된 빛을 수광하고, 이 수광된 빛을 분광하여 투과율과 흡수율을 측정하는 광측정장치와;
    상기 광측정장치에서 측정된 흡수율과 투과율 데이터를 분석하고, 이를 통해 실시간으로 웨이퍼의 두께를 측정할 수 있도록 웨이퍼 두께 측정의 알고리즘이 구성된 컨트롤러로 이루어진 실시간 공정진단 장치를 포함하는 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  2. 제 1항에 있어서,
    상기 두께측정장치는,
    상기 반사체의 하측에 구비되어 상기 광출력장치에서의 광량을 조절하거나, 상기 웨이퍼에 조사되는 빔 Spot크기를 조절하는 광량조절장치를 더 포함하는 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  3. 제 2항에 있어서,
    상기 광량조절장치는,
    상기 반사체의 케이스 중간부분에 구비된 볼록렌즈와;
    상기 볼록렌즈와의 거리를 조절하는 위치조절수단으로 이루어진 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  4. 제 3항에 있어서,
    상기 위치조절수단은,
    상기 케이스에 형성된 투광구 내부에서 상, 하 방향으로 슬라이딩 할 수 있도록 원통형으로 형성된 슬라이더와, 상기 슬라이더의 상단에 구비된 오목렌즈로 이루어진 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  5. 제 1항에 있어서,
    상기 광출력장치와 반사체는 제 1광파이버번들로 연결되고, 반사체와 광측정장치는 제 2광파이버 번들로 연결되는 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  6. 제 1항에 있어서,
    상기 광출력장치는,
    백색광원램프인 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  7. 제 1항에 있어서,
    상기 반사체는,
    상기 광출력장치에서 보내지거나 상기 웨이퍼를 통해 반사된 광을 반사시킬 수 있도록 수직선상에서 45도 각도로 구비되는 거울인 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  8. 제 1항에 있어서,
    상기 플라즈마 공정챔버는,
    측방에 구비된 집광렌즈와, 상기 집광렌즈에 수집된 광을 분광하여 투과율과 흡수율을 측정한 데이터를 상기 컨트롤러로 전송하도록 상기 광측정장치와 제 3광파이버번들로 연결된 감시장치를 더 포함하는 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  9. 제 1항에 있어서,
    상기 광측정장치는,
    상기 제 2, 3광파이버번들의 발광단에 근접설치된 슬릿과, 상기 슬릿을 투과한 빛을 반사시키는 거울과, 상기 거울을 통해 반사된 빛을 굴절시켜 스펙트럼을 발생시키는 격자체와, 상기 격자체를 통해 굴절된 일정 주파수 이상의 빛이 입사되면 도체 내부의 광전자가 방출되는 현상을 이용하여 빛으로 들어온 신호를 전기적 신호로 변환하는 CCD센서로 이루어지는 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.
  10. 제 7항에 있어서,
    상기 거울은 금속 또는 유리 또는 합성수지중 어느 하나로 이루어지는 것을 특징으로 하는 실시간 공정진단 장치를 갖춘 플라즈마 공정챔버.








KR1020130010166A 2013-01-30 2013-01-30 플라즈마 공정챔버 KR101453819B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130010166A KR101453819B1 (ko) 2013-01-30 2013-01-30 플라즈마 공정챔버

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130010166A KR101453819B1 (ko) 2013-01-30 2013-01-30 플라즈마 공정챔버

Publications (2)

Publication Number Publication Date
KR20140097746A true KR20140097746A (ko) 2014-08-07
KR101453819B1 KR101453819B1 (ko) 2014-10-23

Family

ID=51744880

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130010166A KR101453819B1 (ko) 2013-01-30 2013-01-30 플라즈마 공정챔버

Country Status (1)

