KR20140092078A - Thermal deformation correction method for ball screw of machining centers - Google Patents

Thermal deformation correction method for ball screw of machining centers Download PDF

Info

Publication number
KR20140092078A
KR20140092078A KR1020130004373A KR20130004373A KR20140092078A KR 20140092078 A KR20140092078 A KR 20140092078A KR 1020130004373 A KR1020130004373 A KR 1020130004373A KR 20130004373 A KR20130004373 A KR 20130004373A KR 20140092078 A KR20140092078 A KR 20140092078A
Authority
KR
South Korea
Prior art keywords
thermal expansion
ball screw
amount
time
heat shrinkage
Prior art date
Application number
KR1020130004373A
Other languages
Korean (ko)
Inventor
김성철
김성훈
Original Assignee
김성철
김성훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김성철, 김성훈 filed Critical 김성철
Priority to KR1020130004373A priority Critical patent/KR20140092078A/en
Publication of KR20140092078A publication Critical patent/KR20140092078A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine
    • B23Q11/0007Arrangements for preventing undesired thermal effects on tools or parts of the machine by compensating occurring thermal dilations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0985Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/20Adjusting or stopping working-spindles in a predetermined position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49206Compensation temperature, thermal displacement, use measured temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49217Compensation of temperature increase by the measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

The present invention, for a thermal deformation correction method of a ball screw which occurs during the operation of a machining center, relates to a thermal deformation correction method of a ball screw which is not affected by operation environment of the machining center and an irregular operation time. The present invention can correct thermal deformation amount of the ball screw to suit some operating environments of some because an operator actually measures the thermal deformation amount of an X, Y, and Z axes in the operating environment of the machining center by combining a correction machine formed to be inclined by 45 degrees simply to a tool length correction device only capable of correcting the Z axis of the machining center.

Description

머시닝센터 볼스크류의 열변위보정방법{Thermal deformation correction method for ball screw of machining centers}Technical Field [0001] The present invention relates to a method of correcting thermal deformation of a ball screw,

본 발명은 머시닝센터의 운전중에 발생하는 볼스크류의 열변위보정방법에 있어서 머시닝센터의 운전환경 및 불규칙한 운전시간에 영향을 받지 않는 머시닝센터 볼스크류의 열변위보정방법에 관한 것이다.
The present invention relates to a method of correcting thermal displacement of a ball screw generated during operation of a machining center, and a method of correcting thermal displacement of a machining center ball screw that is not affected by an operating environment of the machining center and irregular operation time.

머시닝센터에는 Z축으로 동작하는 주축과 X,Y축으로 동작하는 테이블이 구성되어있으며 상기 테이블은 볼스크류에 의해 이송된다.The machining center is composed of a main shaft that operates in the Z axis and a table that operates in the X and Y axes, and the table is transported by the ball screw.

상기 볼스크류는 마찰 저항 및 서보모터의 발열에 기인하여 온도가 상승하여 연변위를 발생시킨다.The ball screw rises in temperature due to the frictional resistance and the heat of the servo motor, thereby generating a sliding surface.

상기와 같이 볼스크류의 열변위로 오차가 발생하게 되면 머시닝센터의 가공물 특성상 정밀도를 요구한다는 점에서 치명적일 수밖에 없는 것이다.As described above, when an error occurs on the heat side of the ball screw, it is inevitable that it requires precision in terms of the characteristics of the workpiece of the machining center.

이에 일반적으로 머시닝센터에서 가공물을 가공하기 전에 가공물 없이 1시간 가량 공운전을 하여 볼스크류의 열변위 최대치에 도달했다 예상한 후 본가공에 들어가는 경우가 일반적이다.Generally, it is general that the machining center enters the main machining after anticipating it to reach the maximum value of the thermal displacement of the ball screw by performing the ball operation for about 1 hour without the workpiece before machining the workpiece.

그리하여 종래에는 서보모터의 회전수 및 발열량 그리고 볼스크류의 단부 온도등을 계측하여 일정한 데이터를 머시닝센터에 프로그램하는 방식으로 열변위보정방법을 제시하고 있다.Thus, conventionally, a method of calibrating a thermal displacement is proposed by measuring the number of revolutions and heat of a servo motor, the end temperature of a ball screw, etc., and programming certain data in a machining center.

하지만 상기와 같은 열변위보정방법은 예상 고정값으로 머시닝센터의 운전 환경상태와 머시닝센터의 운전자에 따른 머시닝센터의 운전성향(절삭유량, 운전속도, 베어링팽창등)에 전혀고려하지 않고 고정된 일정한 데이터 예상값만으로 열변위보정을 하기 때문에 상기와 같이 여러 가지 요인에 대한 대응방책이 없는 문제점이 있다.
However, the above-mentioned thermal displacement correction method is a fixed fixed value, and it does not consider the operation environment condition of the machining center and the operation propensity of the machining center (cutting flow rate, operation speed, bearing expansion, etc.) There is a problem that there is no corresponding countermeasure against various factors as described above because the thermal compensation is performed only by the expected data value.

