KR20140065156A - Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof - Google Patents

Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof Download PDF

Info

Publication number
KR20140065156A
KR20140065156A KR1020120132359A KR20120132359A KR20140065156A KR 20140065156 A KR20140065156 A KR 20140065156A KR 1020120132359 A KR1020120132359 A KR 1020120132359A KR 20120132359 A KR20120132359 A KR 20120132359A KR 20140065156 A KR20140065156 A KR 20140065156A
Authority
KR
South Korea
Prior art keywords
water
fresh water
membrane distillation
concentrated water
seawater
Prior art date
Application number
KR1020120132359A
Other languages
Korean (ko)
Inventor
김영
이공훈
이정호
윤석호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020120132359A priority Critical patent/KR20140065156A/en
Publication of KR20140065156A publication Critical patent/KR20140065156A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0023Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0024Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • B01D2311/1031Heat integration, heat recovery or reuse within an apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/251Recirculation of permeate
    • B01D2311/2512Recirculation of permeate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

The present invention relates to a forward osmosis-membrane distillation hybrid desalination method, including a forward osmosis step for generating concentrate water in which the concentration of seawater is increased and a mixed solution in which fresh water is mixed with a draw solution by making at least a part of the fresh water contained in the seawater move to the draw solution due to difference between the concentrations of the seawater and the draw solution; a draw solution separation step for recovering the fresh water by separating the draw solution from the mixed solution; a concentrate water heating step for applying heat to the concentrate water; and a membrane distillation step for recovering the fresh water in the concentrate water by performing membrane distillation regarding the concentrate water. According to the present invention, the forward osmosis step and the membrane distillation step are effectively combined with each other, unlike in the related art, so that additional fresh water is produced from the concentrate water obtained from the forward osmosis step and the rate of recovery of the fresh water can be increased significantly.

Description

정삼투-막증류 하이브리드 담수화방법 및 이를 이용한 담수화장치 {METHOD FOR DESALINATION USING HYBRID OF FORWARD OSMOSIS AND MEMBRANE DISTILLATION AND APPARATUS FOR DESALINATION USING THEREOF}TECHNICAL FIELD [0001] The present invention relates to a desalination-membrane-distillation hybrid desalination method and a desalination apparatus using the same,

본 발명은 정삼투-막증류 하이브리드 담수화방법에 관한 것으로, 더욱 상세하게는, 정삼투공정에서 나온 농축수를 막증류공정에 투입함으로써, 에너지소비를 최소화하면서도, 해수로부터의 담수회수율을 현저히 높일 수 있을 뿐만 아니라, 유도용액의 분리공정 등에 사용되는 열을 막증류에 활용할 수 있어, 에너지효율을 극대화시킬 수 있는 정삼투-막증류 하이브리드 담수화방법에 관한 것이다.The present invention relates to a method for desalination-membrane distillation hybrid desalination, and more particularly, to a method for desalination using membrane-distillation hybrid desalination, which is capable of significantly increasing the fresh water recovery from seawater while minimizing energy consumption, Membrane distillation hybridization desalination method capable of maximizing the energy efficiency by utilizing the heat used for the separation process of the induction solution and the like in the membrane distillation.

최근 전세계적으로 물 및 에너지 부족 문제가 야기되고 있으며, 이에, 수자원의 확보와, 미래에너지원으로 지속가능하고 탄소배출이 없는 새로운 에너지에 대한 연구개발이 요구되고 있다.Recently, water and energy shortage problems have been caused all over the world. Therefore, it is required to secure water resources and to research and develop new energy without sustainable carbon emission as a future energy source.

이러한 문제를 해결하기 위하여, 최근 해수를 담수화하는 기술에 대한 연구가 이루어지고 있다.In order to solve these problems, researches on the desalination technology have recently been conducted.

해수를 담수화하는 기술은, 역삼투법, 증발법, 정삼투법 등의 다양한 방식이 연구되고 있으나, 각 방식들은 담수화효율, 에너지소비 등에 있어서 문제가 있었다.Various techniques such as reverse osmosis, evaporation, and positive osmosis have been studied to desalinate seawater, but each method has problems in terms of desalination efficiency and energy consumption.

특히, 정삼투 공정에서 정삼투막을 통한 물의 투과는 가압이 아닌 농도차에 의해서만 일어나므로, 해수로부터 회수하는 담수의 비율(담수회수율)이 20~30%로 낮은 문제가 있다. 따라서, 해수를 끌어들여 정삼투막에 투입하기 전까지 해수의 전처리 및 유입에도 일정량의 에너지가 소모되므로, 전처리 된 해수로부터의 물회수율을 가능한 높여야 한다.Particularly, in the forward osmosis process, the permeation of water through the osmosis membrane occurs only by the concentration difference, not the pressure, so that the ratio of the fresh water recovered from seawater (fresh water recovery rate) is as low as 20 to 30%. Therefore, since a certain amount of energy is consumed in the pretreatment and inflow of seawater until the seawater is drawn into the osmosis membrane, the water recovery rate from the pretreated seawater should be increased as much as possible.

또한, 막증류공정만을 이용할 경우, 생산수 전부에 대하여 물의 증발잠열이 필요하게 되므로, 에너지의 소모가 매우 큰 문제가 있다.In addition, when only the membrane distillation step is used, latent heat of evaporation of water is required for the entire production water, and energy consumption is very large.

따라서, 이러한 각 해수담수화 기술의 단점을 보완하고, 장점을 극대화하기 위하여, 각 기술들을 결합하는 방법에 대한 연구개발이 요구된다.
Therefore, in order to overcome the disadvantages of these seawater desalination technologies and to maximize their merits, research and development of methods for combining the respective technologies are required.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 종래와 달리, 정삼투공정과 막증류공정을 효과적으로 결합함으로써, 정삼투공정에서 나온 농축수에서 담수를 추가적으로 생산하여, 담수회수율을 현저히 높일 수 있는 정삼투-막증류 하이브리드 담수화방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and it is an object of the present invention to solve the above problems by providing a method and apparatus for effectively combining pure osmosis process and membrane distillation process to produce fresh water from concentrated osmosis water, It is an object of the present invention to provide a membrane distillation hybrid desalination method.

또한, 정삼투방식은 종래 역삼투방식과 달리, 고압을 가해주지 않아도 되므로 파울링에 강하고 막의 세척 및 유지가 용이할 뿐만 아니라, 유도용액 분리공정에서 발생하는 열을 막증류공정에 이용함으로써, 에너지효율을 극대화시킬 수 있는 정삼투-막증류 하이브리드 담수화방법을 제공하는 것을 목적으로 한다.In addition, unlike the conventional reverse osmosis system, the forward osmosis system is not required to apply a high pressure, so it is resistant to fouling and is easy to wash and maintain the membrane. In addition, heat generated in the induction solution separation process is used for membrane distillation, And to provide a method of desalination-membrane distillation hybridization which can maximize efficiency.

또한, 종래 정삼투공정은 가압이 아닌 농도차에 의해서만 물의 투과가 일어나므로, 담수회수율이 20~30%에 불과하였고, 막증류공정은 생산수 전부에 대해 물의 증발잠열이 필요하여 에너지효율이 현저히 낮았으나, 정삼투-막증류공정을 결합함으로써, 농도차로 담수가 회수가능한 만큼은 정삼투에서 회수하고, 남은 농축수만을 막증류하여 추가로 담수를 회수하게 되어, 담수회수율을 약 80% 이상 현저히 높일 수 있는 정삼투-막증류 하이브리드 담수화방법을 제공하는 것을 목적으로 한다.In addition, since the permeation of water only by the concentration difference is not performed in the conventional osmosis process, the fresh water recovery rate is only 20 to 30%, and the membrane distillation process requires a latent heat of evaporation of water to the entire production water, However, by combining the pure osmosis-membrane distillation process, the fresh water can be recovered in the forward osmosis as much as possible by the concentration difference, and only the remaining concentrated water is further distilled to further recover the fresh water, thereby significantly increasing the fresh water recovery rate by about 80% or more The present invention is directed to a method for desalination-membrane-distillation hybrid desalination.

또한, 막증류 공정은 역삼투 공정과 달리, 별도의 압력을 필요로 하지 않으며, 휘발성이 없는 이온성분, 보론 등의 제거율이 매우 우수하며, 물의 투과도가 유입수의 농도에 그렇게 크게 영향을 받지 않는 정삼투-막증류 하이브리드 담수화방법을 제공하는 것을 목적으로 한다.Unlike the reverse osmosis process, the membrane distillation process does not require any additional pressure, and has a very high removal rate of non-volatile ion components, boron, and the like. In addition, the water permeability is not significantly affected by the influent concentration It is an object of the present invention to provide an osmosis-membrane distillation hybrid desalination method.

뿐만 아니라, 막증류 공정에서 사용되는 열을 유도용액 분리공정, 생산수 등에서 재활용함에 따라, 담수 생산비용을 현저히 낮출 수 있는 정삼투-막증류 하이브리드 담수화방법을 제공하는 것을 목적으로 한다.In addition, the object of the present invention is to provide a method of desalination-membrane distillation hybrid desalination which can reduce the production cost of fresh water by recycling the heat used in the membrane distillation process in an inducing solution separation process, production water, and the like.

또한, 막증류 공정에서 회수되는 담수는 총 용존성 고형물질이 0인 증류수이므로, 정삼투공정으로부터 회수되는 담수와 혼합하여 생산수의 품질을 크게 향상시킬 수 있는 정삼투-막증류 하이브리드 담수화방법을 제공하는 것을 목적으로 한다.Also, since the fresh water recovered in the membrane distillation process is distilled water having a total dissolved solid matter of 0, it can be mixed with the fresh water recovered from the forward osmosis process to greatly improve the quality of the produced water. The purpose is to provide.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 정삼투-막증류 하이브리드 담수화방법은, 해수와 유도용액간의 농도차에 의해, 상기 해수에 포함된 담수 중 적어도 일부가 상기 유도용액으로 이동하여, 상기 해수의 농도가 높아진 농축수와 상기 유도용액에 상기 담수가 혼합된 혼합용액을 생성하는 정삼투단계; 상기 혼합용액에서 상기 유도용액을 분리하여, 상기 담수를 회수하는 유도용액 분리단계;상기 농축수에 열을 가하는 농축수 가열단계; 및 상기 농축수를 막증류처리하여, 상기 농축수 내의 담수를 회수하는 막증류단계;를 포함하여 이루어지는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of desalinating and purifying seawater, comprising the steps of: moving at least a portion of fresh water contained in seawater to an inductive solution by a difference in concentration between seawater and an induction solution; A pure osmotic step of producing concentrated water having a high concentration of seawater and a mixed solution in which the fresh water is mixed with the induction solution; An inducing solution separation step of separating the inducing solution from the mixed solution and recovering the fresh water, a concentrated water heating step of applying heat to the concentrated water, And a membrane distillation step of subjecting the concentrated water to a membrane distillation treatment to recover fresh water in the concentrated water.

또한, 상기 농축수 가열단계에서, 상기 열은 상기 유도용액 분리단계에서 발생하는 기체, 상기 유도용액 분리단계에서 회수되는 담수 또는 상기 막증류단계에서 회수되는 담수 중 적어도 하나에서 발생하는 열인 것을 특징으로 하며, 상기 농축수 가열단계에서는, 상기 농축수를 30℃ 내지 60℃로 가열하는 것을 특징으로 한다.In addition, in the step of heating the concentrated water, the heat is generated in at least one of gas generated in the induction solution separation step, fresh water recovered in the induction solution separation step, or fresh water recovered in the membrane distillation step And in the concentrated water heating step, the concentrated water is heated to 30 ° C to 60 ° C.

상기 막증류단계는, 상기 농축수와 상기 농축수보다 낮은 온도의 응축수 사이에 형성된 막에 의하여, 상기 농축수에서 증발된 담수가 상기 응축수로 이동하여, 상기 농축수 내의 담수가 회수되는 것을 특징으로 하며, 상기 막증류단계에서, 상기 농축수와 상기 응축수 사이에 형성된 막은 소수성 다공질 막인 것을 특징으로 한다.The membrane distillation step is characterized in that fresh water evaporated in the concentrated water moves to the condensed water by the film formed between the concentrated water and condensed water at a lower temperature than the concentrated water to recover the fresh water in the concentrated water And in the membrane distillation step, the membrane formed between the concentrated water and the condensed water is a hydrophobic porous membrane.

또한, 상기 막증류단계에서, 상기 농축수와 상기 응축수 사이에 형성된 막은 폴리에틸렌, 폴리프로필렌, 폴리피닐덴디플루오리드 또는 폴리테트라 플루오로에틸렌 중 적어도 하나의 재질인 것을 특징으로 하며, 상기 유도용액 분리단계에서 회수된 담수와 상기 막증류단계에서 회수된 담수를 혼합하는 혼합단계;를 더 포함하는 것을 특징으로 한다.Further, in the membrane distillation step, the membrane formed between the concentrated water and the condensed water is at least one material selected from the group consisting of polyethylene, polypropylene, polyphenyldendifluoride, and polytetrafluoroethylene, And mixing the recovered fresh water with the fresh water recovered in the membrane distillation step.

상기 혼합단계에서, 상기 유도용액 분리단계에서 회수된 담수와 상기 막증류단계에서 회수된 담수의 혼합비율은 1:0.7 내지 1:1.4인 것을 특징으로 하며, 상기 정삼투단계에서, 상기 유도용액은 상기 해수보다 농도가 높은 것을 특징으로 한다.In the mixing step, the mixing ratio of the fresh water recovered in the inducing solution separation step to the fresh water recovered in the membrane distillation step is 1: 0.7 to 1: 1.4. In the positive osmosis step, And the concentration is higher than that of the seawater.

또한, 분리단계는, 상기 혼합용액을 가열하여 발생하는 기체를 분리함으로써, 상기 담수를 회수하는 것을 특징으로 하며, 상기 기체를 냉각하여 형성된 유도용액을 상기 정삼투단계의 유도용액으로 재활용하는 것을 특징으로 한다.Further, in the separation step, the fresh water is recovered by separating the gas generated by heating the mixed solution, characterized in that the induction solution formed by cooling the gas is recycled as the induction solution of the positive osmosis step .

본 발명의 정삼투-막증류 하이브리드 담수화방법에 따르면, 종래와 달리, 정삼투공정과 막증류공정을 효과적으로 결합함으로써, 정삼투공정에서 나온 농축수에서 담수를 추가적으로 생산하여, 담수회수율을 현저히 높일 수 있는 장점이 있다.According to the desalination-membrane distillation hybrid desalination method of the present invention, the desalination process is effectively combined with the forward osmosis process and the membrane distillation process, unlike the prior art, so that fresh water is additionally produced from the concentrated water from the forward osmosis process, There is an advantage.

또한, 정삼투방식은 종래 역삼투방식과 달리, 고압을 가해주지 않아도 되므로 파울링에 강하고 막의 세척 및 유지가 용이할 뿐만 아니라, 유도용액 분리공정에서 발생하는 열을 막증류공정에 이용함으로써, 에너지효율을 극대화시킬 수 있는 장점이 있다.In addition, unlike the conventional reverse osmosis system, the forward osmosis system is not required to apply a high pressure, so it is resistant to fouling and is easy to wash and maintain the membrane. In addition, heat generated in the induction solution separation process is used for membrane distillation, There is an advantage that the efficiency can be maximized.

또한, 종래 정삼투공정은 가압이 아닌 농도차에 의해서만 물의 투과가 일어나므로, 담수회수율이 20~30%에 불과하였고, 막증류공정은 생산수 전부에 대해 물의 증발잠열이 필요하여 에너지효율이 현저히 낮았으나, 정삼투-막증류공정을 결합함으로써, 농도차로 담수가 회수가능한 만큼은 정삼투에서 회수하고, 남은 농축수만을 막증류하여 추가로 담수를 회수하게 되어, 담수회수율을 약 80% 이상 현저히 높일 수 있는 장점이 있다.In addition, since the permeation of water only by the concentration difference is not performed in the conventional osmosis process, the fresh water recovery rate is only 20 to 30%, and the membrane distillation process requires a latent heat of evaporation of water to the entire production water, However, by combining the pure osmosis-membrane distillation process, the fresh water can be recovered in the forward osmosis as much as possible by the concentration difference, and only the remaining concentrated water is further distilled to further recover the fresh water, thereby significantly increasing the fresh water recovery rate by about 80% or more There are advantages to be able to.

또한, 막증류 공정은 역삼투 공정과 달리, 별도의 압력을 필요로 하지 않으며, 휘발성이 없는 이온성분, 보론 등의 제거율이 매우 우수하며, 물의 투과도가 유입수의 농도에 그렇게 크게 영향을 받지 않는 장점이 있다.Unlike the reverse osmosis process, the membrane distillation process does not require any additional pressure, has a very high removal rate of non-volatile ion components, boron, etc., and has a water permeability that is not significantly affected by influent concentration .

뿐만 아니라, 막증류 공정에서 사용되는 열을 유도용액 분리공정, 생산수 등에서 재활용함에 따라, 담수 생산비용을 현저히 낮출 수 있는 장점이 있다.In addition, since the heat used in the membrane distillation process is recycled in the induction solution separation process, the production water, etc., there is an advantage that the production cost of fresh water can be remarkably reduced.

또한, 막증류 공정에서 회수되는 담수는 총 용존성 고형물질이 0인 증류수이므로, 정삼투공정으로부터 회수되는 담수와 혼합하여 생산수의 품질을 크게 향상시킬 수 있는 장점이 있다.Also, since the fresh water recovered in the membrane distillation process is distilled water having a total dissolved solid matter of 0, there is an advantage that the quality of the produced water can be greatly improved by mixing with fresh water recovered from the cleansing process.

도 1은 본 발명의 정삼투-막증류 하이브리드 담수화방법을 순차적으로 나타낸 순서도
도 2는 본 발명의 정삼투-막증류 하이브리드 담수화방법을 이용한 시스템을 나타낸 모식도
1 is a flow chart sequentially illustrating the method of desalination-membrane distillation hybridization of the present invention
FIG. 2 is a schematic view showing a system using the purified osmosis-membrane distillation hybrid desalination method of the present invention

이하, 본 발명에 의한 정삼투-막증류 하이브리드 담수화방법에 대하여 본 발명의 바람직한 하나의 실시형태를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이고, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings, with reference to the method of desalination-membrane distillation hybrid desalination according to the present invention. The present invention may be better understood by the following examples, which are for the purpose of illustrating the present invention and are not intended to limit the scope of protection defined by the appended claims.

먼저, 도 1 및 도 2에 나타난 바와 같이, 본 발명의 정삼투-막증류 하이브리드 담수화방법은, 정삼투단계(S10), 유도용액 분리단계(S20), 농축수 가열단계(S30), 막증류단계(S40) 및 혼합단계(S50)를 포함하여 이루어지는 것을 특징으로 한다. 1 and 2, the method for desalination-membrane distillation hybrid desalination according to the present invention comprises the steps of: a positive osmosis step S10; an induction solution separation step S20; a concentrated water heating step S30; (Step S40) and a mixing step (step S50).

먼저, 정삼투단계(S10)는 해수(1)와 유도용액(2)간의 농도차에 의해, 상기 해수(1)에 포함된 담수 중 적어도 일부가 상기 유도용액(2)으로 이동하여, 상기 해수(1)의 농도가 높아진 농축수(3)와 상기 유도용액(2)에 상기 담수가 혼합된 혼합용액(7)을 생성하는 단계이다. 이는 정삼투현상을 이용하여, 농도차에 의해 해수에서 담수를 회수하기 위한 공정이다.First, at the positive osmosis step S10, at least a part of the fresh water contained in the seawater 1 is moved to the guiding solution 2 by the difference in concentration between the seawater 1 and the guiding solution 2, (3) in which the concentration of the solution (1) is increased and a mixed solution (7) in which the fresh water is mixed in the induction solution (2). This is a process for recovering fresh water from seawater by the concentration difference using the positive osmosis phenomenon.

여기서, 해수(1)는 염이 포함되어 있는 물이면 어느 것이든 무방하나, 해수를 전처리한 것을 사용하는 것이 효과적이다. Here, the sea water (1) may be any water containing salt, but it is effective to use a pretreated sea water.

정삼투단계(S10)에서, 유도용액(2)은 해수(1)보다 농도가 높은 것이면 어느 것이든 사용가능하나, 더욱 바람직하게는 중탄산암모늄을 사용하는 것이 효과적이다. 유도용액(2)이 해수(1)보다 농도가 낮거나 같으면, 유도용액으로 해수 내에 포함된 담수가 이동하지 않는 문제가 있다.In the positive osmosis step (S10), the inductive solution (2) can be used as long as it has a higher concentration than the sea water (1), but it is more effective to use ammonium bicarbonate. If the concentration of the inducing solution 2 is lower than or equal to the concentration of the seawater 1, there is a problem that the fresh water contained in the seawater is not moved by the inducing solution.

즉, 해수(1)는 담수, 염분 등을 포함하여 구성되는데, 정삼투에 의해 해수 (1)내에 포함되었던 담수가 농도가 높은 유도용액으로 이동하게 되어, 결과적으로 유도용액(2)의 농도가 낮아진 혼합용액(7)이 생성되는 것이다. 유도용액(2)에 담수가 첨가된 것을 혼합용액(7)으로 정의한 것이다.That is, the seawater 1 comprises fresh water, saline, etc., and the fresh water contained in the seawater 1 by the forward osmosis moves to an induction solution having a high concentration. As a result, the concentration of the induction solution 2 The lowered mixed solution 7 is produced. The addition of fresh water to the induction solution (2) is defined as the mixed solution (7).

또한, 정삼투단계(S10)는, 해수(1)와 유도용액(2)이 반투막을 경계로 투입됨으로써, 반투막을 통해 해수(1) 내의 담수가 유도용액(2)쪽으로 이동하는 정삼투현상이 발생하게 된다.In the positive osmosis step S10, since the seawater 1 and the inducing solution 2 are introduced into the boundary of the semipermeable membrane, a positive osmosis phenomenon in which the fresh water in the seawater 1 moves toward the inducing solution 2 through the semi- .

또한, 농축수(3)는 해수(1) 내의 담수가 유도용액(2)으로 이동하고 남은 해수를 의미한다. 해수(1) 내의 담수 중 적어도 일부가 제거되었는 바, 해수(1)보다 그 농도가 높아진다.Further, the concentrated water (3) means the fresh water in the seawater (1) that has migrated into the induction solution (2) and is the remaining seawater. Since at least a part of the fresh water in the seawater 1 is removed, its concentration is higher than that of the seawater 1.

다음으로, 유도용액 분리단계(S20)는 상기 혼합용액(7)에서 상기 유도용액(2)을 분리하여, 담수(8)를 회수하는 단계이다. 이는 정삼투현상에 의해 담수가 추가로 포함된 유도용액에서, 추가된 담수를 회수하는 공정이다.Next, the induction solution separation step (S20) is a step of separating the induction solution (2) from the mixed solution (7) and recovering the fresh water (8). This is a process for recovering added fresh water in an induction solution further containing fresh water by a positive osmosis phenomenon.

유도용액 분리단계(S20)는, 유도용액(2)과 담수 등이 포함된 혼합용액(7)에서, 담수를 분리하기 위한 어떠한 방법을 사용해도 무방하나, 본 발명에서는, 혼합용액(7)을 가열하여 발생하는 기체를 분리함으로써, 담수(8)를 회수하는 것이 바람직하다.Any method for separating fresh water can be used in the induction solution separation step S20 in the mixed solution 7 including the induction solution 2 and the fresh water etc. In the present invention, It is preferable to recover the fresh water 8 by separating the gas generated by heating.

이는 중탄산암모늄 용액을 유도용액으로 사용한 경우, 혼합용액(7)을 가열하여 발생되는 이산화탄소와 암모니아 기체를 분리함으로써, 담수(8)만을 회수하는 방법이다.This is a method of recovering only the fresh water 8 by separating the carbon dioxide and ammonia gas generated by heating the mixed solution 7 when the ammonium bicarbonate solution is used as the induction solution.

또한, 이러한 유도용액 분리단계(S20)에서 발생하는 기체를 냉각하여 형성된 유도용액을 상기 정삼투단계(S10)의 유도용액으로 재활용하는 것이 바람직하다. 즉, 담수를 회수하고 남은 기체들을 냉각하면, 다시 정삼투단계(S10)에서 담수가 추가로 포함되기 전의 유도용액이 제조되므로, 이를 정삼투단계(S10)의 유도용액(2)으로 투입함으로써, 재활용할 수 있는 장점이 있다.Also, it is preferable that the induction solution formed by cooling the gas generated in the induction solution separation step (S20) is recycled as the induction solution in the positive osmosis step (S10). That is, when the fresh water is recovered and the remaining gases are cooled, the induction solution before the fresh water is further contained in the forward osmosis step S10 is produced, and this is supplied to the induction solution 2 in the positive osmosis step S10, There is an advantage that it can be recycled.

비록 회수과정을 통해 초기 정삼투단계(S10)에서 투입되던 유도용액과 다소 농도가 다를 수는 있으나, 해수(1)보다 농도가 높으면 바로 사용가능하며, 경우에 따라, 유도용질이나 담수를 첨가하여 농도를 조절할 수 있다.Although the concentration may be slightly different from that of the induction solution injected in the initial positive osmosis step (S10) through the recovery process, if the concentration is higher than that of the seawater (1), it can be used immediately. In some cases, The concentration can be adjusted.

다음으로, 농축수 가열단계(S30)는 상기 농축수(3)에 열(Heat)을 가하는 단계이다. 이는 막증류공정을 수행하기 위한 최적의 온도로 농축수를 가열하기 위한 공정이다. Next, the concentrated water heating step (S30) is a step of applying heat to the concentrated water (3). This is a process for heating the concentrated water to an optimum temperature for performing the membrane distillation process.

농축수 가열단계(S30)는, 농축수(3)의 온도를 높일 수 있는 어떠한 수단을 이용해도 무방하나, 막증류단계(S40)의 열원은 60℃미만의 저온에서 작동하므로, 태양열이나 타 공정의 저온 폐열을 이용하는 것이 바람직하며, 더욱 바람직하게는, 상기 유도용액 분리단계(S20)에서 발생하는 기체, 상기 유도용액 분리단계(S20)에서 회수되는 담수 또는 상기 막증류단계(S40)에서 회수되는 담수 중 적어도 하나에서 발생하는 열을 이용하는 것이 바람직하다.The concentrated water heating step (S30) may be performed by any means capable of raising the temperature of the concentrated water (3). Since the heat source in the film distillation step (S40) operates at a low temperature of less than 60 DEG C, It is preferable to use the low-temperature waste heat of the induction solution separation step (S20), more preferably the gas generated in the induction solution separation step (S20), the fresh water recovered in the induction solution separation step (S20) It is preferable to use heat generated from at least one of fresh water.

이는 유도용액 분리단계(S20)와 농축수 가열단계(S30)에서 열이 가해져, 그 공정상에서 발생되는 기체나 담수가 상온보다 높은 온도를 유지하고 있으므로, 이들이 가진 열을 열교환기 등을 이용하여 농축수 가열에 이용함으로써, 막증류를 위한 추가적인 에너지가 소모되어도, 단위 물생산량당 생산비용을 낮출 수 있을 뿐만 아니라, 에너지효율을 극대화시킬 수 있는 장점이 있다.This is because heat is applied in the induction solution separation step (S20) and the concentrated water heating step (S30), and the gas or fresh water generated in the process maintains a temperature higher than normal temperature. The use of water for heating can reduce the production cost per unit water production and can maximize energy efficiency even if additional energy is consumed for membrane distillation.

또한, 농축수 가열단계(S20)에서는, 상기 농축수(3)를 30℃ 내지 60℃로 가열하는 것이 바람직하며, 더욱 바람직하게는 40℃ 내지 50℃, 가장 바람직하게는 50℃로 가열하는 것이 효과적이다. 30℃미만인 경우에는, 응축수(4)보다 온도가 낮거나 차이가 적어, 증발이 일어나기 어려워 막증류가 불가능하거나 효율이 매우 낮은 문제가 있으며, 60℃를 초과하는 경우에는, 에너지 효율이 현저히 떨어질 뿐만 아니라, 유도용액 분리단계(S20)나 농축수 가열단계(S30)에서 발생되는 열을 재활용할 수 없는 문제가 있다.In the concentrated water heating step S20, it is preferable to heat the concentrated water 3 to 30 ° C to 60 ° C, more preferably 40 ° C to 50 ° C, and most preferably 50 ° C effective. When the temperature is less than 30 ° C, the temperature is lower or the difference is smaller than that of the condensed water (4) and evaporation is difficult to occur. Thus, there is a problem that membrane distillation is impossible or the efficiency is extremely low. However, there is a problem that the heat generated in the induction solution separation step (S20) or the concentrated water heating step (S30) can not be recycled.

다음으로, 막증류단계(S40)는 상기 농축수(3)를 막증류처리하여, 상기 농축수(3) 내의 담수를 회수하는 단계이다. 이는 막증류를 농축수(3)에서 추가적으로 담수를 회수하기 위한 공정이다. Next, the membrane distillation step (S40) is a step of subjecting the concentrated water (3) to a membrane distillation treatment to recover the fresh water in the concentrated water (3). This is a process for recovering the fresh water additionally in the concentrated water (3) by membrane distillation.

상기 막증류단계(S40)는, 상기 농축수(3)와 상기 농축수보다 낮은 온도의 응축수(4) 사이에 형성된 막에 의하여, 상기 농축수(3)에서 증발된 담수가 상기 응축수(4)로 이동하여, 상기 농축수(3) 내의 담수(6)가 회수된다.The membrane distillation step S40 is a step of separating the condensed water 4 from the concentrated water 3 by the film formed between the concentrated water 3 and the condensed water 4 having a lower temperature than the concentrated water, And the fresh water 6 in the concentrated water 3 is recovered.

즉, 본 발명의 막증류단계(S40)는, 플래싱(Flashing) 증발 및 응축 과정을 통해 담수를 생산하며, 높은 온도의 농축수(3)와 낮은 온도의 응축수(4) 사이 즉, 증발기와 응축기 사이에 멤브레인이 설치된다. 이에 따라 가열된 처리된 농축수(3)는 이 멤브레인 표면에서 분리되고 증기(Vapor)만이 기공을 통과해 응축수(4) 쪽에서 응축되는 것이다. 이는 낮은 압력으로도 가능한 장점이 있다.That is, the membrane distillation step (S40) of the present invention produces fresh water through flashing evaporation and condensation processes, and separates the high-concentrated water (3) and the low-temperature condensed water (4) A membrane is installed. The heated treated concentrated water 3 is thus separated from the membrane surface and only the vapor passes through the pores and condenses on the condensate 4 side. This is advantageous even at low pressures.

여기서, 응축수(4)는 농축수(3)보다 낮은 온도의 담수를 사용하는 것이 바람직하며, 더욱 바람직하게는 10℃ 내지 25℃의 담수를 사용하는 것이 효과적이다. 이는 에너지소비를 최소화하면서도 막증류현상을 용이하게 발생시키기 위함이다.Here, it is preferable to use fresh water having a temperature lower than that of the concentrated water (3), and more preferably, use of fresh water having a temperature of 10 to 25 캜 is effective. This is to minimize the energy consumption while easily causing the distillation phenomenon.

또한, 상기 막증류단계(S40)에서, 상기 농축수(3)와 상기 응축수(4) 사이에 형성된 막은 소수성 다공질 막인 것이 바람직하다. 농축수(3)와 응축수(4)를 분리하려면 공기층이 형성돼 증기를 투과시켜야 하는데 공기층을 형성하기 위해서는 물이 멤브레인 안으로 유입되는 것을 막아야 하므로, 멤브레인이 갖고 있는 세공에 물이 침투해버리면 더 이상 증발법으로서 역할을 할 수 없기 때문에, 본 발명에 사용되는 멤브레인은 높은 소수성을 갖는 것이 바람직하다.In the membrane distillation step (S40), the membrane formed between the concentrated water (3) and the condensed water (4) is preferably a hydrophobic porous membrane. In order to separate the concentrated water (3) and the condensed water (4), an air layer must be formed to transmit the steam. In order to form an air layer, water must be prevented from flowing into the membrane. Since it can not serve as a vaporization method, it is preferable that the membrane used in the present invention has high hydrophobicity.

따라서, 상기 농축수(3)와 상기 응축수(4) 사이에 형성된 막은 폴리에틸렌, 폴리프로필렌, 폴리피닐덴디플루오리드 또는 폴리테트라 플루오로에틸렌 중 적어도 하나의 재질인 것이 바람직하다. Therefore, it is preferable that the film formed between the concentrated water (3) and the condensed water (4) is at least one material selected from the group consisting of polyethylene, polypropylene, polyphenyldendifluoride and polytetrafluoroethylene.

마지막으로, 혼합단계(S50)는 상기 유도용액 분리단계(S20)에서 회수된 담수(8)와 상기 막증류단계(S40)에서 회수된 담수(6)를 혼합하는 단계이다. 이는 정삼투공정과 막증류공정을 통해 회수된 담수를 혼합함으로써, 최적의 생산수를 제조하기 위함이다.Finally, the mixing step S50 is a step of mixing the fresh water 8 recovered in the induction solution separation step S20 and the fresh water 6 recovered in the membrane distillation step S40. This is to produce optimal production water by mixing the fresh water recovered through the normal osmosis process and membrane distillation process.

즉, 막증류단계(S40)에서 회수된 담수(6)는 총 용존성 고형물질 (total dissolved solids)이 0인 증류수이므로, 유도용액 분리단계(S20)에서 회수된 담수(8)와 혼합하면, 생산수의 품질 유지가 용이해진다.That is, when the fresh water 6 recovered in the membrane distillation step S40 is distilled water having a total dissolved solids of 0, it is mixed with the fresh water 8 recovered in the induction solution separation step S20, The quality of the produced water can be easily maintained.

상기 혼합단계(S50)에서, 상기 유도용액 분리단계(S20)에서 회수된 담수(8)와 상기 막증류단계(S40)에서 회수된 담수(6)의 혼합비율은 1:0.7 내지 1:1.4인 것이 바람직하며, 더욱 바람직하게는 1:0.9 내지 1:1.1인 것이 효과적이다. 이 혼합비율 범위 내에서 생산수의 품질을 극대화시킬 수 있다.
In the mixing step S50, the mixing ratio of the fresh water 8 recovered in the inducing solution separation step S20 and the fresh water 6 recovered in the membrane distillation step S40 is 1: 0.7 to 1: 1.4 , More preferably from 1: 0.9 to 1: 1.1. Within this range of mixing ratios, the quality of the production water can be maximized.

이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is clear that the present invention can be suitably modified and applied in the same manner. Therefore, the above description does not limit the scope of the present invention, which is defined by the limitations of the following claims.

1: 해수
2: 유도용액
3: 농축수
4: 응축수
5: 막증류단계에서 발생하는 농축수
6: 막증류단계에서 회수되는 담수
7: 혼합용액
8: 유도용액 분리단계에서 회수되는 담수
9: 혼합단계에서 회수되는 담수
10: 정삼투모듈
20: 막증류모듈
30: 유도용액 분리모듈
40: 혼합모듈
1: Seawater
2: induction solution
3: concentrated water
4: Condensate
5: Concentrated water generated in the membrane distillation step
6: Fresh water recovered in the membrane distillation stage
7: mixed solution
8: fresh water recovered in the induction solution separation step
9: Fresh water recovered in the mixing stage
10: Forward Osmosis Module
20: membrane distillation module
30: induction solution separation module
40: Mixed module

Claims (12)

해수와 상기 해수보다 농도가 높은 유도용액간의 농도차에 의해, 상기 해수에 포함된 담수 중 적어도 일부가 상기 유도용액으로 이동하여, 상기 해수의 농도가 높아진 농축수와 상기 유도용액에 상기 담수가 혼합된 혼합용액을 생성하는 정삼투단계;
상기 혼합용액에서 상기 유도용액을 분리하여, 상기 담수를 회수하는 유도용액 분리단계;
상기 농축수에 열을 가하는 농축수 가열단계; 및
상기 농축수를 막증류처리하여, 상기 농축수 내의 담수를 회수하는 막증류단계;를 포함하여 이루어지는 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
At least a part of the fresh water contained in the seawater is moved to the induction solution by the difference in concentration between the seawater and the induction solution having a concentration higher than that of the seawater so that the concentrated water having a higher concentration of the seawater and the fresh water A step of producing a mixed solution;
An inducing solution separation step of separating the inducing solution from the mixed solution and recovering the fresh water;
A concentrated water heating step of applying heat to the concentrated water; And
And a membrane distillation step of subjecting the concentrated water to a membrane distillation treatment to recover fresh water in the concentrated water.
제 1항에 있어서,
상기 농축수 가열단계에서, 상기 열은 상기 유도용액 분리단계에서 발생하는 기체, 상기 유도용액 분리단계에서 회수되는 담수 또는 상기 막증류단계에서 회수되는 담수 중 적어도 하나에서 발생하는 열인 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
The method according to claim 1,
In the concentrated water heating step, the heat is generated in at least one of the gas generated in the induction solution separation step, the fresh water recovered in the induction solution separation step, or the fresh water recovered in the membrane distillation step. Osmosis-membrane distillation hybrid desalination method
제 1항 또는 제 2항에 있어서,
상기 농축수 가열단계에서는, 상기 농축수를 30℃ 내지 60℃로 가열하는 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
3. The method according to claim 1 or 2,
In the concentrated water heating step, the concentrated water is heated to 30 ° C to 60 ° C.
제 1항 또는 제 2항에 있어서,
상기 막증류단계는, 상기 농축수와 상기 농축수보다 낮은 온도의 응축수 사이에 형성된 막에 의하여, 상기 농축수에서 증발된 담수가 상기 응축수로 이동하여, 상기 농축수 내의 담수가 회수되는 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
3. The method according to claim 1 or 2,
The membrane distillation step is characterized in that fresh water evaporated in the concentrated water moves to the condensed water by the film formed between the concentrated water and condensed water at a lower temperature than the concentrated water to recover the fresh water in the concentrated water -Mixed distillation hybrid desalination method
제 4항에 있어서,
상기 막증류단계에서, 상기 농축수와 상기 응축수 사이에 형성된 막은 소수성 다공질 막인 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
5. The method of claim 4,
Characterized in that, in the membrane distillation step, the membrane formed between the concentrated water and the condensed water is a hydrophobic porous membrane.
제 4항에 있어서,
상기 막증류단계에서, 상기 농축수와 상기 응축수 사이에 형성된 막은 폴리에틸렌, 폴리프로필렌, 폴리피닐덴디플루오리드 또는 폴리테트라 플루오로에틸렌 중 적어도 하나의 재질인 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
5. The method of claim 4,
Characterized in that, in the membrane distillation step, the membrane formed between the concentrated water and the condensed water is made of at least one material selected from the group consisting of polyethylene, polypropylene, polyphenyldendifluoride and polytetrafluoroethylene.
제 1항 또는 제 2항에 있어서,
상기 유도용액 분리단계에서 회수된 담수와 상기 막증류단계에서 회수된 담수를 혼합하는 혼합단계;를 더 포함하는 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
3. The method according to claim 1 or 2,
And a mixing step of mixing the fresh water recovered in the induction solution separation step with the fresh water recovered in the membrane distillation step.
제 7항에 있어서,
상기 혼합단계에서, 상기 유도용액 분리단계에서 회수된 담수와 상기 막증류단계에서 회수된 담수의 혼합비율은 1:0.7 내지 1:1.4인 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
8. The method of claim 7,
Wherein the mixing ratio of the fresh water recovered in the inducing solution separation step to the fresh water recovered in the membrane distillation step in the mixing step is 1: 0.7 to 1: 1.4.
제 1항 또는 제 2항에 있어서,
상기 정삼투단계에서, 상기 유도용액은 상기 해수보다 농도가 높은 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
3. The method according to claim 1 or 2,
Wherein the induction solution is higher in concentration than the seawater in the forward osmosis step,
제 1항 또는 제 2항에 있어서,
상기 유도용액 분리단계는, 상기 혼합용액을 가열하여 발생하는 기체를 분리함으로써, 상기 담수를 회수하는 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
3. The method according to claim 1 or 2,
Wherein the induction solution separating step separates the gas generated by heating the mixed solution to recover the fresh water.
제 10항에 있어서,
상기 기체를 냉각하여 형성된 유도용액을 상기 정삼투단계의 유도용액으로 재활용하는 것을 특징으로 하는 정삼투-막증류 하이브리드 담수화방법
11. The method of claim 10,
Wherein the induction solution formed by cooling the gas is recycled as the induction solution of the positive osmosis step.
제 1항 또는 제 2항의 정삼투-막증류 하이브리드 담수화방법을 구현한 담수화장치A desalination apparatus embodying the method of claim 1 or claim 2,
KR1020120132359A 2012-11-21 2012-11-21 Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof KR20140065156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120132359A KR20140065156A (en) 2012-11-21 2012-11-21 Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120132359A KR20140065156A (en) 2012-11-21 2012-11-21 Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof

Publications (1)

Publication Number Publication Date
KR20140065156A true KR20140065156A (en) 2014-05-29

Family

ID=50892140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120132359A KR20140065156A (en) 2012-11-21 2012-11-21 Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof

Country Status (1)

Country Link
KR (1) KR20140065156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160149545A (en) 2015-06-18 2016-12-28 (주)세프라텍 Membrane distillation- crystallization system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160149545A (en) 2015-06-18 2016-12-28 (주)세프라텍 Membrane distillation- crystallization system and method

Similar Documents

Publication Publication Date Title
US8197693B2 (en) Apparatus and process for producing electricity using pressure retarded osmosis during desalination of sea water
A Shirazi et al. A review on applications of membrane distillation (MD) process for wastewater treatment
US8187464B2 (en) Apparatus and process for desalination of brackish water using pressure retarded osmosis
AU2005285052B2 (en) Water desalination process and apparatus
CN105198143A (en) High-concentration wastewater zero-discharging method
CN104803448A (en) Forward osmosis treatment method of wastewater with high salinity and high organic matter concentration
CN105621769B (en) A kind of Zero emission method of hc effluent
US20150232348A1 (en) Water desalination and brine volume reduction process
EP3548699B1 (en) Water treatment apparatus and method for injection water flooding recovery processes in carbonate reservoirs
CN105198144B (en) A kind of Zero emission method of high rigidity waste water with high salt
CN104591457B (en) Just permeate coupled film distillation and processing the device and method of waste water
CN105461157A (en) High-salinity high-organic-matter contentwastewater zero discharge method
US20170326499A1 (en) Hybrid FO-EED System for High Salinity Water Treatment
CN105198142B (en) A kind of Zero emission method of high-salt wastewater
CN105084630A (en) Oil refining catalyst wastewater zero-discharging treatment method
CN105800851A (en) Forward osmosis drawing solution and cyclic regeneration method and application thereof
CN105236627A (en) Papermaking tail water/recycled water reusing zero-discharge processing method
CN105198141B (en) A kind of Zero emission method of high temperature and high salt waste water
KR20130101520A (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
JP2014097483A (en) Water treatment method and apparatus
CN108623062A (en) A kind of system of multistage membrane crystallization integrated treatment brine waste
CN102745852B (en) Brine-desalination method
WO2017016712A1 (en) Process for the recovery of sodium sulfate
CN107555542A (en) A kind of multistage nanofiltration reverse osmosis membrane distillation combination desalination divides salt method
KR20140065156A (en) Method for desalination using hybrid of forward osmosis and membrane distillation and apparatus for desalination using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application