KR20140082702A - 영상 데이터를 복호화하는 방법 - Google Patents

영상 데이터를 복호화하는 방법 Download PDF

Info

Publication number
KR20140082702A
KR20140082702A KR1020147010047A KR20147010047A KR20140082702A KR 20140082702 A KR20140082702 A KR 20140082702A KR 1020147010047 A KR1020147010047 A KR 1020147010047A KR 20147010047 A KR20147010047 A KR 20147010047A KR 20140082702 A KR20140082702 A KR 20140082702A
Authority
KR
South Korea
Prior art keywords
block
prediction
quantization parameter
unit
quantization
Prior art date
Application number
KR1020147010047A
Other languages
English (en)
Inventor
오수미
양문옥
Original Assignee
인포브릿지 피티이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인포브릿지 피티이 엘티디 filed Critical 인포브릿지 피티이 엘티디
Publication of KR20140082702A publication Critical patent/KR20140082702A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • H04N19/615Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding using motion compensated temporal filtering [MCTF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • H04N19/635Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by filter definition or implementation details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 방법에서는 현재 예측 유닛의 참조 픽쳐 인덱스와 움직임 벡터를 유도하고, 상기 참조 픽쳐 인덱스 및 움직임 벡터를 이용하여 현재 예측 유닛의 예측 블록을 생성하고, 양자화 계수 성분을 역스캔하여 양자화 블록을 생성하고, 양자화 파라미터를 이용하여 상기 양자화 블록을 역양자화하여 변환 블록을 생성하고, 상기 변환 블록을 역변환하여 잔차 블록을 형성하고, 상기 예측 블록과 잔차 블록을 이용하여 복원 블록을 생성한다. 예측 블록의 예측 화소들은 상기 움직임 벡터에 의해 선택되는 보간 필터를 이용하여 생성된다. 따라서, 다양한 머지 후보자들을 이용하여 움직임 정보의 부호화 효율이 향상된다. 또한, 움직임 벡터에 의해 결정되는 예측 화소의 위치에 따라 다른 필터를 선택하여 부호기 및 복호기의 연산 복잡도를 줄일 수 있다.