본 발명은 상기와 같은 문제점을 해결하기 위해 작업자가 실제 머시닝센터를 운전하는 환경에서 볼스크류의 열변위량을 실측하여 상기 머시닝센터의 운전환경에 맞추어 보정할 수 있는 머시닝센터 볼스크류의 열변위보정방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method of correcting thermal displacement of a machining center ball screw by measuring an amount of thermal displacement of a ball screw in an environment in which an operator operates an actual machining center, The purpose is to provide.

상기와 같은 목적을 달성하기 위한 수단으로 본 발명의 머시닝센터 볼스크류의 열변위보정방법에 따르면, 척에 공구가 장착되어 회전 및 승/하강하면서 가공물을 가공하는 주축, 가공물을 상면에 장치하여 볼스크류에 의해 전후좌우 이송하는 테이블, 상기 테이블의 일측에 결합되는 공구길이보정장치로 이루어지는 통상의 머시닝센터에 있어서, 주축에 설치되는 공구가 접촉되는 상기 공구길이보정장치의 공구 터치부위에 상단 모서리가 45도 경사지게 형성된 캡 형태의 보정기구를 결합하는 단계; 상기 머시닝센터가 가공물을 가공하는 동안 상기 보정기구가 결합된 공구길이보정장치는 지정된 시간마다 척의 공구가 상기 보정기구의 45도 경사진 모서리 부위에 접촉할 때마다 열 마찰에 의한 볼스크류의 열팽창량을 측정하는 열팽창량측정단계; 상기 열팽창량측정단계에서 측정한 열팽창량 중 열팽창량이 최대열팽창량(포화값) 대비 63.2%인 지점까지 도달하는 시간(열팽창량시정수)을 측정하는 열팽창량시정수측정단계; 상기 열팽창량시정수측정단계에서 측정한 열팽창량시정수를 연속적인 곡선 그래프화하는 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량 산출단계; 상기 머시닝센터가 테이블의 운행을 중지한 상태에서 지정된 시간마다 척의 공구를 상기 보정기구의 45도 경사진 모서리 부위에 접촉시켜 공구길이보정장치가 자연냉각에 의한 볼스크류의 열수축량을 측정하는 열수축량측정단계; 상기 열수축량측정단계에서 측정한 열수축량 중 열수축량이 최대열수축량(포화값) 대비 36.8%에 도달하는 시간(열수축량시정수)을 측정하는 열수축량시정수측정단계; 상기 열수축량시정수측정단계에서 측정한 열수축량시정수를 연속적인 곡선 그래프화하는 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량 산출단계; 상기에서 산출된 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량 및 열수축량을 머시닝센터의 제어시스템에 저장하는 단계; 상기 제어시스템에 저장된 열팽창량값 및 열수축량값을 이용하여 테이블의 x, y축 이송거리를 보정하는 단계; 로 이루어지는 것을 특징으로 한다.
According to the present invention, there is provided a method for correcting thermal displacement of a machining center ball screw, which comprises a main shaft for machining a workpiece with a tool mounted on the chuck and rotating and raising / lowering the workpiece, And a tool length correcting device coupled to one side of the table, characterized in that the upper tool has an upper edge on the tool touch portion of the tool length correcting device in contact with a tool provided on the main axis Assembling a cap type correction mechanism formed at an angle of 45 degrees; Wherein the tool length correction device to which the correction mechanism is coupled while the machining center processes the workpiece measures the thermal expansion amount of the ball screw due to thermal friction every time the tool of the chuck contacts the corner portion inclined by 45 deg. Measuring a thermal expansion amount; A thermal expansion amount time constant measurement step of measuring a time (thermal expansion amount time constant) at which the thermal expansion amount measured in the thermal expansion amount measurement step reaches a point at which the thermal expansion amount is 63.2% of the maximum thermal expansion amount (saturation value); Calculating a thermal expansion amount of the ball screw at a point at which the table is located on the x and y axes at an arbitrary time by substituting the thermal expansion amount time constant measured in the thermal expansion amount time constant measuring step into a continuous curve graphing step; Wherein the machining center stops the operation of the table, and the tool of the chuck is brought into contact with the corner portion of the correction mechanism at an angle of 45 deg. At a designated time to measure the amount of heat shrinkage of the ball screw due to natural cooling Measuring step; Measuring a time of shrinkage quantity time constant measuring a time (heat shrinkage quantity time constant) in which a heat shrinkage amount measured in the heat shrinkage amount measuring step reaches 36.8% of a maximum heat shrinkage amount (saturation value); Calculating a heat shrinkage amount of the ball screw at a position where the table is located on the x and y axes at an arbitrary time by substituting the time constants of the heat shrinkage time constant measured in the step of measuring the heat shrinkage time constant into a continuous curve graphing step; Storing a ball screw thermal expansion amount and a heat shrinkage amount at a point where the table is located on the x, y axes at a predetermined time calculated in the above-described manner in a control system of a machining center; Correcting the x and y axis transfer distances of the table using the thermal expansion amount value and the heat shrinkage amount value stored in the control system; .

상기와 같이 구성된 본 발명은, 머시닝센터의 Z축 보정만 가능한 공구길이보정장치에 간단하게 모서리가 45도 경사지게 형성된 보정기구를 결합하여 작업자가 실제 머시닝센터 운전환경에서 X,Y,Z축 열변위량을 실측할 수 있기 때문에 여러 가지 운전환경에 맞추어 볼스크류의 열변위량을 보정할 수 있는 효과가 있다.The present invention having the above-described structure can be applied to a tool length correcting device capable of only correcting the Z-axis of a machining center by simply combining a correcting mechanism formed with an angle of 45 degrees inclined so that an operator can adjust the X, Y, It is possible to correct the amount of thermal displacement of the ball screw in accordance with various operating environments.

또한, 볼스크류의 운전중 열팽창량 뿐만 아니라 운전중지중 자연냉각으로 인한 열수축량을 적용시켜 머시닝센터의 불규칙한 운전시간에도 열변위량을 계산할 수 있는 효과가 있다.
In addition, it is possible to calculate the amount of thermal displacement during irregular operation time of the machining center by applying not only the thermal expansion amount during operation of the ball screw but also the heat shrinkage amount due to natural cooling during operation stoppage.

도 1은 본 발명에서 종래의 공구길이보정장치에 보정기구를 결합한 모습을 나타내는 단면도
도 2는 본 발명의 보정기구가 결합된 머시닝센터의 측면도.
도 3은 본 발명의 머시닝센터 볼스크류의 열변위보정방법의 흐름도.
1 is a cross-sectional view showing a state in which a correction mechanism is combined with a conventional tool length compensation device in the present invention
2 is a side view of a machining center incorporating the correction mechanism of the present invention;
3 is a flow chart of a method of correcting thermal displacement of a machining center ball screw of the present invention.

이하 본 발명에 따른 머시닝센터 볼스크류의 열변위보정방법에 대하여 상세하게 설명하면 다음과 같다.
Hereinafter, a method of correcting thermal displacement of a machining center ball screw according to the present invention will be described in detail.

우선 머시닝센터(10)의 구성을 살펴보면, 척에 공구(11a)가 장착되어 회전 및 승/하강하면서 가공물을 가공하는 주축(11)이 구성되고, 가공물을 상면에 장치하여 볼스크류(12)에 의해 전후좌우 이송하는 테이블(13)과 상기 테이블(13)의 일측에 공구길이보정장치(14)가 구성된 통상적으로 널리 사용되는 주축고정식 머시닝센터(10)이다.
First, the machining center 10 includes a main shaft 11 on which a tool 11a is mounted and which rotates and wins / descends to process the workpiece. A workpiece is mounted on the top surface of the main shaft 11, A commonly used spindle-fixed machining center 10 having a table 13 that is moved forward and backward and rightward and leftward and a tool length correcting device 14 at one side of the table 13.

한편, 보정기구(20)를 결합하는 단계는 상기 주축(11)에 설치되는 공구(11a)가 접촉되는 상기 공구길이보정장치(14)의 공구 터치부위에 상단 모서리가 45도 경사지게 형성된 캡 형태의 보정기구(20)를 결합하는 단계이다.The step of assembling the correction mechanism 20 may include a step of forming a cap shape in which the upper edge is inclined at an angle of 45 degrees with respect to the tool touch portion of the tool length correcting device 14 in contact with the tool 11a provided on the main shaft 11 And the correction mechanism 20 is assembled.

상기 공구길이보정장치(14)는 도2와 같이 테이블(13)의 일측에 결합되되 최대스트로크 끝단에 결합됨이 바람직하다.The tool length compensating device 14 is preferably coupled to one side of the table 13 as shown in FIG. 2, and is coupled to the maximum stroke end.

상기 보정기구(20)를 공구길이보정장치(14)에 결합하는 이유는 종래의 공구길이보정장치(14)는 공구길이를 보정하기 위해 공구길이보정장치(14)의 상단에 경질의 재질로된 터치면이 평판형태로 형성되기 때문에 전체가 경질의 재질로 모서리가 45도 경사지게 형성된 보정기구(20)를 결합하여야 도1과 같이 공구가 보정기구(20)의 상면에 접촉하면 Z축, 공구가 보정기구(20)의 X축방향의 45도면에 접촉하면 X축, 공구가 보정기구(20)의 Y축방향의 45도면에 접촉하면 Y축으로 변위량 모두를 측정할 수 있는데 이는 보정기구(20)의 45도면으로 인해 X,Y축의 변위량이 공구의 Z축 변위량과 동일 하기 때문에 가능한 것이다.The reason for coupling the correcting mechanism 20 to the tool length correcting device 14 is that the conventional tool length correcting device 14 is made of a rigid material at the top of the tool length correcting device 14 When the tool is in contact with the upper surface of the correcting mechanism 20 as shown in FIG. 1, the Z-axis and the tool (not shown) When the X-axis and the tool contact the 45th view in the Y-axis direction of the correcting mechanism 20, the displacement amount in the Y-axis can be measured, ), The X-axis and Y-axis displacements are equal to the Z-axis displacements of the tool.

따라서, 상기 보정기구(20)는 종래의 공구길이보정장치(14)를 교환하지 않고 보정기구(20)만 결합하기 위한 구성일뿐 공구길이보정장치(14)의 자체에 45도 모서리를 형성하고 공구가 접촉하여도 마모가 되지 않도록 경질의 재질로 형성해도 무방한 것이다.
Therefore, the correction mechanism 20 is a construction for joining only the correction mechanism 20 without replacing the conventional tool length correction device 14, and forms a 45-degree corner on the tool length correction device 14 itself, It may be made of a hard material so as not to be abraded even if it is brought into contact with it.

다음 열팽창량측정단계는 상기 머시닝센터가 가공물을 가공하는 동안 상기 보정기구(20)가 결합된 공구길이보정장치(14)는 지정된 시간마다 척의 공구(11a)가 상기 보정기구(20)의 45도 경사진 모서리 부위에 접촉할 때마다 열 마찰에 의한 볼스크류(12)의 열팽창량을 측정하는 단계이다.In the next step of measuring the thermal expansion amount, the tool length correcting device 14, to which the correcting mechanism 20 is coupled, while the machining center is processing the workpiece, And the amount of thermal expansion of the ball screw 12 due to thermal friction is measured every time it contacts the tilted corner portion.

상기 열팽창량측정단계는 종래의 공구길이보정장치(14)와 동일한 방식으로 접촉하되 Z축 뿐만 아니라 추가적으로 보정기구(20)의 X,Y축 45도 경사진 모서리에 접촉하는 것이 상이하다.The thermal expansion measuring step is different from the conventional tool length correcting device 14 in that it is in contact in the same manner but in addition to the Z-axis as well as the tilted corner of the X, Y axis 45 ° of the correcting mechanism 20.

따라서, 상기 열팽창량측정단계는 종래의 공구길이보정장치(14)로 공구(11a)의 마모된 길이는 보정기구(20)의 상면에 접촉하여 측정되고, x, y축 볼스크류(12)의 열팽창량은 상기 보정기구(20)의 45도 경사진 모서리에 상기 공구(11a)가 접촉하여 상기 볼스크류(12)의 열변위로 인해 보정기구(20)가 x, y축으로 변위된 거리 만큼 상기 공구(11a)가 z축으로 변위 되기 때문에 볼스크류(12)의 열팽창량을 측정할 수 있는 것이다.
Therefore, the thermal expansion amount measuring step is performed by measuring the abraded length of the tool 11a with the conventional tool length correcting device 14 in contact with the upper surface of the correcting mechanism 20, The amount of thermal expansion is determined by the distance that the correcting mechanism 20 is displaced in the x and y axes due to the thermal deformation of the ball screw 12 due to the contact of the tool 11a with the 45 ° inclined corner of the correction mechanism 20. [ Since the tool 11a is displaced in the z-axis, the amount of thermal expansion of the ball screw 12 can be measured.

다음 열팽창량시정수측정단계는 상기 열팽창량측정단계에서 측정한 열팽창량 중 열팽창량이 최대열팽창량(포화값) 대비 63.2%인 지점까지 도달하는 시간(열팽창량시정수)을 측정하는 단계이다.The next step of measuring the thermal expansion amount time constant is a step of measuring the time (thermal expansion amount time constant) at which the thermal expansion amount of the thermal expansion amount measured in the thermal expansion amount measurement step reaches 63.2% of the maximum thermal expansion amount (saturation value).

상기 열팽창량시정수측정단계는 볼스크류(12)가 열 마찰에 의해 열팽창이 진행되어도 자연냉각으로 인한 열팽창의 한계점 즉 최대열팽창량(포화값)에 대한 63.2%에 도달하는 시간(시정수)을 상기 열팽창량측정단계를 통해 측정하는 것이다.
In the step of measuring the thermal expansion amount time constant, the time (time constant) at which the ball screw 12 reaches 63.2% of the maximum thermal expansion amount (saturation value) due to natural cooling even when the thermal expansion progresses due to thermal friction And measuring the thermal expansion amount through the thermal expansion measurement step.

다음 볼스크류 열팽창량 산출단계는 상기 열팽창량시정수측정단계에서 측정한 열팽창량시정수를 연속적인 곡선 그래프화하는 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량 산출단계이다.In the next step of calculating the thermal expansion amount of the ball screw, the thermal expansion amount time constant measured in the thermal expansion amount time constant measuring step is substituted into a continuous curve graphing step, and the temperature of the point at which the table is located on the x, The ball screw thermal expansion amount calculating step.

상기 볼스크류 열팽창량 산출단계에서 열팽창량을 연속적인 곡선 그래프화하는 것은 상기 머시닝센터의 공구(11a)가 반복적으로 보정기구(20)에 접촉하여 산출된 값으로 그래프화하면 점으로 된 곡선이 이루어져 점과 점사이의 시간대 수치가 측정이 불가능함으로, 수학식에 대입하여 상기 열팽창량측정단계에서 측정된 시간별 열팽창량을 연속적인 곡선 그래프화로 산출하는 것이다.In the calculation of the thermal expansion amount of the ball screw, a continuous curved line graph is obtained. When the tool 11a of the machining center repeatedly touches the correction mechanism 20 and graphs the calculated value, a point curve is formed Since the time point value between the point and the point can not be measured, the continuous thermal expansion amount measured in the thermal expansion amount measurement step is calculated by a continuous curve graph.

그리고, 상기 곡선그래프화된 시간별 열팽창량을 다시 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량을 산출하는 것이다.Then, the amount of thermal expansion of the ball screw at the position where the table is located on the x and y axes is calculated at an arbitrary time by substituting the above-mentioned curved graphical thermal expansion amount into the equation.

상기 볼스크류 열팽창량 산출단계에서 대입되는 수학식은 아래와 같다.
The equation to be substituted in the ball screw thermal expansion amount calculating step is as follows.

Figure pat00001
Figure pat00001

여기서, x(∞)=x축 끝단 최대열팽창량, t=시간, τxr=x축의 최대 열팽창량의 63.2%에 도달하는데 걸리는시간(시정수), Exp(자연상수e)=2.718 이다.Here, x (∞) = the maximum thermal expansion amount at the x-axis end, t = time, τxr = time required to reach 63.2% of the maximum thermal expansion amount of the x axis (time constant), and Exp (natural constant e) = 2.718.

상기 수학식을 대입하여 상기 열팽창량측정단계에서 보정기구(20)를 통해 측정된 볼스크류(12)의 시간별 열팽창량이 아래와 같이 곡선 그래프화되는 것이다.The thermal expansion amount of the ball screw 12 measured through the correction mechanism 20 in the thermal expansion amount measuring step by substituting the above equation is curved as follows.

Figure pat00002
Figure pat00002

<시간별 열팽창량 곡선 그래프화><Graph of thermal expansion curve over time>

다음 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량을 산출하는 수학식은 아래와 같다.The following equation is used to calculate the ball screw thermal expansion amount at the position where the table is located on the x and y axes at the next arbitrary time.

Figure pat00003
Figure pat00003

여기서, L=테이블 임의의 위치, 500=x축 볼스크류길이다.Where L = table arbitrary position, and 500 = x-axis ball screw length.

상기 곡선 그래프화된 시간별 열팽창량을 상기 수학식에 대입하면 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량을 산출할 수 있는 것이다.The amount of thermal expansion of the ball screw at the position where the table is located on the x and y axes can be calculated at any time by substituting the curved graphical thermal expansion amount by time into the above equation.

그리고, 상기 수학식에서 x축으로 기재되었지만 y축도 동일하게 적용된다.
In the above equation, although written in the x-axis, the same applies to the y-axis.

다음 열수축량측정단계는 상기 머시닝센터가 테이블(13)의 운행을 중지한 상태에서 지정된 시간마다 척의 공구(11a)를 상기 보정기구(20)의 45도 경사진 모서리 부위에 접촉시켜 공구길이보정장치(14)가 자연냉각에 의한 볼스크류(12)의 열수축량을 측정하는 단계이다.The next heat shrinkage amount measuring step is a step of measuring the amount of heat shrinkage by contacting the tool 11a of the chuck with a corner portion inclined by 45 degrees of the correction mechanism 20 at a designated time in a state where the machining center stops the operation of the table 13, (14) measures the amount of heat shrinkage of the ball screw (12) by natural cooling.

상기 열수축량측정단계는 상기 열팽창량측정단계와 동일한 방법으로 측정되되, 상기 머시닝센터가 운행을 중지하였을 경우 상기 볼스크류가 자연냉각으로 온도가 내려가면서 볼스크류(12)의 열수축량을 측정하는 단계이다.
Measuring the amount of heat shrinkage of the ball screw 12 as the temperature of the ball screw is lowered by natural cooling when the machining center stops operating, to be.

다음 열수축량시정수측정단계는 상기 열수축량측정단계에서 측정한 열수축량 중 열수축량이 최대열수축량(포화값) 대비 36.8%에 도달하는 시간(열수축량시정수)을 측정하는 단계이다.
The next step of measuring the heat shrinkage time constant is a step of measuring a time (heat shrinkage time constant) during which the heat shrinkage amount measured in the heat shrinkage amount measurement step reaches 36.8% of the maximum heat shrinkage amount (saturation value).

다음 볼스크류 열수축량 산출단계는 상기 열수축량시정수측정단계에서 측정한 열수축량시정수를 연속적인 곡선 그래프화하는 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량 산출단계이다.Next, the ballscrew heat shrinkage amount calculating step may be performed by substituting the time constant of heat shrinkage time measured in the step of measuring the heat shrinkage time constant into a continuous curve graph, This is the step of calculating the heat shrinkage amount of the ball screw.

상기 볼스크류 열수축량 산출단계에서 열수축량을 연속적인 곡선 그래프화하는 것은 상기 머시닝센터의 공구(11a)가 반복적으로 보정기구(20)에 접촉하여 산출된 값으로 그래프화하면 점으로 된 곡선이 이루어져 점과 점사이의 시간대 수치가 측정이 불가능함으로, 수학식에 대입하여 상기 열수축량측정단계에서 측정된 시간별 열수축량을 연속적인 곡선 그래프화로 산출하는 것이다.In the step of calculating the heat shrinkage amount of the ball screw, the continuous curve drawing of the heat shrinkage amount is performed by making a point curve when the tool 11a of the machining center repeatedly touches the correction mechanism 20 and graphs the calculated value Since the time-point value between the points can not be measured, the time-dependent heat shrinkage amount measured in the heat shrinkage amount measuring step is calculated by a continuous curve graph.

그리고, 상기 곡선그래프화된 시간별 열수축량을 다시 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량을 산출하는 것이다.The amount of heat shrinkage of the ball screw at the position where the table is located on the x and y axes is calculated at a given time by substituting the curved graph of the heat shrinkage amount by time into the equation.

상기 볼스크류 열수축량 산출단계에서 대입되는 수학식은 아래와 같다.
The equation to be substituted in the ball screw heat shrinkage amount calculating step is as follows.

Figure pat00004
Figure pat00004

여기서, x(∞)=x축 끝단최대 열팽창량, t=시간, τxr=x축의 최대 최대열수축량(포화값)의 36.8%에 수축하는데 걸리는시간(시정수), Exp(자연상수e)=2.718 이다.Exp (natural constant e) = the time taken to shrink to 36.8% of the maximum maximum heat shrinkage (saturation value) of the x axis = x (∞) = maximum thermal expansion of the x- 2.718.

상기 수학식을 대입하여 상기 열수축량측정단계에서 보정기구(20)를 통해 측정된 볼스크류(12)의 시간별 열수축량이 아래와 같이 곡선 그래프화되는 것이다.The heat shrinkage amount of the ball screw 12 measured through the correction mechanism 20 in the heat shrinkage amount measuring step by substituting the above equation is plotted as a curve as shown below.

Figure pat00005
Figure pat00005

<시간별 열수축량 곡선 그래프화><Graph of Heat Shrinkage Curve Over Time>

다음 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량을 산출하는 수학식은 아래와 같다.The following equation is used to calculate the ballscrew heat shrinkage amount at the position where the table is located on the x and y axes at the next arbitrary time.

Figure pat00006
Figure pat00006

여기서, L=테이블 임의의 위치, 500=x축 볼스크류길이다.Where L = table arbitrary position, and 500 = x-axis ball screw length.

상기 곡선 그래프화된 시간별 열수축량을 상기 수학식에 대입하면 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량을 산출할 수 있는 것이다.The amount of heat shrinkage of the ball screw at the position where the table is located on the x and y axes can be calculated at any time by substituting the curved graph of the heat shrinkage amount by time into the above equation.

그리고, 상기 수학식에서 x축으로 기재되었지만 y축도 동일하게 적용된다.In the above equation, although written in the x-axis, the same applies to the y-axis.

상기 수학식의 Exp는 수학식에 사용되는 자연상수e의 정의를 가진다.
The Exp of the above equation has a definition of a natural constant e used in the mathematical expression.

다음 머시닝센터의 제어시스템에 저장하는 단계는 상기에서 산출된 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량 및 열수축량을 머시닝센터의 제어시스템에 저장하는 단계이다.The step of storing in the control system of the next machining center is a step of storing in the control system of the machining center the thermal expansion amount and the thermal shrinkage amount of the ball screw at the position where the table is located on the x and y axes at the arbitrary time calculated above.

다음 상기 제어시스템에 저장된 열팽창량값 및 열수축량값을 이용하여 테이블(13)의 x, y축 이송거리를 보정하는 것이다.
Next, the x and y axis transfer distances of the table 13 are corrected using the thermal expansion amount value and the heat shrinkage amount value stored in the control system.

상기와 같은 열변위보정방법은 프로그램에 적용시켜 파라메타창에 산출값등을 사용자가 확인할 수 있고, 또한 입력할 수 있도록 함이 바람직하다.
It is preferable that the above-described thermal displacement correction method is applied to a program so that the user can check and input the calculated value in the parameter window.

상기와 같이 머시닝센터 테이블의 열변위보정방법을 통해 작업자의 실제 머시닝센터의 운전환경에 대응하여 볼스크류의 열변위량을 실측하기 때문에 종래에 비해 보다 정확한 측정이 가능하고, 상기 머시닝센터의 운전중 볼스크류의 열팽창량 뿐만 아니라 운전중지에 따른 시간별 열수축량을 측정하기 때문에 상기 머시닝센터의 불규칙한 운전 및 운전중지에 대응하여 볼스크류의 열변위 보정이 가능한 것이다.
Since the thermal displacement amount of the ball screw is measured in accordance with the operating environment of the actual machining center of the operator through the thermal displacement correction method of the machining center table as described above, more accurate measurement is possible than in the prior art, It is possible to correct the thermal displacement of the ball screw in response to the irregular operation and the operation stop of the machining center since the thermal expansion amount of the screw is measured as well as the time heat shrinkage amount according to the operation stop.

11:주축 11a:공구
12:볼스크류 13:테이블
14:공구길이보정장치 20:보정기구
11: Spindle 11a: Tool
12: Ball Screw 13: Table
14: Tool length compensation device 20: Correction mechanism

Claims (3)

척에 공구(11a)가 장착되어 회전 및 승/하강하면서 가공물을 가공하는 주축(11), 가공물을 상면에 장치하여 볼스크류(12)에 의해 전후좌우 이송하는 테이블(13), 상기 테이블(13)의 일측에 결합되는 공구길이보정장치(14)로 이루어지는 통상의 머시닝센터에 있어서,
주축에 설치되는 공구(11a)가 접촉되는 상기 공구길이보정장치(14)의 공구 터치부위에 상단 모서리가 45도 경사지게 형성된 캡 형태의 보정기구(20)를 결합하는 단계;
상기 머시닝센터가 가공물을 가공하는 동안 상기 보정기구(20)가 결합된 공구길이보정장치(14)는 지정된 시간마다 척의 공구(11a)가 상기 보정기구(20)의 45도 경사진 모서리 부위에 접촉할 때마다 열 마찰에 의한 볼스크류(12)의 열팽창량을 측정하는 열팽창량측정단계;
상기 열팽창량측정단계에서 측정한 열팽창량 중 열팽창량이 최대열팽창량(포화값) 대비 63.2%인 지점까지 도달하는 시간(열팽창량시정수)을 측정하는 열팽창량시정수측정단계;
상기 열팽창량시정수측정단계에서 측정한 열팽창량시정수를 연속적인 곡선 그래프화하는 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량 산출단계;

상기 머시닝센터가 테이블(13)의 운행을 중지한 상태에서 지정된 시간마다 척의 공구(11a)를 상기 보정기구(20)의 45도 경사진 모서리 부위에 접촉시켜 공구길이보정장치(14)가 자연냉각에 의한 볼스크류(12)의 열수축량을 측정하는 열수축량측정단계;
상기 열수축량측정단계에서 측정한 열수축량 중 열수축량이 최대열수축량(포화값) 대비 36.8%에 도달하는 시간(열수축량시정수)을 측정하는 열수축량시정수측정단계;
상기 열수축량시정수측정단계에서 측정한 열수축량시정수를 연속적인 곡선 그래프화하는 수학식에 대입하여 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량 산출단계;
상기에서 산출된 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량 및 열수축량을 머시닝센터의 제어시스템에 저장하는 단계;
상기 제어시스템에 저장된 열팽창량값 및 열수축량값을 이용하여 테이블(13)의 x, y축 이송거리를 보정하는 단계;
로 이루어지는 것을 특징으로 하는 머시닝센터 볼스크류의 열변위보정방법.
A spindle 11 for machining a workpiece while the tool 11a is mounted on the chuck and rotating and raising / lowering the workpiece; a table 13 for transferring workpieces to the upper surface by the ball screw 12 to move it back and forth; And a tool length correcting device (14) coupled to one side of the tool holder
(20) having a top edge inclined at 45 degrees to a tool touch area of the tool length correcting device (14) to which a tool (11a) provided on a main shaft is contacted;
The tool length correcting device 14 to which the correcting mechanism 20 is coupled while the machining center is processing the workpiece is configured such that the tool 11a of the chuck is contacted to a corner portion inclined by 45 degrees of the correcting mechanism 20 A thermal expansion amount measurement step of measuring a thermal expansion amount of the ball screw 12 due to thermal friction every time it is performed;
A thermal expansion amount time constant measurement step of measuring a time (thermal expansion amount time constant) at which the thermal expansion amount measured in the thermal expansion amount measurement step reaches a point at which the thermal expansion amount is 63.2% of the maximum thermal expansion amount (saturation value);
Calculating a thermal expansion amount of the ball screw at a point at which the table is located on the x and y axes at an arbitrary time by substituting the thermal expansion amount time constant measured in the thermal expansion amount time constant measuring step into a continuous curve graphing step;

The tool 11a of the chuck is brought into contact with the corner portion of the correction mechanism 20 inclined by 45 degrees at the designated time in a state where the machining center stops the operation of the table 13, A heat shrinkage amount measurement step of measuring a heat shrinkage amount of the ball screw (12)
Measuring a time of shrinkage quantity time constant measuring a time (heat shrinkage quantity time constant) in which a heat shrinkage amount measured in the heat shrinkage amount measuring step reaches 36.8% of a maximum heat shrinkage amount (saturation value);
Calculating a heat shrinkage amount of the ball screw at a position where the table is located on the x and y axes at an arbitrary time by substituting the time constants of the heat shrinkage time constant measured in the step of measuring the heat shrinkage time constant into a continuous curve graphing step;
Storing a ball screw thermal expansion amount and a heat shrinkage amount at a point where the table is located on the x, y axes at a predetermined time calculated in the above-described manner in a control system of a machining center;
Correcting the x- and y-axis transfer distances of the table (13) using the thermal expansion amount value and the heat shrinkage amount value stored in the control system;
Wherein the machining center ball screw comprises a plurality of balls.
제 1항에 있어서,
열팽창량 산출단계의 수학식은, x(∞)=x축 끝단 최대열팽창량, t=시간, τxr=x축의 최대열팽창량의 63.2%에 도달하는데 걸리는 시간, Exp=자연상수, L=임의의 x축 위치, 500=x축 볼스크류길이로 하여
f(x)=x(∞)*(1-Exp(-t/τxr))의 함수에 대입하여 상기 열팽창량측정단계에서 보정기구(20)를 통해 측정된 볼스크류(12)의 시간별 열팽창량을 곡선 그래프화하고, 상기 곡선 그래프화된 시간별 열팽창량을 x(t)=(L /500)* f(x)의 함수에 대입하면 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열팽창량을 산출하는 것을 특징으로 하는 머시닝센터 볼스크류의 열변위보정방법.
The method according to claim 1,
The equation of the thermal expansion amount calculating step is as follows: x (∞) = maximum thermal expansion amount at the x-axis end, t = time, τxr = time required to reach 63.2% of the maximum thermal expansion amount in the x axis, Exp = natural constant, L = Axis position, 500 = x axis Ball screw length
the thermal expansion amount of the ball screw 12 measured through the correction mechanism 20 in the thermal expansion amount measurement step is substituted into a function of f (x) = x (?) * 1-Exp (-t /? xr) (T) = (L / 500) * f (x), when the curvilinear time-scale thermal expansion amount by time is substituted into a function of x (t) = And the amount of thermal expansion of the ball screw of the machining center ball screw is calculated.
제 1항에 있어서,
열수축량 산출단계의 수학식은, x(∞)=x축 끝단 최대열팽창량, t=시간, τxr=x축의 최대열수축량의 36.8%에 도달하는데 걸리는 시간, Exp=자연상수, L=임의의 x축 위치, 500=x축 볼스크류길이로 하여
f(x)=x(∞)*(1-Exp(-t/τxr))의 함수에 대입하여 상기 열수축량측정단계에서 보정기구(20)를 통해 측정된 볼스크류(12)의 시간별 열수축량을 곡선 그래프화하고, 상기 곡선 그래프화된 시간별 열수축량을 x(t)=(L /500)* f(x)의 함수에 대입하면 임의의 시간에 x, y축 상에 테이블이 위치하는 지점의 볼스크류 열수축량을 산출하는 것을 특징으로 하는 머시닝센터 볼스크류의 열변위보정방법.
The method according to claim 1,
The equation of the heat shrinkage amount calculation step is as follows: x (∞) = maximum thermal expansion amount at the x-axis end, t = time, τxr = time taken to reach 36.8% of the maximum heat shrinkage amount in the x axis, Exp = natural constant, L = Axis position, 500 = x axis Ball screw length
The heat shrinkage amount of the ball screw 12 measured through the correction mechanism 20 in the heat shrinkage amount measurement step is substituted into a function of f (x) = x (?) * (1-Exp (T) = (L / 500) * f (x), and the point at which the table is located on the x and y axes at any time is obtained by substituting the curvilinear time- And the heat-shrinkage amount of the ball screw of the machining center ball screw is calculated.
KR1020130004373A 2013-01-15 2013-01-15 Thermal deformation correction method for ball screw of machining centers KR20140092078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130004373A KR20140092078A (en) 2013-01-15 2013-01-15 Thermal deformation correction method for ball screw of machining centers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130004373A KR20140092078A (en) 2013-01-15 2013-01-15 Thermal deformation correction method for ball screw of machining centers

Publications (1)

Publication Number Publication Date
KR20140092078A true KR20140092078A (en) 2014-07-23

Family

ID=51738927

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130004373A KR20140092078A (en) 2013-01-15 2013-01-15 Thermal deformation correction method for ball screw of machining centers

Country Status (1)

Country Link
KR (1) KR20140092078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140093847A (en) * 2013-01-18 2014-07-29 두산인프라코어 주식회사 Feed drive system thermal deformation correction device of machine tool and method thereof
KR101867226B1 (en) 2017-04-06 2018-06-12 김성훈 Thermal deformation correction apparatus and correction method for ball screw of machining centers
CN117606337A (en) * 2024-01-24 2024-02-27 威海双丰物探设备股份有限公司 Strain measuring device for strain ring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140093847A (en) * 2013-01-18 2014-07-29 두산인프라코어 주식회사 Feed drive system thermal deformation correction device of machine tool and method thereof
KR101867226B1 (en) 2017-04-06 2018-06-12 김성훈 Thermal deformation correction apparatus and correction method for ball screw of machining centers
CN117606337A (en) * 2024-01-24 2024-02-27 威海双丰物探设备股份有限公司 Strain measuring device for strain ring

Similar Documents

Publication Publication Date Title
KR102123173B1 (en) Automatic conversion device for thermal displacement compensation parameters and conversion method for machine tools
JP6295070B2 (en) Geometric error identification method for multi-axis machine tools and multi-axis machine tools
JP5670504B2 (en) Numerical control machine tool and spindle error correction method for numerical control machine tool
JP4803491B2 (en) Position correction device for machine tool
US20140222189A1 (en) Computing device and method for measuring probe of computer numerical control machine
JP5816475B2 (en) Industrial machinery
CN104209808B (en) Machine tool and control method therefor
CN113211493B (en) Calibration method and calibration system
TW201417941A (en) Offset-measuring system of machine tool and offset-measuring method thereof
US10976724B2 (en) Machining error compensation using artefact based offsets
KR20220044506A (en) Machining error compensation system and method during precision jig grinding process
JP6603203B2 (en) Method and system for measuring position of object in machine tool
JP2015006721A (en) Machine tool including measuring apparatus
KR20140092078A (en) Thermal deformation correction method for ball screw of machining centers
JP5201871B2 (en) Shape measuring method and apparatus
US7191535B2 (en) On-machine automatic inspection of workpiece features using a lathe rotary table
KR20150041328A (en) Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
JP2017124485A (en) Machine tool and correction method of tool tip position
CN110977612A (en) CNC (computer numerical control) machining online measurement error correction method and system
JP2006281338A (en) Machining program generator, machining method, and program
JP2009251621A (en) Reference position correction device for machine tool
KR101823052B1 (en) Method of measuring workpiece for correction of cnc machine job
JP4878949B2 (en) Calculation method of thermal displacement amount used for thermal displacement correction of machine tool, calculation system of thermal displacement amount, thermal displacement correction method of machine tool, and thermal displacement correction system
KR101953579B1 (en) Apparatus for correcting table position error and method thereof
JP2015059897A (en) Measuring device, processing device, measuring method, and processing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application