Country Link
KR (1) KR101453819B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200071373A (ko) * 2018-12-11 2020-06-19 삼성전자주식회사 Oes 장치 및 그 oes 장치를 포함한 플라즈마 검사 장치
KR20200102141A (ko) * 2019-02-21 2020-08-31 피에스케이홀딩스 (주) 기판 처리 장치 및 기판 처리 방법
CN113661380A (zh) * 2019-04-08 2021-11-16 应用材料公司 原位光学腔室表面及处理传感器
EP4059040A4 (en) * 2019-11-13 2023-11-22 Applied Materials, Inc. OPTICAL WALL AND PROCESS SENSOR WITH PLASMA FACING SENSOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415329B1 (ko) * 2015-09-08 2022-06-30 삼성전자주식회사 튜브형 렌즈, 그 튜브형 렌즈를 포함한 oes 장치, 그 oes 장치를 포함한 플라즈마 모니터링 시스템 및 그 시스템을 이용한 반도체 소자 제조방법
KR20230127139A (ko) * 2021-01-08 2023-08-31 램 리써치 코포레이션 박막들의 광학적 측정을 위한 시스템들 및 기법들

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062897A1 (en) * 2004-09-17 2006-03-23 Applied Materials, Inc Patterned wafer thickness detection system
US20070249071A1 (en) * 2006-04-21 2007-10-25 Lei Lian Neural Network Methods and Apparatuses for Monitoring Substrate Processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200071373A (ko) * 2018-12-11 2020-06-19 삼성전자주식회사 Oes 장치 및 그 oes 장치를 포함한 플라즈마 검사 장치
KR20200102141A (ko) * 2019-02-21 2020-08-31 피에스케이홀딩스 (주) 기판 처리 장치 및 기판 처리 방법
CN113661380A (zh) * 2019-04-08 2021-11-16 应用材料公司 原位光学腔室表面及处理传感器
US11735401B2 (en) 2019-04-08 2023-08-22 Applied Materials, Inc. In-situ optical chamber surface and process sensor
CN113661380B (zh) * 2019-04-08 2024-03-22 应用材料公司 原位光学腔室表面及处理传感器
EP4059040A4 (en) * 2019-11-13 2023-11-22 Applied Materials, Inc. OPTICAL WALL AND PROCESS SENSOR WITH PLASMA FACING SENSOR

Also Published As

Publication number Publication date
KR101453819B1 (ko) 2014-10-23

Similar Documents

Publication Publication Date Title
KR101453819B1 (ko) 플라즈마 공정챔버
TWI388936B (zh) 光罩蝕刻之終點偵測
TWI783980B (zh) 用於蝕刻處理監視的先進光學感測器、系統及方法
KR100571863B1 (ko) 대상물의 막 두께를 측정하는 장치, 대상물의분광반사율을 측정하는 장치 및 방법과, 대상물상의이물을 검사하는 장치 및 방법
JP4925507B2 (ja) スペクトル干渉法を用いる膜厚制御
CN109642875A (zh) 用于原位工艺监测和控制的光谱反射测量法
US11961721B2 (en) Normal-incidence in-situ process monitor sensor
TWI664415B (zh) 用於判定晶圓上缺陷之資訊之系統及方法
KR101487519B1 (ko) 플라즈마 공정챔버
JP2022533246A (ja) ハイパースペクトルイメージングを使用する半導体プロセスの光学的診断
KR20130028844A (ko) 패턴 검사 장치 및 패턴 검사 방법
JP2020537125A (ja) 高反射積層膜上の高吸光膜層の光学的測定
TWI798614B (zh) 光學臨界尺寸與光反射組合裝置、系統及方法
KR20070113655A (ko) 박막의 두께 측정 방법 및 이를 수행하기 위한 장치
KR101388424B1 (ko) 디지털 광학 기술을 이용한 두께 측정 장치 및 방법
KR101245097B1 (ko) 박막 두께 측정장치
JP2006313143A (ja) ムラ検査装置およびムラ検査方法
KR101206485B1 (ko) 백색도 측정 장치 및 이를 이용한 백색도 측정 방법
KR101326204B1 (ko) 박막 두께 측정장치 및 방법
JP2020527705A (ja) プラズマ処理における空間分解発光分光法(oes)
KR100195211B1 (ko) 반도체 기판의 온도 측정 장치 및 방법
JP7212833B2 (ja) 亀裂検出装置及び方法
JPH09196629A (ja) 半導体の製造工程で使用される膜の厚さの測定装置
JPH04280650A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee