KR20140082869A - Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof - Google Patents

Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof Download PDF

Info

Publication number
KR20140082869A
KR20140082869A KR20120148452A KR20120148452A KR20140082869A KR 20140082869 A KR20140082869 A KR 20140082869A KR 20120148452 A KR20120148452 A KR 20120148452A KR 20120148452 A KR20120148452 A KR 20120148452A KR 20140082869 A KR20140082869 A KR 20140082869A
Authority
KR
South Korea
Prior art keywords
catalyst
butadiene
honeycomb
manganese ferrite
mixed
Prior art date
Application number
KR20120148452A
Other languages
Korean (ko)
Other versions
KR101953919B1 (en
Inventor
권용탁
홍석준
김옥윤
김태진
추대현
Original Assignee
에스케이이노베이션 주식회사
에스케이종합화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이종합화학 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020120148452A priority Critical patent/KR101953919B1/en
Priority to PCT/KR2013/011740 priority patent/WO2014098448A1/en
Publication of KR20140082869A publication Critical patent/KR20140082869A/en
Application granted granted Critical
Publication of KR101953919B1 publication Critical patent/KR101953919B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for producing a mixed manganese ferrite honeycomb-type catalyst and to a method for producing 1,3-butadiene using the same as a catalyst. In particular, the present invention relates to a method for producing a catalyst by extruding and molding mixed manganese ferrite, which is produced through a co-precipitation technique, in a honeycomb form using a binder and to a method for producing 1,3-butadiene through an oxidative dehydrogenation reaction by directly using normal-butene as a reactant on the produced catalyst. The mixed manganese ferrite honeycomb-type catalyst produced in the present invention can be produced through a simple producing method, and the heating thereof can be easily controlled during an oxidant dehydrogenation reaction, so that 1,3-butadien can be produced from normal-butene at a high yield.

Description

혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법 {Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof}TECHNICAL FIELD The present invention relates to a mixed manganese ferrite honeycomb catalyst, a method for producing the same, and a method for producing 1,3-butadiene using the same. BACKGROUND ART [0002] Mixed Phases Manganese Ferrite Honeycomb Type Catalyst,

본 발명은 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법에 관한 것으로, 구체적으로는, 공침법으로 제조된 혼성 망간 페라이트를 바인더를 이용하여 허니컴형으로 압출 성형한 촉매, 그의 제조방법 및 상기 제조된 촉매 상에서 노르말-부텐을 반응물로 사용하여 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 방법에 관한 것이다. The present invention relates to a mixed manganese ferrite honeycomb catalyst, a process for producing the same, and a process for producing 1,3-butadiene using the same, and more particularly, to a process for producing 1,3-butadiene by a co- Butadiene as a reactant, and a method for producing 1,3-butadiene through an oxidative dehydrogenation reaction using n-butene as a reactant on the catalyst.

석유화학 시장에서 그 수요가 점차 증가하고 있는 1,3-부타디엔을 제조하기 위한 노르말-부텐(1-부텐, 트랜스-2-부텐, 시스-2-부텐)의 산화적 탈수소화 반응은 노르말-부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 생성물로 안정한 물이 생성되므로 열역학적으로 유리할 뿐만 아니라 반응 온도를 낮출 수 있다. Oxidative dehydrogenation of n-butene (1-butene, trans-2-butene, cis-2-butene) to produce 1,3-butadiene, whose demand is increasing in the petrochemical market, And oxygen react with each other to produce 1,3-butadiene and water. As a result, stable water is produced as a product, which is not only thermodynamically favorable but also can lower the reaction temperature.

그러나 상기 산화적 탈수소화 반응에서는 반응물로서 산소를 사용하기 때문에 완전 산화반응 등 많은 부반응이 예상되므로 이러한 부반응을 최대한 억제하고 1,3-부타디엔의 선택도가 높은 촉매를 개발하는 것이 가장 중요한 핵심 기술이다. However, in the oxidative dehydrogenation reaction, since oxygen is used as a reactant, many side reactions such as a complete oxidation reaction are expected. Therefore, it is the most important technology to suppress the side reaction and to develop a catalyst having a high selectivity for 1,3-butadiene .

노르말-부텐의 산화적 탈수소화 반응에 또 다른 문제점 중 하나는 반응물 중 일정량 이상의 노르말-부탄이 함유되어 있으면 1,3-부타디엔의 수율이 낮아진다는 것이다 [L.M. Welch, L.J. Croce, H.F. Christmann, Hydrocarbon Processing, 131쪽(1978년)]. 따라서, 상기의 종래 기술들에서는 반응물로 순수한 노르말-부텐(1-부텐 또는 2-부텐)만을 사용하여, 산화적 탈수소화 반응을 수행함으로써 이러한 문제점을 방치하고 있으며, 실제 페라이트 촉매를 이용한 상업공정에서도 노르말 부탄이 제거된 반응물을 사용하고 있다. 이와 같이 산화적 탈수소화 반응을 통해 노르말-부텐으로부터 1,3-부타디엔을 제조하기 위한 촉매 및 공정에 관한 문헌 또는 특허들과 이를 기반으로 하는 공정에서는 반응물로서 순수한 노르말-부텐을 사용함으로써 순수한 노르말-부텐을 C4 혼합물 중에서 추출하는 분리공정이 추가로 필요하고, 이로 인해 경제성이 크게 떨어지는 것을 피할 수 없었다.One of the problems with the oxidative dehydrogenation reaction of n-butene is that the yield of 1,3-butadiene is lowered when a certain amount of n-butane is contained in the reactants [L. Welch, L.J. Croce, H.F. Christmann, Hydrocarbon Processing, p. 131 (1978)]. Therefore, in the above-mentioned prior arts, only the pure n-butene (1-butene or 2-butene) is used as the reactant, and the oxidative dehydrogenation reaction is performed to obviate this problem. In the commercial process using the actual ferrite catalyst The reactant from which normal butane has been removed is used. In the literatures or patents relating to the catalyst and process for producing 1,3-butadiene from n-butene through the oxidative dehydrogenation reaction and the processes based thereon, pure pure n-butene is used as a reactant, An additional separation step of extracting butene from the C4 mixture is required, which inevitably leads to a significant decrease in economy.

지금까지 알려진 노르말-부텐의 산화적 탈수소화 반응에 사용되는 촉매로는 페라이트(Ferrite) 계열 촉매, 주석 계열 촉매, 비스무스 몰리브데이트(Bismuth Molybdate) 계열 촉매 등이 있다.As the catalysts used in the oxidative dehydrogenation reaction of n-butene, there are known ferrite catalysts, tin catalysts, and bismuth molybdate catalysts.

이 중에서 상기 페라이트 계열 촉매는 스피넬 구조의 2가 양이온 자리를 구성하는 금속의 종류에 따라 촉매로서의 활성이 다른데, 그 중에서도 아연 페라이트, 마그네슘 페라이트, 망간 페라이트가 노르말-부텐의 산화적 탈수소화 반응에 좋은 활성을 보이는 것으로 알려져 있으며, 특히 아연 페라이트는 다른 금속의 페라이트 촉매보다 1,3-부타디엔의 선택도가 높은 것으로 보고되고 있다 [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., 51권, 235쪽(1989년)].Among them, the ferrite catalysts differ in catalytic activity depending on the kind of metal constituting the divalent cation site of the spinel structure. Among them, zinc ferrite, magnesium ferrite and manganese ferrite are excellent for the oxidative dehydrogenation reaction of n-butene. And zinc ferrite has been reported to have higher 1,3-butadiene selectivity than ferrite catalysts of other metals [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., 51, 235 (1989)].

몇몇 특허 및 문헌에 노르말-부텐의 산화적 탈수소화 반응에 있어서 아연 페라이트 계열 촉매의 활용에 대해 보고된 바 있으며, 산화적 탈수소화 반응에 대한 아연 페라이트 촉매의 활용 및 수명을 높이기 위해, 촉매에 첨가제를 처리하는 등 전처리 및 후처리를 통하여 보다 높은 수율로 1,3-부타디엔을 장기적으로 얻을 수 있다 [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., 51권, 235쪽(1989년) / L.J. Crose, L. Bajars, M. Gabliks, 미국특허 제 3,743,683호(1973년) / E.J. Miklas, 미국특허 제 3,849,545호(1974년) / J.R. Baker, 미국특허 제 3,951,869호(1976년)]. 또한, 상기의 아연 페라이트 촉매 이외에 노르말-부텐의 산화적 탈수소화 반응에 대한 망간 페라이트 계열 촉매의 활용에 대해서도 몇몇 특허에 보고된 바 있다. Several patents and documents have reported utilization of zinc ferrite-based catalysts in the oxidative dehydrogenation reaction of n-butene, and in order to increase utilization and lifetime of the zinc ferrite catalyst for the oxidative dehydrogenation reaction, And 1,3-butadiene can be obtained over a long period of time at higher yields through pre-treatment and post-treatment [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., Vol. 51, p. 235 (1989) / L.J. Crose, L. Bajars, M. Gabliks, U.S. Patent No. 3,743,683 (1973) / E.J. Miklas, U.S. Patent No. 3,849,545 (1974) / J.R. Baker, U.S. Pat. No. 3,951,869 (1976)]. In addition to the above zinc ferrite catalysts, the use of manganese ferrite catalysts for the oxidative dehydrogenation reaction of n-butene has also been reported in several patents.

노르말-부텐의 산화적 탈수소화 반응을 수행하는 데 있어서, 상기의 아연 페라이트 촉매의 경우, 비활성화 방지를 위해 금속산화물 첨가 및 산처리 등의 재현성이 떨어지고 복잡한 후처리 과정이 필요하고, 망간 페라이트 촉매의 경우, 순수한 스피넬 상으로 존재하기 위해서는, 공침 시 고온 유지가 필요하며 1,3-부타디엔 수율이 아연 페라이트에 비해 다소 떨어진다는 한계를 가지고 있다.In the case of performing the oxidative dehydrogenation reaction of n-butene, the zinc ferrite catalyst has a low reproducibility such as addition of metal oxide and acid treatment to prevent deactivation, complicated post-treatment is required, In order to exist as a pure spinel phase, it is necessary to maintain a high temperature at the time of coprecipitation, and the yield of 1,3-butadiene is somewhat lower than that of zinc ferrite.

또한, 대한민국 등록특허 제 888143호에서는 촉매 제조과정이 간단하고, 촉매 제조 재현성이 우수하면서도 노르말-부텐의 산화적 탈수소화 반응에 높은 활성을 보이는 혼성 망간 페라이트 촉매 제조 기법을 개시하고 있지만, 구체적인 촉매 성형체에 대해서는 개시하고 있지 않다. Korean Patent No. 888143 discloses a technique for producing a mixed manganese ferrite catalyst having a simple catalyst production process and high catalytic preparation reproducibility but exhibiting high activity in the oxidative dehydrogenation reaction of n-butene. However, Is not disclosed.

따라서 본 발명의 목적은 발열 제어를 통해 부반응을 억제할 수 있고, 1,3-부타디엔을 높은 수율로 제조할 수 있는 촉매로서, 촉매활성이 우수할 뿐만 아니라, 제조과정이 간단한 혼성 망간 페라이트 허니컴형 촉매 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a catalyst capable of suppressing side reactions through exothermic control and capable of producing 1,3-butadiene in a high yield, which is excellent in catalytic activity and has a simple process of producing a mixed manganese ferrite honeycomb And a method for producing the catalyst.

본 발명의 다른 목적은 별도의 분리 공정 없이 저가의 C4 혼합물을 반응물로 직접 사용하여 상기 제조방법에 의해 제조된 촉매 상에서 산화적 탈수소화 반응을 수행함으로써 1,3-부타디엔을 높은 수율로 제조하는 방법을 제공하는 데 있다.Another object of the present invention is to provide a process for producing 1,3-butadiene in a high yield by performing an oxidative dehydrogenation reaction on a catalyst prepared by the above production method directly using a low-cost C4 mixture as a reactant without a separate separation process .

본 발명의 목적을 달성하기 위해 본 발명의 일 측면은 혼성 망간 페라이트 허니컴형 촉매의 제조방법으로서, In order to accomplish the object of the present invention, one aspect of the present invention is a method for producing a mixed manganese ferrite honeycomb catalyst,

a) 망간 전구체 및 철 전구체를 갖는 전구체 수용액을 준비하여 염기성 용액에 혼합시키면서 공침하는 단계 b) 상기 공침된 용액을 세척 및 여과하여 고체 시료를 얻고 건조시키는 단계 c) 상기 건조된 고체 시료, 무기바인더, 유기바인더, 증류수 및 산의 무게비를 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15로 조절하여 혼합한 후 토련(Kneading)하여 반죽을 얻는 단계 d) 상기 c) 단계의 반죽을 규칙적인 구조의 관통 기공을 갖는 압출체로 압출하는 단계; 및 e) 상기 압출체를 열처리하는 단계를 제공한다. a) preparing a precursor aqueous solution having a manganese precursor and an iron precursor and mixing them in a basic solution while mixing them; b) washing and filtering the coprecipitated solution to obtain a solid sample and drying; c) drying the dried solid sample, Mixing dough by adjusting the weight ratio of the binder, organic binder, distilled water and acid to 1: 0.05-0.5: 0.01-0.1: 0.1-1.5: 0.005-0.15 and then kneading to obtain a dough; d) Extruding the dough into an extrudate having through-pores having a regular structure; And e) heat treating the extrudate.

본 발명의 다른 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 관통 기공 단면이 다각형 또는 원형이며, 상기 관통 기공은 허니컴형 촉매의 장축으로 관통되는 기공을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매를 제공한다. According to another aspect of the present invention, there is provided a method for producing 1,3-butadiene, which is characterized in that the through pore cross-section is polygonal or circular and the through pores are pores penetrating through the long axis of the honeycomb- Manganese ferrite honeycomb catalyst.

본 발명의 다른 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 1,3-부타디엔의 제조방법으로써, a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계; b) 상기 반응물이 본 발명의 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응단계; 및 c) 1,3-부타디엔을 수득하는 단계를 제공한다. According to another aspect of the present invention, there is provided a process for preparing 1,3-butadiene comprising the steps of: a) providing a mixture of C4 mixture, air and steam as a reactant; b) an oxidative dehydrogenation reaction step wherein the reactant is passed through a catalyst bed in which the catalyst of the present invention is immobilized; And c) obtaining 1,3-butadiene.

본 발명의 다른 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 1,3-부타디엔의 제조방법으로써, a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계; b) 상기 반응물이 본 발명의 제조 방법에 따라 제조된 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응단계; 및 c) 1,3-부타디엔을 수득하는 단계를 제공한다. According to another aspect of the present invention, there is provided a process for preparing 1,3-butadiene comprising the steps of: a) providing a mixture of C4 mixture, air and steam as a reactant; b) an oxidative dehydrogenation reaction step wherein the reactant is passed through a fixed catalyst bed prepared according to the production method of the present invention; And c) obtaining 1,3-butadiene.

본 발명에 따라 공침법으로 제조된 혼성 망간 페라이트를 바인더를 이용하여 압출 성형된 허니컴형 촉매를 사용하면, 발열 제어를 통한 부반응 억제가 용이하여 산화적 탈수소화 반응을 통해 노르말-부텐으로 부터 높은 수율로 1,3-부타디엔을 제조할 수 있었다.According to the present invention, when a honeycomb catalyst extruded using a binder is used as the mixed manganese ferrite produced by the coprecipitation method, it is easy to suppress the side reaction through the exothermic control, so that a high yield from the n-butene is obtained through the oxidative dehydrogenation reaction 1,3-butadiene could be prepared.

또한, 촉매 구성성분과 합성경로가 매우 간단하고 재현성이 탁월한 혼성(혼합상)의 망간 페라이트 허니컴형 촉매를 얻을 수 있으며, 본 발명에 따라 제조된 촉매를 이용하면, 발열 제어가 용이하여 발열제어를 위한 다관형 또는 라디얼 반응기 등의 반응기 설계의 번거로움 없이 상용공정 적용이 가능하다.In addition, it is possible to obtain a hybrid (mixed phase) manganese ferrite honeycomb catalyst having a very simple catalyst composition and a simple synthesis route and excellent reproducibility. When the catalyst prepared according to the present invention is used, It is possible to apply commercial process without the hassle of reactor design such as multi-tubular or radial reactor.

본 발명을 통해 석유화학산업에서 그 활용가치가 높은 1,3-부타디엔을 활용가치가 낮은 노르말-부텐으로부터 제조할 수 있어, C4 유분의 고부가가치를 이룰 수 있다. 또한 크래커를 신설하지 않고도 1,3-부타디엔을 제조할 수 있는 단독 생산 공정을 확보하여, 늘어나는 1,3-부타디엔의 수요를 충족시킬 수 있으므로 기존 공정에 비하여 경제적이다. By using the present invention, 1,3-butadiene having a high utilization value in the petrochemical industry can be produced from n-butene having a low utilization value, so that a high added value of C4 oil can be achieved. In addition, it is economical compared to existing processes because it can meet the demand of 1,3-butadiene by securing a single production process capable of producing 1,3-butadiene without installing a cracker.

도 1은 규칙적인 구조의 관통 기공을 갖는 혼성 망간 페라이트 허니컴형 촉매의 모식도이다. 1 is a schematic view of a mixed manganese ferrite honeycomb catalyst having through-pores of a regular structure.

이하, 본 발명을 좀 더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 노르말-부텐의 산화적 탈수소화 반응에 있어서 혼성 망간 페라이트 허니컴형 촉매를, 바람직하게 10~40oC 온도범위에서, 더욱 바람직하게는 15~30oC의 온도 범위에서 수행되는 공침법을 통해 혼성 망간 페라이트를 합성한 후, 이를 바인더를 이용하여 압출 성형된 허니컴형 촉매를 제조하고, 제조된 촉매를 이용하여 노르말-부텐의 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 방법에 관한 것이다. The present invention relates to a process for preparing a mixed manganese ferrite honeycomb catalyst in the oxidative dehydrogenation reaction of n-butene by a coprecipitation process which is preferably carried out at a temperature of 10 to 40 ° C, more preferably at a temperature of 15 to 30 ° C To synthesize the mixed manganese ferrite. The honeycomb catalyst is extruded by using a binder, and 1,3-butadiene is produced through an oxidative dehydrogenation reaction of n-butene using the prepared catalyst. ≪ / RTI >

노르말-부텐의 산화적 탈수소화 반응에 있어서 높은 수율로 1,3-부타디엔을 얻기 위한 본 발명의 혼성 망간 페라이트 허니컴형 촉매는 활성 물질인 혼성 망간 페라이트를 규칙적인 구조의 관통 기공을 갖는 압출체(extrudate)로 성형함으로써, 단위부피당 넓은 표면적을 유지하면서도 차압(Pressure Drop) 및 역혼합(Backmixing)을 줄이고 축방향으로의 열전달 속도를 높여 발열 제어가 용이하며, 노르말-부텐의 산화적 탈수소화 반응에 보다 높은 활성을 보인다.The mixed manganese ferrite honeycomb type catalyst of the present invention for obtaining 1,3-butadiene in a high yield in the oxidative dehydrogenation reaction of n-butene is produced by mixing the active manganese ferrite with an extrudate having through- extrudate to reduce the pressure drop and backmixing while increasing the heat transfer rate in the axial direction while maintaining a large surface area per unit volume and facilitating the exothermic control and the oxidative dehydrogenation reaction of n-butene And exhibit higher activity.

본 발명의 일 측면은 a) 망간 전구체 및 철 전구체를 갖는 전구체 수용액을 준비하여 염기성 용액에 혼합시키면서 공침하는 단계 b) 상기 공침된 용액을 세척 및 여과하여 고체 시료를 얻고 건조시키는 단계 c) 상기 건조된 고체 시료, 무기바인더, 유기바인더, 증류수 및 산의 무게비를 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15로 조절하여 혼합한 후 토련(Kneading)하여 반죽을 얻는 단계 d) 상기 c) 단계의 반죽을 규칙적인 구조의 관통 기공을 갖는 압출체로 압출하는 단계; 및 e) 상기 압출체를 열처리하는 단계를 포함하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법에 관한 것이다. A) preparing a precursor aqueous solution having a manganese precursor and an iron precursor and mixing them in a basic solution while mixing them; b) washing and filtering the coprecipitated solution to obtain a solid sample and drying; c) Adjusting the weight ratio of the dried solid sample, inorganic binder, organic binder, distilled water and acid to 1: 0.05-0.5: 0.01-0.1: 0.1-1.5: 0.005-0.15, mixing and kneading to obtain a dough ) Extruding the dough of step c) into an extrudate having through-pores having a regular structure; And e) subjecting the extrudate to heat treatment. The present invention also relates to a process for preparing a mixed manganese ferrite honeycomb catalyst for the production of 1,3-butadiene.

상기 a) 단계에서 혼성 망간 페라이트 합성을 위한 망간 전구체 및 철 전구체로는 용매로 사용되는 증류수에 잘 용해되는 클로라이드(Chloride) 전구체 또는 나이트레이트(Nitrate) 전구체를 사용하는 것이 바람직하며, 구체적으로는 상기 철 전구체는 염화 제1철 4수화물, 염화 제1철 6수화물, 염화 제1철 2수화물, 염화 제2철 6수화물, 질산 제1철 6수화물, 질산 제1철 9수화물, 질산 제2철 6수화물, 및 질산 제2철 9수화물로 이루어진 군으로부터 선택되며, 상기 망간 전구체는 염화 제1망간, 염화 제1망간 4수화물, 염화 제2망간, 4염화망간, 질산망간 6수화물, 질산망간 4수화물 및 질산망간 1수화물로 이루어진 군으로부터 선택되어 사용되나, 이에 한정되지는 않는다. As the manganese precursor and the iron precursor for synthesizing the mixed manganese ferrite in the step a), it is preferable to use a chloride precursor or a nitrate precursor which is well dissolved in distilled water used as a solvent. Specifically, The iron precursor may be selected from the group consisting of ferrous chloride tetrahydrate, ferrous chloride hexahydrate, ferrous chloride dihydrate, ferric chloride hexahydrate, ferrous nitrate hexahydrate, ferrous nitrate hexahydrate, ferric nitrate Wherein the manganese precursor is selected from the group consisting of manganese chloride, manganese chloride, manganese chloride, manganese chloride, manganese chloride, manganese chloride, manganese chloride, manganese chloride, And manganese nitrate monohydrate, but is not limited thereto.

상기 망간 전구체 및 철 전구체는 바람직하게는 철/망간 원자 수 비 값이 2.0~2.5가 되도록 두 전구체 양을 조절하여 각각 증류수에 용해시킨 후 함께 혼합하는데, 이 때 상기 철/망간 원자 수 비 값이 2.0~2.5 범위를 벗어나는 경우에는 망간이 철 격자 내에 들어가기가 어렵거나, 촉매 활성이 매우 낮아지게 된다. Preferably, the manganese precursor and the iron precursor are dissolved in distilled water and mixed together by controlling the amounts of the two precursors so that the iron / manganese atom number ratio is 2.0 to 2.5, Outside the range of 2.0 to 2.5, manganese is difficult to enter into the iron lattice or the catalytic activity becomes very low.

한편 망간 전구체와 철 전구체를 상온에서 공침시키기 위하여 바람직하게는 1.5~4 몰 농도의 염기성 용액, 예를 들어, 3 몰 농도의 수산화나트륨 수용액을 별도로 제조한다. 상기 염기성 용액의 농도가 1.5 미만이면 혼성 망간 페라이트 촉매 구조가 형성되기 어려우며, 4몰 농도보다 높으면 세척시 수산기와 결합한 금속이온, 예를 들어 수산화나트륨의 경우 Na 이온의 제거가 어렵고, 이로 인해 활성 저하가 나타나게 된다. 또한 상기 염기성 용액의 몰농도는 2~3 몰농도 범위로 조절하는 경우 혼성 망간 페라이트 구조의 형성 및 후처리 측면에서 보다 바람직하다. 망간 전구체와 철 전구체의 공침에 사용되는 염기성 용액은 수산화나트륨뿐만 아니라 암모니아수를 포함한 다른 종류의 염기성 용액도 사용 가능하다. 한편, 상기 염기성 용액의 pH는 9 내지 14를 나타낸다.On the other hand, in order to coprecipitate the manganese precursor and the iron precursor at room temperature, a basic solution having a concentration of 1.5 to 4 moles, for example, an aqueous solution of sodium hydroxide of 3 moles, is separately prepared. If the concentration of the basic solution is less than 1.5, it is difficult to form a mixed manganese ferrite catalyst structure. If the concentration of the basic solution is higher than 4 mol, the removal of Na ions is difficult in the case of a metal ion bonded with a hydroxyl group, for example sodium hydroxide, . In addition, the molarity of the basic solution is more preferably in terms of formation and post-treatment of the mixed manganese ferrite structure when the concentration is in the range of 2 to 3 moles. Basic solutions used for coprecipitation of manganese precursor and iron precursor may be sodium hydroxide as well as other basic solutions including ammonia water. On the other hand, the pH of the basic solution is 9-14.

망간 전구체 및 철 전구체로부터 혼성 망간 페라이트를 얻기 위해, 바람직하게 10 내지 40oC에서 망간 전구체와 철 전구체가 용해된 수용액을 상기 제조된 염기성 용액에 주입하는데, 이때 주입 속도를 일정하게 유지시키고, 공침이 충분히 이루어지도록 2~12시간, 바람직하게는 6~12시간 교반 시킨다.In order to obtain the mixed manganese ferrite from the manganese precursor and the iron precursor, an aqueous solution in which the manganese precursor and the iron precursor are dissolved at preferably 10 to 40 ° C is injected into the basic solution, Is stirred for 2 to 12 hours, preferably for 6 to 12 hours.

여기서 10oC 미만에서 공침이 이루어지게 되면, 공침이 충분하게 되지 않아 극히 불안정한 결합이 형성되어 촉매 사용 시 제어하기 어려운 부반응이 유발되고, 40oC를 초과하게 되면 촉매활성이 저하되어 바람직하지 않다. 상기 공침은 더욱 바람직하게 15~30oC 범위에서 이루어지며, 가장 바람직하게는 15~25oC 범위에서 이루어진다.If coprecipitation is carried out at less than 10 ° C, coprecipitation is not sufficient and an extremely unstable bond is formed. As a result, a side reaction which is difficult to control when the catalyst is used is caused. When it exceeds 40 ° C, . The co-precipitation is more preferably in the range of 15 to 30 ° C, and most preferably in the range of 15 to 25 ° C.

상기 b) 단계에서는 교반시킨 공침 용액은 고체 촉매가 침전되도록 충분한 시간 동안 상 분리시키고, 세척 후 감압여과기 등을 통해 침전된 고체 시료를 얻는다.In the step b), the stirred coprecipitation solution is phase separated for a sufficient time to allow the solid catalyst to precipitate, and after washing, a precipitated solid sample is obtained through a vacuum filter or the like.

얻어진 고체 시료는 70~200oC, 바람직하게는 120~180oC에서 24시간 건조시켜 혼성 망간 페라이트를 제조한다. The solid sample thus obtained is dried at 70 to 200 ° C, preferably 120 to 180 ° C for 24 hours to prepare a mixed manganese ferrite.

상기 c) 단계에서는 상기 건조된 고체 시료, 무기바인더, 유기 바인더, 증류수 및 산을 혼합한 후 토련(kneading)하여 반죽을 얻는다. In step c), the dried solid sample, the inorganic binder, the organic binder, the distilled water, and the acid are mixed and kneaded to obtain a dough.

이 때, b) 단계에서 건조된 혼성 망간 페라이트를 압출 성형하기 위한 반죽을 얻기 위해 사용되는 무기바인더는 10~250m2/g의 비표면적을 가지는 알루미나나 실리카가 바람직하나 이에 한정되는 것은 아니다. 상기 알루미나 또는 실리카의 전구체로는 슈도보에마이트, 알루미나 졸, 실리케이트, 실리카 졸 또는 이들의 혼합물인 것이 바람직하며, 더욱 바람직하게는 슈도보에마이트를 사용한다.At this time, the inorganic binder used to obtain the dough for extrusion-molding the mixed manganese ferrite dried in step b) is preferably alumina or silica having a specific surface area of 10 to 250 m 2 / g, but is not limited thereto. As the precursor of alumina or silica, it is preferable to use pseudoboehmite, alumina sol, silicate, silica sol or a mixture thereof, and more preferably, pseudoboehmite is used.

유기바인더는 압출체를 제조하기 위해 무기물 반죽에 통상적으로 첨가되는 유기바인더가 모두 사용가능하나, 에틸셀룰로오스계, 메틸셀룰로오스계, 에틸셀룰로오스 유도체, 메틸셀룰로오스 유도체 또는 이들의 혼합물인 것이 바람직하며, 더욱 바람직하게는 메틸셀룰로오스계를 사용한다. 상기 유기바인더는 압출 시 성형성을 좋게 하고 건조 시 크랙(Crack) 생성을 완화하는 역할을 한다. The organic binder may be any of organic binders conventionally added to the inorganic paste for producing the extruded product, but is preferably an ethylcellulose-based, methylcellulose-based, ethylcellulose derivative, methylcellulose derivative or a mixture thereof, more preferably A methylcellulose system is used. The organic binder improves the moldability upon extrusion and mitigates cracking during drying.

상기 완성된 혼성 망간 페라이트를 압출 성형하기 위한 반죽을 얻기 위해서는 무기 바인더를 교화(Peptizing)하기 위해 산이 첨가되는데 이때 사용되는 산은 제한이 없으나, 바람직하게는 질산, 염산, 황산, 인산, 및 아세트산으로 이루어진 군으로부터 선택하여 사용할 수 있고, 더욱 바람직하게는 질산을 사용할 수 있다. In order to obtain the dough for extrusion molding of the completed mixed manganese ferrite, an acid is added to peptize the inorganic binder. The acid used is not limited, but is preferably composed of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, and acetic acid. And nitric acid can be used more preferably.

상기 c) 단계에서, 혼성 망간 페라이트, 무기바인더, 유기바인더, 증류수 및 질산은 무게비로 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15으로 혼합할 수 있다. 바람직하게는 1: 0.1~0.4: 0.03~0.08: 0.5~1.0: 0.01~0.1으로 혼합한 후, 토련하여 반죽을 얻는다. In step c), the mixed manganese ferrite, the inorganic binder, the organic binder, the distilled water, and the nitric acid may be mixed at a weight ratio of 1: 0.05-0: 0.5-0.01-0.1-0.1: 0.005-0.15. Preferably 1: 0.1 to 0.4: 0.03 to 0.08: 0.5 to 1.0: 0.01 to 0.1, and then kneaded to obtain dough.

상기 d) 단계에서, c) 단계의 반죽을 규칙적인 구조의 관통기공을 갖는 압출체로 압출 성형한다.In the step (d), the dough of step (c) is extruded into an extrudate having a through-pore having a regular structure.

상기 압출 시 압출기 내부가 진공상태로 유지되며, 300 내지 500mm/min의 성형 속도로 성형되는 것이 바람직하나, 이에 제한되는 것은 아니다. 상기 압출을 위해 실린더형 압출기 또는 피스톤형 압출기 모두 사용가능하나, 연속공정을 위해 실린더형 압출기를 사용하는 것이 바람직하다. 상기 성형속도는 상기의 반죽 상태에 최적화된 성형 속도로 제조 효율을 증가시키면서 압출시 인가되는 과도한 응력에 의해 허니컴형 압출체가 손상되지 않는 조건이다.The inside of the extruder is maintained in a vacuum state at the time of extrusion, and is preferably formed at a molding speed of 300 to 500 mm / min, but is not limited thereto. Both the cylindrical extruder and the piston extruder can be used for the extrusion, but it is preferable to use a cylindrical extruder for the continuous process. The molding speed is a condition in which the honeycomb extruder is not damaged by excessive stress applied at the time of extrusion while increasing the production efficiency at a molding speed optimized for the kneading state.

본 발명의 최적화된 혼합 조건 및 혼합 비율에 의해 반죽의 점도 및 강도가 최적화되어, 상기 d) 단계의 규칙적인 구조의 관통 기공의 단면이 다각형 또는 원형이며, 상기 압출체의 장축으로 관통되는 기공이 배열된 고 비표면적의 허니컴형 압출체를 얻을 수 있다. 상기 압출을 통해 상기 규칙적인 구조를 갖는 기공과 기공 간의 두께(벽 두께)가 0.1 내지 2mm인 우수한 압출체를 얻을 수 있게 된다. The viscosity and strength of the dough are optimized by the optimized mixing condition and mixing ratio of the present invention, and the cross-section of the through pores of the regular structure of step d) is polygonal or circular, and pores penetrating through the long axis of the extrudate A honeycomb extruded body having a high specific surface area can be obtained. It is possible to obtain an excellent extruded body having a thickness (wall thickness) between pores having a regular structure and pores of 0.1 to 2 mm through the extrusion.

상기 e) 단계에서, 압출체를 열처리한다. In the step e), the extrudate is heat-treated.

상기 d) 단계에서 얻어진 압출된 혼성 망간 페라이트 허니컴형 촉매를 전기로에 넣고 100 내지 800oC 에서 열처리하여 1,3-부타디엔 제조용 허니컴형 촉매를 제조한다. 상기 열처리에 의한 균열을 방지하기 위해 100 내지 150oC의 저온 열처리 후 500 내지 700oC에서의 고온 열처리가 수행되는 2단 열처리가 더욱 바람직하다. The extruded mixed manganese ferrite honeycomb catalyst obtained in the step d) is placed in an electric furnace and heat-treated at 100 to 800 ° C to prepare a 1,3-butadiene-based honeycomb catalyst. In order to prevent cracking due to the heat treatment, a low-temperature heat treatment at 100 to 150 ° C and a high-temperature heat treatment at 500 to 700 ° C are more preferable.

본 발명의 일측면은 관통 기공 단면이 다각형 또는 원형이며, 상기 관통기공은 허니컴형 촉매의 장축으로 관통되는 기공인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매를 제공한다. One aspect of the present invention provides a mixed manganese ferrite honeycomb catalyst for producing 1,3-butadiene, wherein the through pore cross section is polygonal or circular, and the through pores are pores penetrating through the long axis of the honeycomb catalyst.

본 발명의 일측면에 따른 일구체예에 따르면, 허니컴형 촉매의 기공과 기공간의 두께(벽 두께)가 0.1 내지 2mm인 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매를 제공한다. According to one embodiment of the present invention, there is provided a mixed manganese ferrite honeycomb catalyst for the production of 1,3-butadiene, wherein the pores of the honeycomb catalyst and the thickness (wall thickness) of the vapor space are 0.1 to 2 mm.

본 발명의 일 측면에 따라 제조된 1,3-부타디엔 제조용 혼성 망간 페라이트 촉매의 X선 회절 분석 시 나타나는 피크들은 18.78~18.82, 24.18~24.22, 33.2~33.24, 35.64~35.68, 40.9~40.94, 45.22~45.26, 49.56~49.6, 54.22~54.26, 55.24~55.28, 57.92~57.96, 62.56~62.6, 64.04~64.08, 66.02~66.06, 72.16~72.2, 및 75.78~75.82의 2쎄타 범위를 가지며 가장 두드러지는 피크는 33.2~33.24의 2쎄타 범위에서 나타나는 것을 특징으로 한다.The peaks observed in the X-ray diffraction analysis of the mixed manganese ferrite catalyst for 1,3-butadiene production according to one aspect of the present invention are 18.78 to 18.82, 24.18 to 24.22, 33.2 to 33.24, 35.64 to 35.68, 40.9 to 40.94, The two most prominent peaks have a theta range of 45.26, 49.56 to 49.6, 54.22 to 54.26, 55.24 to 55.28, 57.92 to 57.96, 62.56 to 62.6, 64.04 to 64.08, 66.02 to 66.06, 72.16 to 72.2, and 75.78 to 75.82, ~ 33.24 in the theta range.

본 발명의 일측면은 a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계 b) 상기 반응물이, 본 발명의 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및 c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법에 관한 것이다. One aspect of the present invention is a process for the preparation of 1,3-butadiene, comprising the steps of: a) providing a mixed gas of C4 mixture, air and steam as reactant; b) reacting the mixed manganese ferrite honeycomb- An oxidative dehydrogenation reaction step comprising: And c) obtaining 1,3-butadiene. The present invention also relates to a process for producing 1,3-butadiene using the mixed manganese ferrite honeycomb catalyst.

본 발명의 일측면은 a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계 b) 상기 반응물이, 본 발명의 제조방법에 따라 제조된 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및 c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법에 관한 것이다. An aspect of the present invention is a process for the preparation of a catalyst composition comprising the steps of: a) providing a mixture of C4 mixture, air and steam as reactant, b) reacting the catalyst with an oxidative dehydration Digestion reaction step; And c) obtaining 1,3-butadiene. The present invention also relates to a process for producing 1,3-butadiene using the mixed manganese ferrite honeycomb catalyst.

상기 a) 단계에서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 데, 여기서 C4 혼합물은 1-부텐, 2-부텐, 및 C4 라피네이트-1, 2, 2.5, 3으로 이루어진 군으로부터 선택된다. Wherein the C4 mixture is selected from the group consisting of 1-butene, 2-butene, and C4 raffinate-1, 2, 2.5, 3 in the step a).

본 발명에서는 노르말-부텐의 공급원으로 별도의 노르말-부탄 분리 공정을 수행하지 않은 C4 혼합물을 사용하여 1,3-부타디엔을 제조하는 방법을 제공한다. The present invention provides a method for producing 1,3-butadiene using a C4 mixture which is not subjected to a separate n-butane separation step as a source of n-butene.

본 발명의 일구체예에 따르면, a) 단계에서 사용되는 C4 혼합물은 0.1 내지 50 중량%의 노르말-부탄, 40 내지 99 중량%의 노르말-부텐 및 상기 노르말-부탄과 노르말-부텐을 제외한 0.1 내지 10 중량%의 C4 혼합물을 포함한다. 상기 노르말-부탄과 노르말-부텐을 제외한 C4 혼합물은, 예를 들어, 이소부탄, 사이클로 부탄, 메틸 사이클로 프로판, 이소부텐 등을 포함한다.According to one embodiment of the present invention, the C4 mixture used in step a) is a mixture of 0.1 to 50% by weight of n-butane, 40 to 99% by weight of n-butene and 0.1 to 50% by weight of n-butane and n- 10% by weight C4 mixture. The C4 mixture excluding n-butane and n-butene includes, for example, isobutane, cyclobutane, methylcyclopropane, isobutene and the like.

본 발명에서 산화적 탈수소화 반응의 반응물인 노르말-부텐과 산소는 혼합기체의 형태로 공급하는데, 노르말-부텐은 노르말-부텐의 공급원인 C4 혼합물이 피스톤 펌프에 의해, 또 다른 반응물인 공기의 양은 질량유속조절기를 사용하여 정밀하게 조절하여 한다. 산화적 탈수소화 반응의 반응열 해소와 1,3-부타디엔의 선택도 향상에 효과가 있다고 알려진 스팀을 공급하기 위해 액상의 물을 질량유속조절기를 사용하여 주입하면서 기화시킴으로써 스팀이 반응기에 공급되도록 한다. 물 주입구 부분의 온도를 300~450oC, 바람직하는 350~450oC로 유지하여 주입되는 물이 즉시 기화하여 다른 반응물(노르말-부텐 및 공기)과 혼합되면서 촉매 층을 통과하게 한다.In the present invention, the reactant of the oxidative dehydrogenation reaction, n-butene and oxygen, is supplied in the form of a mixed gas. In the n-butene, the C4 mixture serving as the n-butene is supplied by the piston pump, Use a mass flow controller to precisely adjust. To supply steam known to be effective in eliminating the reaction heat of the oxidative dehydrogenation reaction and improving the selectivity of 1,3-butadiene, liquid water is vaporized while being injected using a mass flow controller to allow steam to be fed to the reactor. The temperature of the water inlet is maintained at 300-450 ° C., preferably at 350-450 ° C., so that the injected water is immediately vaporized and mixed with the other reactants (n-butene and air) to pass through the catalyst bed.

본 발명의 일측면에 따른 일 구체예에 따르면, 촉매반응을 위해 일자형 스테인레스 반응기에 허니컴형 촉매를 고정시키고, 반응기를 전기로 안에 설치하여 촉매 층의 반응온도를 일정하게 유지한 후, 반응물이 반응기 안의 촉매 층을 연속적으로 통과하면서 반응이 진행되도록 할 수 있다.According to one embodiment of the present invention, a honeycomb type catalyst is fixed to a straight type stainless steel reactor for a catalytic reaction, a reactor is installed in an electric furnace to maintain a reaction temperature of the catalyst layer at a constant level, The reaction can proceed while continuously passing through the catalyst layer in the reactor.

산화적 탈수소화 반응을 진행시키기 위한 반응 온도는 300~600oC, 바람직하게는 350~500oC, 더욱 바람직하게는 400oC를 유지하였으며, 반응물의 주입 양은 노르말-부텐을 기준으로 공간속도 (WHSV: Weight Hourly Space Velocity)가 0.1~1.5hr-1, 바람직하게는 0.5~1h-1, 더욱 바람직하게는 0.75h-1가 되도록 촉매 양을 설정 한다. 반응물은 노르말-부텐과 공기 및 스팀의 몰 비를 1: 0.5~10: 1~30, 바람직하게는 1: 2~4: 10~30로 설정한다. 상기 혼합기체의 성분 비율이 상기 범위를 초과하거나 미치지 않는 경우에는 원하는 정도의 부타디엔 수율을 얻을 수 없거나, 반응기 운전 시 급격한 발열로 인해 문제가 발생할 수 있으므로 바람직하지 않다.
The reaction temperature for carrying out the oxidative dehydrogenation reaction was maintained at 300 to 600 ° C, preferably 350 to 500 ° C, more preferably 400 ° C. The amount of the reactant to be injected was maintained at a space velocity (WHSV: Weight Hourly Space Velocity) is 0.1 ~ 1.5hr -1, preferably from 0.5 ~ 1h -1, more preferably to set the amount of catalyst to be 0.75h -1. The molar ratio of n-butene to air and steam is set to 1: 0.5 to 10: 1 to 30, preferably 1: 2 to 4: 10 to 30 as a reactant. If the composition ratio of the mixed gas exceeds or falls below the above range, a desired degree of butadiene yield can not be obtained, or a problem may occur due to rapid heat generation during operation of the reactor.

이하, 첨부한 도면 및 실시예를 참조하여 본 발명의 제조방법, 본 발명의 제조방법을 통해 제조된 촉매 및 1,3-부타디엔 제조 방법을 상세히 설명한다. 다음에 소개되는 도면 및 실시예는 당업자에게 본 발명의 사상을 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면 및 실시예에 한정하지 않고 다른 형태로 구체화될 수도 있다.
Hereinafter, the method of the present invention, the catalyst prepared by the method of the present invention, and the method for producing 1,3-butadiene will be described in detail with reference to the accompanying drawings and examples. The following drawings and embodiments are provided as examples so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention may be embodied in other forms without being limited to the following drawings and embodiments.

[실시예 1][Example 1]

혼성 망간 페라이트의 제조Preparation of mixed manganese ferrite

혼성 망간 페라이트 제조를 위해 망간의 전구체로는 염화망간 4수화물(MnCl2·4H2O), 철의 전구체로는 염화철 6수화물(FeCl3·6H2O)을 사용하였으며, 두 전구체 모두 증류수에 잘 용해되는 물질로 염화망간 4수화물 198그램과 염화철 6수화물 541그램을 증류수(1000ml)에 녹이고 혼합한 후 교반하였다. 충분한 교반 후 전구체가 완전히 용해된 것을 확인하고, 20oC에서 전구체 수용액을 3몰 농도의 수산화나트륨 수용액(6000ml)에 일정한 속도를 유지하여 한 방울씩 첨가되도록 하였다. 상기의 혼합용액은 충분한 교반이 이루어지도록 교반기를 이용하여 상온에서 12시간 교반시킨 후, 다시 상 분리를 위해 상온에서 12시간 동안 방치하였다. 침전된 용액을 충분한 양의 증류수를 이용하여 세척한 후, 감압여과기로 거르고 얻은 고체 시료를 120oC에서 24시간 건조하였다. 생성된 고체 시료를 공기분위기의 전기로에서 650oC의 온도를 유지하여 3시간 동안 열처리를 함으로써 혼성 망간 페라이트를 제조하였다. 제조된 촉매의 상은 이하의 조건에 의한 X선 회절 분석을 통하여 확인하였고, 표 1에 그 결과를 나타내었다. 표 1에서 나타낸 바와 같이 상온에서 제조한 촉매는 산화철(α-Fe2O3), 망간 산화철(MnFeO3)이 포함된 혼성 망간 페라이트 임을 확인하였다. For the preparation of mixed manganese ferrite, manganese chloride tetrahydrate (MnCl 2 .4H 2 O) was used as a precursor of manganese and iron chloride hexahydrate (FeCl 3 .6H 2 O) was used as a precursor of iron. Both precursors were well dissolved in distilled water 198 g of manganese chloride tetrahydrate and 541 g of iron chloride hexahydrate were dissolved in distilled water (1000 ml) and mixed. After sufficient agitation, it was confirmed that the precursor was completely dissolved. At 20 ° C, the precursor aqueous solution was added dropwise to a 3 molar aqueous sodium hydroxide solution (6000 ml) at a constant rate. The mixed solution was agitated at room temperature for 12 hours using a stirrer so that sufficient stirring was performed, and then left for 12 hours at room temperature for phase separation. The precipitated solution was washed with a sufficient amount of distilled water, filtered through a vacuum filter, and the solid sample was dried at 120 ° C for 24 hours. Hybrid manganese ferrite was prepared by heat treatment in an electric furnace of air atmosphere at 650 o C for 3 hours. The phases of the prepared catalysts were confirmed by X-ray diffraction analysis under the following conditions, and the results are shown in Table 1. As shown in Table 1, it was confirmed that the catalyst prepared at room temperature was a mixed manganese ferrite including iron oxide (α-Fe 2 O 3 ) and manganese iron oxide (MnFeO 3 ).

< X-선 회절분석 조건>&Lt; X-ray diffraction analysis condition >

X-선 발생장치: 3kW, Cu-Kα 선 (λ= 1.54056Å)X-ray generator: 3 kW, Cu-K? Line (? = 1.54056 Å)

관전압: 40kVTube voltage: 40kV

관전류: 40mATube current: 40mA

2쎄타 측정범위: 5deg ~ 90deg2 Theta measurement range: 5deg to 90deg

샘플링 폭: 0.02degSampling width: 0.02 deg

주사속도: 5deg의 2쎄타/분Scanning speed: 2deg / min at 5deg

발산슬릿: 1degDiverging slit: 1deg

산란슬릿: 1degScattering slit: 1deg

수광슬릿: 0.15mm
Receiving slit: 0.15mm

[표 1] 혼성 망간 페라이트의 X-선 회절 분석결과[Table 1] X-ray diffraction analysis results of mixed manganese ferrite

Figure pat00001

Figure pat00001

[실시예 2][Example 2]

3.63.6 mmmm 의 피치를 갖는 혼성 망간 페라이트 Mixed manganese ferrite having a pitch of 허니컴형Honeycomb type 촉매의 제조 Preparation of Catalyst

실시예 1에서 열처리 단계 전, 건조된 혼성 망간 페라이트 80g, 슈도보에마이트(SASOL) 20g, 메틸셀룰로오스 4.8g, 증류수 65.5g 및 질산(60%) 6.7g을 상온에서 혼합한 후 토련(Kneading)하여 반죽을 제조하였다. 상기 제조된 반죽을 실린더형 압출기에 투입하고, 압출기 내부를 진공상태로 유지하고 실린더 회전속도를 50rpm으로 하여, 400mm/min의 성형속도로 압출체를 제조하였다. 소성로(Furnace)를 이용하여 제조된 압출체를 120oC에서 2시간 열처리한 후, 650oC에서 3시간 열처리하여 도 1과 같은 형상을 가지며 피치(Pitch: 기공 중심간 간격)가 3.6mm인 1,3-부타디엔 제조용 허니컴형 촉매를 제조하였다. 제조된 1,3-부타디엔 제조용 허니컴형 촉매의 물리적 형상을 도 1에 기재한 부호를 기준으로 표 2에 정리하였다.
In Example 1, before the heat treatment step, 80 g of dried mixed manganese ferrite, 20 g of shudo boehmite (SASOL), 4.8 g of methyl cellulose, 65.5 g of distilled water and 6.7 g of nitric acid (60%) were mixed at room temperature, To prepare a dough. The kneaded product was put into a cylindrical extruder, the extruder was kept in a vacuum state, and the extruded product was produced at a molding speed of 400 mm / min at a cylinder rotation speed of 50 rpm. The extruded body manufactured using a furnace was heat-treated at 120 ° C for 2 hours and then heat-treated at 650 ° C for 3 hours to have a shape as shown in FIG. 1 and having a pitch of 3.6 mm A honeycomb type catalyst for the production of 1,3-butadiene was prepared. The physical shapes of the produced 1,3-butadiene-producing honeycomb catalysts are summarized in Table 2 on the basis of the reference numerals shown in FIG.

[표 2][Table 2]

Figure pat00002

Figure pat00002

[실시예 3][Example 3]

1.961.96 mmmm 피치를 갖는 혼성 망간 페라이트  Mixed manganese ferrite with pitch 허니컴형Honeycomb type 촉매의 제조 Preparation of Catalyst

실시예 2의 압출 및 열처리와 동일한 조건으로 1.96mm 피치를 갖는 1,3-부타디엔 제조용 허니컴형 촉매를 제조하였다. 제조된 1,3-부타디엔 제조용 허니컴형 촉매의 물리적 형상을 도 1에 기재한 부호를 기준으로 하기의 표 3에 정리하였다.
A 1,3-butadiene-producing honeycomb catalyst having a pitch of 1.96 mm was produced under the same conditions as in the extrusion and heat treatment of Example 2. [ The physical shapes of the produced 1,3-butadiene-producing honeycomb-type catalysts are summarized in Table 3 based on the reference numerals shown in Fig.

[표 3] [Table 3]

Figure pat00003

Figure pat00003

[비교예 1][Comparative Example 1]

타정Tableting 성형된Molded 약 1 About 1 mmmm 의 크기를 갖는 혼성 망간 페라이트 입상형 촉매의 제조Preparation of mixed manganese ferrite particulate catalyst

실시예 1에서 완성된 혼성 망간 페라이트를 타정(Pelletizing) 공정을 통해 펠렛(Pellet) 형태로 제조하였고, 0.9~1.2mm 크기로 분쇄하였다.
The mixed manganese ferrite prepared in Example 1 was prepared in the form of a pellet through a pelletizing process and pulverized into a size of 0.9 to 1.2 mm.

[비교예 2][Comparative Example 2]

무기바인더가 첨가되지 않은 혼성 망간 페라이트 Hybrid manganese ferrite without inorganic binder 허니컴형Honeycomb type 촉매의 제조 Preparation of Catalyst

슈도보에마이트와 질산을 제외하고, 실시예 2와 동일한 방법으로 반죽을 제조하여 동일한 조건에서 압출하였다. 비교예 2의 결과, 촉매의 강도의 저하로 형상을 잃은 무정형의 압출체를 얻었을 뿐, 허니컴 형상으로 압출되지 못하였다.
The dough was produced in the same manner as in Example 2, except for chondroboemite and nitric acid, and extruded under the same conditions. As a result of Comparative Example 2, an amorphous extrudate which had lost its shape due to a decrease in the strength of the catalyst was obtained and could not be extruded into a honeycomb shape.

[실시예 4][Example 4]

혼성 망간 페라이트 Mixed manganese ferrite 허니컴형Honeycomb type 및 입상형 촉매 상에서의 노르말- Lt; RTI ID = 0.0 &gt; n-hexane &lt; / RTI & 부텐의Buten 산화적Oxidative 탈수소화 반응 Dehydrogenation reaction

실시예 2, 3 및 비교예 1에 따른 혼성의 망간 페라이트 허니컴형 및 입상형 촉매를 사용하여 노르말-부텐의 산화적 탈수소화 반응을 수행하였는데 구체적인 실험 조건은 다음과 같다.The oxidative dehydrogenation reaction of n-butene was carried out by using the mixed manganese ferrite honeycomb type and granular catalyst according to Examples 2 and 3 and Comparative Example 1, and specific experimental conditions were as follows.

노르말-부텐의 산화적 탈수소화 반응에 사용한 반응물은 C4 혼합물로서 그 조성을 하기 표 4에 나타내었다. 반응물인 C4 혼합물은 공기, 스팀과 함께 혼합 기체의 형태로 주입되었으며, 반응기로는 스테인레스 재질의 일자형 고정층 반응기를 사용하였다.The reactants used in the oxidative dehydrogenation reaction of n-butene are C4 mixture and the composition thereof is shown in Table 4 below. The reactant C4 mixture was injected in the form of mixed gas with air and steam, and a stainless steel fixed bed reactor was used as the reactor.

반응물의 구성 비율은 C4 혼합물 내의 노르말-부텐을 기준으로 설정하여, 노르말-부텐: 공기: 스팀의 몰 비가 1: 2.75: 10이 되도록 설정하였다. 스팀은 액상의 물이 350oC에서 기화되어 다른 반응물인 C4 혼합물 및 공기와 함께 혼합된 후 반응기로 유입되었으며 C4 혼합물의 양은 피스톤 펌프를 이용하여 제어하고, 공기 및 스팀의 양은 질량유속조절기를 통하여 조절하였다.The composition ratio of the reactants was set on the basis of n-butene in the C4 mixture, and the molar ratio of n-butene: air: steam was set to 1: 2.75: 10. Steam was vaporized at 350 ° C and mixed with other reactants, C4 mixture and air, and then introduced into the reactor. The amount of C4 mixture was controlled by using a piston pump. The amount of air and steam was controlled through a mass flow controller Respectively.

반응물의 주입 속도는 C4 혼합물 내의 노르말-부텐을 기준으로 공간속도(WHSV)가 0.75hr-1가 되도록 촉매 양을 설정하여 반응하였으며, 반응 온도는 고정층 반응기의 촉매 층 입구 온도가 400oC가 되도록 유지하였다. 반응 후 생성물에는 생성물 내에 목표로 하는 1,3-부타디엔 이외에, 완전 산화의 부산물인 이산화탄소, 크래킹에 의한 부산물, 이성화 반응에 의한 부산물 및 반응물 내에 포함된 노르말-부탄 등이 포함되어 있어 이를 분리, 분석하기 위해 가스크로마토그래피를 이용하여 분석하였다. 노르말-부텐의 산화적 탈수소화 반응에 대해 혼성 망간 페라이트 허니컴형 및 입상형 촉매를 통한 노르말-부텐의 전환율, 1,3-부타디엔 선택도 및 수율은 다음의 수학식 1, 2, 및 3에 의해 계산하였다.
The feed rate of the reactants was determined by setting the amount of catalyst such that the space velocity (WHSV) was 0.75 hr -1 based on n-butene in the C4 mixture, and the reaction temperature was adjusted so that the catalyst bed inlet temperature of the fixed bed reactor was 400 ° C Respectively. The product after the reaction includes not only the target 1,3-butadiene in the product, but also carbon dioxide which is a by-product of complete oxidation, by-product by cracking, by-product by isomerization reaction and n-butane contained in the reactant. And analyzed using gas chromatography. The conversion, 1,3-butadiene selectivity and yield of n-butene through the mixed manganese ferrite honeycomb type and the granular catalyst with respect to the oxidative dehydrogenation reaction of n-butene were calculated by the following equations 1, 2 and 3 Respectively.

Figure pat00004

Figure pat00004

[표 4] 반응물로 사용된 C4 혼합물의 조성[Table 4] Composition of C4 mixture used as reactant

Figure pat00005
Figure pat00005

실시예 2, 3 및 비교예 1의 제조방법에 의해 제조된 촉매들을 실시예 4의 반응 실험 방법에 의해 C4 혼합물의 산화적 탈수소화 반응에 적용하였으며, 그 결과를 표 5에 나타내었다. The catalysts prepared by the production methods of Examples 2 and 3 and Comparative Example 1 were applied to the oxidative dehydrogenation reaction of the C4 mixture by the reaction method of Example 4, and the results are shown in Table 5.

혼성 망간 페라이트 허니컴형 촉매가 입상형 촉매에 비해 현저한 활성과 발열제어를 보였으며 특히 1.96mm 피치를 갖는 혼성 망간 페라이트 허니컴형 촉매의 경우, 노르말-부텐의 전환율 74wt%, 1,3-부타디엔의 선택도 94wt%, 1,3-부타디엔의 수율 70wt%를 얻을 수 있었다. The mixed manganese ferrite honeycomb catalyst showed remarkable activity and exothermic control compared to the granular catalyst. In the case of the mixed manganese ferrite honeycomb catalyst having a pitch of 1.96 mm, the conversion of n-butene was 74 wt%, the selectivity of 1,3-butadiene 94 wt%, and the yield of 1,3-butadiene was 70 wt%.

[표 5] 촉매 활성 평가 결과[Table 5] Evaluation results of catalytic activity

Figure pat00006

Figure pat00006

이는 상기 표 5에서 보는 바와 같이 혼성 망간 페라이트 허니컴형 촉매가 비록 입상형 촉매에 비해 단위부피당 표면적은 작지만, 축방향으로의 물질 전달(Mass Transfer) 및 열 전달이 용이하기 때문으로 판단된다.
As shown in Table 5, it is considered that the mixed manganese ferrite honeycomb catalyst has a smaller surface area per unit volume than the granular catalyst, but mass transfer and heat transfer in the axial direction are easy.

이상과 같이 본 발명에서는 구체적인 물질, 첨가량과 같이 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.Although the present invention has been described in detail with reference to specific embodiments thereof and specific examples thereof, it is to be understood that the same is by way of illustration and example only and is not to be taken by way of limitation, It is to be understood that the invention is not limited thereto and that various modifications and changes may be made thereto by those skilled in the art.

따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
Accordingly, the spirit of the present invention should not be construed as being limited to the embodiments described, and all of the equivalents or equivalents of the claims, as well as the following claims, belong to the scope of the present invention .

a는 길이(length), b는 너비(width), c는 오프닝(opening), d는 벽 두께(wall thickness), 핏치(pitch)는 c+d이다. a is the length, b is the width, c is the opening, d is the wall thickness, and pitch is c + d.

Claims (15)

a) 망간 전구체 및 철 전구체를 갖는 전구체 수용액을 준비하여 염기성 용액에 혼합시키면서 공침하는 단계
b) 상기 공침된 용액을 세척 및 여과하여 고체 시료를 얻고 건조시키는 단계
c) 상기 건조된 고체 시료, 무기바인더, 유기바인더, 증류수 및 산의 무게비를 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15로 조절하여 혼합한 후 토련(Kneading)하여 반죽을 얻는 단계
d) 상기 c) 단계의 반죽을 규칙적인 구조의 관통 기공을 갖는 압출체로 압출하는 단계; 및
e) 상기 압출체(extrudate)를 열처리하는 단계를 포함하는 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
a) preparing an aqueous solution of a precursor having a manganese precursor and an iron precursor, and co-
b) washing and filtering the coprecipitated solution to obtain a solid sample and drying
c) The weight ratio of the dried solid sample, the inorganic binder, the organic binder, the distilled water and the acid is adjusted to 1: 0.05-0.5: 0.01-0.1: 0.1-1.5: 0.005-0.15, then kneaded, Steps to Obtain
d) extruding the dough of step c) into an extrudate having through-pores having a regular structure; And
and e) subjecting the extrudate to a heat treatment.
청구항 1에 있어서, 상기 e) 단계에서 열처리는 100 내지 800oC에서 수행되는 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.The method of claim 1, wherein the heat treatment in step (e) is performed at 100 to 800 ° C. 청구항 1에 있어서, 상기 e) 단계에서 열처리는 100 내지 150oC의 저온 열처리 후 500 내지 700oC에서의 고온 열처리가 수행되는 2단 열처리인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.The method according to claim 1, wherein the heat treatment in step (e) is a two-step heat treatment in which a high temperature heat treatment at 500 to 700 ° C is performed after a low temperature heat treatment at 100 to 150 ° C. A method for producing a honeycomb type catalyst. 청구항 1에 있어서, d) 단계의 상기 관통 기공은 단면이 다각형 또는 원형이며, 상기 압출체의 장축으로 관통되는 기공인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법. [4] The method according to claim 1, wherein the through pores in step d) are polygonal or circular in cross section, and are pores passing through the long axis of the extrudate. 청구항 1에 있어서, d) 단계의 상기 기공과 기공 간의 두께(벽 두께)는 0.1 내지 2mm인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법. The method of claim 1, wherein the thickness (wall thickness) between the pores and the pores in step d) is 0.1 to 2 mm. 청구항 1에 있어서, 상기 무기바인더는 비표면적이 10~250m2/g인 알루미나 또는 실리카인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.The method according to claim 1, wherein the inorganic binder is alumina or silica having a specific surface area of 10 to 250 m 2 / g. 청구항 6에 있어서, 상기 알루미나는 전구체로 슈도보에마이트 또는 알루미나졸인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.[7] The method according to claim 6, wherein the alumina is a precursor of chondroobromite or alumina sol. 청구항 6에 있어서, 상기 실리카는 전구체로 실리케이트 또는 실리카졸인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.[7] The method according to claim 6, wherein the silica is a silicate or silica sol as a precursor, wherein the silica is a precursor of 1,3-butadiene. 청구항 1에 있어서, 상기 유기바인더는 메틸셀룰로오스계인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.The method according to claim 1, wherein the organic binder is a methylcellulose-based mixed catalyst for producing 1,3-butadiene. 관통 기공 단면이 다각형 또는 원형이며, 상기 관통기공은 허니컴형 촉매의 장축으로 관통되는 기공인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매. Wherein the through-pore cross-section is polygonal or circular, and the through pores are pores passing through the long axis of the honeycomb-type catalyst. 청구항 10에 있어서, 상기 허니컴형 촉매의 기공과 기공간의 두께(벽 두께)가 0.1 내지 2mm인 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매. The mixed manganese ferrite honeycomb type catalyst for producing 1,3-butadiene according to claim 10, wherein the pore of the honeycomb catalyst and the thickness (wall thickness) of the vapor space are 0.1 to 2 mm. 청구항 10 또는 11에 있어서, 상기 혼성 망간 페라이트 허니컴형 촉매의 X-선 회절 분석 시, 18.78~18.82, 24.18~24.22, 33.2~33.24, 35.64~35.68, 40.9~40.94, 45.22~45.26, 49.56~49.6, 54.22~54.26, 55.24~55.28, 57.92~ 57.96, 62.56~62.6, 64.04~64.08, 66.02~66.06, 72.16~72.2, 및 75.78~75.82의 2쎄타 범위에서 피크를 갖는 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매.The mixed manganese ferrite honeycomb catalyst according to claim 10 or 11, wherein X-ray diffraction spectrum of the mixed manganese ferrite honeycomb catalyst is 18.78 to 18.82, 24.18 to 24.22, 33.2 to 33.24, 35.64 to 35.68, 40.9 to 40.94, 45.22 to 45.26, 49.56 to 49.6, Butadiene having a peak in the two theta range of from 54.22 to 54.26, 55.24 to 55.28, 57.92 to 57.96, 62.56 to 62.6, 64.04 to 64.08, 66.02 to 66.06, 72.16 to 72.2, and 75.78 to 75.82 Hybrid manganese ferrite honeycomb catalysts. a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계
b) 상기 반응물이, 상기 청구항 10 내지 청구항 12 중 어느 한 항의 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및
c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법.
a) providing a mixed gas of C4 mixture, air and steam as reactants
b) an oxidative dehydrogenation reaction step in which the reactant is passed through a catalyst bed in which the catalyst according to any one of claims 10 to 12 is fixed; And
c) obtaining 1,3-butadiene. The process for producing 1,3-butadiene using a hybrid manganese ferrite honeycomb catalyst.
a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계
b) 상기 반응물이, 상기 청구항 1 내지 청구항 9 중 어느 한 항에 의하여 제조된 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및
c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법.
a) providing a mixed gas of C4 mixture, air and steam as reactants
b) an oxidative dehydrogenation reaction step in which the reactant is passed through a catalyst bed fixed according to any one of claims 1 to 9; And
c) obtaining 1,3-butadiene. The process for producing 1,3-butadiene using a hybrid manganese ferrite honeycomb catalyst.
청구항 13 또는 14에 있어서, 상기 C4 혼합물은 1-부텐, 2-부텐, 및 C4 라피네이트-1, 2, 2.5, 3으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔 제조방법.

The mixed manganese ferrite honeycomb catalyst according to claim 13 or 14, wherein the C4 mixture is selected from the group consisting of 1-butene, 2-butene, and C4 raffinate-1, 2, 2.5, , 3-butadiene.