Description

영상 데이터를 복호화하는 방법{METHOD OF DECODING VIDEO DATA}
본 발명은 영상 데이터를 복호화하는 방법에 관한 것으로, 보다 상세하게는 공간 및 시간 머지 후보자들을 이용하여 머지 리스트를 구축함으로써 머지 모드에서의 움직임 정보를 유도하고, 상기 움직임 정보를 이용하여 예측 블록을 생성하는 방법에 관한 것이다.
영상 데이터를 압축하는 방법들로는 MPEG-2, MPEG-4 및 H.264/MPEG-4 AVC가 있다. 상기 방법들에 따르면, 하나의 픽쳐가 복수개의 매크로블록으로 분할되고, 인트라 예측 또는 인터 예측을 이용하여 예측 블록을 생성함으로써 각각의 매크로블록을 부호화하여 영상을 부호화한다. 원본 블록과 예측 블록의 잔차 블록이 변환되어 변환 블록을 생성하고, 변환 블록은 양자화 파라미터와 미리 정해진 양자화 매트릭스를 이용하여 양자화된다. 양자화 블록의 양자화 계수들은 미리 정해진 스캔 패턴을 이용하여 스캔되고 엔트로피 부호화된다. 상기 양자화 파라미터들은 매크로 블록마다 조절되고, 이전 양자화 파라미터를 이용하여 부호화된다.
H.264/MPEG-4 AVC에서는, 시간적 중복성을 제거하기 위해 연속되는 픽쳐들 간의 움직임 예측이 이용된다. 시간적 중복성을 검출하기 위해서, 현재 블록의 움직임을 예측하기 위하여 복수개의 참조 픽쳐들이 검사되고, 예측 블록을 생성하기 위하여 움직임 정보를 이용하여 움직임 보상이 수행된다. 움직임 정보는 하나 이상의 참조 픽쳐 인덱스들과 하나 이상의 움직임 벡터들을 포함한다.
H.264/MPEG-4 AVC에 다르면, 움직임 벡터만이 인접 움직임 벡터들을 이용하여 예측 부호화되고, 참조 픽쳐 인덱스들은 인접 참조 픽쳐 인덱스들을 이용하지 않고 부호화된다. 또한, 예측 블록이 긴 탭수의 필터를 사용하여 보간되기 때문에 예측 블록을 생성하기 위한 연잡 복잡도가 높다.
그러나, 다양한 사이즈를 이용해 인터 예측이 수행되면, 현재 블록의 움직임 정보와 하나 이상의 인접 블록들의 움직임 정보 사이의 연관성이 증가하게 된다. 또한, 영상의 움직임이 정지 또는 느리게 움직이는 경우에는, 픽쳐 사이즈가 증가함에 따라 현재 블록의 움직임 벡터와 참조 픽쳐 내의 인접블록의 움직임 벡터 사이의 연관성이 커지게 된다. 따라서, 상술한 종래의 압축 방법들에서는, 픽쳐의 사이즈가 고화질 사이즈(HD size)보다 커지고 다양한 사이즈가 움직임 예측 및 움직임 보상에 사용될 경우, 움직임 정보의 압축 효율이 떨어지는 문제가 있다.
본 발명이 이루고자 하는 목적은 공간 및 시간 머지 후보자들을 이용하여 머지 리스트를 구축하여 움직임 정보를 유도하고, 움직임 벡터에 의해 결정되는 필터를 이용하여 예측 블록을 생성하는 방법을 제공하는데 있다.
본 발명에 따른 영상 데이터를 복호화하는 방법은 현재 예측 유닛의 참조 픽쳐 인덱스와 움직임 벡터를 유도하고, 상기 참조 픽쳐 인덱스 및 움직임 벡터를 이용하여 현재 예측 유닛의 예측 블록을 생성하고, 양자화 계수 성분을 역스캔하여 양자화 블록을 생성하고, 양자화 파라미터를 이용하여 상기 양자화 블록을 역양자화하여 변환 블록을 생성하고, 상기 변환 블록을 역변환하여 잔차 블록을 형성하고, 상기 예측 블록과 잔차 블록을 이용하여 복원 블록을 생성한다. 예측 블록의 예측 화소들은 상기 움직임 벡터에 의해 선택되는 보간 필터를 이용하여 생성된다.
본 발명에 따른 방법에서는 현재 예측 유닛의 참조 픽쳐 인덱스와 움직임 벡터를 유도하고, 상기 참조 픽쳐 인덱스 및 움직임 벡터를 이용하여 현재 예측 유닛의 예측 블록을 생성하고, 양자화 계수 성분을 역스캔하여 양자화 블록을 생성하고, 양자화 파라미터를 이용하여 상기 양자화 블록을 역양자화하여 변환 블록을 생성하고, 상기 변환 블록을 역변환하여 잔차 블록을 형성하고, 상기 예측 블록과 잔차 블록을 이용하여 복원 블록을 생성한다. 예측 블록의 예측 화소들은 상기 움직임 벡터에 의해 선택되는 보간 필터를 이용하여 생성된다. 따라서, 다양한 머지 후보자들을 이용하여 움직임 정보의 부호화 효율이 향상된다. 또한, 움직임 벡터에 의해 결정되는 예측 화소의 위치에 따라 다른 필터를 선택하여 부호기 및 복호기의 연산 복잡도를 줄일 수 있다.
도 1은 본 발명에 따른 영상 부호화 장치를 나타내는 블록도이다.
도 2는 본 발명에 따른 인터 예측 모드에서의 영상 데이터를 부호화하는 방법을 설명하는 순서도이다.
도 3은 본 발명에 따른 움직임 벡터에 의해 지시되는 화소 위치들을 설명하는 개념도이다.
도 4는 본 발명에 따른 머지 모드에서의 움직임 정보를 부호화하는 방법을 설명하는 순서도이다.
도 5는 본 발명에 따른 공간 머지 후보자 블록들의 위치를 설명하는 개념도이다.
도 6은 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 개념도이다.
도 7은 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 또 다른 개념도이다.
도 8은 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 또 다른 개념도이다.
도 9는 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 또 다른 개념도이다.
도 10은 본 발명에 따른 시간 머지 후보자 블록의 위치를 설명하는 개념도이다.
도 11은 본 발명에 따른 움직임 정보를 저장하는 방법을 설명하는 개념도이다.
도 12는 본 발명에 따른 영상 복호화 장치를 나타내는 블록도이다.
도 13은 본 발명에 따른 인터 예측 모드에서의 영상을 복호화하는 방법을 설명하는 순서도이다.
도 14는 본 발명에 따른 머지 모드에서의 움직임 정보를 유도하는 방법을 설명하는 순서도이다.
도 15는 본 발명에 따른 인터 예측 모드에서의 잔차 블록을 생성하는 과정을 설명하는 순서도이다.
이하, 본 발명의 여러가지 실시예들을 예시적인 도면을 참조하여 상세히 설명한다. 본 발명은 다양한 변경을 가할수 있고 여러 가지 실시예를 가질 수 있는 바, 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
본 발명에 따른 영상 부호화 장치 및 영상 복호화 장치는 개인 컴퓨터, 개인 이동 단말기, 이동 멀티미디어 재생기, 스마트폰 또는 무선 통신 터미널 등과 같이 사용자 터미널일 수 있다. 상기 영상 부호화 장치 및 영상 복호화 장치는 다양한 기기와 통신하는 통신 유닛과 영상을 부호화 또는 복호화하기 위하여 다양한 프로그램과 데이터를 저장하기 위한 메모리를 구비한다.
도 1은 본 발명에 따른 영상 부호화 장치(100)를 나타내는 블록도이다.
도 1을 참조하면, 본 발명에 따른 영상 부호화 장치(100)는 픽쳐 분할부(110), 인트라 예측부(120), 인터 예측부(130), 변환부(140), 양자화부(150), 스캐닝부(160), 엔트로피 부호화부(170), 역양자화/역변환부(180), 후처리부(190) 및 픽쳐 저장부(195)를 포함한다.
픽쳐 분할부(110)는 픽쳐 또는 슬라이스를 복수개의 LCU(Largest Coding Unit)들로 분할하고, 상기 각각의 LCU를 하나 이상의 코딩 유닛으로 분할한다. LCU의 사이즈는 32x32, 64x64 또는 128x128일 수 있다. 픽쳐 분할부(110)는 각 코딩 유닛의 예측 모드 및 분할 모드(partitioning mode)를 결정한다.
하나의 LCU는 하나 또는 복수개의 코딩 유닛(coidng unit)을 포함한다. 상기 LCU는 분할 구조를 나타내기 위해 재귀적 쿼드 트리 구조(recursive quadtree structure)를 갖는다. 코딩 유닛의 최대 사이즈 및 최소 사이즈를 나타내는 정보가 시퀀스 파라미터 셋(sequence parameter set)에 포함된다. 상기 분할 구조는 하나 또는 복수개의 분할 코딩 유닛 플래그(split_cu_flag)들을 이용하여 특정된다. 코딩 유닛은 2Nx2N의 사이즈를 갖는다. LCU의 사이즈가 64x64이고, 최소 코딩 유닛(SCU:smallest coding unit)이 8x8이면, 코딩 유닛은 64x64, 32x32, 16x16 또는 8x8일 수 있다.
코딩 유닛은 하나 또는 복수개의 예측 유닛(prediction unit)을 포함한다. 인트라 예측에서는 상기 예측 유닛의 사이즈는 2Nx2N 또는 NxN이다. 인터 예측에서는 상기 예측 유닛의 사이즈가 상기 분할 모드에 의해 특정된다. 코딩 유닛이 대칭으로 분할되면, 분할 모드는 2Nx2N, 2NxN, Nx2N 및 NxN 중의 하나이다. 코딩 유닛이 비대칭으로 분할되면, 분할 모드는 2NxnU, 2NxnD, nLx2N 및 nRx2N 중의 하나이다. 하드웨어의 복잡도를 줄이기 위해 코딩 유닛의 사이즈에 치고하여 분할 모드들이 허용된다. 코딩 유닛이 최소 사이즈를 가지면, 비대칭 분할이 허용되지 않을 수 있다. 또한, 코딩 유닛이 최소 사이즈를 가지면, NxN 분할모드가 허용되지 않을 수 있다.
코딩 유닛은 하나 또는 복수개의 변환 유닛(transform unit)을 포함한다. 변환 유닛은 분할 구조를 나타내기 위해 재귀적 쿼드 트리 구조(recursive quadtree structure)를 갖는다. 분할 구조는 하나 또는 복수개의 분할 변환 유닛 플래그(split_tu_flag)들에 의해 표현된다. 변환 유닛의 최대 사이즈 및 최소 사이즈를 나타내는 파라미터가 시퀀스 파라미터 셋에 포함된다.
인트라 예측부(120)는 현재 예측 유닛의 인트라 예측모드를 결정하고, 상기 인트라 예측 모드를 이용하여 예측 블록을 생성한다.
인터 예측부(130)는 픽쳐 저장부(195)에 저장되어 있는 하나 이상의 참조 픽쳐들을 이용하여 현재 예측 유닛의 움직임 정보들을 결정하고, 상기 예측 유닛의 예측 블록을 생성한다. 상기 움직임 정보들은 참조 픽쳐들을 나타내는 하나 이상의 참조 픽쳐 인덱스들과 하나 이상의 움직임 벡터들을 포함한다.
변환부(140)는 잔차 블록을 변환하여 변환 블록을 생성한다. 상기 잔차 블록은 변환 유닛의 사이즈를 갖는다. 예측 유닛이 변환 유닛보다 크면, 현재 블록과 예측 블록 사이의 잔차 신호들은 복수개의 잔차 블록으로 분할된다.
양자화부(150)는 상기 변환 블록을 양자화하기 위한 양자화 파라미터를 결정한다. 양자화 파라미터는 양자화 스텝 사이즈를 의미한다. 양자화 파라미터는 양자화 유닛마다 결정된다. 양자화 유닛의 사이즈는 변경될 수 있고 코딩 유닛의 허용 가능한 사이즈들 중 하나이다. 코딩 유닛의 사이즈가 최소 사이즈보다 크거나 같으면, 상기 코딩 유닛은 양자화 유닛이 된다. 복수개의 코딩 유닛이 최소 사이즈의 양자화 유닛에 포함될 수도 있다. 양자화 유닛의 최소 사이즈는 픽쳐마다 결정되고, 양자화 유닛의 최소 사이즈를 특정하는 파라미터는 픽쳐 파라미터 셋(picture parameter set)에 포함된다.
양자화부(150)는 양자화 파라미터 예측자를 생성하고, 양자화 파라미터로부터 양자화 파라미터 예측자를 빼서 차분 양자화 파라미터를 생성한다. 상기 차분 양자화 파라미터는 부호화된다.
상기 양자화 파라미터 예측자는 인접 코딩 유닛들의 양자화 파라미터들 및 이전 코딩 유닛의 양자화 파라미터를 이용하여 다음과 같이 생성된다.
좌측 양자화 파라미터, 상측 양자화 파라미터 및 이전 양자화 파라미터가 상기 순서대로 검색된다. 적어도 2개의 양자화 파라미터들이 이용가능한 경우, 상기 순서로 검색되는 처음 2개의 이용 가능한 양자화 파라미터의 평균값을 양자화 파라미터 예측자로 설정하고, 하나의 양자화 파라미터만이 이용 가능한 경우에는 상기 이용 가능한 양자화 파라미터가 양자화 파라미터 예측자로 설정된다. 즉, 상기 상측 및 좌측 양자화 파라미터들이 이용 가능하면, 상기 상측 및 좌측 양자화 파라미터들의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 상측 및 좌측 양자화 파라미터들 중 하나만이 이용 가능하면, 상기 이용 가능한 양자화 파라미터와 상기 이전 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 상측 및 좌측 양자화 파라미터들이 모두 이용 가능하지 않으면, 상기 이전 양자화 파라미터가 상기 양자화 파라미터 예측자로 설정된다. 상기 평균값은 반올림한 값이다.
상기 차분 양자화 파라미터는 이진화 과정을 통해서 상기 차분 양자화 파라미터의 절대값을 나타내는 빈들과 상기 차분 양자화 파라미터의 부호를 나타내는 빈으로 변환되고, 상기 빈들은 산술 부호화된다. dQP의 절대값이 0이면 부호를 나타내는 빈은 생략될 수 있다. 트렁케이티드 유너리(truncated unary) 방식이 상기 절대값의 이진화 표현에 사용된다.
양자화부(150)는 양자화 매트릭스 및 양자화 파라미터를 이용하여 변환 블록을 양자화하여 양자화 블록을 생성한다. 양자화 블록은 역양자화/역변환부(180)로 제공된다.
스캐닝부(160)는 양자화 블록에 스캔 패턴을 적용한다.
인터 예측에서는 엔트로피 부호화를 위해 CABAC이 사용되면 대각선 스캔이 스캔 패턴으로 사용된다. 양자화 블록의 양자화 계수들은 양자화 계수 성분들로 분리된다. 상기 양자화 계수 성분들은 중요 플래그들(significant flags), 계수 부호들(coefficient signs) 및 계수 레벨들(coefficient levels)이다. 대각선 스캔이 상기 계수 성분들 각각에 적용된다. 중요 플래그는 대응하는 양자화 계수가 0인지 아닌지를 나타낸다. 계수 부호는 0이 아닌 양자화 계수의 부호를 나타낸다. 계수 레벨은 0이 아닌 양자화 계수의 절대값을 나타낸다.
변환 유닛의 사이즈가 미리 정해진 사이즈보다 크면, 상기 양자화 블록은 복수개의 서브셋들로 분할되고, 대각선 스캔이 각 서브셋에 적용된다. 각 서브셋의 중요 플래그들, 계수 부호들 및 계수 레벨들이 상기 대각선 스캔에 따라 각각 스캔된다. 상기 미리 정해진 사이즈는 4x4이다. 상기 서브셋은 16개의 변환 계수를 포함하는 4x4 블록이다.
서브셋들을 스캔하기 위한 스캔 패턴은 상기 각 서브셋의 양자화된 변환 계수들을 스캔하기 위한 스캔 패턴과 동일하다. 각 서브셋의 중요 플래그들, 계수 부호들 및 계수 레벨들은 역방향으로 스캔된다. 상기 서브셋들도 역방향으로 스캔된다.
0이 아닌 마지막 계수 위치를 나타내는 파라미터가 부호화되어 복호기로 전송된다. 상기 파라미터는 양자화 블록 내의 0이 아닌 마지막 양자화 계수의 위치를 나타낸다. 넌제로 서브셋 플래그들(non-zero subset flags)이 첫번째 서브셋 및 마지막 서브셋 이외의 서브셋들에 대해 정의되고 복호기 측으로 전송된다. 상기 첫번째 서브셋은 DC 계수를 포함한다. 상기 마지막 서브셋은 0이 아닌 마지막 양자화 계수를 포함한다. 상기 넌제로 서브셋은 서브셋이 0이 아닌 계수를 포함하는지를 나타낸다.
엔트로피 부호화부(170)는 스캐닝부(160)로부터 수신되는 스캔된 계수 성분, 인트라 예측부(120)로부터 수신되는 인트라 예측 정보, 인터 예측부(130)로부터 수신되는 움직임 정보 등을 엔트로피 부호화한다.
역양자화/역변환부(180)는 양자화 블록의 양자화된 변환 계수들을 역양자화하고, 역양자화 블록을 역변환하여 잔차 신호를 생성한다.
후처리부(190)는 복원된 픽쳐에서 발생하는 블록킹 아티펙트를 제거하기 위한 디블록킹 필터링 과정을 수행한다.
픽쳐 저장부(195)는 후처리부(190)로부터 후처리된 영상을 수신하고, 픽쳐 단위로 상기 영상을 저장한다. 픽쳐는 프레임 또는 필드일 수 있다.
도 2는 본 발명에 따른 영상 데이터를 부호화하는 방법을 설명하는 순서도이다.
현재 블록의 움직임 정보가 결정된다(S110). 현재 블록은 예측 유닛이다. 현재 블록의 사이즈는 코딩 유닛의 사이즈 및 분할 모드에 의해 결정된다.
움직임 정보는 예측 타입에 따라 달라진다. 예측 타입이 단방향 예측이면, 상기 움직임 정보는 참조 리스트 0의 픽쳐를 특정하는 참조 인덱스와 하나의 움직임 벡터를 포함한다. 예측 타입이 양방향 예측이면, 상기 움직임 정보는 참조 리스트 0의 픽쳐 및 참조 리스트 1의 픽쳐를 특정하는 2개의 참조 인덱스와 리스트 0 움직임 벡터 및 리스트 1 움직임 벡터를 포함한다.
상기 움직임 정보를 이용하여 현재 블록의 예측 블록이 생성된다(S120). 움직임 벡터가 정수 화소 위치를 가리키면, 상기 움직임 벡터에 의해 특정되는 참조 픽쳐의 블록을 복사하여 예측 블록을 생성한다. 상기 움직임 벡터가 서브 화소 위치를 가리키면, 예측 블록은 참조 픽쳐의 화소들을 보간하여 생성된다. 움직임 벡터는 1/4-화소 단위로 주어진다.
도 3은 본 발명에 따른 움직임 벡터가 가리키는 화소 위치들을 설명하는 개념도이다.
도 3에서 L0, R0, R1, L1, A0 및 B0로 표기된 화소들은 참조 픽쳐의 정수 위치의 화소들이고, 서브 화소 위치에 존재하는 aL0로부터 rL0까지의 위치의 화소들은 상기 움직임 벡터에 기초하여 선택되는 보간 필터를 사용하여 보간되어야 하는 분수 화소들(fractional pixels)이다.
보간 되어야 할 화소가 서브 화소 위치 aL0, bL0 또는 cL0에 위치에 위치하면, 수평 방향으로 가장 가까운 위치의 정수 위치의 화소들에 보간 필터가 적용함으로써 aL0, bL0 또는 cL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 dL0, hL0 또는 nL0에 위치에 위치하면, 수직 방향으로 가장 가까운 위치의 정수 위치의 화소들에 보간 필터가 적용함으로써 dL0, hL0 또는 nL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 eL0, iL0 또는 pL0에 위치에 위치하면, 수직 방향으로 문자 'a'를 표기에 포함하는 가장 가까운 위치의 보간 화소들에 보간 필터가 적용함으로써 eL0, iL0 또는 pL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 gL0, kL0 또는 rL0에 위치에 위치하면, 수평 방향으로 문자 'c'를 표기에 포함하는 가장 가까운 위치의 보간 화소들에 보간 필터가 적용함으로써 gL0, kL0 또는 rL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 fL0, jL0 또는 qL0에 위치에 위치하면, 수직 방향으로 문자 'c'를 표기에 포함하는 가장 가까운 위치의 보간 화소들에 보간 필터가 적용함으로써 fL0, jL0 또는 qL0로 표기되는 화소가 생성된다.
상기 보간 필터는 보간되어야 할 화소의 서브 화소의 위치에 기초하여 결정되거나, 상기 보간되어야 할 화소의 서브 화소의 위치 및 예측 모드에 기초하여 결정된다.
표 1은 예시적 필터를 나타낸다. 서브 화소 위치 H는 보간 방향으로 1/2 화소 위치를 나타낸다. 예를 들어, bL0, hL0, iL0, jL0 및 kL0는 상기 서브 화소 위치 H에 대응된다. 서브 화소 위치 FL과 FR은 보간 방향으로 1/4 화소 위치를 나타낸다. 예를 들어, aL0, dL0, eL0, fL0 및 gL0는 상기 서브 화소 위치 FL에 대응되고, cL0, nL0, pL0, qL0 및 rL0는 상기 서브 화소 위치 FR에 대응된다.
Prediction mode Sub-pixel Location Filter coefficient
Uni-directional
prediction
H {2, -8, 36, 36, -8, 2}
FL {-3, 51, 20, -7, 2}
FR {2, -7, 20, 51, -3}
Bi-directional prediction
H {-1, 4, -11, 40, 40, -11, 4, -1}
FL {-1, 4, -10, 57, 19, -7, 3, -1}
FR {-1, 3, -7, 19, 57, -10, 4, -1}
표 1에 도시된 바와 같이, 단방향 예측에서는 1/2 화소 위치 H의 보간 화소들을 생성하기 위해 6탭 대칭 필터가 사용되고, 1/4 화소 위치 FL 또는 FR의 보간 화소들을 생성하기 위해 5탭 비대칭 필터가 사용될 수 있다. 양방향 예측에서는 1/2 화소 위치 H의 보간 화소들을 생성하기 위해 8탭 대칭 필터가 사용되고, 1/4 화소 위치 FL 또는 FR의 보간 화소들을 생성하기 위해 8탭 비대칭 필터가 사용될 수 있다.
한편, 필터는 보간되어야 할 서브 화소 위치에 의해서만 결정될 수도 있다. 단방향 예측에서는 1/2 화소 위치의 보간 화소들을 생성하기 위해 8탭 대칭 필터가 사용되고, 1/4 화소 위치의 보간 화소들을 생성하기 위해 7탭 비대칭 필터 또는 6탭 비대칭 필터가 사용될 수 있다.
상기 현재 블록과 예측 블록을 이용하여 잔차 블록이 생성된다(S130).
잔차 블록은 변환 유닛과 동일한 사이즈를 갖는다. 예측 유닛이 변환 유닛보다 크면, 현재 블록과 예측 블록 사이의 잔차 신호들은 복수개의 잔차 블록들로 나뉜다.
상기 잔차 블록이 부호화된다(S140). 잔차 블록은 도 1의 변환부(140), 양자화부(150), 스캐닝부(160) 및 엔트로피 부호화부(170)에 의해 부호화된다.
상기 움직임 정보가 부호화된다(S150). 움직임 정보는 현재 블록의 공간 후보자들과 시간 후보자를 이용하여 예측 부호화될 수 있다. 움직임 정보는 스킵 모드, 머지 모드 또는 AMVP 모드로 부호화된다. 스킵 모드에서는 예측 유닛이 코딩 유닛의 사이즈를 갖고, 움직임 정보들은 머지 모드에서와 동일한 방법으로 부호화된다. 머지 모드에서는, 현재 예측 유닛의 움직임 정보가 후보자들 중 하나의 움직임 정보와 동일하다. AMVP 모드에서는 움직임 정보들 중 움직임 벡터가 하나 이상의 움직임 벡터 후보자들을 이용하여 예측 부호화된다.
도 4는 본 발명에 따른 머지 모드에서의 움직임 정보를 부호화하는 방법을 설명하느 순서도이다.
공간 머지 후보자들이 유도된다(S210). 도 5는 본 발명에 따른 공간 머지 후보자 블록들의 위치들을 설명하는 개념도이다.
도 5에 도시된 바와 같이, 머지 후보자 블록은 현재 블록의 이용 가능한 좌측 블록(블록 A), 이용 가능한 상측 블록(블록 B), 이용 가능한 우상측 블록(블록 C) 또는 이용 가능한 좌하측 블록(블록 D)이다. 상기 블록들은 예측 블록들이다. 블록 A, B, C 및 D 중에서 적어도 하나가 이용 가능하지 않으면, 이용 가능한 좌상측 블록(블록 E)이 머지 후보자로 설정된다. 이용 가능한 머지 후보자 블록 N의 움직임 정보가 공간 머지 후보자 N으로 설정된다. N은 A, B, C, D 또는 E이다.
공간 머지 후보자는 현재 블록의 형태 및 위치에 따라서 이용가능하지 않은 것으로 설정될 수 있다. 예를 들어, 코딩 유닛이 비대칭 분할에 의해 2개의 예측 유닛들(블록 P0 및 블록 P1)로 분할되면, 블록 P0이 움직임 정보와 블록 P1의 움직임 정보가 동일하지 않을 가능성이 높다. 따라서, 현재 블록이 비대칭 블록 P1이면, 도 6 내지 9에 도시된 바와 같이, 블록 P0를 이용가능하지 않은 것으로 설정된다.
도 6은 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 개념도이다.
도 6에 도시된 바와 같이, 코딩 유닛은 2개의 비대칭 예측 블록 P0 및 예측 블록 P1으로 분할되고, 상기 분할 모드는 nLx2N 모드이다. 블록 P0의 사이즈는 hNx2N이고, 블록 P1의 사이즈는 (2-h)Nx2N이다. h의 값은 1/2이다. 현재 블록은 블록 P1이다. 블록들 A, B, C, D 및 E가 공간 머지 후보자 블록들이다. 블록 P0는 공간 머지 후보자 블록 A이다.
본 발명에서는, 상기 공간 머지 후보자 블록 A를 이용가능하지 않은 것으로 설정하여 머지 후보자 리스트에 기재되지 않도록 한다. 또한, 상기 공간 머지 후보자 블록 A와 동일한 움직임 정보를 가지는 상기 공간 머지 후보자 블록 B, C, D 또는 E는 이용가능하지 않은 것으로 설정된다.
도 7은 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 또 다른 개념도이다.
도 7에 도시된 바와 같이, 코딩 유닛은 2개의 비대칭 예측 블록 P0 및 예측 블록 P1으로 분할되고, 상기 분할 모드는 nRx2N 모드이다. 블록 P0의 사이즈는 (2-h)Nx2N이고, 블록 P1의 사이즈는 hNx2N이다. h의 값은 1/2이다. 현재 블록은 블록 P1이다. 블록들 A, B, C, D 및 E가 공간 머지 후보자 블록들이다. 블록 P0는 공간 머지 후보자 블록 A이다.
본 발명에서는, 상기 공간 머지 후보자 블록 A를 이용가능하지 않은 것으로 설정하여 머지 후보자 리스트에 기재되지 않도록 한다. 또한, 상기 공간 머지 후보자 블록 A와 동일한 움직임 정보를 가지는 상기 공간 머지 후보자 블록 B, C, D 또는 E는 이용가능하지 않은 것으로 설정된다.
도 8은 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 또 다른 개념도이다.
도 8에 도시된 바와 같이, 코딩 유닛은 2개의 비대칭 예측 블록 P0 및 예측 블록 P1으로 분할되고, 상기 분할 모드는 2NxnU 모드이다. 블록 P0의 사이즈는 2NxhN이고, 블록 P1의 사이즈는 2Nx(2-h)N이다. h의 값은 1/2이다. 현재 블록은 블록 P1이다. 블록들 A, B, C, D 및 E가 공간 머지 후보자 블록들이다. 블록 P0는 공간 머지 후보자 블록 B이다.
본 발명에서는, 상기 공간 머지 후보자 블록 B를 이용가능하지 않은 것으로 설정하여 머지 후보자 리스트에 기재되지 않도록 한다. 또한, 상기 공간 머지 후보자 블록 B와 동일한 움직임 정보를 가지는 상기 공간 머지 후보자 블록 C, D 또는 E는 이용가능하지 않은 것으로 설정된다.
도 9는 본 발명에 따른 비대칭 분할 모드에서의 공간 머지 후보자 블록들의 위치를 설명하는 또 다른 개념도이다.
도 9에 도시된 바와 같이, 코딩 유닛은 2개의 비대칭 예측 블록 P0 및 예측 블록 P1으로 분할되고, 상기 분할 모드는 2NxnD 모드이다. 블록 P0의 사이즈는 2Nx(2-h)N이고, 블록 P1의 사이즈는 2NxhN이다. h의 값은 1/2이다. 현재 블록은 블록 P1이다. 블록들 A, B, C, D 및 E가 공간 머지 후보자 블록들이다. 블록 P0는 공간 머지 후보자 블록 B이다.
본 발명에서는, 상기 공간 머지 후보자 블록 B를 이용가능하지 않은 것으로 설정하여 머지 후보자 리스트에 기재되지 않도록 한다. 또한, 상기 공간 머지 후보자 블록 B와 동일한 움직임 정보를 가지는 상기 공간 머지 후보자 블록 C, D 또는 E는 이용가능하지 않은 것으로 설정된다.
또한, 공간 머지 후보자 블록이 머지 영역에 기초하여 이용가능하지 않은 것으로 설정될 수도 있다. 현재 블록과 공간 머지 후보자 블록이 동일 머지 영역에 포함되면, 상기 공간 머지 후보자 블록이 이용 가능하지 않은 것으로 설정된다. 머지 영역은 움직임 예측이 행해지는 영역 단위이고, 상기 머지 영역을 특정하는 정보는 비트스트림에 포함된다.
시간 머지 후보자가 유도된다(S220). 시간 머지 후보자는 참조 픽쳐 인덱스와 움직임 벡터를 포함한다.
시간 머지 후보자의 참조 픽쳐 인덱스는 인접 블록들의 하나 이상의 참조 픽쳐 인덱스들을 이용하여 유도될 수 있다. 예를 들어, 좌측 인접 블록, 상측 인접 블록 및 코너 인접 블록의 참조 픽쳐 인덱스들 중 하나가 시간 머지 후보자의 참조 픽쳐 인덱스로 설정된다. 코너 인접 블록은 우상측 인접 블록, 좌하측 인접 블록 및 좌상측 인접 블록 중 하나이다. 또는 복잡도 감소를 위해 시간 머지 후보자의 참조 픽쳐 인덱스를 0으로 설정할 수 있다.
시간 머지 후보자의 움직임 벡터는 다음과 같이 유도된다.
먼저, 시간 머지 후보자 픽쳐가 결정된다. 시간 머지 후보자 픽쳐는 시간 머지 후보자 블록을 포함한다. 슬라이스 내에서 하나의 머지 후보자 픽쳐가 사용된다. 시간 머지 후보자 픽쳐의 참조 픽쳐 인덱스는 0으로 설정될 수도 있다.
현재 슬라이스가 P 슬라이스이면, 참조 픽쳐 리스트 0의 참조 픽쳐들 중 하나가 시간 머지 후보자 픽쳐로 설정된다. 현재 슬라이스가 B 슬라이스이면, 참조 픽쳐 리스트 0과 1의 참조픽쳐들 중 하나가 시간 머지 후보자 픽쳐로 설정된다. 현재 슬라이스가 B 슬라이스이면, 시간 머지 후보자 픽쳐가 참조 픽쳐 리스트 0에 속하는지 1에 속하는지를 나타내는 리스트 지시자가 슬라이스 헤더에 포함된다. 시간 머지 후보자 픽쳐를 특정하는 참조 픽쳐 인덱스가 슬라이스 헤더에 포함될 수 있다.
다음으로, 시간 머지 후보자 블록이 결정된다. 도 10은 본 발명에 따른 시간 머지 후보자 블록의 위치를 설명하는 개념도이다. 도 10에 도시된 바와 같이, 제1 후보자 블록은 블록 C의 우하측 코너 블록(블록 H)이다. 블록 C는 현재 블록과 동일 사이즈를 갖고 동일 위치에 존재하고, 상기 시간 머지 후보자 픽쳐에 위치한다. 제2 후보자 블록은 블록 C의 센터의 우하측 화소를 포함하는 블록이다.
시간 머지 후보자 블록은 상기 제1 후보자 블록 및 제2 후보자 블록 중 하나일 수 있다. 제1 후보자 블록이 이용 가능하면, 제1 후보자 블록이 시간 머지 후보자 블록으로 설정된다. 제1 후보자 블록이 이용 가능하지 않으면, 제2 후보자 블록이 시간 머지 후보자 블록으로 설정된다. 제2 후보자 블록이 이용 가능하지 않으면, 시간 후보자 블록은 이용 가능하지 않은 것으로 설정된다.
시간 머지 후보자 블록은 현재 블록의 위치에 기초하여 결정된다. 예를 들어, 현재 블록이 아래쪽 LCU와 접하면(즉, 상기 제1 후보자 블록이 아래쪽 LCU에 속하면), 상기 제1 후보자 블록이 LCU 내의 한 블록으로 변경되거나 이용 가능하지 않는 것으로 설정된다.
또한, 상기 제1 및 제2 후보자 블록은 후보자 블록의 각 위치에 기초하여 움직임 벡터 저장 유닛 내의 다른 블록으로 대체될 수 있다. 상기 움직임 벡터 저장 유닛은 참조 픽쳐의 움직임 벡터를 저장하는 기본 유닛이다.
도 11은 본 발명에 따른 움직임 정보를 저장하는 방법을 설명하는 개념도이다. 도 11에 도시된 바와 같이, 움직임 저장 유닛은 16x16일 수 있다. 상기 움직임 벡터 저장 유닛은 16개의 4x4 블록으로 나뉠 수 있다. 움직임 벡터 저장 유닛이 16x16 블록이면, 움직임 정보는 상기 움직임 벡터 저장 유닛마다 저장된다. 움직임 벡터 저장 유닛이 복수개의 예측 유닛들을 포함하면, 메모리에 저장되는 움직임 정보의 양을 줄이기 위해되고, 상기 복수개의 예측 유닛들 중 미리 정해진 예측 유닛의 움직임 벡터가 메모리에 저장된다. 상기 미리 정해진 예측 유닛은 상기 16개의 4x4 블록들 중 하나를 커버하는 블록일 수 있다. 상기 미리 정해진 예측 유닛은 블록 C3 또는 블록 BR을 커버하는 예측 유닛일 수 있다. 또는 상기 미리 정해진 예측 유닛은 블록 UL을 커버하는 예측 유닛일 수 있다.
따라서, 후보자 블록이 상기 미리 정해진 블록을 포함하지 않으면, 후보자 블록은 상기 미리 정해진 블록을 포함하는 블록으로 변경된다.
시간 머지 후보자 블록이 결정되면, 시간 머지 후보자 블록의 움직임 벡터가 상기 시간 머지 후보자의 움직임 벡터로 설정된다.
머지 후보자 리스트가 구성된다(S230). 이용 가능한 공간 후보자 및 시간 후보자들이 미리 정해진 순서로 리스트된다. 공간 머지 후보자들은 A, B, C, D 및 E의 순서로 4개까지 포함될 수 있다. 시간 머지 후보자는 B와 C 사이 또는 공간 후보자들 뒤에 위치할 수 있다.
하나 이상의 머지 후보자들이 생성되어야 하는지를 판단한다(S240). 상기 결정은 상기 머지 후보자 리스트 상의 머지 후보자들이 수와 미리 정해진 수를 비교하여 수행된다. 상기 미리 정해진 수는 픽쳐 또는 슬라이스마다 결정될 수 있다.
머지 후보자 리스트 상의 머지 후보자들의 수가 상기 미리 정해진 수보다 작으면, 하나 이상의 머지 후보자들이 생성된다(S250). 생성된 머지 후보자들은 마지막 위치의 머지 후보자 다음에 위치한다.
이용 가능한 머지 후보자들의 수가 2보다 크거나 같고, 이들 중 하나가 리스트 0 움직임 정보를 갖고, 다른 하나가 리스트 1 움직임 정보를 가지면, 리스트 0 움직임 정보와 리스트 1 움직임 정보를 결합하여 머지 후보자들을 생성할 수 잇다. 복수개의 조합이 존재하면, 복수개의 후보자들이 생성될 수 있다.
하나 이상의 제로 머지 후보자들이 리스트에 추가될 수도 있다. 슬라이스 타입이 P이면 상기 제로 머지 후보자들은 리스트 0 움직임 정보만을 갖는다. 슬라이스 타입이 B이면, 상기 제로 머지 후보자들은 리스트 0 움직임 정보와 리스트 1 움직임 정보를 갖는다.
상기 머지 후보자 리스트의 머지 후보자들 중에서 머지 예측자가 선택되고, 상기 머지 예측자를 특정하는 머지 인덱스가 부호화된다(S260).
도 12는 본 발명에 따른 영상 복호화 장치(200)를 나타내는 블록도이다.
본 발명에 따른 영상 복호화 장치(200)는 엔트로피 복호화부(210), 역스캐닝부(220), 역양자화부(230), 역변환부(240), 인트라 예측부(250) 및 인터 예측부(260), 후처리부(270), 픽쳐 저장부(280) 및 가산부(290)를 포함한다.
엔트로피 복호화부(210)는 CABAD(context-adaptive binary arithmetic decoding) 방법을 이용하여 수신된 비트 스트림에서 인트라 예측 정보, 인터 예측 정보 및 양자화 계수 성분들을 추출한다.
역스캐닝부(220)는 역스캔 패턴을 양자화 계수 성분들에 적용하여 양자화 블록을 생성한다. 인터 예측에서는 역스캔 패턴이 대각선 스캔이다. 양자화 계수 성분들은 중요 플래그들, 계수 부호들 및 계수 레벨들을 포함한다.
변환 유닛의 사이즈가 미리 정해진 사이즈보다 크면, 서브셋 단위로 중요 플래그들, 계수 부호들 및 계수 레벨들이 상기 대각선 스캔에 따라 각각 역스캔되어 서브셋들을 생성하고, 상기 서브셋들이 상기 대각선 스캔에 따라 역스캔되어 양자화 블록을 생성한다. 상기 미리 정해진 사이즈는 4x4이다. 상기 서브셋은 16개의 변환 계수를 포함하는 4x4 블록이다. 중요 플래그들, 계수 부호들 및 계수 레벨들은 역방향으로 스캔된다. 상기 서브셋들도 역방향으로 스캔된다.
0이 아닌 마지막 계수 위치를 나타내는 파라미터 및 넌제로 서브셋 플래그들이 비트스트림으로부터 추출된다. 부호화된 서브셋의 수가 상기 0이 아닌 마지막 계수 위치를 나타내는 파라미터에 기초하여 결정된다. 넌제로 서브셋 플래그는 대응 서브셋이 적어도 하나의 0이 아닌 계수를 갖는지 여부를 결정하는데 이용된다. 넌제로 서브셋 플래그가 1이면, 서브셋이 대각선 스캔을 이용하여 생성된다 . 첫번째 및 마지막 서브셋도 상기 역스캔 패턴을 사용하여 생성된다.
역양자화부(230)는 엔트로피 복호화부(201)로부터 차분 양자화 파라미터를 수신하고, 코딩 유닛의 양자화 파라미터 예측자를 생성한다. 양자화 파라미터 예측자는 도 1의 양자화부(150)에 의한 동작과 동일한 과정을 통해 생성된다. 그리고, 상기 차분 양자화 파라미터와 상기 양자화 파라미터 예측자를 더하여 현재 코딩 유닛의 양자화 파라미터를 생성한다. 현재 코딩 유닛의 차분 양자화 파라미터가 부호기로부터 수신되지 않으면, 상기 차분 양자화 파라미터는 0으로 설정된다.
역양자화부(230)는 양자화 블록을 역양자화한다.
역변환부(240)는 상기 역양자된 블록을 역변환하여 잔차 블록을 복원한다. 역변환 타입은 예측 모드 및 변환 유닛의 사이즈에 따라 결정된다. 역 변환 타입은 DCT 기반 정수 변환 또는 DST 기반 정수 변환이다. 인터 예측에서는 DCT 기반 정수 변환이 사용된다.
인트라 예측부(250)는 수신된 인트라 예측 정보를 이용하여 현재 예측 유닛의 인트라 예측 모드를 복원하고, 상기 복원된 인트라 예측 모드에 따라 예측 블록을 생성한다.
인터 예측부(260)는 수신된 인터 예측 정보를 이용하여 현재 예측 유닛의 움직임 정보를 복원하고, 상기 움직임 정보를 이용하여 예측 블록을 생성한다.
후처리부(270)는 도 1의 후처리부(180)과 동일하게 동작한다.
픽쳐 저장부(280)는 후처리부(270)로부터 후처리된 영상을 수신하고, 픽쳐 단위로 상기 영상을 저장한다. 픽쳐는 프레임 또는 필드일 수 있다.
가산부(290)는 복원된 잔차 블록과 예측 블록을 더하여 복원 블록을 생성한다.
도 13은 본 발명에 따른 인터 예측 모드에서의 영상 복호화 방법을 설명하는 순서도이다.
현재 블록의 움직임 정보가 유도된다(S310). 현재 블록은 예측 유닛이다. 현재 블록의 사이즈는 코딩 유닛의 사이즈 및 분할 모드에 따라 결정된다.
움직임 정보는 예측 타입에 따라 달라진다. 예측 타입이 단방향 예측이면, 상기 움직임 정보는 참조 리스트 0의 픽쳐를 특정하는 참조 인덱스와 하나의 움직임 벡터를 포함한다. 예측 타입이 양방향 예측이면, 상기 움직임 정보는 참조 리스트 0의 픽쳐 및 참조 리스트 1의 픽쳐를 특정하는 2개의 참조 인덱스와 리스트 0 움직임 벡터 및 리스트 1 움직임 벡터를 포함한다.
움직임 정보는 부호화 모드에 따라 적응적으로 복호화된다. 움직임 정보의 부호화 모드는 스킵 플래그와 머지 플래그에 의해 결정된다. 스킵 플래그가 1이면, 머지 플래그가 존재하지 않고 부호화 모드는 스킵 모드이다. 스킵 플래그가 0이고 머지 플래그가 1이면, 부호화 모드는 머지 모드이다. 스킵 플래그 및 머지 플래그가 0이면, 부호화 모드는 AMVP 모드이다.
상기 움직임 정보를 이용하여 현재 블록의 예측 블록이 생성된다(S320).
움직임 벡터가 화소 위치를 가리키면, 예측 블록은 상기 움직임 벡터에 의해 특정되는 참조 픽쳐의 블록을 복사하여 생성된다. 움직임 벡터가 서브 화소 위치를 가리키면, 예측 블록은 참조 픽쳐의 화소들을 보간하여 생성된다. 움직임 벡터는 1/4 화소 단위로 표시된다.
도 3에 도시된 바와 같이, L0, R0, R1, L1, A0 및 B0로 표기된 화소들은 참조 픽쳐의 정수 위치의 화소들이고, 서브 화소 위치에 존재하는 aL0로부터 rL0까지의 위치의 화소들은 상기 움직임 벡터에 기초하여 선택되는 보간 필터를 사용하여 보간되어야 하는 분수 화소들(fractional pixels)이다.
보간 되어야 할 화소가 서브 화소 위치 aL0, bL0 또는 cL0에 위치에 위치하면, 수평 방향으로 가장 가까운 위치의 정수 위치의 화소들에 보간 필터가 적용함으로써 aL0, bL0 또는 cL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 dL0, hL0 또는 nL0에 위치에 위치하면, 수직 방향으로 가장 가까운 위치의 정수 위치의 화소들에 보간 필터가 적용함으로써 dL0, hL0 또는 nL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 eL0, iL0 또는 pL0에 위치에 위치하면, 수직 방향으로 문자 'a'를 표기에 포함하는 가장 가까운 위치의 보간 화소들에 보간 필터가 적용함으로써 eL0, iL0 또는 pL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 gL0, kL0 또는 rL0에 위치에 위치하면, 수평 방향으로 문자 'c'를 표기에 포함하는 가장 가까운 위치의 보간 화소들에 보간 필터가 적용함으로써 gL0, kL0 또는 rL0로 표기되는 화소가 생성된다. 보간 되어야 할 화소가 서브 화소 위치 fL0, jL0 또는 qL0에 위치에 위치하면, 수직 방향으로 문자 'c'를 표기에 포함하는 가장 가까운 위치의 보간 화소들에 보간 필터가 적용함으로써 fL0, jL0 또는 qL0로 표기되는 화소가 생성된다.
상기 보간 필터는 보간되어야 할 화소의 서브 화소의 위치에 기초하여 결정되거나, 상기 보간되어야 할 화소의 서브 화소의 위치 및 예측 모드에 기초하여 결정된다.
표 1에 도시된 바와 같이, 단방향 예측에서는 1/2 화소 위치 H의 보간 화소들을 생성하기 위해 6탭 대칭 필터가 사용되고, 1/4 화소 위치 FL 또는 FR의 보간 화소들을 생성하기 위해 5탭 비대칭 필터가 사용될 수 있다. 양방향 예측에서는 1/2 화소 위치 H의 보간 화소들을 생성하기 위해 8탭 대칭 필터가 사용되고, 1/4 화소 위치 FL 또는 FR의 보간 화소들을 생성하기 위해 8탭 비대칭 필터가 사용될 수 있다.
한편, 필터는 보간되어야 할 서브 화소 위치에 의해서만 결정될 수도 있다. 단방향 예측에서는 1/2 화소 위치의 보간 화소들을 생성하기 위해 8탭 대칭 필터가 사용되고, 1/4 화소 위치의 보간 화소들을 생성하기 위해 7탭 비대칭 필터 또는 6탭 비대칭 필터가 사용될 수 있다. 양방향에서는 더 작은 탭수를 갖는 동일 또는 다른 필터가 서브 화소 위치의 화소를 보간하기 위해 이용될 수 있다.
잔차 블록이 생성된다(S330). 잔차 블록은 도 12의 엔트로피 복호화부(210), 역스캐닝부(220), 역양자화부(230) 및 역변환부(240)에 의해 생성된다.
상기 예측 블록과 잔차 블록을 이용하여 복원 블록이 생성된다(S340).
예측 블록은 예측 유닛과 동일한 사이즈를 갖고, 잔차 블록은 변환 유닛과 동일한 사이즈를 갖는다. 따라서, 동일 사이즈의 잔차 신호와 예측 신호가 더해져서 복원 신호들이 생성된다.
도 14는 본 발명에 따른 머지 모드에서의 움직임 정보를 유도하는 방법을 설명하는 순서도이다.
머지 인덱스가 비트스트림으로부터 추출된다(S410). 머지 인덱스가 존재하지 않으면, 머지 후보자들의 수는 1로 설정된다.
공간 머지 후보자들이 유도된다(S420). 이용 가능한 공간 머지 후보자들은 도 4의 S210에 기술된 내용과 동일하다.
시간 머지 후보자가 유도된다(S430). 시간 머지 후보자는 참조픽쳐 인덱스와 움직임 벡터를 포함한다. 시간 머지 후보자의 참조픽쳐 인덱스 및 움직임 벡터는 도 4의 S220에 도시된 바와 동일하다.
머지 후보자 리스트가 구축된다(S440). 머지 후보자 리스트는 도 4의 S230에서와 동일하게 구축된다.
하나 이상의 머지 후보자가 생성되는지를 결정한다(S450). 상기 결정은 머지 후보자 리스트 상의 머지 후보자들의 수와 미리 정해진 수를 비교하여 행해진다. 미리 정해진 수는 픽쳐 또는 슬라이스마다 결정된다.
머지 후보자 리스트 상의 머지 후보자들의 수가 상기 미리 정해진 수보다 작으면, 하나 이상의 머지 후보자들이 생성된다(S460). 생성된 머지 후보자는 이용 가능한 마지막 머지 후보자의 뒤에 위치하게 된다. 머지 후보자는 도 4의 S250에 기술된 것과 동일한 방법으로 생성된다.
머지 인덱스에 의해 특정되는 머지 후보자를 현재 블록의 움직임 정보로 설정한다(S470).
도 15는 본 발명에 따른 인터 예측 모드에서의 잔차 블록을 생성하는 과정을 설명하는 순서도이다.
양자화 계수 성분들이 엔트로피 복호화되어 생성된다(S510).
양자화 블록은 대각선 스캔에 따라서 상기 양자화 계수 성분들을 역스캔하여 생성한다(S520). 양자화 계수 성분들은 중요 플래그들, 계수 부호들 및 계수 레벨들을 포함한다.
변환 유닛의 사이즈가 미리 정해진 사이즈보다 크면, 대각선 스캔에 따라서 중요 플래그들, 계수 부호들 및 계수 레벨들이 서브셋 단위로 역스캔되어 서브셋들을 생성하고, 상기 서브셀들은 대각선 스캔에 따라서 역스캔되어 양자화 블록을 생성한다. 상기 미리 정해진 사이즈는 서브셋의 사이즈와 동일하다. 서브셋은 16개의 계수를 포함하는 4x4 블록이다. 중요 플래그들, 계수 부호들 및 계수 레벨들은 역방향으로 역스캔된다. 서브셋들도 역방향으로 역스캔된다.
0이 아닌 양자화 계수의 위치를 나타내는 파라미터 및 넌제로 서브셋 플래그들이 비트스트림으로부터 추출된다. 부호화된 서브셋의 수는 상기 0이 아닌 계수 의 위치를 나타내는 파라미터에 기초하여 결정된다. 넌제로 서브셋 플래그는 대응 서브셋이 0이 아닌 계수를 적어도 하나 포함하는지를 결정하기 위해 사용된다. 넌제로 서브셋 플래그가 1이면, 서브셋은 대각선 스캔을 사용하여 생성된다. 처음 및 마지막 서브셋은 역스캔 패턴을 이용하여 생성된다.
역양자화 매트릭스 및 양자화 파라미터를 이용하여 양자화 블록이 역양자화된다(S530).
양자화 유닛의 최소 사이즈가 결정된다. 상기 최소 사이즈를 특정하는 파라미터(cu_qp_delta_enabled_info)가 PPS로부터 추출되고, 양자화 유닛의 최소 사이즈는 다음과 같이 유도된다.
Log2(MinQUSize) = Log2(MaxCUSize)-cu_qp_deltal_enabled_info
MinQUSize는 양자화 유닛의 최소 사이즈이다. MaxCUSize는 LCU의 사이즈이다. cu_qp_delta_enabled_info는 픽쳐 파라미터 셋으로부터 추출된다.
현재 코딩 유닛의 차분 양자화 파라미터(dQP)가 복원된다. 차분 양자화 파라미터는 양자화 유닛마다 포함된다. 따라서, 현재 코딩 유닛의 사이즈가 상기 최소 사이즈보다 크거나 같으면, 현재 코딩 유닛에 대해 차분 양자화 파라미터가 복원된다. 차분 양자화 파라미터가 존재하지 않으면, 차분 양자화 파라미터는 0으로 설정된다. 복수개의 코딩 유닛이 하나의 양자화 유닛에 포함하면, 복호화 순서에서 0이 아닌 계수를 적어도 하나 갖는 최초의 코딩 유닛이 차분 양자화 파라미터를 포함한다.
상기 부호화된 차분 양자화 파라미터는 산술복호화되어 차분 양자화 파라미터의 절대값을 나타내는 빈 스트링과 차분 양자화 파라미터의 부호를 나타내는 빈이 생성된다. 상기 빈 스트링은 트렁케이티디 유너리(truncated unary) 방식으로 이진화된 빈 스트링이다. 상기 차분 양자화 파라미터의 절대값이 0이면, 상기 부호를 나타내는 빈은 존재하지 않는다. 상기 절대값을 나타내는 빈 스트링과 상기 부호를 나타내는 빈을 이용하여 상기 차분 양자화 파라미터가 유도된다.
현재 코딩 유닛의 상기 양자화 파라미터 예측자가 생성된다. 상기 양자화 파라미터 예측자는 인접 코딩 유닛들의 양자화 파라미터들과 이전 코딩 유닛의 양자화 파라미터를 이용하여 생성된다.
좌측 양자화 파라미터, 상측 양자화 파라미터 및 이전 양자화 파라미터가 상기 순서대로 검색된다. 적어도 2개의 양자화 파라미터들이 이용가능한 경우, 상기 순서로 검색되는 처음 2개의 이용 가능한 양자화 파라미터의 평균값을 양자화 파라미터 예측자로 설정하고, 하나의 양자화 파라미터만이 이용 가능한 경우에는 상기 이용 가능한 양자화 파라미터가 양자화 파라미터 예측자로 설정된다. 즉, 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터가 모두 이용 가능하면, 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터 중에서 하나만이 이용 가능하면, 상기 이용 가능한 양자화 파라미터와 상기 이전 양자화 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터가 모두 이용 가능하지 않으면, 상기 이전 양자화 파라미터가 상기 양자화 파라미터 예측자로 설정된다.
양자화 유닛이 복수개의 코딩 유닛을 포함하면, 복호화 순서상 첫번째 코딩 유닛의 양자화 파라미터 예측자가 생성되고, 상기 생성된 양자화 파라미터 예측자가 상기 양자화 유닛내의 모든 코딩 유닛들에 사용된다.
상기 차분 양자화 파라미터와 상기 양자화 파라미터 예측자를 이용하여 양자화 파라미터가 생성된다.
상기 역양자화 블록을 역변환한여 잔차 블록을 생성한다(S540). 1차원의 수평 및 수직 역 DCT 기반 변환이 사용된다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
130 : 인터 예측부

Claims (7)

  1. 영상 데이터를 복호화하는 방법에 있어서,
    현재 예측 유닛의 참조 픽쳐 인덱스와 움직임 벡터를 유도하는 단계;
    상기 참조 픽쳐 인덱스 및 움직임 벡터를 이용하여 현재 예측 유닛의 예측 블록을 생성하는 단계;
    양자화 계수 성분을 역스캔하여 양자화 블록을 생성하는 단계;
    양자화 파라미터를 이용하여 상기 양자화 블록을 역양자화하여 변환 블록을 생성하는 단계;
    상기 변환 블록을 역변환하여 잔차 블록을 형성하는 단계; 및
    상기 예측 블록과 잔차 블록을 이용하여 복원 블록을 생성하는 단계;를 포함하고,
    상기 예측 블록의 예측 화소들은 상기 움직임 벡터에 의해 선택되는 보간 필터를 이용하여 생성되는 것을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 움직임 벡터가 1/4-화소 위치를 나타내면, 상기 보간 필터는 7탭 비대칭 필터 또는 6탭 비대칭 필터인 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 양자화 파라미터는 양자화 유닛마다 유도되고, 상기 양자화 유닛의 사이즈는 코딩 유닛의 허용 가능한 사이즈들 중 하나인 것을 특징으로 하는 방법.
  4. 제3항에 있어서, 상기 양자화 파라미터는 차분 양자화 파라미터 및 양자화 파라미터 예측자를 이용하여 유도되는 것을 특징으로 하는 방법.
  5. 제4항에 있어서, 상기 양자화 파라미터 예측자는 좌측 양자화 파라미터, 상측 양자화 파라미터 및 이전 양자화 파라미터 중 적어도 2개가 유효하면, 유효한 2개의 양자화 파라미터의 평균값인 것을 특징으로 하는 방법.
  6. 제5항에 있어서, 상기 현재 코딩 유닛이 픽쳐 또는 슬라이스의 상측에 위치하면, 좌측 양자화 파라미터 및 이전 양자화 파라미터의 평균값인 것을 특징으로 하는 방법.
  7. 제1항에 있어서, 현재 필터의 탭수는 상기 움직임 벡터의 예측 화소 위치에 의해 결정되는 것을 특징으로 하는 방법.

KR1020147010047A 2011-11-07 2012-11-02 영상 데이터를 복호화하는 방법 KR20140082702A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110115348A KR20130050149A (ko) 2011-11-07 2011-11-07 인터 모드에서의 예측 블록 생성 방법
KR1020110115348 2011-11-07
PCT/CN2012/084018 WO2013067903A1 (en) 2011-11-07 2012-11-02 Method of decoding video data

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020147010056A Division KR20140074949A (ko) 2011-11-07 2012-11-02 머지 모드에서의 영상 복호화 방법
KR1020147010057A Division KR20140077919A (ko) 2011-11-07 2012-11-02 머지 모드에서의 영상 복호화 방법

Publications (1)

Publication Number Publication Date
KR20140082702A true KR20140082702A (ko) 2014-07-02

Family

ID=48288520

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020110115348A KR20130050149A (ko) 2011-11-07 2011-11-07 인터 모드에서의 예측 블록 생성 방법
KR1020147010056A KR20140074949A (ko) 2011-11-07 2012-11-02 머지 모드에서의 영상 복호화 방법
KR1020147010047A KR20140082702A (ko) 2011-11-07 2012-11-02 영상 데이터를 복호화하는 방법
KR1020147010057A KR20140077919A (ko) 2011-11-07 2012-11-02 머지 모드에서의 영상 복호화 방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020110115348A KR20130050149A (ko) 2011-11-07 2011-11-07 인터 모드에서의 예측 블록 생성 방법
KR1020147010056A KR20140074949A (ko) 2011-11-07 2012-11-02 머지 모드에서의 영상 복호화 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020147010057A KR20140077919A (ko) 2011-11-07 2012-11-02 머지 모드에서의 영상 복호화 방법

Country Status (16)

Country Link
US (8) US8982957B2 (ko)
EP (5) EP2752007A4 (ko)
JP (6) JP5827412B2 (ko)
KR (4) KR20130050149A (ko)
CN (7) CN104012094B (ko)
AU (5) AU2012334553B2 (ko)
BR (5) BR122015027407B8 (ko)
CA (5) CA2931709C (ko)
HK (6) HK1199588A1 (ko)
IL (5) IL231707A (ko)
MX (5) MX347162B (ko)
MY (2) MY201790A (ko)
PH (6) PH12015500839B1 (ko)
RU (5) RU2589866C2 (ko)
SG (5) SG10201503443YA (ko)
WO (1) WO2013067903A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122997A1 (ko) * 2016-01-11 2017-07-20 삼성전자 주식회사 영상 부호화 방법 및 장치와 영상 복호화 방법 및 장치

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397599B2 (en) * 2010-12-17 2019-08-27 Electronics And Telecommunications Research Institute Method and apparatus for inter prediction using motion vector candidate based on temporal motion prediction
RU2595262C2 (ru) * 2011-06-28 2016-08-27 Самсунг Электроникс Ко., Лтд. Способ для интерполяции изображений с использованием асимметричного интерполяционного фильтра и устройство для этого
KR20130050149A (ko) * 2011-11-07 2013-05-15 오수미 인터 모드에서의 예측 블록 생성 방법
JP5900308B2 (ja) * 2011-12-16 2016-04-06 株式会社Jvcケンウッド 動画像符号化装置、動画像符号化方法及び動画像符号化プログラム
FR3032583B1 (fr) * 2015-02-06 2018-03-02 Orange Procede de codage d'une image numerique, procede de decodage, dispositifs, et programmes d'ordinateurs associes
EP3286917A1 (en) * 2015-05-21 2018-02-28 Huawei Technologies Co. Ltd. Apparatus and method for video motion compensation
CN116760977A (zh) * 2015-08-20 2023-09-15 日本放送协会 图像编码装置、图像解码装置、和其程序
WO2017176092A1 (ko) * 2016-04-08 2017-10-12 한국전자통신연구원 움직임 예측 정보를 유도하는 방법 및 장치
US10602176B2 (en) * 2016-04-15 2020-03-24 Google Llc Coding interpolation filter type
CN114363636B (zh) 2016-07-05 2024-06-04 株式会社Kt 用于处理视频信号的方法和装置
US10721489B2 (en) * 2016-09-06 2020-07-21 Qualcomm Incorporated Geometry-based priority for the construction of candidate lists
US10341659B2 (en) * 2016-10-05 2019-07-02 Qualcomm Incorporated Systems and methods of switching interpolation filters
US10785477B2 (en) 2016-10-06 2020-09-22 Lg Electronics Inc. Method for processing video on basis of inter prediction mode and apparatus therefor
US10623746B2 (en) * 2017-12-07 2020-04-14 Tencent America LLC Method and apparatus for video coding
KR20210016053A (ko) * 2018-06-25 2021-02-10 김기백 영상 부호화/복호화 방법 및 장치
CN110662065A (zh) * 2018-06-29 2020-01-07 财团法人工业技术研究院 图像数据解码方法及解码器、图像数据编码方法及编码器
CN112584177B (zh) 2018-12-28 2022-05-31 杭州海康威视数字技术股份有限公司 一种编解码方法及其设备
US11503283B2 (en) 2018-12-28 2022-11-15 Jvckenwood Corporation Dynamic image decoding device, dynamic image decoding method, dynamic image decoding program, dynamic image encoding device, dynamic image encoding method, and dynamic image encoding program
KR20210114054A (ko) 2019-03-12 2021-09-17 엘지전자 주식회사 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020200235A1 (en) * 2019-04-01 2020-10-08 Beijing Bytedance Network Technology Co., Ltd. Half-pel interpolation filter in intra block copy coding mode
BR112022002480A2 (pt) 2019-08-20 2022-04-26 Beijing Bytedance Network Tech Co Ltd Método para processamento de vídeo, aparelho em um sistema de vídeo, e, produto de programa de computador armazenado em uma mídia legível por computador não transitória
JP2021052241A (ja) * 2019-09-20 2021-04-01 Kddi株式会社 画像復号装置、画像復号方法及びプログラム
JP7267885B2 (ja) * 2019-09-20 2023-05-02 Kddi株式会社 画像復号装置、画像復号方法及びプログラム
PL3932064T3 (pl) 2019-09-23 2023-07-17 Huawei Technologies Co. Ltd. Koder, dekoder i odpowiednie sposoby redukcji złożoności predykcji intra dla trybu planarnego
WO2023028965A1 (en) * 2021-09-02 2023-03-09 Nvidia Corporation Hardware codec accelerators for high-performance video encoding
CN116114245A (zh) 2021-09-02 2023-05-12 辉达公司 在视频编码过程中视频帧的并行处理
CN117255205A (zh) * 2022-06-16 2023-12-19 北京三星通信技术研究有限公司 视频编解码方法及相应的设备

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3853554T2 (de) * 1987-06-09 1995-08-24 Sony Corp Bewegungsvektorabschätzung in Fernsehbildern.
US5339108A (en) * 1992-04-09 1994-08-16 Ampex Corporation Ordering and formatting coded image data and reconstructing partial images from the data
US5881176A (en) * 1994-09-21 1999-03-09 Ricoh Corporation Compression and decompression with wavelet style and binary style including quantization by device-dependent parser
US5867602A (en) * 1994-09-21 1999-02-02 Ricoh Corporation Reversible wavelet transform and embedded codestream manipulation
US6009236A (en) * 1994-09-26 1999-12-28 Mitsubishi Denki Kabushiki Kaisha Digital video signal record and playback device and method for giving priority to a center of an I frame
US5982935A (en) * 1997-04-11 1999-11-09 National Semiconductor Corporation Method and apparatus for computing MPEG video reconstructed DCT coefficients
US6208692B1 (en) * 1997-12-31 2001-03-27 Sarnoff Corporation Apparatus and method for performing scalable hierarchical motion estimation
US6639942B1 (en) * 1999-10-21 2003-10-28 Toshiba America Electronic Components, Inc. Method and apparatus for estimating and controlling the number of bits
US7663695B2 (en) * 2000-05-05 2010-02-16 Stmicroelectronics S.R.L. Method and system for de-interlacing digital images, and computer program product therefor
WO2002078355A1 (en) * 2001-03-23 2002-10-03 Nokia Corporation Variable length coding
US6735254B2 (en) * 2001-06-29 2004-05-11 Qualcomm, Inc. DCT compression using Golomb-Rice coding
JP3936335B2 (ja) * 2001-11-30 2007-06-27 株式会社エヌ・ティ・ティ・ドコモ 動画像符号化装置、動画像復号化装置、動画像符号化方法、動画像復号化方法、プログラム及びプログラムを記憶したコンピュータ読み取り可能な記録媒体
CN101448162B (zh) * 2001-12-17 2013-01-02 微软公司 处理视频图像的方法
US7305034B2 (en) * 2002-04-10 2007-12-04 Microsoft Corporation Rounding control for multi-stage interpolation
US7620109B2 (en) * 2002-04-10 2009-11-17 Microsoft Corporation Sub-pixel interpolation in motion estimation and compensation
RU2322770C2 (ru) * 2002-04-23 2008-04-20 Нокиа Корпорейшн Способ и устройство для указания параметров квантователя в системе видеокодирования
JP2004023458A (ja) * 2002-06-17 2004-01-22 Toshiba Corp 動画像符号化/復号化方法及び装置
JP4724351B2 (ja) * 2002-07-15 2011-07-13 三菱電機株式会社 画像符号化装置、画像符号化方法、画像復号装置、画像復号方法、および通信装置
US7227901B2 (en) * 2002-11-21 2007-06-05 Ub Video Inc. Low-complexity deblocking filter
US7609763B2 (en) * 2003-07-18 2009-10-27 Microsoft Corporation Advanced bi-directional predictive coding of video frames
US7724827B2 (en) * 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
NO319629B1 (no) * 2003-11-28 2005-09-05 Tandberg Telecom As Fremgangsmate for korrigering av interpolerte pikselverdier
US7599435B2 (en) * 2004-01-30 2009-10-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Video frame encoding and decoding
US20050207495A1 (en) * 2004-03-10 2005-09-22 Jayaram Ramasastry Methods and apparatuses for compressing digital image data with motion prediction
US7894530B2 (en) * 2004-05-07 2011-02-22 Broadcom Corporation Method and system for dynamic selection of transform size in a video decoder based on signal content
US8823821B2 (en) * 2004-12-17 2014-09-02 Mitsubishi Electric Research Laboratories, Inc. Method and system for processing multiview videos for view synthesis using motion vector predictor list
JP4074868B2 (ja) * 2004-12-22 2008-04-16 株式会社東芝 画像符号化制御方法及びその装置
US7583844B2 (en) * 2005-03-11 2009-09-01 Nokia Corporation Method, device, and system for processing of still images in the compressed domain
US8208564B2 (en) * 2005-06-24 2012-06-26 Ntt Docomo, Inc. Method and apparatus for video encoding and decoding using adaptive interpolation
US20070110159A1 (en) * 2005-08-15 2007-05-17 Nokia Corporation Method and apparatus for sub-pixel interpolation for updating operation in video coding
US20080137732A1 (en) * 2005-09-20 2008-06-12 Mitsubishi Electric Corporation Image encoding method and image decoding method, image encoder and image decoder, and image encoded bit stream and recording medium
US8879635B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Methods and device for data alignment with time domain boundary
CA2631336A1 (en) * 2005-11-30 2007-06-07 Kabushiki Kaisha Toshiba Image encoding/image decoding method, image encoding/image decoding apparatus
US8265151B1 (en) * 2005-12-14 2012-09-11 Ambarella Taiwan Ltd. Mode decision using approximate 1/2 pel interpolation
KR100867995B1 (ko) * 2006-01-07 2008-11-10 한국전자통신연구원 동영상 데이터 인코딩/디코딩 방법 및 그 장치
WO2007094100A1 (ja) * 2006-02-13 2007-08-23 Kabushiki Kaisha Toshiba 動画像符号化/復号化方法及び装置並びにプログラム
JP4820191B2 (ja) * 2006-03-15 2011-11-24 富士通株式会社 動画像符号化装置及びプログラム
WO2007113559A1 (en) * 2006-04-03 2007-10-11 British Telecommunications Public Limited Company Video coding
US20070274396A1 (en) * 2006-05-26 2007-11-29 Ximin Zhang Complexity adaptive skip mode estimation for video encoding
US20070274385A1 (en) * 2006-05-26 2007-11-29 Zhongli He Method of increasing coding efficiency and reducing power consumption by on-line scene change detection while encoding inter-frame
US8208545B2 (en) * 2006-06-01 2012-06-26 Electronics And Telecommunications Research Institute Method and apparatus for video coding on pixel-wise prediction
US8422555B2 (en) * 2006-07-11 2013-04-16 Nokia Corporation Scalable video coding
KR101380580B1 (ko) * 2006-08-02 2014-04-02 톰슨 라이센싱 비디오 인코딩을 위한 적응형 기하학적 파티셔닝 방법 및 장치
US20080170611A1 (en) * 2007-01-17 2008-07-17 Srikrishna Ramaswamy Configurable functional multi-processing architecture for video processing
EP2120462B1 (en) * 2007-03-05 2018-12-19 NEC Corporation Weighted prediction information calculation method, device, program, dynamic image encoding method, device, and program
US8107571B2 (en) * 2007-03-20 2012-01-31 Microsoft Corporation Parameterized filters and signaling techniques
KR101366242B1 (ko) * 2007-03-29 2014-02-20 삼성전자주식회사 움직임 모델 파라메터의 부호화, 복호화 방법 및 움직임모델 파라메터를 이용한 영상의 부호화, 복호화 방법 및장치
WO2008132890A1 (ja) * 2007-04-16 2008-11-06 Kabushiki Kaisha Toshiba 画像符号化と画像復号化の方法及び装置
JPWO2009001793A1 (ja) * 2007-06-26 2010-08-26 株式会社東芝 画像符号化と画像復号化の方法及び装置
WO2009003499A1 (en) * 2007-06-29 2009-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Scalable video coding supporting pixel value refinement scalability
US8265144B2 (en) * 2007-06-30 2012-09-11 Microsoft Corporation Innovations in video decoder implementations
US8254455B2 (en) * 2007-06-30 2012-08-28 Microsoft Corporation Computing collocated macroblock information for direct mode macroblocks
JP4876048B2 (ja) * 2007-09-21 2012-02-15 株式会社日立製作所 映像送受信方法、受信装置、映像蓄積装置
US8938005B2 (en) * 2007-11-05 2015-01-20 Canon Kabushiki Kaisha Image encoding apparatus, method of controlling the same, and computer program
US8885726B2 (en) * 2007-12-04 2014-11-11 Vixs Systems, Inc. Neighbor management for use in entropy encoding and methods for use therewith
US8542730B2 (en) * 2008-02-22 2013-09-24 Qualcomm, Incorporated Fast macroblock delta QP decision
KR20090094595A (ko) * 2008-03-03 2009-09-08 삼성전자주식회사 복수 참조에 의한 움직임 예측을 이용한 부호화 방법 및장치, 그리고 복수 참조에 의한 움직임 예측을 이용한복호화 방법 및 장치
US9077971B2 (en) * 2008-04-10 2015-07-07 Qualcomm Incorporated Interpolation-like filtering of integer-pixel positions in video coding
US8897359B2 (en) * 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
KR101549823B1 (ko) * 2008-09-02 2015-09-04 삼성전자주식회사 적응적 이진화를 이용한 영상 부호화, 복호화 방법 및 장치
EP2161936A1 (en) * 2008-09-04 2010-03-10 Panasonic Corporation Locally adaptive filters for video coding controlled by local correlation data
US8724697B2 (en) * 2008-09-26 2014-05-13 Qualcomm Incorporated Locating motion vectors for video data units
US8483285B2 (en) * 2008-10-03 2013-07-09 Qualcomm Incorporated Video coding using transforms bigger than 4×4 and 8×8
US20100166073A1 (en) * 2008-12-31 2010-07-01 Advanced Micro Devices, Inc. Multiple-Candidate Motion Estimation With Advanced Spatial Filtering of Differential Motion Vectors
TWI387314B (zh) * 2009-03-10 2013-02-21 Univ Nat Central Image processing apparatus and method thereof
EP2237557A1 (en) * 2009-04-03 2010-10-06 Panasonic Corporation Coding for filter coefficients
KR101557504B1 (ko) * 2009-04-13 2015-10-07 삼성전자주식회사 채널 적응형 비디오 전송 방법, 이를 이용한 장치 및 이를 제공하는 시스템
US20110002391A1 (en) * 2009-06-11 2011-01-06 Motorola, Inc. Digital image compression by resolution-adaptive macroblock coding
KR101675116B1 (ko) * 2009-08-06 2016-11-10 삼성전자 주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101452859B1 (ko) * 2009-08-13 2014-10-23 삼성전자주식회사 움직임 벡터를 부호화 및 복호화하는 방법 및 장치
WO2011046008A1 (ja) * 2009-10-16 2011-04-21 シャープ株式会社 動画像符号化装置、および、動画像復号装置
US9237355B2 (en) * 2010-02-19 2016-01-12 Qualcomm Incorporated Adaptive motion resolution for video coding
CA2857849C (en) * 2010-04-23 2020-02-11 Soo Mi Oh Apparatus and method for encoding a moving picture
US20120075436A1 (en) * 2010-09-24 2012-03-29 Qualcomm Incorporated Coding stereo video data
US10349070B2 (en) * 2010-09-30 2019-07-09 Texas Instruments Incorporated Simplified binary arithmetic coding engine
US8787443B2 (en) * 2010-10-05 2014-07-22 Microsoft Corporation Content adaptive deblocking during video encoding and decoding
US10327008B2 (en) * 2010-10-13 2019-06-18 Qualcomm Incorporated Adaptive motion vector resolution signaling for video coding
US8755438B2 (en) * 2010-11-29 2014-06-17 Ecole De Technologie Superieure Method and system for selectively performing multiple video transcoding operations
US9288496B2 (en) * 2010-12-03 2016-03-15 Qualcomm Incorporated Video coding using function-based scan order for transform coefficients
US20120163448A1 (en) * 2010-12-22 2012-06-28 Qualcomm Incorporated Coding the position of a last significant coefficient of a video block in video coding
US9172972B2 (en) * 2011-01-05 2015-10-27 Qualcomm Incorporated Low complexity interpolation filtering with adaptive tap size
US9008176B2 (en) * 2011-01-22 2015-04-14 Qualcomm Incorporated Combined reference picture list construction for video coding
US9008181B2 (en) * 2011-01-24 2015-04-14 Qualcomm Incorporated Single reference picture list utilization for interprediction video coding
US9930366B2 (en) * 2011-01-28 2018-03-27 Qualcomm Incorporated Pixel level adaptive intra-smoothing
US10171813B2 (en) * 2011-02-24 2019-01-01 Qualcomm Incorporated Hierarchy of motion prediction video blocks
JP5982734B2 (ja) * 2011-03-11 2016-08-31 ソニー株式会社 画像処理装置および方法
US9143795B2 (en) * 2011-04-11 2015-09-22 Texas Instruments Incorporated Parallel motion estimation in video coding
US9143799B2 (en) * 2011-05-27 2015-09-22 Cisco Technology, Inc. Method, apparatus and computer program product for image motion prediction
US9313494B2 (en) * 2011-06-20 2016-04-12 Qualcomm Incorporated Parallelization friendly merge candidates for video coding
US9942573B2 (en) * 2011-06-22 2018-04-10 Texas Instruments Incorporated Systems and methods for reducing blocking artifacts
US10536701B2 (en) * 2011-07-01 2020-01-14 Qualcomm Incorporated Video coding using adaptive motion vector resolution
US9756360B2 (en) * 2011-07-19 2017-09-05 Qualcomm Incorporated Coefficient scanning in video coding
US9699456B2 (en) * 2011-07-20 2017-07-04 Qualcomm Incorporated Buffering prediction data in video coding
US9824426B2 (en) * 2011-08-01 2017-11-21 Microsoft Technology Licensing, Llc Reduced latency video stabilization
US9344743B2 (en) * 2011-08-24 2016-05-17 Texas Instruments Incorporated Flexible region based sample adaptive offset (SAO) and adaptive loop filter (ALF)
US10070152B2 (en) * 2011-08-24 2018-09-04 Texas Instruments Incorporated Sample adaptive offset (SAO) parameter signaling
US20130083844A1 (en) * 2011-09-30 2013-04-04 In Suk Chong Coefficient coding for sample adaptive offset and adaptive loop filter
US9762899B2 (en) * 2011-10-04 2017-09-12 Texas Instruments Incorporated Virtual memory access bandwidth verification (VMBV) in video coding
US9083983B2 (en) * 2011-10-04 2015-07-14 Qualcomm Incorporated Motion vector predictor candidate clipping removal for video coding
US9699457B2 (en) * 2011-10-11 2017-07-04 Qualcomm Incorporated Most probable transform for intra prediction coding
US9357235B2 (en) * 2011-10-13 2016-05-31 Qualcomm Incorporated Sample adaptive offset merged with adaptive loop filter in video coding
US20130101033A1 (en) * 2011-10-14 2013-04-25 Qualcomm Incorporated Coding non-symmetric distributions of data
US8915706B2 (en) 2011-10-18 2014-12-23 General Electric Company Transition nozzle
CN108093261B (zh) * 2011-10-24 2022-01-04 英孚布瑞智有限私人贸易公司 图像解码装置
KR20130050149A (ko) 2011-11-07 2013-05-15 오수미 인터 모드에서의 예측 블록 생성 방법
US10129540B2 (en) * 2012-04-10 2018-11-13 Texas Instruments Incorporated Reduced complexity coefficient transmission for adaptive loop filtering (ALF) in video coding
US9420280B2 (en) * 2012-06-08 2016-08-16 Qualcomm Incorporated Adaptive upsampling filters
US9648318B2 (en) * 2012-09-30 2017-05-09 Qualcomm Incorporated Performing residual prediction in video coding
US9948939B2 (en) * 2012-12-07 2018-04-17 Qualcomm Incorporated Advanced residual prediction in scalable and multi-view video coding
US10462480B2 (en) * 2014-12-31 2019-10-29 Microsoft Technology Licensing, Llc Computationally efficient motion estimation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122997A1 (ko) * 2016-01-11 2017-07-20 삼성전자 주식회사 영상 부호화 방법 및 장치와 영상 복호화 방법 및 장치
US10819978B2 (en) 2016-01-11 2020-10-27 Samsung Electronics Co., Ltd. Image encoding method and apparatus, and image decoding method and apparatus

Also Published As

Publication number Publication date
CN104869401A (zh) 2015-08-26
CA3092392C (en) 2022-04-12
AU2015249105B2 (en) 2017-08-03
PH12015500844B1 (en) 2016-08-15
RU2589866C2 (ru) 2016-07-10
PH12015500839A1 (en) 2016-08-15
SG10201503437RA (en) 2015-06-29
AU2015249105A1 (en) 2015-11-12
US8982957B2 (en) 2015-03-17
CN104869402A (zh) 2015-08-26
BR112014007593A2 (pt) 2017-04-11
CN104883568A (zh) 2015-09-02
CN104869400B (zh) 2018-03-27
US20170214934A1 (en) 2017-07-27
CA3039421C (en) 2020-10-27
JP5827412B2 (ja) 2015-12-02
US20140269926A1 (en) 2014-09-18
PH12017502132A1 (en) 2018-07-02
CA3039421A1 (en) 2013-05-16
RU2621967C1 (ru) 2017-06-08
US9648343B2 (en) 2017-05-09
BR122015027402B8 (pt) 2022-10-04
PH12017502131A1 (en) 2018-07-02
CN107517382B (zh) 2020-07-10
EP2752007A1 (en) 2014-07-09
IL239727A0 (en) 2015-08-31
PH12015500843B1 (en) 2016-08-15
IL239725A (en) 2017-07-31
AU2015249102A1 (en) 2015-11-12
US9351012B2 (en) 2016-05-24
RU2621966C1 (ru) 2017-06-08
MY201095A (en) 2024-02-05
BR122015027402A2 (pt) 2019-08-27
BR122015027402B1 (pt) 2022-06-28
AU2015249104B2 (en) 2017-08-03
EP3930325A1 (en) 2021-12-29
IL231707A0 (en) 2014-05-28
BR122015027404B1 (pt) 2022-06-28
AU2012334553A1 (en) 2014-04-17
JP2016028516A (ja) 2016-02-25
CA2931709C (en) 2019-05-21
CN104869401B (zh) 2018-03-23
WO2013067903A1 (en) 2013-05-16
JP2016028518A (ja) 2016-02-25
MX356738B (es) 2018-06-12
BR122015027425A8 (pt) 2022-10-04
HK1214442A1 (zh) 2016-07-22
CN104883568B (zh) 2018-04-17
CA2931745A1 (en) 2013-05-16
AU2015249102B2 (en) 2017-08-03
BR122015027407B8 (pt) 2022-10-04
BR122015027404B8 (pt) 2022-10-04
CA2931709A1 (en) 2013-05-16
JP2016028519A (ja) 2016-02-25
US9635384B2 (en) 2017-04-25
BR122015027425B1 (pt) 2023-01-10
KR20140074949A (ko) 2014-06-18
PH12017502132B1 (en) 2018-07-02
AU2015249103A1 (en) 2015-11-12
IL239725A0 (en) 2015-08-31
IL239728B (en) 2019-07-31
SG10201503439UA (en) 2015-06-29
JP6076438B2 (ja) 2017-02-08
SG10201503444WA (en) 2015-06-29
IL239726A0 (en) 2015-08-31
IL239727B (en) 2019-02-28
CA2849029A1 (en) 2013-05-16
RU2015131333A (ru) 2015-11-27
JP2014534753A (ja) 2014-12-18
CN104869400A (zh) 2015-08-26
CA3092392A1 (en) 2013-05-16
RU2621972C2 (ru) 2017-06-08
SG10201503443YA (en) 2015-06-29
HK1214444A1 (zh) 2016-07-22
RU2014113082A (ru) 2015-12-20
CA2849029C (en) 2016-08-09
BR122015027407A2 (pt) 2019-08-27
PH12015500841A1 (en) 2016-08-15
US20150229953A1 (en) 2015-08-13
SG11201400667QA (en) 2014-04-28
US10212449B2 (en) 2019-02-19
US9641860B2 (en) 2017-05-02
EP3934248A1 (en) 2022-01-05
US10873757B2 (en) 2020-12-22
PH12015500841B1 (en) 2016-08-15
HK1214703A1 (zh) 2016-07-29
AU2015249103B2 (en) 2017-08-03
JP6074476B2 (ja) 2017-02-01
AU2012334553B2 (en) 2015-07-30
CN104012094A (zh) 2014-08-27
RU2621970C1 (ru) 2017-06-08
JP2017085646A (ja) 2017-05-18
MY201790A (en) 2024-03-18
MX339984B (es) 2016-06-20
US20150156510A1 (en) 2015-06-04
BR122015027407B1 (pt) 2022-06-28
MX347163B (es) 2017-04-17
PH12017502131B1 (en) 2018-07-02
EP3926951A1 (en) 2021-12-22
EP3930325A3 (en) 2022-03-09
IL239728A0 (en) 2015-08-31
KR20140077919A (ko) 2014-06-24
PH12015500844A1 (en) 2016-08-15
EP2752007A4 (en) 2015-06-17
KR20130050149A (ko) 2013-05-15
CA2931745C (en) 2019-05-21
AU2015249104A1 (en) 2015-11-12
CN104967847A (zh) 2015-10-07
US9615106B2 (en) 2017-04-04
CN104967847B (zh) 2018-04-13
US20150229951A1 (en) 2015-08-13
HK1199588A1 (en) 2015-07-03
JP6345815B2 (ja) 2018-06-20
CN104012094B (zh) 2017-11-10
HK1214443A1 (zh) 2016-07-22
MX347162B (es) 2017-04-17
PH12015500839B1 (en) 2016-08-15
CN104869402B (zh) 2017-10-24
US20150229952A1 (en) 2015-08-13
IL231707A (en) 2016-10-31
PH12015500843A1 (en) 2016-08-15
JP2016028517A (ja) 2016-02-25
CN107517382A (zh) 2017-12-26
US20190141349A1 (en) 2019-05-09
EP3930326A1 (en) 2021-12-29
MX2014003962A (es) 2014-08-01
HK1214701A1 (zh) 2016-07-29
JP6074477B2 (ja) 2017-02-01
US20150229950A1 (en) 2015-08-13
JP6074475B2 (ja) 2017-02-01
BR112014007593B1 (pt) 2022-06-21
BR122015027425A2 (pt) 2019-08-27
BR122015027404A2 (pt) 2019-08-27

Similar Documents

Publication Publication Date Title
JP6345815B2 (ja) 映像データを復号化する方法
KR101472973B1 (ko) 머지 모드에서의 영상 복호화 방법
KR101496961B1 (ko) 머지 리스트 구축 방법
KR101472975B1 (ko) Amvp 모드에서의 영상 복호화 방법
KR101484058B1 (ko) 영상 복호화 방법
KR20140061535A (ko) 머지 모드에서의 영상 복호화 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
AMND Amendment
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150609

Effective date: 20151016

S901 Examination by remand of revocation
E902 Notification of reason for refusal
S601 Decision to reject again after remand of revocation