KR1020120148452A 2012-12-18 2012-12-18 Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof KR101953919B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120148452A KR101953919B1 (en) 2012-12-18 2012-12-18 Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
PCT/KR2013/011740 WO2014098448A1 (en) 2012-12-18 2013-12-17 Mixed manganese ferrite honeycomb-type catalyst, preparation method therefor, and method for preparing 1,3-butadiene using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120148452A KR101953919B1 (en) 2012-12-18 2012-12-18 Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof

Publications (2)

Publication Number Publication Date
KR20140082869A true KR20140082869A (en) 2014-07-03
KR101953919B1 KR101953919B1 (en) 2019-03-04

Family

ID=50978701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120148452A KR101953919B1 (en) 2012-12-18 2012-12-18 Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof

Country Status (2)

Country Link
KR (1) KR101953919B1 (en)
WO (1) WO2014098448A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150830A1 (en) * 2016-03-04 2017-09-08 (주) 엘지화학 Ferrite-based catalyst composite, method for preparing same, and method for preparing butadiene
KR20180025716A (en) * 2016-09-01 2018-03-09 국방과학연구소 Catalyst composition for decompositioning high concentrated hydrogen peroxide and method for producing the same
WO2017171441A3 (en) * 2016-03-30 2018-09-07 주식회사 엘지화학 Ferrite-based catalyst, preparation method therefor, and method for preparing butadiene using same
WO2018190641A1 (en) * 2017-04-12 2018-10-18 (주) 엘지화학 Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
KR20180115227A (en) * 2017-04-12 2018-10-22 주식회사 엘지화학 Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and oxidative dehydrogenation method using the same catalyst
WO2018190642A3 (en) * 2017-04-12 2018-12-20 (주) 엘지화학 Catalyst system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation comprising same, and oxidative dehydrogenation method
WO2019177285A1 (en) * 2018-03-13 2019-09-19 주식회사 엘지화학 Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
WO2019177286A1 (en) * 2018-03-13 2019-09-19 주식회사 엘지화학 Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
KR102025311B1 (en) * 2018-05-16 2019-09-25 한국화학연구원 Catalyst for hydrogen peroxide decomposition and preparation method of the same
WO2019199042A1 (en) 2018-04-10 2019-10-17 주식회사 엘지화학 Method for producing metal complex catalyst, and metal complex catalyst produced by same
US10946364B2 (en) 2017-04-12 2021-03-16 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for oxidative dehydrogenation including catalyst system, and method of performing oxidative dehydrogenation using reactor
US10994265B2 (en) 2017-11-30 2021-05-04 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for preparing butadiene including catalyst system, and method of preparing 1,3-butadiene
US11918988B2 (en) 2019-12-31 2024-03-05 Lg Chem, Ltd. Method for producing catalyst for oxidative dehydrogenation reaction, catalyst for oxidative dehydrogenation reaction, and method for producing butadiene using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003479B1 (en) * 2016-04-18 2019-10-17 주식회사 엘지화학 Porous material surface coating catalyst, and method for surface treatment of porous material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014220A (en) * 2000-05-08 2003-02-15 코닝 인코포레이티드 Extruded honeycomb dehydrogenation catalyst and method
KR20120009687A (en) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242379B1 (en) * 1998-04-01 2001-06-05 United Catalysts Inc. Dehydrogenation catalysts
JP4934134B2 (en) * 2005-07-22 2012-05-16 ビーエーエスエフ ソシエタス・ヨーロピア Hydrocarbon dehydrogenation or hydrogenation catalyst containing secondary catalyst material
KR100888143B1 (en) * 2007-12-12 2009-03-13 에스케이에너지 주식회사 Mixed manganese ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014220A (en) * 2000-05-08 2003-02-15 코닝 인코포레이티드 Extruded honeycomb dehydrogenation catalyst and method
KR20120009687A (en) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518250B2 (en) 2016-03-04 2019-12-31 Lg Chem, Ltd. Ferrite-based catalyst composite, method of preparing the same, and method of preparing butadiene using the same
KR20170103532A (en) * 2016-03-04 2017-09-13 주식회사 엘지화학 Ferritic catalyst composite, method for preparing ferritic oxide catalyst composite and butadiene
JP2018518360A (en) * 2016-03-04 2018-07-12 エルジー・ケム・リミテッド Ferrite-based catalyst composite, method for producing the same, and method for producing butadiene
WO2017150830A1 (en) * 2016-03-04 2017-09-08 (주) 엘지화학 Ferrite-based catalyst composite, method for preparing same, and method for preparing butadiene
WO2017171441A3 (en) * 2016-03-30 2018-09-07 주식회사 엘지화학 Ferrite-based catalyst, preparation method therefor, and method for preparing butadiene using same
US10799856B2 (en) 2016-03-30 2020-10-13 Lg Chem, Ltd. Ferrite-based catalyst, preparation method therefor, and method for preparing butadiene using same
KR20180025716A (en) * 2016-09-01 2018-03-09 국방과학연구소 Catalyst composition for decompositioning high concentrated hydrogen peroxide and method for producing the same
US10946364B2 (en) 2017-04-12 2021-03-16 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for oxidative dehydrogenation including catalyst system, and method of performing oxidative dehydrogenation using reactor
WO2018190642A3 (en) * 2017-04-12 2018-12-20 (주) 엘지화학 Catalyst system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation comprising same, and oxidative dehydrogenation method
US11660584B2 (en) 2017-04-12 2023-05-30 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst
WO2018190641A1 (en) * 2017-04-12 2018-10-18 (주) 엘지화학 Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
US10888844B2 (en) 2017-04-12 2021-01-12 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst
KR20180115227A (en) * 2017-04-12 2018-10-22 주식회사 엘지화학 Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and oxidative dehydrogenation method using the same catalyst
JP2020157301A (en) * 2017-04-12 2020-10-01 エルジー・ケム・リミテッド Catalyst for oxidative dehydrogenation, method for preparing catalyst, and method for performing oxidative dehydrogenation using catalyst
US10994265B2 (en) 2017-11-30 2021-05-04 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for preparing butadiene including catalyst system, and method of preparing 1,3-butadiene
KR20190107920A (en) * 2018-03-13 2019-09-23 주식회사 엘지화학 Method for preparing ferrite-based coating catalysts and method for butadiene using the same
KR20190107919A (en) * 2018-03-13 2019-09-23 주식회사 엘지화학 Method for preparing ferrite-based coating catalysts and method for butadiene using the same
EP3766575A4 (en) * 2018-03-13 2021-04-14 Lg Chem, Ltd. Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
WO2019177285A1 (en) * 2018-03-13 2019-09-19 주식회사 엘지화학 Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
US11167271B2 (en) 2018-03-13 2021-11-09 Lg Chem, Ltd. Method for producing ferrite-based coated catalyst and method for producing butadiene by using same
US11465131B2 (en) 2018-03-13 2022-10-11 Lg Chem, Ltd. Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
WO2019177286A1 (en) * 2018-03-13 2019-09-19 주식회사 엘지화학 Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
WO2019199042A1 (en) 2018-04-10 2019-10-17 주식회사 엘지화학 Method for producing metal complex catalyst, and metal complex catalyst produced by same
US11465138B2 (en) 2018-04-10 2022-10-11 Lg Chem, Ltd. Method for producing metal complex catalyst, and metal complex catalyst produced by same
KR102025311B1 (en) * 2018-05-16 2019-09-25 한국화학연구원 Catalyst for hydrogen peroxide decomposition and preparation method of the same
US11918988B2 (en) 2019-12-31 2024-03-05 Lg Chem, Ltd. Method for producing catalyst for oxidative dehydrogenation reaction, catalyst for oxidative dehydrogenation reaction, and method for producing butadiene using same

Also Published As

Publication number Publication date
WO2014098448A1 (en) 2014-06-26
KR101953919B1 (en) 2019-03-04

Similar Documents

Publication Publication Date Title
KR101953919B1 (en) Mixed Phases Manganese Ferrite Honeycomb Type Catalyst, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
KR101713328B1 (en) Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
JP5467444B2 (en) Method for producing 1,3-butadiene using hybrid manganese ferrite catalyst
JP5483114B2 (en) A method for producing a multicomponent bismuth molybdate catalyst with pH adjustment and a method for producing 1,3-butadiene using the same.
CN107771101B (en) Preparation method of ferrite metal oxide catalyst
JP6629388B2 (en) Copper-based catalyst precursor, method for producing the same, and hydrogenation method
WO2008140213A1 (en) Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
JP6834105B2 (en) Manufacturing method of zinc ferrite catalyst and zinc ferrite catalyst manufactured by this method
KR20130037509A (en) SINGLE-STEP PRECIPITATION METHOD OF PRODUCING MAGNESIA-ZIRCONIA MIXED CARRIER FOR CATALYST FOR OXIDATIVE DEHYDROGENATION OF n-BUTANE, MAGNESIUM ORTHOVANADATE CATALYST SUPPORTED ON MAGNESIA-ZIRCONIA MIXED CARRIER, AND METHOD OF PRODUCING n-BUTENE AND 1,3-BUTADIENE USING SAID CATALYST
CN108569707B (en) Multi-stage pore SAPO-34 molecular sieve and application thereof in methanol-to-olefin reaction
JP7394950B2 (en) Zinc oxide modified MFI type zeolite and method for producing aromatic compounds using the same
CN111056910B (en) Method for preparing alkyl alkenyl arene by dehydrogenating alkyl arene
JP7039817B2 (en) Manufacturing method of metal composite catalyst and metal composite catalyst manufactured by this method
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
WO2022182559A1 (en) Methods of producing isomerization catalysts
KR20220046967A (en) Method for preparing zinc ferrite-based catalysts and method for preparing butadiene using the same
KR20210086511A (en) Manufacturing method for catalyst for oxidative dehydrogenation reaction, catalyst for oxidative dehydrogenation reaction and manufacturing method of butadiene using same
KR20220065408A (en) Method for preparing zinx ferrite-based catalysts and method for preparing butadiene using the same
WO2017111392A1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
CN112533699A (en) Catalyst for the single-step double dehydrogenation of n-butane to butadiene
JPS5857410B2 (en) Method for producing vinylphenols

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant