KR20140058010A - Biomarker protein specific for environmental stress of poultry - Google Patents

Biomarker protein specific for environmental stress of poultry Download PDF

Info

Publication number
KR20140058010A
KR20140058010A KR1020120124457A KR20120124457A KR20140058010A KR 20140058010 A KR20140058010 A KR 20140058010A KR 1020120124457 A KR1020120124457 A KR 1020120124457A KR 20120124457 A KR20120124457 A KR 20120124457A KR 20140058010 A KR20140058010 A KR 20140058010A
Authority
KR
South Korea
Prior art keywords
protein
poultry
seq
egg
leu
Prior art date
Application number
KR1020120124457A
Other languages
Korean (ko)
Other versions
KR101459669B1 (en
Inventor
최양호
김지민
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020120124457A priority Critical patent/KR101459669B1/en
Publication of KR20140058010A publication Critical patent/KR20140058010A/en
Application granted granted Critical
Publication of KR101459669B1 publication Critical patent/KR101459669B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/465Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from birds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/465Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates from birds

Abstract

The present invention relates to a biomarker protein specific to environmental stress of poultry, and more specifically, to developing proteins differentially expressed in eggs produced from poultry receiving stress and eggs produced from poultry which does not receive stress as biomarker proteins, a kit for analyzing environmental stress of poultry using the same, a method for analyzing environmental stress of the poultry, and a method for finally evaluating the quality of eggs and the welfare of the poultry. According to the present invention, because it is possible to analyze the increase/decrease of expression of protein components of specific eggs through the differential expression analysis of the egg proteins, it is possible to determine the presence or absence of stress of the poultry while spawning without sacrifice of the poultry and the protein can be used as a novel marker (biomarker protein) in egg quality analysis.

Description

가금류의 환경 스트레스에 특이적인 바이오마커 단백질{Biomarker protein specific for environmental stress of poultry}Biomarker protein specific environmental stress of poultry.

본 발명은 가금류의 환경 스트레스에 특이적인 바이오마커 단백질에 관한 것으로, 더욱 상세하게는 스트레스를 받은 가금류가 생산한 난(卵,알)과 스트레스를 받지 않은 가금류가 생산한 난에서 차등 발현되는 단백질을 바이오마커 단백질로 개발하고, 이를 이용한 가금류의 환경 스트레스 진단 키트, 가금류의 환경 스트레스 분석방법 및 최종적으로 난의 품질과 가금류의 복지를 평가하는 방법에 관한 것이다.The present invention relates to a biomarker protein specific to environmental stress of poultry. More particularly, the present invention relates to a biomarker protein specific for environmental stress of poultry, and more particularly, to a method for producing a biomarker protein which is differentially expressed from eggs produced by stressed poultry and eggs produced by unstressed poultry A biomarker protein, a kit for evaluating environmental stress of poultry using the same, a method of analyzing environmental stress of poultry, and a method of evaluating egg quality and poultry welfare finally.

스트레스는 동물의 면역력을 감소시키고 양적 및 질적 생산성을 저하시킨다 {Choi, Y.-H. 2007. Management of Stress in Poultry Production. Korean Journal of Poultry Science 34:295-300.}. 스트레스 받은 산란계에서 산란율과 난질이 저하된다 {Henriksen, R., T. G. Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: linking maternal stress and hormone-mediated maternal effects. PloS one 6:e23824. doi 10.1371/journal.pone.0023824; Mashaly, M. M., G. L. Hendricks, 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 83:889-894.}. 산란계에게 스트레스를 가하면 혈중 코르티코스테론(corticosterone), 글루코스, 콜레스테롤의 농도가 변화되고, 비장, 간 및 F-낭의 무게가 변한다는 것이 알려져 있다 {Mumma, J. O., J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson. 2006. Physiological stress in laying hens. Poult Sci 85:761-769.; Puvadolpirod, S., and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. Response parameters. Poult Sci 79:363-369.; Rochester, J. R., K. C. Klasing, L. Stevenson, M. S. Denison, W. Berry, and J. R. Millam. 2009. Dietary red clover (Trifolium pratense) induces oviduct growth and decreases ovary and testes growth in Japanese quail chicks. Reproductive toxicology (Elmsford, N.Y.) 27:63-71. doi 10.1016/j.reprotox.2008.11.056; Shini, S., P. Kaiser, A. Shini, and W. L. Bryden. 2008. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp Biochem Physiol B Biochem Mol Biol 149:324-333.}. Stress reduces animal immunity and decreases quantitative and qualitative productivity (Choi, Y.-H. 2007. Management of Stress in Poultry Production. Korean Journal of Poultry Science 34: 295-300. (Henriksen, R., T. G. Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone reduced yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PloS one 6: e23824. doi 10.1371 / journal.pone.0023824; Mashaly, M. M., G. L. Hendricks, 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on the production parameters and immune responses of commercial laying hens. Poult Sci 83: 889-894. It is known that stress on the laying hens changes the concentration of corticosterone, glucose, and cholesterol in the blood and changes the weight of the spleen, liver and F-sac {Mumma, JO, JP Thaxton, Y. Vizzier-Thaxton , and WL Dodson. 2006. Physiological stress in laying hens. Poult Sci 85: 761-769 .; Puvadolpirod, S., and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. Response parameters. Poult Sci 79: 363-369 .; Rochester, J. R., K. C. Klasing, L. Stevenson, M. S. Denison, W. Berry, and J. R. Millam. 2009. Dietary red clover (Trifolium pratense) induces oviduct growth and decreases ovary and testes growth in Japanese quail chicks. Reproductive toxicology (Elmsford, N.Y.) 27: 63-71. doi 10.1016 / J.Repirotox.2008.11.056; Shini, S., P. Kaiser, A. Shini, and W. L. Bryden. 2008. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp Biochem Physiol B Biochem Mol Biol 149: 324-333.

스트레스는 산란계의 초산일령을 지연시키고 산란 피크기간을 단축시키며 {Shini, S., A. Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiology & behavior 98:73-77.}, 계란을 생산하는 기관, 즉 난관과 난소의 무게를 감소시킨다 {Shini, S., A. Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiology & behavior 98:73-77.; Mumma, J. O., J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson. 2006. Physiological stress in laying hens. Poult Sci 85:761-769.}. 이러한 결과와 일치하게 스트레스는 난소에서 대형 난포수를 감소시키고 폐색난포수를 증가시키며, 그럼으로써 번식관련 스테로이드 호르몬 (테스토스테론, 프로제스테론 및 에스트로젠)의 혈장농도를 감소시킨다 {Henriksen, R., T. G. Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: linking maternal stress and hormone-mediated maternal effects. PloS one 6:e23824. doi 10.1371/journal.pone.0023824}. 스트레스는 난소의 유전자발현을 감소시키며 {Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult Sci 86:1760-1765.}, 난관과 난소에서 단백질발현에 영향을 미칠 수 있음이 보고되었다 {Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult Sci 86:1760-1765.; Sargan, D. R., M. J. Tsai, and B. W. O'Malley. 1986. hsp108, a novel heat shock inducible protein of chicken. Biochemistry 25:6252-6258.}. 그러나 이러한 스트레스 표식들은 산란계의 희생이 필요하지만 계란을 이용한다면 산란계의 희생 없이도 스트레스 표식을 측정할 수 있다.Stress has been shown to delay the aging period of laying hens and shorten the spawning peak period (Shini, S., Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiology & behavior 98: 73-77.), Reducing the weight of the egg-producing organs and ovaries {Shini, S., A. Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiology & behavior 98: 73-77; Mumma, J. O., J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson. 2006. Physiological stress in laying hens. Poult Sci 85: 761-769. Consistent with these results, stress reduces the number of large follicles and increases the number of obturator follicles in the ovary, thereby reducing plasma levels of reproductive-related steroid hormones (testosterone, progesterone and estrogen) {Henriksen, R., TG Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone reduced yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PloS one 6: e23824. doi 10.1371 / journal.pone.0023824}. Stress reduces the expression of ovarian genes {Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult Sci 86: 1760-1765.), It has been reported that it can affect protein expression in tubo-oviducts and ovaries (Rozenboim, I., E. Tako, O. Gal-Garber, J. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult Sci 86: 1760-1765 .; Sargan, D. R., M. J. Tsai, and B. W. O'Malley. 1986. hsp108, a novel heat shock inducible protein of chicken. Biochemistry 25: 6252-6258. However, these stress markers require the sacrifice of the laying hens, but if eggs are used, stress markers can be measured without sacrificing the laying hens.

최근에, 프로테옴(proteome) 분석이 단백질 레벨에서 차등적(differential) 유전자 발현을 분석하고 바이오마커를 동정하는 수단으로 소개되고 있다 {Matt, P., Z. Fu, Q. Fu, and J. E. Van Eyk. 2008. Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics 33:12-17.}. 그러나, 단백체(Proteomics) 연구는 현재까지 질병관련 연구를 위주로 발달하여 왔으며 {Burgess, S. C. 2004. Proteomics in the chicken: tools for understanding immune responses to avian diseases. Poult Sci 83:552-573.}, 환경 스트레스에 대한 단백체 연구는 극히 미비한 실정이다.Recently, proteome analysis has been introduced as a means of analyzing differential gene expression at the protein level and identifying biomarkers {Matt, P., Z. Fu, Q. Fu, and JE Van Eyk . 2008. Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics 33: 12-17. However, proteomics studies have been developed mainly in disease-related studies (Burgess, S. C. 2004. Proteomics in the chicken: tools for understanding immune responses to avian diseases. Poult Sci 83: 552-573.}, There is very little research on the proteome of environmental stress.

따라서, 산란계를 포함한 가금류의 다양한 환경적 생리적 및 유전적 차이가 난 단백질의 발현에 미치는 영향을 연구하여 스트레스 표지로 이용할 필요가 있다. Therefore, it is necessary to study the effects of diverse environmental physiological and genetic differences of poultry including laying hens on the expression of egg protein and use it as a stress marker.

Burgess, S. C. 2004. Proteomics in the chicken: tools for understanding immune responses to avian diseases. Poult Sci 83:552-573. Burgess, S. C. 2004. Proteomics in the chicken: tools for understanding immune responses to avian diseases. Poult Sci 83: 552-573. Choi, Y.-H. 2007. Management of Stress in Poultry Production. Korean J Poult Sci 34:295-300. Choi, Y.-H. 2007. Management of Stress in Poultry Production. Korean J Poult Sci 34: 295-300. Henriksen, R., T. G. Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: linking maternal stress and hormone-mediated maternal effects. PloS one 6:e23824. doi 10.1371/journal.pone.0023824Henriksen, R., T. G. Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone reduced yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PloS one 6: e23824. doi 10.1371 / journal.pone.0023824 Mashaly, M. M., G. L. Hendricks, 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 83:889-894. Mashaly, M. M., G. L. Hendricks, 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on the production parameters and immune responses of commercial laying hens. Poult Sci 83: 889-894. Matt, P., Z. Fu, Q. Fu, and J. E. Van Eyk. 2008. Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics 33:12-17. Matt, P., Z. Fu, Q. Fu, and J. E. Van Eyk. 2008. Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics 33: 12-17. Mumma, J. O., J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson. 2006. Physiological stress in laying hens. Poult Sci 85:761-769. Mumma, J. O., J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson. 2006. Physiological stress in laying hens. Poult Sci 85: 761-769. Puvadolpirod, S., and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. Response parameters. Poult Sci 79:363-369. Puvadolpirod, S., and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. Response parameters. Poult Sci 79: 363-369. Rochester, J. R., K. C. Klasing, L. Stevenson, M. S. Denison, W. Berry, and J. R. Millam. 2009. Dietary red clover (Trifolium pratense) induces oviduct growth and decreases ovary and testes growth in Japanese quail chicks. Reproductive toxicology (Elmsford, N.Y.) 27:63-71. Rochester, J. R., K. C. Klasing, L. Stevenson, M. S. Denison, W. Berry, and J. R. Millam. 2009. Dietary red clover (Trifolium pratense) induces oviduct growth and decreases ovary and testes growth in Japanese quail chicks. Reproductive toxicology (Elmsford, N.Y.) 27: 63-71. Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult Sci 86:1760-1765. Rozenboim, I., E. Tako, O. Gal-Garber, J.A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult Sci 86: 1760-1765. Sargan, D. R., M. J. Tsai, and B. W. O'Malley. 1986. hsp108, a novel heat shock inducible protein of chicken. Biochemistry 25:6252-6258. Sargan, D. R., M. J. Tsai, and B. W. O'Malley. 1986. hsp108, a novel heat shock inducible protein of chicken. Biochemistry 25: 6252-6258. Shini, S., P. Kaiser, A. Shini, and W. L. Bryden. 2008. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp Biochem Physiol B Biochem Mol Biol 149:324-333. Shini, S., P. Kaiser, A. Shini, and W. L. Bryden. 2008. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp Biochem Physiol B Biochem Mol Biol 149: 324-333. Shini, S., A. Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiology & behavior 98:73-77.Shini, S., A. Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiology & behavior 98: 73-77.

이에 본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 가금류의 환경 스트레스에 특이적인 바이오마커 단백질을 제공하는 데에 있다.Accordingly, it is an object of the present invention to provide a biomarker protein specific to environmental stress of poultry.

또한, 본 발명의 목적은 상기 바이오마커 단백질에 대한 항체 및 이를 이용한 진단 키트를 제공하는 데에 있다. It is also an object of the present invention to provide an antibody against the biomarker protein and a diagnostic kit using the same.

또한, 본 발명의 목적은 상기 바이오마커 단백질 발현양의 변화 여부를 검출하는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법을 제공하는 데에 있다.It is another object of the present invention to provide a method for analyzing the environmental stress of poultry which is characterized by detecting the change in the biomarker protein expression level.

또한, 본 발명의 목적은 상기 바이오마커 단백질 발현양의 변화 여부를 검출하는 것을 특징으로 하는 난의 품질을 분석하는 방법을 제공하는 데에 있다.It is also an object of the present invention to provide a method for analyzing the quality of a egg, characterized in that the biomarker protein expression level is changed.

상기와 같은 기술적 과제를 달성하기 위한 본 발명은, 가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편을 포함하는 것을 특징으로 하는 가금류의 환경 스트레스에 특이적인 바이오마커 단백질을 제공한다.In order to accomplish the above object, the present invention provides a biomarker protein specific for environmental stress of poultry, which comprises an egg protein or a fragment thereof specifically expressed in environmental stress of poultry.

또한, 본 발명은 상기 바이오마커 단백질에 특이적으로 결합하는 항체를 유효성분으로 포함하는 가금류의 환경 스트레스 진단용 조성물 또는 진단 키트를 제공한다.The present invention also provides a composition for diagnosing environmental stress of poultry containing the antibody specifically binding to the biomarker protein as an active ingredient or a diagnostic kit.

또한, 본 발명은 가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편의 발현양의 변화 여부를 검출하는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법을 제공한다.The present invention also provides a method for analyzing the environmental stress of poultry which is characterized by detecting the change in the expression level of an egg protein or a fragment thereof specifically expressed in environmental stress of poultry.

또한, 본 발명은 가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편의 발현양의 변화 여부를 검출하는 것을 특징으로 하는 난의 품질을 분석하는 방법을 제공한다.
In addition, the present invention provides a method for analyzing egg quality, which comprises detecting the change in the expression level of an egg protein or a fragment thereof specifically expressed in environmental stress of a poultry.

이하에서는 상기 본 발명의 과제 해결 수단과 관련하여 도면, 실시예 등을 통하여 구체적으로 설명하기로 하겠다.Hereinafter, the present invention will be described in detail with reference to the drawings, examples, and the like.

이와 같이 본 발명에 의하면, 난 단백질의 차등발현 분석을 통하여 특정 난 단백질 성분의 발현의 증감 여부를 분석할 수 있기 때문에 가금류의 희생 없이도 산란 당시의 가금류의 스트레스의 유무를 판단할 수 있으며 상기 단백질은 난의 품질 분석에 새로운 지표(바이오마커 단백질)로 사용될 수 있다.As described above, according to the present invention, it is possible to analyze whether the expression of a specific egg protein component is increased or decreased through differential expression analysis of egg protein, so that it is possible to determine the stress of poultry at the time of scattering without sacrifice of poultry, Can be used as a new indicator (biomarker protein) in quality analysis of eggs.

또한, 본 발명의 바이오마커 단백질을 기초로 제조된 항체는 가금류의 환경 스트레스를 진단 및 난의 품질을 분석할 수 있는 immunoassay 키트(ELISA, antibody coated tube test, lateral-flow test, potable biosensor 등)에 이용될 수 있을 뿐만 아니라, 보다 높은 특이도와 민감도를 나타내는 항체의 개발을 통해 다양한 환경 스트레스 진단 및 난의 품질 분석 스펙트럼을 갖는 단백질 칩 개발에 이용될 수도 있다.In addition, antibodies prepared on the basis of the biomarker protein of the present invention can be used for diagnosis of environmental stress of poultry and immunoassay kit (ELISA, antibody-coated tube test, lateral-flow test, potable biosensor, etc.) Not only can it be used, but it can also be used to develop a protein chip having a variety of environmental stress diagnosis and egg quality analysis spectrum through the development of antibodies showing higher specificity and sensitivity.

도 1은 산란계의 스트레스(corticosterone) 처리에 따른 난백 단백질의 발현양을 SDS-PAGE 분석한 결과이다.
도 2는 대조구 산란계에서 급여 개시 당일(Day 0)에 채란한 계란의 난백 단백질을 이차원 전기영동 분석한 결과이다.
도 3은 대조구 산란계에서 급여 5일째(Day 5)에 채란한 계란의 난백 단백질을 이차원 전기영동 분석한 결과이다.
도 4는 실험구 산란계에서 급여 개시 당일(Day 0)에 채란한 계란의 난백 단백질을 이차원 전기영동 분석한 결과이다.
도 5는 실험구 산란계에서 급여 5일째(Day 5)에 채란한 계란의 난백 단백질을 이차원 전기영동 분석한 결과이다.
도 6은 대조구에서 난백 단백질 스팟 번호 9 (ovoinhibitor 단백질)의 변화를 나타낸 그래프이다.
도 7은 대조구에서 난백 단백질 스팟 번호 21 (hemopexin 단백질)의 변화를 나타낸 그래프이다.
도 8은 대조구에서 난백 단백질 스팟 번호 28 (TENP 단백질)의 변화를 나타낸 그래프이다.
도 9는 실험구에서 난백 단백질 스팟 번호 12 (ovalbumin-related protein X)의 변화를 나타낸 그래프이다.
도 10은 실험구에서 난백 단백질 스팟 번호 18 (TENP, ovalbumin-related protein X)의 변화를 나타낸 그래프이다.
도 11은 실험구에서 난백 단백질 스팟 번호 19 (chondrogenesis-associated lipocalin)의 변화를 나타낸 그래프이다.
도 12는 실험구에서 난백 단백질 스팟 번호 22 (hemopexin)의 변화를 나타낸 그래프이다.
도 13은 실험구에서 난백 단백질 스팟 번호 24 (ovalbumin-related protein X)의 변화를 나타낸 그래프이다.
도 14는 실험구에서 난백 단백질 스팟 번호 27 (TENP, IGY FCU 3-4)의 변화를 나타낸 그래프이다.
도 15는 실험구에서 난백 단백질 스팟 번호 28 (TENP)의 변화를 나타낸 그래프이다.
도 16은 실험구에서 난백 단백질 스팟 번호 29 (extracellular fatty acid-binding protein)의 변화를 나타낸 그래프이다.
FIG. 1 shows the result of SDS-PAGE analysis of the expression amount of egg white protein according to the stress (corticosterone) treatment of laying hens.
FIG. 2 is a result of two-dimensional electrophoresis analysis of egg white proteins of eggs laid on the day of feeding start (Day 0) in a control laying hens.
FIG. 3 shows the result of two-dimensional electrophoresis analysis of the egg white protein of eggs laid on the 5th day of feeding (Day 5) in the control laying hens.
FIG. 4 shows the result of two-dimensional electrophoresis analysis of the egg white protein of the egg laid on the day of feeding start (Day 0) in the experimental group.
FIG. 5 shows the result of two-dimensional electrophoresis analysis of the egg white protein of the egg laid on the fifth day of feeding (Day 5) in the experimental group.
FIG. 6 is a graph showing the change of the egg white protein spot number 9 (ovoinhibitor protein) in the control.
FIG. 7 is a graph showing changes in egg white protein spot number 21 (hemopexin protein) in the control. FIG.
8 is a graph showing changes in egg white protein spot number 28 (TENP protein) in the control.
9 is a graph showing changes in ovalbumin-related protein X 12 in the experimental group.
FIG. 10 is a graph showing the change of egg white protein spot number 18 (TENP, ovalbumin-related protein X) in the experimental group.
FIG. 11 is a graph showing the change of egg white protein spot number 19 (chondrogenesis-associated lipocalin) in the experimental group.
FIG. 12 is a graph showing changes in egg white protein spot number 22 (hemopexin) in the experimental group.
13 is a graph showing changes in ovalbumin-related protein X 24 in the experimental group.
14 is a graph showing changes in egg white protein spot number 27 (TENP, IGY FCU 3-4) in the experimental group.
15 is a graph showing the change in egg white protein spot number 28 (TENP) in the experimental group.
FIG. 16 is a graph showing changes in extracellular fatty acid-binding protein 29 in the experimental group.

이하 본 발명에 따른 가금류의 환경 스트레스에 특이적인 바이오마커 단백질, 이러한 단백질에 특이적으로 결합하는 항체를 포함하는 가금류의 환경 스트레스 진단용 조성물과 진단 키트, 및 상기 바이오마커 단백질을 이용하여 가금류의 환경 스트레스를 분석하는 방법 및 난의 품질을 분석하는 방법에 대해 보다 상세히 설명한다.Hereinafter, the composition and diagnostic kit for environmental stress diagnosis of poultry including the biomarker protein specific to environmental stress of the poultry according to the present invention and the antibody specifically binding to the protein, and the environmental stress of the poultry using the biomarker protein And how to analyze the quality of eggs.

본 발명은 가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편을 포함하는 것을 특징으로 하는 가금류의 환경 스트레스에 특이적인 바이오마커 단백질을 제공한다.The present invention provides a biomarker protein specific to environmental stress of poultry, which comprises an egg protein or a fragment thereof specifically expressing environmental stress of poultry.

또한, 본 발명은 상기 바이오마커 단백질에 특이적으로 결합하는 항체를 유효성분으로 포함하는 가금류의 환경 스트레스 진단용 조성물 또는 진단 키트를 제공한다.The present invention also provides a composition for diagnosing environmental stress of poultry containing the antibody specifically binding to the biomarker protein as an active ingredient or a diagnostic kit.

본 발명에서 "단편"이란 본 발명의 난 단백질에 대한 항체에 의해 인식될 수 있는 하나 이상의 에피토프(epitope)를 가지고 있는 난 단백질의 단편을 의미한다."Fragment" in the present invention means a fragment of an egg protein having at least one epitope that can be recognized by an antibody to the egg protein of the present invention.

본 발명의 난 단백질은 난백, 난황, 난각, 난각막 등 난의 모든 부분에서 발현되는 단백질을 의미하며, 이에 제한되는 것은 아니나 본 발명의 실시예에서는 난백 단백질을 이용하였다.The egg protein of the present invention refers to a protein expressed in all parts of eggs such as egg white, egg yolk, eggshell egg, egg shell, and the like, but the egg white protein is used in the embodiment of the present invention.

본 발명의 항체는 폴리클로날 항체, 모노클로날 항체 또는 재조합 항체일 수 있으나, 본 발명의 항체는 모노클로날 항체인 것이 바람직하다.The antibody of the present invention may be a polyclonal antibody, a monoclonal antibody or a recombinant antibody, but the antibody of the present invention is preferably a monoclonal antibody.

폴리클로날 항체는 당업자에 알려진 종래방법에 따라 면역원인 바이오마커 단백질을 외부 숙주에 주사함으로써 제조될 수 있다. 외부 숙주는 마우스, 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등과 같은 포유동물을 포함하나, 이에 한정되는 것은 아니다. 면역원은 근내 주사, 복강내 주사, 피하 주사 등의 방법으로 주사되며, 일반적으로 항원성을 증가시키기 위한 보조제(adjuvant)와 함께 투여된다. 외부숙주로부터 정기적으로 혈액을 채취하여 향상된 역가 및 항원에 대한 특이성을 보이는 혈청을 수거하거나 이로부터 항체를 분리정제한다.Polyclonal antibodies can be prepared by injecting an immunogen-causing biomarker protein into an external host according to conventional methods known to those skilled in the art. External hosts include, but are not limited to, mammals such as mice, goats, rabbits, sheep, monkeys, horses, pigs, cows, dogs and the like. Immunogens are injected by intramuscular injection, intraperitoneal injection, subcutaneous injection, etc., and are generally administered together with an adjuvant to increase antigenicity. Blood is routinely collected from an external host to collect the sera showing improved titer and specificity for the antigen or isolating and purifying the antibody therefrom.

모노클로날 항체는 당업자에 잘 알려진 융합에 의한 불멸화된 세포주 생성기술(Koeher and Milstein (1975) Nature, 256:495 및 Kohler 및 Milstein (1976) European Jounral of Immunology 6:511)에 의해 제조될 수 있다. 보다 구체적으로, 먼저 순수한 바이오마커 단백질을 약 20 ㎍을 얻어서 Balb/C 쥐 등과 같은 적합한 숙주 동물에 면역화를 시키거나 펩타이드를 합성하여 소혈청 알부민과 결합시켜 숙주 동물에 면역화시킨다. 그 후에 쥐 등의 숙주 동물에서 분리된 항체-생산 임파구를 인간 또는 마우스의 미엘로마와 폴리에틸렌글리콜 이용법과 같은 당업계에 널리 공지된 방법에 의해 융합시켜 불멸화된 하이브리도마를 생성한다. 이 후, ELISA 방법을 사용하여 원하는 모노클노날 항체를 생성하는 하이브리도마 세포만을 선택하여 증식한 후 배양물로부터 모노클로날 항체를 분리 정제한다. 상기 하이브리도마가 생산하는 모노클로날 항체는 정제하지 않고 사용할 수도 있으나, 최선의 결과를 얻기 위해서는 당업계에 널리 공지된 방법에 따라 고순도로 정제하여 사용하는 것이 바람직하다.Monoclonal antibodies can be produced by immortalized cell line generation techniques (Koeher and Milstein (1975) Nature, 256: 495 and Kohler and Milstein (1976) European Jounal of Immunology 6: 511) by fusion well known to those skilled in the art . More specifically, about 20 μg of a pure biomarker protein is first obtained and immunized with a suitable host animal such as a Balb / C mouse, or the peptide is synthesized and bound to bovine serum albumin and immunized with the host animal. The antibody-producing lymphocytes isolated from host animals such as mice are then fused by methods well known in the art, such as the use of human or mouse microRNAs and polyethylene glycols to produce immortalized hybridomas. Thereafter, only the hybridoma cells producing the desired monoclonal antibody are selected and proliferated using the ELISA method, and then the monoclonal antibody is separated and purified from the culture. The monoclonal antibody produced by the hybridoma may be used without purification. However, in order to obtain the best results, it is preferable to purify the antibody by high purity according to a method well known in the art.

또한 모노클로날 항체는 당업자에게 잘 알려진 파지 항체 라이브러리(Clackson et al, Nature, 352:624-628, 1991; Marks et al, J. Mol. Biol., 222:58, 1-597, 1991) 기술을 이용하여 제조될 수 있다. 보다 구체적으로, 파지 항체 라이브러리 방법은 바이오마커 단백질에 대한 항체 유전자(Single chain fragment variable, scFv 형태)를 획득하여 이를 파아지의 표면에 융합 단백질 형태로 발현함으로서 항체 라이브러리를 시험관 내에서 제작하고, 이 라이브러리로부터 상기 바이오마커 단백질과 결합하는 모노크로날 항체를 분리, 제작하는 방법이다.Monoclonal antibodies may also be prepared by techniques known in the art, such as the phage antibody library (Clackson et al, Nature, 352: 624-628, 1991; Marks et al, J. Mol. Biol., 222: 58, . ≪ / RTI > More specifically, a phage antibody library method comprises obtaining an antibody gene (single chain fragment variable, scFv form) for a biomarker protein and expressing it in the form of a fusion protein on the surface of a phage, thereby preparing an antibody library in vitro And separating and preparing the monoclonal antibody binding to the biomarker protein.

상기 방법으로부터 제조된 항체는 겔 전기영동, 투석, 염 침전, 이온교환 크로마토그래피, 친화성 크로마토그래피 등의 방법을 이용하여 분리할 수 있다.The antibody prepared from the above method can be separated by methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, affinity chromatography and the like.

본 발명의 조성물 또는 키트에 포함되는 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab')2, Fv 등이 있다.Antibodies included in compositions or kits of the invention include functional fragments of antibody molecules as well as complete forms having two full-length light chains and two full-length heavy chains. A functional fragment of an antibody molecule refers to a fragment having at least an antigen binding function, and includes Fab, F (ab ') 2, F (ab') 2, Fv and the like.

본 발명의 진단 키트는 당업자에 알려진 종래의 제조방법에 의해 제조되며, 이러한 키트에 통상적으로 포함되는 동결건조형태의 항체, 버퍼, 안정화제, 불활성 단백질 등 이외에 항원-항체 결합체를 검출할 수 있는 시약, 예를 들면, 표지된 2차 항체, 발색단(chromophores), 효소(예: 항체와 컨주게이트됨) 및 그의 기질, 또는 항체와 결합할 수 있는 다른 물질 등을 포함할 수 있다. 또한 본 발명에 따른 항체는 방사종(radionuclides), 형광원(fluorescors), 효소(enzymes) 등에 의해 표지화될 수 있다.The diagnostic kit of the present invention is produced by a conventional manufacturing method known to a person skilled in the art, and includes a reagent capable of detecting an antigen-antibody complex in addition to the freeze-dried type antibody, buffer, stabilizer, For example, a labeled secondary antibody, chromophores, an enzyme (e.g., conjugated to an antibody) and its substrate, or other material capable of binding to the antibody, and the like. In addition, the antibody according to the present invention can be labeled with radionuclides, fluorescors, enzymes, and the like.

본 발명의 다른 양태에 따르면, 본 발명은 가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편의 발현양의 변화 여부를 검출하는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법을 제공한다.According to another aspect of the present invention, there is provided a method for analyzing environmental stress of a poultry that is characterized by detecting the change in the expression level of an egg protein or a fragment thereof that specifically expresses environmental stress of poultry .

또한, 본 발명은 가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편의 발현양의 변화 여부를 검출하는 것을 특징으로 하는 난의 품질을 분석하는 방법을 제공한다.In addition, the present invention provides a method for analyzing egg quality, which comprises detecting the change in the expression level of an egg protein or a fragment thereof specifically expressed in environmental stress of a poultry.

본 발명의 분석 방법들에서, 상기 난백 단백질의 발현양의 변화 여부를 검출하는 단계는 가금류의 알로부터 이차원 전기영동(2-DE)으로 바이오마커 단백질의 존재를 직접 검출하거나, 가금류의 알을 상기 바이오마커 단백질에 특이적으로 결합하는 항체와 접촉시켜 항원항체반응을 통해 바이오마커 단백질의 존재를 간접적으로 확인한다.In the analysis methods of the present invention, the step of detecting the change of the expression level of the egg white protein may be performed by directly detecting the presence of the biomarker protein by two-dimensional electrophoresis (2-DE) from the eggs of the poultry, The antibody is specifically contacted with a biomarker protein to indirectly confirm the presence of the biomarker protein through an antigen-antibody reaction.

항체를 이용하여 단백질 수준을 측정하기 위한 분석 방법으로는 웨스턴 블럿, ELISA(enzyme linked immunosorbent assay), 항체결합 magnetic particle을 tube에 결합시킨 다음 antigen-tracer와 난분해성 오염물질을 서로 경쟁적으로 반응시켜 효소반응을 유발시켜 정량하는 magnetic particle법, 항체결합 latex particle을 이용한 latex particle법, 방사선면역분석(RIA: Radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역 확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation Assay), 보체 고정 분석법(Complement Fixation Assay), FACS, 단백질 칩(protein chip) 등이 있으나 이로 제한되는 것은 아니다.In order to measure protein levels using antibodies, Western blot, enzyme linked immunosorbent assay (ELISA) and antibody-conjugated magnetic particles were bound to the tube, and then antigen-tracer and degradation-resistant contaminants were competitively reacted with each other, (RIA), radioimmunoassay, radioimmunodiffusion, Ouchterlony immunodiffusion, and rocket immunoassay, which can be used to quantitate and quantitate the response of an antibody- But are not limited to, immunoelectrophoresis, tissue immuno staining, immunoprecipitation assays, complement fixation assays, FACS, protein chips, and the like.

상기 분석 방법들을 통하여, 스트레스를 받은 가금류가 생산한 난과 스트레스를 받지 않은 가금류가 생산한 난에서 차등 발현되는 난 단백질의 변화를 판단하여서 가금류의 환경 스트레스 및 난의 품질을 분석할 수 있다.Through the above analysis methods, it is possible to analyze the environmental stress of the poultry and the egg quality by judging the egg protein produced by the stressed poultry and the egg protein which is differentially expressed in the egg produced by the unstressed poultry.

특히, 이러한 분석에 난백을 이용하는 장점은, 암탉의 난소에서 성숙 난황의 생성에 7-10일 정도 소요되지만 난백의 생성에는 2-3시간 밖에 걸리지 않기 때문에 난백의 상태는 난백이 생성되는 시기의 암탉의 사육상태 (즉 스트레스 상태)를 반영할 수 있다는 것이다. In particular, the advantage of using egg white for such analysis is that it takes 7-10 days to produce mature egg yolk from the ovary of a hen, but since it takes only 2-3 hours to produce egg white, (Ie, the stress state) of the plant.

본 발명에서 난 단백질의 발현양이 변화한다는 것은 난 단백질의 발현양이 증가 또는 감소된다는 것을 의미한다.In the present invention, the change in the expression level of the egg protein means that the expression level of the egg protein is increased or decreased.

본 발명에서 Ovoinhibitor, Ovalbumin-related protein X의 발현은 증가한 반면, TENP, Hemopexin, IGY-FCU3-4 및 Extracellular fatty acid-binding protein(Ex-FABP)의 발현은 감소하였다.
In the present invention, expression of OVA and OVA protein X was increased while expression of TENP, hemopexin, IGY-FCU3-4 and extracellular fatty acid-binding protein (Ex-FABP) was decreased.

이하 본 발명을 실시 예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

단, 하기 실시 예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시 예에 의해 한정되는 것은 아니다.
However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited by the following examples.

실시 예 1 : 동물실험 (산란계의 스트레스 모델)Example 1: Animal experiment (stress model of laying hens)

47주령의 Single Comb Brown Hy-Line Leghorn hens 20수를 크기가 동일한 2개의 사육실에 설치된 4칸이 한 조인 3단 직립형 케이지에 1칸에 1수씩 개별적으로 수용하였다. 사육실의 온도는 20 ± 2℃ 내외로 유지하였고, 오전 6시에 점등되어 오후 9시에 소등되었다 (15시간 점등). 시험기간 동안 사료와 물은 제한 없이 공급되었다. 산란계들은 무작위로 2개의 처리구(대조구, 실험구)로 분리 후 나누어져 사육환경에 대한 2주간의 적응기간 후, 한 처리구(대조구)에는 control 사료 (사료 1㎏에 0㎎의 corticosterone 포함)가, 나머지 한 처리구(실험구)에는 실험사료 (사료 1㎏에 30㎎의 corticosterone 포함)가 2주 동안 공급되었다. Twenty-four-week-old single-comb brown Hy-Line Leghorn hens were individually housed in a three-row upright cage with four chambers in each of two chambers of equal size. The temperature of the breeding room was maintained at around 20 ± 2 ℃ and turned on at 6:00 am and turned off at 9:00 pm (lights up for 15 hours). During the test period feed and water were supplied without restriction. Layers were randomly divided into two treatments (control and experimental groups) and divided into two groups. After 2 weeks of adaptation period, control diet (containing 1 mg of corticosterone in 1 kg of feed) In the other treatments (experimental group), experimental feeds (including 1 kg of feed and 30 mg of corticosterone) were fed for 2 weeks.

Control 사료는 에탄올(EtOH) 500㎖를 실험사료는 99.5% EtOH 500㎖에 815㎎ corticosterone (92%, C2505, 시그마, 미국)을 완전히 녹인 후, 25㎏ 일반사료와 함께 혼합기에서 30분 이상 배합하여 제조되었다.
Control feeds were prepared by dissolving 500 ml of ethanol (EtOH) in 500 ml of 99.5% EtOH and 815 mg of corticosterone (92%, C2505, Sigma, USA) in a total volume of 99.5% EtOH. .

실시 예 2 : 계란의 채란Example 2: Egg filling

Control 사료 또는 실험사료 급여 개시 시(Day 0) 그리고 급여 5일째(Day 5)에 동일한 개체가 산란한 계란을 수거한 후 난백만 수집하여 동결 건조시키고 분석시 때까지 -80℃에 보관하였다.
Control Eggs or experimental feeds Eggs were collected at the start of day 0 (Day 0) and 5 days of feeding (Day 5), and only egg white was collected, lyophilized and stored at -80 ° C until analysis.

실시 예 3 : 난백 단백질 추출 및 Example 3: egg white protein extraction and SDSSDS -- PAGEPAGE 분석  analysis

동결 건조된 난백을 막자사발로 분쇄한 후 난백 샘플 양의 25배에 해당하는 용해 버퍼(lysis buffer) A (1% sodium dodecyl sulfate (SDS), 1 mM phenylmethanesulfonyl fluoride (PMSF), protease inhibitor cocktail, 100 mM Tris-HCl (pH 6.8))에 용해시켰다. 용해 버퍼 A와 같은 양의 용해 버퍼 B (7 M urea, 2 M thiourea, 4% CHAPS, 0.1 M dithiothreitol (DTT), 1 mM PMSF, protease inhibitor cocktail, 40 mM Tris-HCl (pH 6.8))를 넣고 상온에서 1시간 동안 혼합하였다. 혼합물을 잠시 동안 초음파 파쇄(sonication) 시킨 후 상온에서 1시간 동안 배양하였다. 15,000×g, 4 ℃, 20 분 동안 원심분리하고 4 ℃에서 1시간 동안 배양한 후 15,000×g, 4 ℃, 20 분 동안 한번 더 원심분리하였다. 상층액인 수용성 단백질을 2DE Quant kit (GE Healthcare Life Sciences, 웁살라, 스웨덴)를 이용하여 정량을 하였다. SDS-PAGE 분석은 다음과 같이 수행되었다. 5 ㎍의 soluble protein을 sample buffer (2% SDS, 10% glycerol, 500 mM Tris-HCl, (pH 6.8))와 혼합하여 12% SDS polyacrylamide gel에 20 mA에서 3시간 동안 전기영동을 한 후 은 염색(silver stain)하였다.
After lyophilized egg white was crushed into a mortar, the lysate buffer A (1% sodium dodecyl sulfate (SDS), 1 mM phenylmethanesulfonyl fluoride (PMSF), protease inhibitor cocktail, 100 mM Tris-HCl (pH 6.8)). Same dissolution buffer B as dissolution buffer A (7 M urea, 2 M thiourea, 4% CHAPS, 0.1 M dithiothreitol (DTT), 1 mM PMSF, protease inhibitor cocktail, 40 mM Tris-HCl (pH 6.8)) was added and mixed at room temperature for 1 hour. The mixture was sonicated for a while and incubated at room temperature for 1 hour. The cells were centrifuged at 15,000 × g at 4 ° C. for 20 minutes, cultured at 4 ° C. for 1 hour, and further centrifuged at 15,000 × g at 4 ° C. for 20 minutes. The supernatant was subjected to quantification by using 2DE Quant kit (GE Healthcare Life Sciences, Uppsala, Sweden). SDS-PAGE analysis was performed as follows. 5 μg of soluble protein was mixed with sample buffer (2% SDS, 10% glycerol, 500 mM Tris-HCl, pH 6.8) and electrophoresed in 12% SDS polyacrylamide gel at 20 mA for 3 hours. (silver stain).

실시 예 4 : 이차원 전기영동 (2Example 4: Two-dimensional electrophoresis (2 DEDE ) 분석) analysis

200㎍의 수용성 단백질을 재수화 버퍼(rehydration buffer) (7 M urea, 2 M thiourea, 4% CHAPS, 2.5% DTT, 10% isopropanol, 5% glycerol 및 2% IPG buffer)와 혼합하였다. pH 4-10, non-linear (NL)의 18㎝ IPG 스트립을 이용하여 18 시간 동안 단백질을 재수화(rehydration) 하였다. 단백질을 pH 별로 1차 분리하기 위해 IPGphor 3 시스템 (GE amersharm)을 사용하여 50 V 에서 30 분, 100 V 에서 30 분, 250 V 에서 1 시간, 9시간 동안 8,000 V 까지 천천히 전압을 올린 후 8,000V 에서 6 시간 동안 등전점 전기영동(isoelectric focusing) 하였다. 등전점 전기영동이 끝난 IPG 스트립을 15 분 동안 평형 버퍼(equilibration buffer) (6M urea, 50 mM Tris-HCl pH 8.8, 30% glycerol, 2% SDS 및 bromophenol blue)와 1% DTT를 넣고 1차 평형화(equilibration)를 실시하였고, 2차 평형화(equilibration)는 2.5 % iodoacetamide을 넣고 실시하였다. 그리고 단백질을 크기별로 2차 분리를 하기 위하여 7.5% SDS polyacrylamide gels using Gradi-GelTM II gradient PAGE analysis kit (EBA-1015, Elpis, Daejeon, Korea)를 이용하여 SDS-PAGE 겔을 제조하였다. 200 μg of the water soluble protein was mixed with a rehydration buffer (7 M urea, 2 M thiourea, 4% CHAPS, 2.5% DTT, 10% isopropanol, 5% glycerol and 2% IPG buffer). Protein was rehydrated for 18 hours using an 18 cm IPG strip of pH 4-10, non-linear (NL). In order to firstly separate the proteins by pH, the voltage was gradually increased from 30 V at 50 V for 30 minutes, 100 V for 30 minutes, 250 V for 1 hour and 8,000 V for 9 hours using an IPGphor 3 system (GE amersharm) And isoelectric focusing for 6 hours. The IPG strips subjected to isoelectric point electrophoresis were equilibrated in equilibration buffer (6M urea, 50 mM Tris-HCl pH 8.8, 30% glycerol, 2% SDS and bromophenol blue) and 1% DTT for 15 minutes equilibration was performed and secondary equilibration was performed with 2.5% iodoacetamide. SDS-PAGE gels were prepared using 7.5% SDS polyacrylamide gels using Gradi-Gel II gradient PAGE analysis kit (EBA-1015, Elpis, Daejeon, Korea)

SDS-PAGE 겔을 이용하여 20 mA에서 18시간 동안 전기영동을 한 후 은 염색(silver stain) 하였다. Image master (Image Master 2D Plantinum v7.0, GE)를 이용하여 두 처리구(대조구, 실험구)간의 단백질 발현을 비교 분석하였으며 한 처리구당 3개의 겔 이미지의 스팟(spot) 강도를 측정하였다. 같은 처리구에서 급여 개시 당일(Day 0)과 급여 5일째(Day 5) 사이의 차등발현 유무는 t-test로 유의성이 검정되었고, 그 차이가 P≤0.05이면 유의성이 인정되었다. 모든 실험 데이터는 평균 ± 표준오차로 표시하였다.
SDS-PAGE gels were electrophoresed at 20 mA for 18 hours and silver stained. Protein expression between two treatments (control and experimental) was compared and analyzed using image master (Image Master 2D Plantinum v7.0, GE) and the spot intensity of three gel images per treatment area was measured. In the same treatment, the difference between the day of onset of feeding (Day 0) and day 5 of feeding (Day 5) was tested by t-test and significance was recognized when the difference was P ≤0.05. All experimental data were expressed as mean ± standard error.

실시 예 5 : 질량 분석 (Example 5 Mass Spectrometry ( MatrixMatrix -- AssistedAssisted LaserLaser DesorptionDesorption -- IonizationIonization Time-of-Flight  Time-of-Flight MassMass SpectrometrySpectrometry ( ( MALDIMALDI -- TOFTOF // MSMS ) 와 ) Wow MALDIMALDI -- TOFTOF // TOFTOF // MSMS // MSMS 분석) analysis)

피펫 팁(pipet tip)을 이용해 원하는 스팟을 잘라내어 튜브에 수집하였다. 30mM potassium ferricyanide, 100 mM sodiumthiosulfate pentahydrate을 첨가하여 은 염료(silver dye)를 gel에서 빠지게 한 후 완전히 건조시켰다. 50~100 ㎕의 10mM DTT / 0.1 M ABC를 첨가한 후 56℃에서 약 45분 동안 반응시켰다. 상층액을 제거하고 50~100 ㎕의 55 mM lodoacetamide / 0.1 M ABC를 첨가한 후 약 30분 동안 반응시킨 후 완전히 건조시켰다. 트립신 절단 버퍼(Trypsin digestion buffer) (0.0012 ug/uL in 25 mM NH4HCO3, pH 7.8)를 3 ㎕ 첨가 후 37℃에서 하루 밤 동안 방치하였다. 샘플에 추출 용액(extraction solution) (acetonitrile: water: TFA=66:33:0.1)을 처리하여 겔에서 펩타이드를 추출하였다. 추출된 펩타이드 용액 과 기질 용액(matrix solution) (α-cyano-4-hydroxy-cinnamic acid)을 혼합한 후 MALDI TOF/TOF sample plate에 분주하고 ABI 4800 Plus TOF-TOF Mass Spectrometer (Applied Biosystems, Framingham, MA, USA)를 이용하여 분석하였으며 하기 표 1에 나타내었다. 이들 단백질의 아미노산 서열은 MS/MS spectra를 NCBInr database를 이용하여서 검색하였다. The desired spot was cut out using a pipette tip and collected in a tube. 30mM potassium ferricyanide and 100mM sodium thiosulfate pentahydrate were added to remove the silver dye from the gel and dried completely. 50-100 μl of 10 mM DTT / 0.1 M ABC was added and reacted at 56 ° C for about 45 minutes. The supernatant was removed and 50-100 μl of 55 mM lodoacetamide / 0.1 M ABC was added, followed by reaction for about 30 minutes and then completely dried. 3 μl of trypsin digestion buffer (0.0012 μg / μL in 25 mM NH 4 HCO 3, pH 7.8) was added and left overnight at 37 ° C. The sample was extracted with an extraction solution (acetonitrile: water: TFA = 66: 33: 0.1) to extract the peptide from the gel. The extracted peptide solution was mixed with a matrix solution (α-cyano-4-hydroxy-cinnamic acid), and the mixture was dispensed into a MALDI TOF / TOF sample plate. The ABI 4800 Plus TOF-TOF Mass Spectrometer (Applied Biosystems, Framingham, Mass., USA) and analyzed as follows. The amino acid sequences of these proteins were searched using the NCBInr database for MS / MS spectra.

스팟 번호Spot number 단백질
이름
protein
name
Accession No.Accession No. 분자량Molecular Weight PIPI Score
(MOWSE)
Score
(MOWSE)
Sequence coverage
(%)
Sequence coverage
(%)
Matched peptidesMatched peptides 질량
분석
mass
analysis
데이터베이스Database
44 OvoinhibitorOvoinhibitor P10184P10184 54,39454,394 6.166.16 5858 3232 1414 MSMS Uni/SwissUni / Swiss 55 OvoinhibitorOvoinhibitor P10184P10184 54,39454,394 6.166.16 4747 2323 1414 MSMS Uni/SwissUni / Swiss 66 OvoinhibitorOvoinhibitor P10184P10184 54,39454,394 6.166.16 4646 2222 1313 MSMS Uni/SwissUni / Swiss 77 OvoinhibitorOvoinhibitor P10184P10184 54,39454,394 6.166.16 362362 3333 1919 MS/MSMS / MS Uni/SwissUni / Swiss 88 OvoinhibitorOvoinhibitor P10184P10184 54,39454,394 6.166.16 4646 1717 1010 MSMS Uni/SwissUni / Swiss 1111 OvoinhibitorOvoinhibitor P10184P10184 54,39454,394 6.166.16 3737 2020 1111 MSMS Uni/SwissUni / Swiss 1212 Ovalbumin-related protein XOvalbumin-related protein X P01013P01013 26,33126,331 5.15.1 7979 3030 77 MS/MSMS / MS Uni/SwissUni / Swiss 1717 TENPTENP O42273O42273 47,80447,804 5.535.53 3939 1313 66 MS/MSMS / MS Uni/SwissUni / Swiss 1818 TENPTENP O42273O42273 47,80447,804 5.535.53 147147 2323 1010 MS/MSMS / MS Uni/SwissUni / Swiss 1818 Ovalbumin-related protein XOvalbumin-related protein X P01013P01013 26,33126,331 5.15.1 103103 2727 88 MS/MSMS / MS Uni/SwissUni / Swiss 2121 HemopexinHemopexin Q90WR3Q90WR3 29,76529,765 5.925.92 3535 2424 99 MS/MSMS / MS Uni/TrUni / Tr 2222 HemopexinHemopexin Q90WR3Q90WR3 29,76529,765 5.925.92 340340 4848 1818 MS/MSMS / MS Uni/TrUni / Tr 2424 Ovalbumin-related protein XOvalbumin-related protein X P01013P01013 26,33126,331 5.15.1 108108 2727 88 MS/MSMS / MS Uni/SwissUni / Swiss 2424 OvotransferrinOvotransferrin P02789P02789 79,55179,551 6.696.69 6363 2121 1010 MS/MSMS / MS Uni/SwissUni / Swiss 2727 TENPTENP O42273O42273 47,80447,804 5.535.53 246246 2424 1010 MS/MSMS / MS Uni/SwissUni / Swiss 2727 IGY FCU3-4IGY FCU3-4 UPI00018BF9C1UPI00018BF9C1 25,46625,466 5.575.57 112112 3030 44 MS/MSMS / MS UniParcUniParc 2828 TENPTENP O42273O42273 47,80447,804 5.535.53 232232 2020 1313 MS/MSMS / MS Uni/SwissUni / Swiss 29
29
EX-FABPEX-FABP P21760P21760 20,35920,359 5.565.56 351351 5252 1717 MS/MSMS / MS Uni/SwissUni / Swiss

* 스팟 번호는 이차원 전기영동(2DE) 겔 이미지 라벨에 상응함.* Spot number corresponds to two-dimensional electrophoresis (2DE) gel image label.

* 스팟 번호 1, 2, 3, 9, 10, 13, 14, 15, 16, 19, 20, 23, 25, 26, 30은 데이터베이스에 없거나 검출한계 때문에 동정되지 않았음.* Spot numbers 1, 2, 3, 9, 10, 13, 14, 15, 16, 19, 20, 23, 25, 26 and 30 were not found in the database or were not identified due to detection limits.

* 검색 번호(Accession No)의 출처는 Uniprot (universal protein resource) 데이터베이스임.* The source of accession number is the Uniprot (universal protein resource) database.

* Score (MOWSE)는 MASCOT PMF (peptide mass fingerprint)에 사용되었고, NCBInr 데이터베이스의 MS 데이타를 나타냄. 스코어가 84보다 큰 경우 유의성이 있음 (P ≤0.05).
* Score (MOWSE) is used for MASCOT PMF (peptide mass fingerprint) and represents MS data of NCBInr database. Significance when score is greater than 84 ( P ≤ 0.05).

상기 실시예들의 결과는 아래와 같이 도면 및 표에 도시하였다.The results of the above embodiments are shown in the following figures and tables.

먼저 SDS-PAGE 분석에서 5일 동안 corticosterone으로 처리된 산란계(실험구)의 계란에서 난백 단백질의 발현양은 급여 개시 당일 (Day 0)에 비해 현저히 낮았다. 그러나 이러한 변화는 대조구에서는 관찰되지 않았다 (도 1). Firstly, the expression of egg white protein in the eggs of the laying hens (experimental group) treated with corticosterone for 5 days in SDS-PAGE analysis was significantly lower than the day of feeding (Day 0). However, these changes were not observed in the control (Fig. 1).

시험 시작 후 급여 개시 당일(Day 0)과 급여 5일째(Day 5)에 채란된 계란의 난백을 이용해 이차 전기영동을 실시하고, Image Mater로 2DE 겔을 분석한 결과 대조구와 실험구 사이에 106개의 스팟들이 일치하였다. 그 중 corticosterone을 5일 동안 섭취한 산란계(실험구)의 난백 단백질에서 30개의 스팟들이 그렇지 않은 대조구에 비해 1.2배 증가 또는 감소되었다. After the start of the test, secondary electrophoresis was carried out using the egg white of the egg packed on the day of the pay (Day 0) and the 5th day of the feeding (Day 5), and 2DE gel was analyzed with Image Mater. The spots matched. Among them, 30 spots in egg protein of laying hens fed corticosterone for 5 days were increased or decreased 1.2 times compared to the control.

Image master를 이용하여 한 처리구당 3개의 겔 이미지의 스팟 강도를 측정하였고 t-test로 통계적으로 분석하였다. Corticosterone을 처리한 그룹(실험구)에서 3개의 단백질 스팟들(번호 12, 18, 24)이 유의하게 증가 (P≤0.05)하였고, 5 개의 스팟들(번호 19, 22, 27, 28, 29)은 유의하게 감소하였다. 반면에 대조구에서는 급여 개시 당일(Day 0)에 비교해서 급여 5일째(Day 5)에 적은 차이지만 2개의 스팟(번호 21, 28)이 증가하였고 한 개(스팟 번호 9)가 감소하였다 (표 2). The spot intensities of three gel images were measured using an image master and analyzed statistically by t-test. In the group treated with Corticosterone (experimental group), three protein spots (numbers 12, 18 and 24) were significantly increased (P? 0.05) and five spots (numbers 19, 22, 27, 28 and 29) Respectively. On the other hand, in the control, two spots (numbers 21 and 28) increased and one spot (spot number 9) decreased in comparison with day 0 on the pay day (Day 5) ).


처리구

Treatment
P ≤ 0.05의 유의성 있는 발현변화를 보이는 스팟 번호Spot number showing a significant expression change of P < 0.05
감소decrease 증가increase 대조구Control 99 21, 2821, 28 실험구Experimental Section 19, 22, 27, 28, 2919, 22, 27, 28, 29 12, 18, 2412, 18, 24

단백질 스팟들을 MALDI TOF/MS 또는 MALDI TOF-TOF/MS/MS로 분석하여 MASCOT database로 분류(taxonomy)를 gallus gallus로 검색하였다. MASCOT database의 경우 MOWSE 알고리즘을 베이스로 한 스코어링(scoring)을 실시하였고 스코어(score)가 84 이상인 것을 통계학적으로 유의한 배열이라고 정의하였다 (P<0.05). MOWSE 스코어를 배제하여 분류를 gallus gallus로만 검색한 결과 30개의 단백질 스팟들 중 15개 스팟의 단백질이 동정되었고, 그 결과를 도 2 내지 도 5 및 하기 표 3에 나타내었다.Protein spots were analyzed by MALDI TOF / MS or MALDI TOF-TOF / MS / MS and classified as MASCOT database (taxonomy) by gallus gallus. In the MASCOT database, scoring based on the MOWSE algorithm was performed and a score of 84 or more was defined as a statistically significant sequence (P <0.05). The results are shown in Figs. 2 to 5 and Table 3 below. The results are shown in Figs. 2 to 5 and Table 3 below.


단백질 이름

Protein name

스팟 번호

Spot number

단백질 동정 또는 추정

Protein identification or estimation
급여 개시 당일(Day 0)과 급여 5일째(Day 5)사이의 단백질 차등 발현Protein differential expression between Day 1 (Day 0) and Day 5 (Day 5)
대조구Control 실험구Experimental Section 유의확률
(p-value)
Probability of significance
(p-value)
유의확률
(p-value)
Probability of significance
(p-value)




Ovoinhibitor




Ovoinhibitor
33 추정calculation -- 0.24 0.24 -- 0.23 0.23
44 동정Sympathy -- 0.30 0.30 -- 0.19 0.19 55 동정Sympathy -- 0.21 0.21 -- 0.240.24 66 동정Sympathy -- 0.28 0.28 0.07 0.07 77 동정Sympathy -- 0.23 0.23 0.07 0.07 88 동정Sympathy -- 0.33 0.33 0.07 0.07 99 추정calculation 0.030.03 0.07 0.07 1010 추정calculation -- 0.22 0.22 0.08 0.08 1111 동정Sympathy 0.070.07 0.070.07
Ovalbumin-related protein X


Ovalbumin-related protein X

1212 동정Sympathy -- 0.360.36 0.050.05
1818 동정Sympathy -- 0.410.41 0.010.01 2323 추정calculation -- 0.080.08 -- 0.190.19 2424 동정Sympathy -- 0.060.06 2626 추정calculation -- 0.270.27 -- 0.130.13
Hemopexin

Hemopexin
2020 추정calculation -- 0.330.33 -- 0.350.35
2121 동정Sympathy 0.050.05 -- 0.120.12 2222 동정Sympathy -- 0.110.11 0.050.05

TENP





TENP



1313 추정calculation 0.060.06 0.070.07
1414 추정calculation -- -- 0.280.28 1515 추정calculation -- 0.460.46 0.090.09 1616 추정calculation -- 0.150.15 -- 0.160.16 1717 동정Sympathy -- 0.410.41 -- 0.200.20 1818 동정Sympathy -- 0.410.41 0.010.01 2727 동정Sympathy -- 0.060.06 0.010.01 2828 동정Sympathy 0.020.02 0.030.03 Chondrogenesis-associated lipocalinChondrogenesis-associated lipocalin 1919 추정calculation 0.090.09 0.050.05 3030 추정calculation -- 0.360.36 -- 0.180.18 IGY-FCU 3-4IGY-FCU 3-4 2727 동정Sympathy -- 0.060.06 0.010.01 Extracellular fatty acid-binding proteinExtracellular fatty acid-binding protein 2929 동정Sympathy -- 0.330.33 0.010.01

* 모든 스팟은 P<0.09의 유의성을 보임, - , 변화 없음 ; ↑ , 증가 ; ↓ , 감소* All spots showed a significance of P <0.09, -, no change; ↑, increase; ↓, decrease

15개의 스팟들은 ovoinhibitor (스팟 번호 4-8, 11), ovalbumin-related protein X (스팟 번호 12, 18, 24), hemopexin (스팟 번호 21, 22), TENP (스팟 번호 17, 18, 27, 28), IGY FCU3-4 (스팟 번호 27), 그리고 extracellular fatty acid-binding protein (스팟 번호 29) 으로 총 6가지의 단백질이 동정되었다. 15 spots were identified as ovoinhibitor (spot numbers 4-8, 11), ovalbumin-related protein X (spot numbers 12, 18 and 24), hemopexin (spot numbers 21 and 22), TENP (spot numbers 17, ), IGY FCU3-4 (spot number 27), and extracellular fatty acid-binding protein (spot number 29).

대조구 산란계의 계란에서 급여 개시 당일(Day 0)에 비해 급여 5일째(Day 5)에 ovoinhibitor로 추정되는 단백질 (스팟 번호 9)이 적은 차이지만 유의적으로 감소되었고 (P<0.05), 또 다른 단백질 (스팟 번호 11)도 감소하였다 (P<0.07). hemopexin (스팟 번호 21)과 TENP로 추정되는 단백질 (스팟 번호 28)은 유의적으로 증가하였다 (도 6 내지 도 8). The number of ovoinhibitor proteins (spot number 9) decreased significantly ( P <0.05) in the eggs of the control laying hen compared to the day of feeding (Day 0) (Spot number 11) also decreased ( P <0.07). hemopexin (spot number 21) and the protein estimated by TENP (spot number 28) were significantly increased (FIGS. 6 to 8).

한편 corticosterone으로 처리된 산란계(실험구)의 계란에서 급여 개시 당일(Day 0)에 비해 급여 5일째(Day 5)에 ovalbumin-related protein X (스팟 번호 12, 18, 24)와 TENP (스팟 번호 18)이 증가되었고, hemopexin (스팟 번호 22), TENP (스팟 번호 27, 28), IGY-FCU 3-4 (스팟 번호 27), extracellular fatty acid-binding protein (스팟 번호 29) 그리고 동정되지 않았지만 chondrogenesis-associated lipocalin로 추정되는 단백질 (스팟 번호 19)이 적은 차이지만 유의적으로 감소되었다 (도 9 내지 도 16). Ovoinhibitor로 동정되거나 (스팟 번호 6,7,8 및 11) (P = 0.07) 추정된 (스팟 번호 9 및 10) (P = 0.08) 단백질 스팟들은 corticosterone의 처리로 증가되는 경향이 있었다. 반면에 TENP로 추정되는 단백질 (스팟 번호 13 및 15)은 감소하는 경향이 있었다 (각각, P < 0.07, P < 0.09). On the other hand, ovalbumin-related protein X (spot numbers 12, 18 and 24) and TENP (spot number 18) were observed on the 5th day of feeding (Day 5) in the eggs of the corticosterone- (Spot number 22), TENP (spot numbers 27 and 28), IGY-FCU 3-4 (spot number 27), extracellular fatty acid-binding protein (spot number 29), and chondrogenesis- The protein estimated to be associated lipocalin (spot number 19) was significantly reduced but the difference was small (Figs. 9 to 16). Estimated (spot numbers 9 and 10) (P = 0.08) protein spots were identified as Ovoinhibitor (spot numbers 6, 7, 8 and 11) (P = 0.07) and tended to be increased by treatment with corticosterone. On the other hand, proteins estimated to be TENP (spot numbers 13 and 15) tended to decrease ( P <0.07, P <0.09, respectively).

Hemopexin (HPX) (스팟 번호 21 및 22)은 주로 간에서 발현되어 혈액으로 분비되는 당단백질이다. HPX는 햄(heme)과 매우 강한 친화력을 가지며 같은 몰 비 (equimolar ratio)로써 결합하며 헤모글로빈(hemoglobin)으로부터 생성되는 햄을 제거하므로써 유리 햄에 의해 유발될 수 있는 산화적인 손상으로부터 신체를 보호한다 {Tolosano, E., and F. Altruda. 2002. Hemopexin: structure, function, and regulation. DNA and cell biology 21:297-306. doi 10.1089/104454902753759717}. 햄과의 결합은 단백질 분해 소화에 대한 저항성을 부여한다 {Goldfarb, V., R. B. Trimble, M. De Falco, H. H. Liem, S. A. Metcalfe, D. Wellner, and U. Muller-Eberhard. 1986. An avian serum alpha 1-glycoprotein, hemopexin, differing significantly in both amino acid and carbohydrate composition from mammalian (beta-glycoprotein) counterparts. Biochemistry 25:6555-6562.}. HPX는 급성단계단백질 (acute phase protein)에 속하며 염증이나 스트레스에 의해 이 단백질의 합성이 증가된다 {Tolosano, E., and F. Altruda. 2002. Hemopexin: structure, function, and regulation. DNA and cell biology 21:297-306. doi 10.1089/104454902753759717}. 닭의 혈청에서 발견되는 HPX는 분자량 52 kDa 당단백질 (α1-glycoprotein)의 일종이다 {Goldfarb, V., R. B. Trimble, M. De Falco, H. H. Liem, S. A. Metcalfe, D. Wellner, and U. Muller-Eberhard. 1986. An avian serum alpha 1-glycoprotein, hemopexin, differing significantly in both amino acid and carbohydrate composition from mammalian (beta-glycoprotein) counterparts. Biochemistry 25:6555-6562.}. 닭에서 HPX는 부화 수일 전부터 측정되기 시작하여 부화 이후 혈장의 그 농도가 급격하게 증가되며 4일령의 농도는 성체 (3.5 개월령) 수준의 약 반정도 된다. terpentine의 투여와 같은 스트레스에 의해 혈장의 농도가 급격하게 증가된다{Grieninger, G., T. J. Liang, G. Beuving, V. Goldfarb, S. A. Metcalfe, and U. Muller-Eberhard. 1986. Hemopexin is a developmentally regulated, acute-phase plasma protein in the chicken. The Journal of biological chemistry 261:15719-15724.}. 또한 이와 유사하게 lipopolysaccharide의 복강투여나 인간혈청알부민의 피하투여와 같은 면역도전 (immune challenge)에 의해서도 hemopexin 합성의 증가가 보고되었다 {Barnes, D. M., Z. Song, K. C. Klasing, and W. Bottje. 2002. Protein metabolism during an acute phase response in chickens. Amino acids 22:15-26.; Buyse, J., Q. Swennen, T. A. Niewold, K. C. Klasing, G. P. Janssens, M. Baumgartner, and B. M. Goddeeris. 2007. Dietary L-carnitine supplementation enhances the lipopolysaccharide-induced acute phase protein response in broiler chickens. Veterinary immunology and immunopathology 118:154-159. doi 10.1016/j.vetimm.2007.04.014; Buyse, J., Q. Swennen, F. Vandemaele, K. C. Klasing, T. A. Niewold, M. Baumgartner, and B. M. Goddeeris. 2009. Dietary beta-hydroxy-beta-methylbutyrate supplementation influences performance differently after immunization in broiler chickens. Journal of animal physiology and animal nutrition 93:512-519. doi}. 대장균에 감염된 오리에서 분리된 완전한 길이의 IgY 와 짧은 IgY를 감염되지 않은 오리에 정맥 투여했을 때, 혈장 HPX의 농도는 두 항체의 비가 다를 때 (즉 100:0 또는 0: 100)는 대장균 단독투여나 항체의 비가 같을 때 (즉 50: 50)보다 훨씬 높았다는 것이 관찰되었다 {Humphrey, B. D., C. C. Calvert, and K. C. Klasing. 2004. The ratio of full length IgY to truncated IgY in immune complexes affects macrophage phagocytosis and the acute phase response of mallard ducks (Anas platyrhynchos). Developmental and comparative immunology 28:665-672. doi 10.1016/j.dci.2003.11.003}. Hemopexin (HPX) (spot numbers 21 and 22) is a glycoprotein that is mainly expressed in the liver and secreted into the blood. HPX has a very strong affinity for heme and binds at the same molar ratio and protects the body from oxidative damage that can be caused by freezing ham by removing the ham from hemoglobin { Tolosano, E., and F. Altruda. 2002. Hemopexin: structure, function, and regulation. DNA and cell biology 21: 297-306. doi 10.1089 / 104454902753759717}. The binding with ham confers resistance to proteolytic digestion {Goldfarb, V., RB Trimble, M. De Falco, HH Liem, SA Metcalfe, D. Wellner, and U. Muller-Eberhard. 1986. An avian serum alpha 1-glycoprotein, hemopexin, differing significantly in amino acid and carbohydrate composition from mammalian (beta-glycoprotein) counterparts. Biochemistry 25: 6555-6562. HPX belongs to the acute phase protein, which increases the synthesis of this protein by inflammation and stress (Tolosano, E., and F. Altruda. 2002. Hemopexin: structure, function, and regulation. DNA and cell biology 21: 297-306. doi 10.1089 / 104454902753759717}. HPX is found in serum of chicken is a kind of glycoprotein, molecular weight 52 kDa (α 1 -glycoprotein) { Goldfarb, V., RB Trimble, M. De Falco, HH Liem, SA Metcalfe, D. Wellner, and U. Muller -Eberhard. 1986. An avian serum alpha 1-glycoprotein, hemopexin, differing significantly in amino acid and carbohydrate composition from mammalian (beta-glycoprotein) counterparts. Biochemistry 25: 6555-6562. In chickens, HPX begins to be measured several days before hatching, and the concentration of plasma increases rapidly after hatching, and the concentration at 4 days is about half of the adult (3.5 months) level. Plasma concentrations are rapidly increased by stresses such as terpentine administration (Grieninger, G., TJ Liang, G. Beuving, V. Goldfarb, S. Metcalfe, and U. Muller-Eberhard. 1986. Hemopexin is a developmentally regulated, acute-phase plasma protein in the chicken. The Journal of Biological Chemistry 261: 15719-15724. Similarly, an increase in hemopexin synthesis has been reported by immune challenge such as intraperitoneal administration of lipopolysaccharide or subcutaneous administration of human serum albumin (Barnes, DM, Z. Song, KC Klasing, and W. Bottje. 2002. Protein metabolism during an acute phase response in chickens. Amino acids 22: 15-26 .; Buyse, J., Q. Swennen, TA Niewold, KC Klasing, GP Janssens, M. Baumgartner, and BM Goddeeris. 2007. Dietary L-carnitine supplementation enhances the lipopolysaccharide-induced acute phase protein response in broiler chickens. Veterinary immunology and immunopathology 118: 154-159. doi 10.1016 / J.Vehim.2007.04.014; Buyse, J., Q. Swennen, F. Vandemaele, K. Klasing, TA Niewold, M. Baumgartner, and BM Goddeeris. 2009. Dietary beta-hydroxy-beta-methylbutyrate supplementation influences performance differently after immunization in broiler chickens. Journal of animal physiology and animal nutrition 93: 512-519. doi}. When administered intravenously to uninfected ducks, full-length IgY and short IgY isolated from E. coli-infected ducks, the concentration of plasma HPX was increased by the administration of E. coli alone (100: 0 or 0: 100) (50:50) at the same ratio (Humphrey, BD, CC Calvert, and KC Klasing. 2004. The ratio of full length IgY to truncated IgY in immune complexes affects macrophage phagocytosis and the acute phase response of mallard ducks (Anas platyrhynchos). Developmental and comparative immunology 28: 665-672. doi 10.1016 / j.dci.2003.11.003}.

본 연구에서 corticosterone 처리된 산란계(실험구)로부터 생산된 계란의 난백에서 HPX가 유의적 (P < 0.05) 으로 낮게 발현되었고 (스팟 번호 22), 반대로 대조구에서는 유의적 (P < 0.05) 으로 증가하였다 (스팟 번호 21)는 것은 다음과 같은 사실을 제시한다. 첫째, 이들 스팟들(스팟 번호 21 및 22)은 다른 기능을 가진 단백질일지도 모른다. 비록 이 스팟들(스팟 번호 21 및 22)은 MALDI-TOF/TOF 분석 및 bioinformatis를 통하여 HPX로 결정되었지만 이들 두 스팟들은 corticosterone의 처리에 정반대의 반응을 보였기 때문이다. 둘째, corticosterone은 난관에서 HPX의 분비를 감소시킨다. 대조구에서 HPX의 미미하지만 유의적인 증가와 대조적으로 corticoseterone의 처리는 HPX의 발현을 유의적으로 감소시켰다. 비록 본 연구에서는 혈중 HPX의 농도는 측정되지 않았지만, 문헌적인 증거는 혈중 HPX의 농도는 염증과 같은 급성 스트레스에 의해 증가한다는 것을 고려한다면 난백에서의 HPX의 발현감소는 주목할만한 변화이다. In the present study, HPX was significantly ( P <0.05) low (spot number 22) and significantly increased ( P <0.05) in the control egg compared with egg white eggs produced from the corticosterone-treated laying hens (Spot number 21) suggests the following fact. First, these spots (spot numbers 21 and 22) may be proteins with different functions. Although these spots (spot numbers 21 and 22) were determined to be HPX through MALDI-TOF / TOF analysis and bioinformatis, these two spots showed the opposite response to treatment with corticosterone. Second, corticosterone reduces the secretion of HPX in the fallopian tubes. In contrast to the slight but significant increase in HPX at the control, treatment with corticoseterone significantly reduced HPX expression. Although the concentration of HPX in the blood was not measured in this study, documented evidence suggests that a decrease in the expression of HPX in the egg white is a notable change, considering that serum HPX concentrations are increased by acute stress such as inflammation.

Ovoinhibitor (스팟 번호 4, 5, 6, 7, 8 및 11)는 난백에서 발견되는 4개의 단백질가수분해효소 억제제 (또는 항단백질가수분해효소 라고도 불림) 중의 하나로 분자량이 48.6 - 49 kDa 이며 {Saxena, I., and S. Tayyab. 1997. Protein proteinase inhibitors from avian egg whites. Cell Mol Life Sci 53:13-23. }, 이 단백질의 유전자는 조류의 간, 난관 및 난황에서 강하게 발현되며 {Bourin, M., J. Gautron, M. Berges, S. Attucci, G. Le Blay, V. Labas, Y. Nys, and S. Rehault-Godbert. 2011. Antimicrobial potential of egg yolk ovoinhibitor, a multidomain Kazal-like inhibitor of chicken egg. Journal of agricultural and food chemistry 59:12368-12374. doi 10.1021/jf203339t; Yen, C. F., E. C. Lin, Y. H. Wang, P. H. Wang, H. W. Lin, J. C. Hsu, L. S. Wu, Y. N. Jiang, and S. T. Ding. 2009. Abundantly expressed hepatic genes and their differential expression in liver of prelaying and laying geese. Poult Sci 88:1955-1962.}, 닭에서는 산란중기 보다 산란 개시 전에, 그러나 거위에서는 산란개시 전보다 산란 중에 더 강하게 발현되었다 {Bourin, M., J. Gautron, M. Berges, S. Attucci, G. Le Blay, V. Labas, Y. Nys, and S. Rehault-Godbert. 2011. Antimicrobial potential of egg yolk ovoinhibitor, a multidomain Kazal-like inhibitor of chicken egg. Journal of agricultural and food chemistry 59:12368-12374.; Yen, C. F., E. C. Lin, Y. H. Wang, P. H. Wang, H. W. Lin, J. C. Hsu, L. S. Wu, Y. N. Jiang, and S. T. Ding. 2009. Abundantly expressed hepatic genes and their differential expression in liver of prelaying and laying geese. Poult Sci 88:1955-1962.}. 또한 Ovoinhibitor는 F-낭에서도 발현되는 것이 보고되었다 {Moore, R. W., B. M. Hargis, T. E. Porter, D. Y. Caldwell, C. M. Oubre, F. Vandesande, and L. R. Berghman. 2004. Ovoinhibitor in the chicken bursa of Fabricius: identification, isolation, and localization. Cell and tissue research 317:247-251. doi 10.1007/s00441-004-0910-x}. 난단백질에서 ovoinhibitor의 농도는 총단백질의 약 1.5%이며 {Kinoshita, K., T. Shimogiri, S. Okamoto, K. Yoshizawa, H. Mannen, H. R. Ibrahim, H. H. Cheng, and Y. Maeda. 2004. Linkage mapping of chicken ovoinhibitor and ovomucoid genes to chromosome 13. Animal genetics 35:356-358. doi 10.1111/j.1365-2052.2004.01159.x}, trypsin, chymotrypsin elastelase 등과 같은 serine 단백질가수분해효소들을 억제한다 {Feeney, R. E., F. C. Stevens, and D. T. Osuga. 1963. The specificities of chicken ovomucoid and ovoinhibitor. The Journal of biological chemistry 238:1415-1418.; Rehault, S. 2007. Antiproteases. Pages 85-92 in Bioactive Egg Compounds. R. Huopalahti, R. L, M. Anton, and R. Schade eds. Springer Berlin Heidelberg.}. 이 단백질의 합성과 분비는 estrogen과 progesterone에 의해 제어된다 {Saxena, I., and S. Tayyab. 1997. Protein proteinase inhibitors from avian egg whites. Cell Mol Life Sci 53:13-23.; Zhu, Y., M. Wang, H. Lin, Z. Li, and J. Luo. 2001. Identification of estrogen-responsive genes in chick liver. Cell and tissue research 305:357-363.}. 본 연구에서 corticosterone 처리된 산란계(실험구)의 계란에서 ovoinhibitor의 발현이 증가하였다 (스팟 번호 6, 7, 8 및 11) (P < 0.07). 그러나 대조구의 산란계에서는 ovoinhibitor로 추정되는 스팟(번호 9)은 적은 차이기는 하지만 유의적으로 감소하였고, 또 다른 단백질 스팟(번호 11)의 발현은 감소하는 경향을 보였다 (P < 0.07). 이러한 결과는 스트레스가 난백에서 ovoinhibitor의 발현을 증가시킨다는 것을 시사한다. Ovoinhibitor (Spot Nos. 4, 5, 6, 7, 8 and 11) is one of the four proteinase inhibitors (or also known as antiproteinases) found in egg white and has a molecular weight of 48.6-49 kDa {Saxena, I., and S. Tayyab. 1997. Protein proteinase inhibitors from avian egg whites. Cell Mol Life Sci 53: 13-23. }, The gene of this protein is strongly expressed in the liver, fallopian tube and egg yolk of algae {Bourin, M., J. Gautron, M. Berges, S. Attucci, G. Le Blay, V. Labas, Y. Nys, and S. Rehault-Godbert. 2011. Antimicrobial potential of egg yolk ovoinhibitor, a multidomain Kazal-like inhibitor of chicken egg. Journal of Agricultural and Food Chemistry 59: 12368-12374. doi 10.1021 / jf203339t; Yen, CF, EC Lin, YH Wang, PH Wang, HW Lin, JC Hsu, LS Wu, YN Jiang, and ST Ding. 2009. Abundantly expressed hepatic genes and their differential expression in liver of prelaying and laying geese. Boulin, M., J. Gautron, M. Berges, S. Attucci, G., < / RTI &gt; Poult Sci 88: 1955-1962. Le Blay, V. Labas, Y. Nys, and S. Rehault-Godbert. 2011. Antimicrobial potential of egg yolk ovoinhibitor, a multidomain Kazal-like inhibitor of chicken egg. Journal of Agricultural and Food Chemistry 59: 12368-12374 .; Yen, CF, EC Lin, YH Wang, PH Wang, HW Lin, JC Hsu, LS Wu, YN Jiang, and ST Ding. 2009. Abundantly expressed hepatic genes and their differential expression in liver of prelaying and laying geese. Poult Sci 88: 1955-1962. Ovoinhibitor has also been reported to be expressed in F-sac {Moore, RW, BM Hargis, TE Porter, DY Caldwell, CM Oubre, F. Vandesande, and LR Berghman. 2004. Ovoinhibitor in the chicken bursa of Fabricius: identification, isolation, and localization. Cell and tissue research 317: 247-251. doi 10.1007 / s00441-004-0910-x}. The concentration of ovoinhibitor in a protein is about 1.5% of the total protein {Kinoshita, K., T. Shimogiri, S. Okamoto, K. Yoshizawa, H. Mannen, HR Ibrahim, HH Cheng, and Y. Maeda. 2004. Linkage mapping of chicken ovoinhibitor and ovomucoid genes to chromosome 13. Animal genetics 35: 356-358. doi 10.1111 / j.1365-2052.2004.01159.x}, trypsin, chymotrypsin elastase and the like (Feeney, RE, FC Stevens, and DT Osuga. 1963. The specificities of chicken ovomucoid and ovoinhibitor. The Journal of Biological Chemistry 238: 1415-1418 .; Rehault, S. 2007. Antiproteases. Pages 85-92 in Bioactive Egg Compounds. R. Huopalahti, R. L., M. Anton, and R. Schade eds. Springer Berlin Heidelberg. The synthesis and secretion of this protein is controlled by estrogen and progesterone {Saxena, I., and S. Tayyab. 1997. Protein proteinase inhibitors from avian egg whites. Cell Mol Life Sci 53: 13-23 .; Zhu, Y., M. Wang, H. Lin, Z. Li, and J. Luo. 2001. Identification of estrogen-responsive genes in chick liver. Cell and tissue research 305: 357-363. In this study, the expression of ovoinhibitor was increased in eggs of corticosterone-treated laying hens (experimental group) (spot numbers 6, 7, 8 and 11) ( P <0.07). However, in the control laying hens, the number of spots (number 9) estimated as ovoinhibitor decreased significantly, but the expression of another protein spot (number 11) tended to decrease ( P <0.07). These results suggest that stress increases the expression of ovoinhibitor in the egg white.

TENP 단백질은 처음에 부화중인 닭 배아의 망막과 뇌에만 일시적으로 발현되고, 다른 기관 (즉 심장, 간 및 신장)에는 발현되지 않는 것으로 미루어 배아의 초기 신경발달에 관여하는 것으로 추정되었다 {Yan, R. T., and S. Z. Wang. 1998. Identification and characterization of tenp, a gene transiently expressed before overt cell differentiation during neurogenesis. Journal of neurobiology 34:319-328.}. 그러나 TENP 단백질이 무정난의 난백 {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54:3901-3910.; Mann, K. 2007. The chicken egg white proteome. Proteomics 7:3558-3568.; D'Ambrosio, C., S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M. E. Mendieta, A. Citterio, and P. G. Righetti. 2008. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. J Proteome Res 7:3461-3474.} 과 난황 {Mann, K., and M. Mann. 2008. The chicken egg yolk plasma and granule proteomes. Proteomics 8:178-191.; Farinazzo, A., U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, and P. G. Righetti. 2009. Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. Journal of chromatography. A 1216:1241-1252.} 에도 존재하는 것이 확인됨에 따라 이러한 추정은 사실이 아님이 밝혀졌다. 최근에는 타조의 유정란 및 무정란 난단백에서도 TENP는 발견되었다 {Maehashi, K., M. Matano, T. Irisawa, M. Uchino, Y. Itagaki, K. Takano, Y. Kashiwagi, and T. Watanabe. 2010. Primary Structure of Potential Allergenic Proteins in Emu (Dromaius novaehollandiae) Egg White. Journal of agricultural and food chemistry. doi 10.1021/jf103239v; Takeuchi, J., K. Maehashi, Y. Yasutake, Y. Muramatsu, K. Miyata, T. Watanabe, and T. Nagashima. 2012. Properties of emu (Dromaius novaehollandiae) albumen proteins. Food Research International 49:567-571. doi 10.1016/j.foodres.2012.07.045}. TENP는 건조 난백 단백질의 0.1~0.5%를 차지하며 {Mann, K. 2007. The chicken egg white proteome. Proteomics 7:3558-3568.} 분자량이 약 47-50 kDa 인 단백질이다 {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54:3901-3910.}. 이 단백질의 기능은 여전히 불명하지만 BPI (Bactericidal Permeability-Increasing Protein)가족에 속하는 것으로 미루어 항박테리아 활성을 가지는 것을 추정된다 {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54:3901-3910.}. TENP (스팟 번호 28)은 스트레스 받은 산란계(실험구)에서 유의적으로 감소하였지만 대조구에서는 이 단백질 (스팟 번호 28)의 발현이 유의적으로 증가하였다. TENP 또는 OVAX로 분석된 다른 스팟(번호 18) 에서는 스트레스 후에 난백에서의 발현이 유의적으로 증가되었지만, TENP 또는 IGY-FCU3-4로 분석된 또 다른 스팟(번호 27)은 스트레스 후에 작지만 유의적으로 감소하였다. 그러나 대조구의 산란계에서 유래된 난백에서는 이들 (스팟 번호 18 및 27)의 변화는 발견되지 않았다. The TENP protein was presumed to be involved in the early neural development of the embryo, since it is initially transiently expressed only in the retina and brain of the hatching chicken embryo and not in other organs (i.e., heart, liver and kidney) {Yan, RT , and SZ Wang. 1998. Identification and characterization of tenp, a gene transiently expressed before overt cell differentiation during neurogenesis. Journal of neurobiology 34: 319-328. However, TENP protein is expressed in amniotic white eggs {Guerin-Dubiard, C., Pasco, D. Molle, C. Desert, T. Croguenec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of Agricultural and Food Chemistry 54: 3901-3910 .; Mann, K. 2007. The chicken egg white proteome. Proteomics 7: 3558-3568 .; D'Ambrosio, C., S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M. E. Mendieta, A. Citterio, and P. G. Righetti. 2008. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. J Proteome Res 7: 3461-3474.} And yolk {Mann, K., and M. Mann. 2008. The chicken egg yolk plasma and granule proteomes. Proteomics 8: 178-191 .; Farinazzo, A., U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, and P. G. Righetti. 2009. Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. Journal of chromatography. A 1216: 1241-1252.}, It was found that these estimates were not true. In recent years, TENP has also been found in oocytes of ostrich and amorphous nematodes {Maehashi, K., M. Matano, T. Irisawa, M. Uchino, Y. Itagaki, K. Takano, Y. Kashiwagi, and T. Watanabe. 2010. Primary Structure of Potential Allergenic Proteins in Emu (Dromaius novaehollandiae) Egg White. Journal of agricultural and food chemistry. doi 10.1021 / jf103239v; Takeuchi, J., K. Maehashi, Y. Yasutake, Y. Muramatsu, K. Miyata, T. Watanabe, and T. Nagashima. 2012. Properties of emu (Dromaius novaehollandiae) albumen proteins. Food Research International 49: 567-571. doi 10.1016 / j.foodres.2012.07.045}. TENP accounts for 0.1-0.5% of the dried egg white protein {Mann, K. 2007. The chicken egg white proteome. Proteomics 7: 3558-3568.} A protein with a molecular weight of about 47-50 kDa {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54: 3901-3910. Although the function of this protein is still unknown, it is presumed to have antibacterial activity due to belonging to the family of bacterial permaability-increasing protein (BPI) {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54: 3901-3910. TENP (spot number 28) was significantly decreased in the stressed laying hens (experimental group), but the expression of this protein (spot number 28) was significantly increased in the control group. In another spot (# 18) analyzed by TENP or OVAX, expression in the egg white was significantly increased after stress, but another spot (# 27) analyzed with TENP or IGY-FCU3-4 showed small but significant Respectively. However, no changes in these (spot numbers 18 and 27) were found in egg white derived from the control laying hens.

Ovalbumin-related protein X (OVAX) (스팟 번호 12)은 Gene X protein이라고도 하고 232개의 아미노산으로 구성되며 이 단백질의 유전자는 SERPINB14C로 명명되어 있다 (http://www.uniprot.org/uniprot/P01013). Serpin 명명법에 따르면 ovalbumin, gene Y 및 gene X은 각각 serpinb14, serpinb14b 및 serpinb14c이 된다 {Benarafa, C., and E. Remold-O'Donnell. 2005. The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 102:11367-11372. doi 10.1073/pnas.0502934102}. OVAX는 난백단질에서 존재하며 ovalbumin과 77% 상동성을 가진다 {Poirier, J. C., V. Herve-Grepinet, Y. Nys, and S. Rehault-Godbert. Year. Development of an ELISA for quantifying egg white ovalbumin-related protein X (OVAX) [Conference poster]. Paris.}. 최근 연구에서 OVAX는 "ovalbumin-related protein Y 와 유사 (similar to Ovalbumin-related protein Y; IPI00585021)" 하며 {Mann, K. 2007. The chicken egg white proteome. Proteomics 7:3558-3568.; D'Ambrosio, C., S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M. E. Mendieta, A. Citterio, and P. G. Righetti. 2008. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. J Proteome Res 7:3461-3474.}, 후자는 알려진 cDNA 에 유래된 Ovalbumin-related protein X 완전한 서열을 포함하고 있다 {Mann, K. 2007. The chicken egg white proteome. Proteomics 7:3558-3568.}. 또한 ovalbumin-related protein Y는 난황에서도 존재한다 {Farinazzo, A., U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, and P. G. Righetti. 2009. Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. Journal of chromatography. A 1216:1241-1252.}. 난백에서 OVAX의 평균함량은 약 2.4 mg/mL이며 항미생물활성을 보인다 {Poirier, J. C., V. Herve-Grepinet, Y. Nys, and S. Rehault-Godbert. Year. Development of an ELISA for quantifying egg white ovalbumin-related protein X (OVAX) [Conference poster]. Paris.}. 본 연구에서 스트레스 받은 산란계의 난백에서 OVAX의 발현이 유의적으로 증가되었지만 (스팟 번호 12, 18 및 24) 대조구 산란계의 난백에서는 이러한 변화가 관찰되지 않았다. OVAX 또는 TENP로 분석된 또 다른 스팟(번호 18) 에서도 스트레스 후에 난백에서의 발현이 유의적으로 증가되었다. Ovalbumin-related protein X (OVAX) (spot number 12), also known as Gene X protein, is composed of 232 amino acids and the gene for this protein is named SERPINB14C (http://www.uniprot.org/uniprot/P01013) . According to the Serpin nomenclature, ovalbumin, gene Y and gene X are serpinb14, serpinb14b and serpinb14c, respectively (Benarafa, C., and E. Remold-O'Donnell. 2005. The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 102: 11367-11372. doi 10.1073 / pnas.0502934102}. OVAX is present in canine vaginal epithelium and has 77% homology with ovalbumin {Poirier, J. C., V. Herve-Grepinet, Y. Nys, and S. Rehault-Godbert. Year. Development of an ELISA for quantifying egg white ovalbumin-related protein X (OVAX) [Conference poster]. Paris.}. In a recent study, OVAX was "similar to ovalbumin-related protein Y (IPI00585021)" {Mann, K. 2007. The chicken egg white proteome. Proteomics 7: 3558-3568 .; D'Ambrosio, C., S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M. E. Mendieta, A. Citterio, and P. G. Righetti. 2008. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. J Proteome Res 7: 3461-3474.}, The latter containing a complete sequence of the Ovalbumin-related protein X derived from a known cDNA {Mann, K. 2007. The chicken egg white proteome. Proteomics 7: 3558-3568. Also, ovalbumin-related protein Y is also present in the yolk sac {Farinazzo, A., U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, and P. G. Righetti. 2009. Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. Journal of chromatography. A 1216: 1241-1252. The average content of OVAX in egg white is about 2.4 mg / mL and exhibits antimicrobial activity {Poirier, J. C., V. Herve-Grepinet, Y. Nys, and S. Rehault-Godbert. Year. Development of an ELISA for quantifying egg white ovalbumin-related protein X (OVAX) [Conference poster]. Paris.}. In this study, OVAX expression was significantly increased in stressed laying hens (spot numbers 12, 18, and 24), but these changes were not observed in control egg laying hens. In another spot (No. 18) analyzed by OVAX or TENP, expression in the egg white was significantly increased after stress.

지방산은 에너지, 필수지방산을 제공하는 영양소로서 뿐만 아니라, 세포막의 구성소, 및 대사조절을 위한 신호전달의 매개체로서 중요하다 {Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature 444:860-867.; Kalish, B. T., E. M. Fallon, and M. Puder. 2012. A tutorial on fatty acid biology. JPEN. Journal of parenteral and enteral nutrition 36:380-388. doi 10.1177/0148607112449650; Saltiel, A. R., and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806.}. 지방산은 소수성이기 때문에 생체액에서 용해되고 대사를 위해 이동하기 위해서는 유리 지방산의 상태로 존재하기보다는 지방산결합단백질들과 결합된 상태로 존재할 것으로 생각되고 있다. Extracellular fatty acid-binding protein (Ex-FABP) (스팟 번호 29)은 닭에서 처음으로 발견되었으며, protein Ch21, quiescence-specific protein 또는 p20K로 (http://www.uniprot.org/uniprot/P21760) 또는 chondrogenesis-associated lipocalin로 불리며 {Cancedda, F. D., M. Malpeli, C. Gentili, V. Di Marzo, P. Bet, M. Carlevaro, S. Cermelli, and R. Cancedda. 1996. The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. The Journal of biological chemistry 271:20163-20169.}, chondrogenesis-associated lipocalin의 superfamily에 속한다. 이 구성원들은 분자량이 약 20 kDa 이며 20-30% 상동성을 가진다(Larsen et al., 1999). 이 단백질은 발달중인 닭 배아의 뼈와 연골에서 처음으로 동정되었으며 {Cancedda, F. D., B. Dozin, F. Rossi, F. Molina, R. Cancedda, A. Negri, and S. Ronchi. 1990. The Ch21 protein, developmentally regulated in chick embryo, belongs to the superfamily of lipophilic molecule carrier proteins. The Journal of biological chemistry 265:19060-19064.}, 이후 근섬유와 혈액의 과립성백혈구 (granulocytes)에서도 발견되었다 {Descalzi Cancedda, F., B. Dozin, B. Zerega, S. Cermelli, and R. Cancedda. 2000. Ex-FABP: a fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis. Biochimica et biophysica acta 1482:127-135.}. Ex-FABP 는 세포외액과 혈청에서 긴 긴사슬 불포화지방산지방산 (짧은 사슬지방산에는 결합하지 않음) 에 결합하여 운반할 수 있다 {Cancedda, F. D., M. Malpeli, C. Gentili, V. Di Marzo, P. Bet, M. Carlevaro, S. Cermelli, and R. Cancedda. 1996. The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. The Journal of biological chemistry 271:20163-20169.}. Ex-FABP는 심장의 발달, 지방산운반 및 지질대사 등에 관여하며 지방축적에서 오는 지질독성으로부터 세포를 보호하는 세포생존단백질로 작용할 가능성이 있다 {Gentili, C., G. Tutolo, B. Zerega, E. Di Marco, R. Cancedda, and F. D. Cancedda. 2005. Acute phase lipocalin Ex-FABP is involved in heart development and cell survival. Journal of cellular physiology 202:683-689. doi 10.1002/jcp.20165}. Ex-FABP는 닭의 간에서 발현되며 염증유발인자 (LPS; IL6)에 의해 발현이 증가되고 이러한 발현은 항염증인자의 처리에 의해 감소되어 급성단계단백질과 같은 역할을 한다 {Cermelli, S., B. Zerega, M. Carlevaro, C. Gentili, B. Thorp, C. Farquharson, R. Cancedda, and F. D. Cancedda. 2000. Extracellular fatty acid binding protein (Ex-FABP) modulation by inflammatory agents: "physiological" acute phase response in endochondral bone formation. European journal of cell biology 79:155-164.; Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196:464-473. doi 10.1002/jcp.10310}. Ex-FABP의 발현은 Ex-FABP에 대한 항체 처리의 의해 감소되며, Ex-FABP의 유전자 발현을 억제했을 때 세포사가 증가하였고, 세포활성이 감소되었으며 분화와 증식이 억제되었다 {Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196:464-473. doi 10.1002/jcp.10310}. 따라서 Ex-FABP는 기본적인 구성생존단백질 (constitutive survival protein)로서의 역할이 제안되었다 {Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196:464-473. doi 10.1002/jcp.10310}. SNP분석을 통해서 Ex-FABP는 닭에서 복부지방중량과 관계 있으며 복부지방특성을 조절하는 주된 유전자로 제안되었다 {Qiu, X. M., N. Li, X. M. Deng, Z. X. Lian, Q. G. Wang, X. L. Wang, and C. X. Wu. 2005. Study of Ex-FABP as a main candidate gene on abdominal fat traits in chicken. Prog Biochem Biophys 32:429-434.}. 3주령의 백색레그혼을 E. coli로 감염 처리한 연구에서 Ex-FABP의 유전자발현은 대조구에 비해 폐와 간과 비장에서 유의적으로 증가하였고 특히 폐와 간에서의 증가는 현저하였다 {Garenaux, A., S. Houle, B. Folch, G. Dallaire, M. Truesdell, F. Lepine, N. Doucet, and C. M. Dozois. 2012. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Veterinary immunology and immunopathology. doi 10.1016/j.vetimm.2012.09.018}. 유사한 연구 결과는 다른 연구자들에 의해서도 보고되었다 {Cermelli, S., B. Zerega, M. Carlevaro, C. Gentili, B. Thorp, C. Farquharson, R. Cancedda, and F. D. Cancedda. 2000. Extracellular fatty acid binding protein (Ex-FABP) modulation by inflammatory agents: "physiological" acute phase response in endochondral bone formation. European journal of cell biology 79:155-164.; Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196:464-473. doi 10.1002/jcp.10310}. 또한 Ex-FABP는 철의 이용이 제한되는 in vitro 연구 조건에서 E. coli의 성장을 억제하였다 {Garenaux, A., S. Houle, B. Folch, G. Dallaire, M. Truesdell, F. Lepine, N. Doucet, and C. M. Dozois. 2012. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Veterinary immunology and immunopathology. doi 10.1016/j.vetimm.2012.09.018}. Fatty acids are important not only as nutrients that provide energy, essential fatty acids, but also as a mediator of signal transduction for constitutive and metabolic regulation of cell membranes {Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature 444: 860-867 .; Kalish, B. T., E. M. Fallon, and M. Puder. 2012.A tutorial on fatty acid biology. JPEN. Journal of parenteral and enteral nutrition 36: 380-388. doi 10.1177 / 0148607112449650; Saltiel, A. R., and C. R. Kahn. 2001. Insulin signaling and regulation of glucose and lipid metabolism. Nature 414: 799-806. Since fatty acids are hydrophobic, they are believed to exist in the state of being bound to fatty acid-binding proteins rather than being present in the state of free fatty acids in order to dissolve in biological fluids and migrate for metabolism. Extracellular fatty acid-binding protein (Ex-FABP) (spot number 29) was first found in chickens and was identified as protein Ch21, quiescence-specific protein or p20K (http://www.uniprot.org/uniprot/P21760) or and is called chondrogenesis-associated lipocalin {Cancedda, FD, M. Malpeli, C. Gentili, V. Di Marzo, P. Bet, M. Carlevaro, S. Cermelli, and R. Cancedda. 1996. The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. The Journal of Biological Chemistry 271: 20163-20169.), Belonging to the superfamily of chondrogenesis-associated lipocalin. These members have a molecular weight of about 20 kDa and are 20-30% homologous (Larsen et al., 1999). This protein was first identified in bone and cartilage of developing chicken embryos. {Cancedda, F. D., B. Dozin, F. Rossi, F. Molina, R. Cancedda, A. Negri, and S. Ronchi. 1990. The Ch21 protein, developmentally regulated in chick embryo, belongs to the superfamily of lipophilic molecule carrier proteins. In addition, granulocytes have been found in muscle fibers and blood {Descalzi Cancedda, F., B. Dozin, B. Zerega, S. Cermelli, and R. Cancedda . 2000. Ex-FABP: a fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis. Biochimica et biophysica acta 1482: 127-135. Ex-FABP can bind and transport long-chain unsaturated fatty acids (not conjugated to short chain fatty acids) in the extracellular fluid and serum {Cancedda, FD, M. Malpeli, C. Gentili, V. Di Marzo, P Bet, M. Carlevaro, S. Cermelli, and R. Cancedda. 1996. The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. The Journal of Biological Chemistry 271: 20163-20169. Ex-FABP is involved in cardiac development, fatty acid transport and lipid metabolism and is likely to function as a cell viable protein that protects cells from lipid toxicity from fat accumulation {Gentili, C., G. Tutolo, B. Zerega, E Di Marco, R. Cancedda, and FD Cancedda. 2005. Acute phase lipocalin Ex-FABP is involved in heart development and cell survival. Journal of cellular physiology 202: 683-689. doi 10.1002 / jcp.20165}. Ex-FABP is expressed in chicken liver and its expression is increased by inflammation inducer (LPS; IL6), and this expression is reduced by the treatment of anti-inflammatory agent and plays the role of acute phase protein {Cermelli, S., B Zerega, M. Carlevaro, C. Gentili, B. Thorp, C. Farquharson, R. Cancedda, and FD Cancedda. 2000. Extracellular fatty acid binding protein (Ex-FABP) modulation by inflammatory agents: "physiological" acute phase response in endochondral bone formation. European Journal of Cell Biology 79: 155-164 .; Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196: 464-473. doi 10.1002 / jcp.10310}. The expression of Ex-FABP was reduced by antibody treatment to Ex-FABP, and when the expression of Ex-FABP was inhibited, cell death was increased, cell activity was decreased, and differentiation and proliferation were inhibited {Di Marco, E. , N. Sessarego, B. Zerega, R. Cancedda, and FD Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196: 464-473. doi 10.1002 / jcp.10310}. Thus, Ex-FABP has been suggested as a constitutive survival protein (Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196: 464-473. doi 10.1002 / jcp.10310}. Ex-FABP was associated with abdominal fat weight in chickens and was suggested as the main gene controlling abdominal fat characteristics by SNP analysis (Qiu, XM, N. Li, XM Deng, ZX Lian, QG Wang, XL Wang, and CX Wu. 2005. Study of Ex-FABP as a main candidate gene on abdominal fat traits in chicken. Prog Biochem Biophys 32: 429-434. In a study in which 3-week-old white leghorn was infected with E. coli, gene expression of Ex-FABP was significantly increased in lung, liver and spleen compared with control, especially in lung and liver (Garenaux, A. , S. Houle, B. Folch, G. Dallaire, M. Truesdell, F. Lepine, N. Doucet, and CM Dozois. 2012. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Veterinary immunology and immunopathology. doi 10.1016 / j. Similar results have also been reported by other investigators {Cermelli, S., B. Zerega, M. Carlevaro, C. Gentili, B. Thorp, C. Farquharson, R. Cancedda, and F. D. Cancedda. 2000. Extracellular fatty acid binding protein (Ex-FABP) modulation by inflammatory agents: "physiological" acute phase response in endochondral bone formation. European Journal of Cell Biology 79: 155-164 .; Di Marco, E., N. Sessarego, B. Zerega, R. Cancedda, and F. D. Cancedda. 2003. Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. Journal of cellular physiology 196: 464-473. doi 10.1002 / jcp.10310}. In addition, Ex-FABP inhibited the growth of E. coli in in vitro studies with limited iron utilization (Garenaux, A., S. Houle, B. Folch, G. Dallaire, M. Truesdell, F. Lepine, N. Doucet, and CM Dozois. 2012. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Veterinary immunology and immunopathology. doi 10.1016 / j.

본 연구에서는, corticosterone으로 처리된 산란계(실험구)로부터 생산된 계란의 난백에서 Ex-FABP의 발현이 유의적 (P<0.01) 으로 감소하였지만 대조구에서는 그러한 변화가 검출되지 않았다. 비록 난백에서 Ex-FABP의 발현과 폐나 간에서 Ex-FABP의 유전자발현과의 사이에 인과관계가 연구되지는 않았지만, 본 연구의 결과는 감염된 닭의 기관 (예를 들면, 폐, 간, 및 비장)에서 Ex-FABP 유전자의 발현과 난백에서의 Ex-FABP의 발현은 반비례할 수 있다는 것을 시사한다. 다른 관점에서 현재의 결과는 스트레스에 의해 난관에서 Ex-FABP 유전자의 발현이 감소되고 그 결과 난백으로의 Ex-FABP의 분비가 감소되었을 수 있음을 시사한다. 이러한 관점에서 계란의 보관 온도가 증가함에 따라 Ex-FABP의 전구체의 함량이 감소한다는 최근의 proteomics 연구 결과 {Qiu, N., M. Ma, L. Zhao, W. Liu, Y. Li, and Y. Mine. 2012. Comparative Proteomic Analysis of Egg White Proteins under Various Storage Temperatures. Journal of agricultural and food chemistry 60:7746-7753. doi 10.1021/jf302100m}는 Ex-FABP가 난질의 평가에 사용될 수 있음을 시사한다. In this study, expression of Ex-FABP was significantly ( P <0.01) decreased in eggs of egg produced from corticosterone-treated laying hens (experimental group) but no such changes were detected in the control group. Although no causal relationship between Ex-FABP expression in the egg white and Ex-FABP gene expression in the lung and liver has been studied, the results of this study suggest that the organ of the infected chicken (eg lung, liver, ), The expression of Ex-FABP gene and the expression of Ex-FABP in egg white may be inversely proportional. From another point of view, current results suggest that stress may decrease the expression of Ex-FABP gene in the fallopian tube and result in decreased secretion of Ex-FABP into the egg white. From this viewpoint, recent proteomics studies that the content of the precursor of Ex-FABP decreases as the egg storage temperature increases {Qiu, N., M. Ma, L. Zhao, W. Liu, Y. Li, and Y Mine. 2012. Comparative Proteomic Analysis of Egg White Proteins under Various Storage Temperatures. Journal of Agricultural and Food Chemistry 60: 7746-7753. doi 10.1021 / jf302100m} suggest that Ex-FABP can be used to evaluate the quality of the egg.

Chondrogenesis associated lipocalin (CAL)은 Lipocalin-type prostaglandin D synthase 으로도 보고되었고, 닭에서 처음으로 발견되었다. 유전자의 L-PGDS 이며 이 단백질은 185개의 아미노산서열을 가지며, calycin superfamily/ Lipocalin family에 속한다 (http://www.uniprot.org/uniprot/Q8QFM7). Lipocalin 단백질가족은 Ex-FABP, chondrogenesis-related lipocalin β (CALβ) 및 chondrogenesis-related lipocalin γ (CALγ)를 포함하며 {Pagano, A., P. Giannoni, A. Zambotti, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2002. CALbeta, a novel lipocalin associated with chondrogenesis and inflammation. European journal of cell biology 81:264-272.; Pagano, A., R. Crooijmans, M. Groenen, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2003. A chondrogenesis-related lipocalin cluster includes a third new gene, CALgamma. Gene 305:185-194.}, 하나의 유전체 다발에서 각각의 유전자로 나누어진다. chondrogenesis associated lipocalin 은 연골내골화 동안에 연골세포 성숙과정의 비대화 단계에서 특이적으로 발현되며, 면역자극으로 유도될 수 있고 간과 뇌에서 발현된다 (http://www.ebi.ac.uk/ena/data/view/AAL99254). Pagano 등은 닭 배아의 CALβ를 발견하였다 {Pagano, A., P. Giannoni, A. Zambotti, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2002. CALbeta, a novel lipocalin associated with chondrogenesis and inflammation. European journal of cell biology 81:264-272.}. CALβ는 닭 배아의 심장에서 높게 발현되며 좀 덜한 정도로 골격근, 폐 및 간에서 발현되며 위, 뇌 및 피부에서 가장 낮게 발현된다. 또한 CALβ는 연골의 생성 동안에 분화가 끝난 세포에서 거의 발현되지 않았지만 Ex-FABP는 약하게 발현되었다. 반면에 비대화 단계에서 CALβ는 약하게 발현되었지만 Ex-FABP는 강하게 발현되었다. LPS 처리에 대해 분화가 끝난 연골세포에서 Ex-FABP는 강하게 발현되었고 비대화단계에서 더 강하게 발현되었지만 전자에서 CALβ는 약하게 후자에서는 좀더 강하게 발현되었다 (Ex-FAB의 약 반정도) {Pagano, A., P. Giannoni, A. Zambotti, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2002. CALbeta, a novel lipocalin associated with chondrogenesis and inflammation. European journal of cell biology 81:264-272.}. 이러한 사실은 염증자극에 대한 Ex-FABP와 CALβ의 반응이 다르다는 것을 시사한다. CALγ은 닭 배아의 간, 뇌 및 뼈에서 높은 농도로 발현되며 닭 배아의 뼈형성에 있어서 Ex-FABP와 상승작용하는 것으로 알려져 있다 {Pagano, A., R. Crooijmans, M. Groenen, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2003. A chondrogenesis-related lipocalin cluster includes a third new gene, CALgamma. Gene 305:185-194.}. 이 단백질의 존재는 무정란의 난백에서 처음으로 보고되었다 {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54:3901-3910.}. 한편, 3주령의 백색레그혼을 E. coli로 감염 처리한 연구에서 CALβ와 CALγ의 유전자발현은 대조구에 비해 폐와 간과 비장에서 유의적으로 증가하였지만 그들의 발현 양상은 조직에 따라 달랐다 {Garenaux, A., S. Houle, B. Folch, G. Dallaire, M. Truesdell, F. Lepine, N. Doucet, and C. M. Dozois. 2012. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Veterinary immunology and immunopathology. doi 10.1016/j.vetimm.2012.09.018}. 즉, CALβ는 폐와 간에서 15배 이상 증가하였지만 비장에서는 변화가 없었다. CALγ 발현의 변화는 폐에서는 발견되지 않았지만 폐와 간에서 적어도 4.8배 이상 증가하였다. Chondrogenesis associated lipocalin (CAL) was also reported as Lipocalin-type prostaglandin D synthase and was first detected in chickens. This protein has 185 amino acid sequences and belongs to the calycin superfamily / Lipocalin family (http://www.uniprot.org/uniprot/Q8QFM7). The lipocalin family of proteins includes Ex-FABP, chondrogenesis-related lipocalin beta (CAL beta) and chondrogenesis-related lipocalin gamma (CAL gamma) {Pagano, A., P. Giannoni, A. Zambotti, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2002. CALbeta, a novel lipocalin associated with chondrogenesis and inflammation. European journal of cell biology 81: 264-272 .; Pagano, A., R. Crooijmans, M. Groenen, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2003. A chondrogenesis-related lipocalin cluster includes a third new gene, CALgamma. Gene 305: 185-194.}, Divided into individual genes in a single bundle of genomes. Chondrogenesis associated lipocalin is specifically expressed during the hypertrophic phase of chondrocyte maturation during intra-osteochondral ossification, can be induced by immunostimulation and is expressed in liver and brain (http://www.ebi.ac.uk/ena/data / view / AAL99254). Pagano et al. Found CALβ in chicken embryos {Pagano, A., P. Giannoni, A. Zambotti, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2002. CALbeta, a novel lipocalin associated with chondrogenesis and inflammation. European journal of cell biology 81: 264-272.}. CALβ is highly expressed in the heart of chicken embryos and is expressed to a lesser extent in skeletal muscles, lungs and liver and is the lowest expression in stomach, brain and skin. In addition, CALβ was scarcely expressed in the differentiated cells during cartilage production, but ex-FABP was weakly expressed. On the other hand, CALβ was weakly expressed in the hypertrophic phase, but Ex-FABP was strongly expressed. Ex-FABP was strongly expressed in the differentiated chondrocytes and more strongly expressed in the non-expanded phase than in the LPS treatment, but CALβ was weakly expressed in the former and more strongly expressed in the latter (about half of the Ex-FAB) {Pagano, A., P. Giannoni, A. Zambotti, N. Randazzo, B. Zerega, R. Cancedda, and B. Dozin. 2002. CALbeta, a novel lipocalin associated with chondrogenesis and inflammation. European journal of cell biology 81: 264-272.}. This suggests that the responses of Ex-FABP and CALβ to inflammatory stimuli are different. CALγ is expressed at high concentrations in liver, brain and bone of chicken embryos and is known to synergize with Ex-FABP in bone formation of chicken embryos {Pagano, A., Crooijmans, M. Groenen, N. Randazzo , B. Zerega, R. Cancedda, and B. Dozin. 2003. A chondrogenesis-related lipocalin cluster includes a third new gene, CALgamma. Gene 305: 185-194. The presence of this protein has been reported for the first time in the ovulation of daunting {Guerin-Dubiard, C., M. Pasco, D. Molle, C. Desert, T. Croguennec, and F. Nau. 2006. Proteomic analysis of hen egg white. Journal of agricultural and food chemistry 54: 3901-3910. On the other hand, the expression of CALβ and CALγ gene in the 3 week-old white leghorn infected with E. coli was significantly increased in the lung, liver and spleen compared to the control, but their expression patterns were different according to the tissues {Garenaux, A. , S. Houle, B. Folch, G. Dallaire, M. Truesdell, F. Lepine, N. Doucet, and CM Dozois. 2012. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Veterinary immunology and immunopathology. doi 10.1016 / j. That is, CALβ increased more than 15-fold in the lung and liver, but not in the spleen. Changes in CALγ expression were not detected in the lung but increased by at least 4.8 fold in the lung and liver.

본 연구에서 corticosterone 처리된 산란계(실험구)의 난백에서 CAL로 추정되는 단백질 (스팟 번호 19)의 발현이 유의적 (P < 0.05) 으로 감소하였지만 대조구에서는 오히려 증가하는 경향을 보였다 (P < 0.09). 그러나 또 다른 단백질 스팟 (번호 30)에서는 대조구 및 실험구 공히 변화가 없었다. 이러한 결과는 스트레스가 닭 배아의 뼈 형성에 영향을 미칠 수 있다는 것을 시사한다. 그러나 본 연구에서는 이들 스팟들(번호 19 및 30)속에 포함된 미량의 단백질을 검출할 수 있는 분석기기의 검출한계 때문에 단백질이 동정되지 못했으며 따라서 이들이 CALβ 인지 혹은 CALγ 인지 검정되지 않았다.In the present study, the expression of protein (spot number 19) estimated to be CAL in egg white of corticosterone-treated laying hens (experimental group) decreased significantly ( P <0.05) but increased in control group ( P <0.09) . However, there was no change in control and experiment in another protein spot (No. 30). These results suggest that stress may affect bone formation in chicken embryos. However, in this study, proteins were not identified because of the limit of detection of analytes that could detect trace amounts of proteins contained in these spots (Nos. 19 and 30), and therefore they were not tested for CALβ or CALγ.

신선란에서 난황 단백질은 총난황 무게의 약 16%를 차지한다. 난황의 Livetin 분획은 난황단백질의 일종이며 α-, β- 및 γ- livetin을 포함한다. 난황의 α-livetin과 닭 혈청 알부민은 같은 것이며, β- livetin은 분자량 45 kDa의 α-2-glycoprotein으로 알려져 있다. 세 번째 단백질 γ- livetin 은 IgY이며 분자량이 약 167 kDa로 알려져 있다. 조류의 IgY는 포유류와의 IgG와 IgE의 선조와 밀접하게 연계되어 있다 {Taylor, A. I., S. M. Fabiane, B. J. Sutton, and R. A. Calvert. 2009. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 48:558-562. doi 10.1021/bi8019993}. IgY는 모체에서 계란으로 부여되는 피동면역의 형태로, 혈액에서 난황으로 수용체에 의해 운송되며 이 양은 혈중 난황의 농도에 연계되어 있는 듯하다. IgY의 구조 중에서 정상적인 Fc 부분과 연결지역은 IgY가 혈청에서 난황으로 수송되는 데 필수불가결하다. 산란계의 정맥에 투여된 human IgG가 난황에서 최대로 분비되는 데는 약 5일정도 소요된다 {Mohammed, S. M., S. Morrison, L. Wims, K. R. Trinh, A. G. Wildeman, J. Bonselaar, and R. J. Etches. 1998. Deposition of genetically engineered human antibodies into the egg yolk of hens. Immunotechnology 4:115-125.}. 이 저자들은 난백에서 IgG를 검출하지 못했지만 본 연구에서는 IGY-FCU3-4 단백질의 존재가 난백에서 확인되었다. 닭에서 IGY-FCU3-4의 조각은 두 개의 사슬 (A 및 B)로 구성되어 있으며 이들은 각각 231개의 아미노산을 가진 단백질이다 (PDB: 2W59_A & 2W59_B) {Taylor, A. I., S. M. Fabiane, B. J. Sutton, and R. A. Calvert. 2009. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 48:558-562. doi 10.1021/bi8019993}. 따라서 난백에서 IGY-FCU3-4의 발현이 적다는 것은, 비록 본 연구에서 난황에서의 IgY 함량이 동정되지는 않았지만 스트레스 받은 닭의 계란에서 면역항체의 함량이 적을 수 있다는 것을 뜻하며 종란의 경우 부화되었을 때 질병에 저항성이 약한 병아리 생산의 원인이 될 수 있다. Egg yolk protein in fresh eggs accounts for about 16% of total yolk weight. The Livetin fraction of the egg yolk is a type of egg yolk protein and contains α-, β- and γ-livetin. Egg yolk α-livetin and chicken serum albumin are the same, and β-livetin is known as α-2-glycoprotein with a molecular mass of 45 kDa. The third protein, γ-livetin, is IgY and is known to have a molecular weight of about 167 kDa. Algae IgY is closely related to the ancestors of IgG and IgE to mammals {Taylor, A. I., S. M. Fabiane, B. J. Sutton, and R. A. Calvert. 2009. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 48: 558-562. doi 10.1021 / bi8019993}. IgY is the form of passive immunity conferred by the egg in the mother, transported by the receptor in the yolk to the blood, and this amount seems to be linked to the concentration of yolk in the blood. In the structure of IgY, the normal Fc portion and linkage region are indispensable for IgY to be transported from the serum to yolk. The human IgG administered in the vein of the laying hens takes about 5 days to be maximally secreted from the egg yolk {Mohammed, S. M., Morrison, L. Wims, K. R. Trinh, A. G. Wildeman, J. Bonselaar, and R. J. Etches. 1998. Deposition of genetically engineered human antibodies into the egg yolk of hens. Immunotechnology 4: 115-125. These authors did not detect IgG in egg white, but in this study the presence of IGY-FCU3-4 protein was confirmed in egg white. In chicken, the fragment of IGY-FCU3-4 consists of two chains (A and B), 231 amino acids each (PDB: 2W59_A & 2W59_B) {Taylor, AI, SM Fabiane, BJ Sutton, and RA Calvert. 2009. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 48: 558-562. doi 10.1021 / bi8019993}. Thus, the low expression of IGY-FCU3-4 in egg white suggests that although the IgG content in egg yolk was not identified in this study, the amount of immunized antibody in stressed chicken eggs may be small, It can be a cause of chick production that is less resistant to disease.

본 연구의 결과는 corticosterone으로 처리 (스트레스)가 난 단백질의 발현에 영향을 미칠 수 있다는 증거를 처음으로 제시한다. 계란의 질은 다양한 요인에 의해 영향 받을 수 있다. 본 연구의 결과는 계란의 보관조건 {Qiu, N., M. Ma, L. Zhao, W. Liu, Y. Li, and Y. Mine. 2012. Comparative Proteomic Analysis of Egg White Proteins under Various Storage Temperatures. Journal of agricultural and food chemistry 60:7746-7753. doi 10.1021/jf302100m}, 사료와 같은 영양적인 요인 {Kirunda, D. F., S. E. Scheideler, and S. R. McKee. 2001. The efficacy of vitamin E (DL-alpha-tocopheryl acetate) supplementation in hen diets to alleviate egg quality deterioration associated with high temperature exposure. Poult Sci 80:1378-1383.} 뿐만 아니라 그 외의 사양조건, 즉 환경 스트레스가 직접 난 단백질의 발현에 영향을 미칠 수 있다는 것을 제시한다. 이것은 다시 말해서 환경에 의해 난 단백질을 구성하는 개별 단백질의 함량이 변할 수 있다는 것을 의미하며 따라서 환경 조건이 난의 품질에 직접적으로 영향을 미칠 수 있다는 것을 나타낸다. The results of this study first provide evidence that treatment with corticosterone (stress) may affect the expression of proteins. The quality of eggs can be affected by various factors. The results of this study are summarized as follows: 1) the storage conditions of eggs {Qiu, N., M. Ma, L. Zhao, W. Liu, Y. Li, and Y. Mine. 2012. Comparative Proteomic Analysis of Egg White Proteins under Various Storage Temperatures. Journal of Agricultural and Food Chemistry 60: 7746-7753. doi 10.1021 / jf302100m}, nutritional factors such as feed {Kirunda, D. F., S. E. Scheideler, and S. R. McKee. 2001. The efficacy of vitamin E (DL-alpha-tocopheryl acetate) supplementation in hen diets to alleviate egg quality deterioration associated with high temperature exposure. Poult Sci 80: 1378-1383.} It also suggests that other specification conditions, environmental stress, may affect the expression of direct egg protein. This means that the content of the individual proteins constituting the protein by the environment can change, thus indicating that the environmental conditions can directly affect the quality of the egg.

이러한 단백질은 난질의 평가에 이용될 수 있을 뿐만 아니라 나아가 산란 당시 산란계의 스트레스 상태를 추정하는 지표로 이용될 수 있다. 따라서 계란의 난 단백질을 검정함으로써 사후에 사육단계의 환경에 대한 동물복지를 추정할 수 있는 표식으로 활용될 수 있다. These proteins not only can be used for the evaluation of egg quality, but also can be used as an index for estimating the stress state of laying hens at the time of scattering. Therefore, it can be used as a marker to estimate the animal welfare for the environment at the post-breeding stage by assaying the egg protein of the egg.

따라서, 본 발명의 난 단백질은 가금류의 환경 스트레스에 특이적인 바이오마커 단백질로서 활용될 수 있다.Therefore, the egg protein of the present invention can be utilized as a biomarker protein specific to environmental stress of poultry.

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Biomarker protein specific for environmental stress of poultry <130> P12-0044 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 472 <212> PRT <213> Ovoinhibitor <400> 1 Met Arg Thr Ala Arg Gln Phe Val Gln Val Ala Leu Ala Leu Cys Cys 1 5 10 15 Phe Ala Asp Ile Ala Phe Gly Ile Glu Val Asn Cys Ser Leu Tyr Ala 20 25 30 Ser Gly Ile Gly Lys Asp Gly Thr Ser Trp Val Ala Cys Pro Arg Asn 35 40 45 Leu Lys Pro Val Cys Gly Thr Asp Gly Ser Thr Tyr Ser Asn Glu Cys 50 55 60 Gly Ile Cys Leu Tyr Asn Arg Glu His Gly Ala Asn Val Glu Lys Glu 65 70 75 80 Tyr Asp Gly Glu Cys Arg Pro Lys His Val Met Ile Asp Cys Ser Pro 85 90 95 Tyr Leu Gln Val Val Arg Asp Gly Asn Thr Met Val Ala Cys Pro Arg 100 105 110 Ile Leu Lys Pro Val Cys Gly Ser Asp Ser Phe Thr Tyr Asp Asn Glu 115 120 125 Cys Gly Ile Cys Ala Tyr Asn Ala Glu His His Thr Asn Ile Ser Lys 130 135 140 Leu His Asp Gly Glu Cys Lys Leu Glu Ile Gly Ser Val Asp Cys Ser 145 150 155 160 Lys Tyr Pro Ser Thr Val Ser Lys Asp Gly Arg Thr Leu Val Ala Cys 165 170 175 Pro Arg Ile Leu Ser Pro Val Cys Gly Thr Asp Gly Phe Thr Tyr Asp 180 185 190 Asn Glu Cys Gly Ile Cys Ala His Asn Ala Glu Gln Arg Thr His Val 195 200 205 Ser Lys Lys His Asp Gly Lys Cys Arg Gln Glu Ile Pro Glu Ile Asp 210 215 220 Cys Asp Gln Tyr Pro Thr Arg Lys Thr Thr Gly Gly Lys Leu Leu Val 225 230 235 240 Arg Cys Pro Arg Ile Leu Leu Pro Val Cys Gly Thr Asp Gly Phe Thr 245 250 255 Tyr Asp Asn Glu Cys Gly Ile Cys Ala His Asn Ala Gln His Gly Thr 260 265 270 Glu Val Lys Lys Ser His Asp Gly Arg Cys Lys Glu Arg Ser Thr Pro 275 280 285 Leu Asp Cys Thr Gln Tyr Leu Ser Asn Thr Gln Asn Gly Glu Ala Ile 290 295 300 Thr Ala Cys Pro Phe Ile Leu Gln Glu Val Cys Gly Thr Asp Gly Val 305 310 315 320 Thr Tyr Ser Asn Asp Cys Ser Leu Cys Ala His Asn Ile Glu Leu Gly 325 330 335 Thr Ser Val Ala Lys Lys His Asp Gly Arg Cys Arg Glu Glu Val Pro 340 345 350 Glu Leu Asp Cys Ser Lys Tyr Lys Thr Ser Thr Leu Lys Asp Gly Arg 355 360 365 Gln Val Val Ala Cys Thr Met Ile Tyr Asp Pro Val Cys Ala Thr Asn 370 375 380 Gly Val Thr Tyr Ala Ser Glu Cys Thr Leu Cys Ala His Asn Leu Glu 385 390 395 400 Gln Arg Thr Asn Leu Gly Lys Arg Lys Asn Gly Arg Cys Glu Glu Asp 405 410 415 Ile Thr Lys Glu His Cys Arg Glu Phe Gln Lys Val Ser Pro Ile Cys 420 425 430 Thr Met Glu Tyr Val Pro His Cys Gly Ser Asp Gly Val Thr Tyr Ser 435 440 445 Asn Arg Cys Phe Phe Cys Asn Ala Tyr Val Gln Ser Asn Arg Thr Leu 450 455 460 Asn Leu Val Ser Met Ala Ala Cys 465 470 <210> 2 <211> 232 <212> PRT <213> Ovalbumin-related protein X <400> 2 Gln Ile Lys Asp Leu Leu Val Ser Ser Ser Thr Asp Leu Asp Thr Thr 1 5 10 15 Leu Val Leu Val Asn Ala Ile Tyr Phe Lys Gly Met Trp Lys Thr Ala 20 25 30 Phe Asn Ala Glu Asp Thr Arg Glu Met Pro Phe His Val Thr Lys Gln 35 40 45 Glu Ser Lys Pro Val Gln Met Met Cys Met Asn Asn Ser Phe Asn Val 50 55 60 Ala Thr Leu Pro Ala Glu Lys Met Lys Ile Leu Glu Leu Pro Phe Ala 65 70 75 80 Ser Gly Asp Leu Ser Met Leu Val Leu Leu Pro Asp Glu Val Ser Asp 85 90 95 Leu Glu Arg Ile Glu Lys Thr Ile Asn Phe Glu Lys Leu Thr Glu Trp 100 105 110 Thr Asn Pro Asn Thr Met Glu Lys Arg Arg Val Lys Val Tyr Leu Pro 115 120 125 Gln Met Lys Ile Glu Glu Lys Tyr Asn Leu Thr Ser Val Leu Met Ala 130 135 140 Leu Gly Met Thr Asp Leu Phe Ile Pro Ser Ala Asn Leu Thr Gly Ile 145 150 155 160 Ser Ser Ala Glu Ser Leu Lys Ile Ser Gln Ala Val His Gly Ala Phe 165 170 175 Met Glu Leu Ser Glu Asp Gly Ile Glu Met Ala Gly Ser Thr Gly Val 180 185 190 Ile Glu Asp Ile Lys His Ser Pro Glu Ser Glu Gln Phe Arg Ala Asp 195 200 205 His Pro Phe Leu Phe Leu Ile Lys His Asn Pro Thr Asn Thr Ile Val 210 215 220 Tyr Phe Gly Arg Tyr Trp Ser Pro 225 230 <210> 3 <211> 440 <212> PRT <213> TENP <400> 3 Met Gly Ala Leu Leu Ala Leu Leu Asp Pro Val Gln Pro Thr Arg Ala 1 5 10 15 Pro Asp Cys Gly Gly Ile Leu Thr Pro Leu Gly Leu Ser Tyr Leu Ala 20 25 30 Glu Val Ser Lys Pro His Ala Glu Val Val Leu Arg Gln Asp Leu Met 35 40 45 Pro Lys Glu Pro Gln Thr Cys Ser Leu Ala Pro Trp Ser Pro Ala Gly 50 55 60 Thr Glu Leu Pro Ala Val Lys Val Ala Asp Leu Trp Leu Ser Val Ile 65 70 75 80 Pro Glu Ala Gly Leu Arg Leu Gly Ile Glu Val Glu Leu Arg Ile Ala 85 90 95 Pro Leu His Thr Val Pro Met Pro Val Arg Ile Ser Ile Arg Ala Asp 100 105 110 Leu His Val Asp Met Gly Pro Asp Gly Asn Leu Gln Leu Leu Thr Ser 115 120 125 Ala Cys Arg Pro Thr Val Gln Ala Gln Ser Thr Arg Glu Ala Glu Ser 130 135 140 Lys Ser Ser Arg Ser Ile Leu Asp Lys Val Val Asp Val Asp Lys Leu 145 150 155 160 Cys Leu Asp Val Ser Lys Leu Leu Leu Phe Pro Asn Glu Gln Leu Met 165 170 175 Ser Leu Thr Ala Leu Phe Pro Val Thr Pro Asn Cys Gln Leu Gln Tyr 180 185 190 Leu Ala Leu Ala Ala Pro Val Phe Ser Lys Gln Gly Ile Ala Leu Ser 195 200 205 Leu Gln Thr Thr Phe Gln Val Ala Gly Ala Val Val Pro Val Pro Val 210 215 220 Ser Pro Val Pro Phe Ser Met Pro Glu Leu Ala Ser Thr Ser Thr Ser 225 230 235 240 His Leu Ile Leu Ala Leu Ser Glu His Phe Tyr Thr Ser Leu Tyr Phe 245 250 255 Thr Leu Glu Arg Ala Gly Ala Phe Asn Met Thr Ile Pro Ser Met Leu 260 265 270 Thr Thr Ala Thr Leu Ala Gln Lys Ile Thr Gln Val Gly Ser Leu Tyr 275 280 285 His Glu Asp Leu Pro Ile Thr Leu Ser Ala Ala Leu Arg Ser Ser Pro 290 295 300 Arg Val Val Leu Glu Glu Gly Arg Ala Ala Leu Lys Leu Phe Leu Thr 305 310 315 320 Val His Ile Gly Ala Gly Ser Pro Asp Phe Gln Ser Phe Leu Ser Val 325 330 335 Ser Ala Asp Val Thr Arg Ala Gly Leu Gln Leu Ser Val Ser Asp Thr 340 345 350 Arg Met Met Ile Ser Thr Ala Val Ile Glu Asp Ala Glu Leu Ser Leu 355 360 365 Ala Ala Ser Asn Val Gly Leu Val Arg Ala Ala Leu Leu Glu Glu Leu 370 375 380 Phe Leu Ala Pro Val Cys Gln Gln Val Pro Ala Trp Met Asp Asp Val 385 390 395 400 Leu Arg Glu Gly Val His Leu Pro His Met Ser His Phe Thr Tyr Thr 405 410 415 Asp Val Asn Val Val Val His Lys Asp Tyr Val Leu Val Pro Cys Lys 420 425 430 Leu Lys Leu Arg Ser Thr Met Ala 435 440 <210> 4 <211> 383 <212> PRT <213> Hemopexin <400> 4 Met Leu Phe Phe Arg Gly Gly Asp Val Trp Glu Ile Ser Gly Glu Gly 1 5 10 15 Pro Gln Pro His Ser Arg Pro Leu Ala Glu Ser Trp Pro Glu Leu Glu 20 25 30 Gly Pro Val Asp Ala Ala Leu Arg Ile His Arg Gln Asp His Pro Glu 35 40 45 Glu His Gln Ser Leu Tyr Leu Phe Gln Asp Glu Lys Val Trp Ser Tyr 50 55 60 Ala Gly Gly Gln Leu Arg Pro Gly Phe Pro Arg Leu Ile Gly Asp Glu 65 70 75 80 Phe Pro Gly Val Pro Gly Gly Leu Asp Ala Ala Val Glu Cys His Pro 85 90 95 Glu Glu Cys Gly Gly Glu Thr Val Leu Phe Phe Lys Gly Asp Lys Val 100 105 110 Phe Ser Phe Asp Leu Glu Leu Arg Val Thr Lys Glu Arg Pro Trp Leu 115 120 125 Asp Ala Gly Pro Cys Asp Ala Ala Leu Arg Trp Leu Glu Arg Tyr Tyr 130 135 140 Cys Leu Gln Gly Thr Gln Phe Tyr Arg Phe Arg Pro His Ser Trp Glu 145 150 155 160 Val Leu Pro Gly Tyr Pro Arg Asp Leu Arg Asp Tyr Phe Ile Pro Cys 165 170 175 Pro Gly Arg Gly His Arg His Gly Asn Thr Ser Trp Gly Asn Ala Gly 180 185 190 Asp Arg Cys Ser Gly Glu Pro Phe Gln Ala Ile Thr Ser Asp Asp Ser 195 200 205 Gly Arg Ile Tyr Ala Phe Arg Gly Gly Leu Ser Phe Arg Leu Asp Ser 210 215 220 Trp Arg Asp Gly Trp His Ala Trp Pro Gln Ala His Ser Trp Pro Gly 225 230 235 240 Leu Gln Gly Asp Val Asp Ala Ala Phe Ser Trp Asp Lys Arg Met Tyr 245 250 255 Leu Ile Gln Gly Ser Gln Val Ser Ile Tyr Val Ser Gly Arg Gly Gly 260 265 270 His Gln Leu Val Glu Gly Tyr Pro Arg Ala Leu Gln Glu Glu Leu Gly 275 280 285 Val Pro Lys Ala Asp Ala Ala Phe Thr Cys Pro Gly Ser Ala Glu Leu 290 295 300 Tyr Val Ile Thr Gly Asp Arg Met Gln Arg Val Asp Leu Thr Lys Ser 305 310 315 320 Pro Arg His Ala Asp Glu Pro Gln Pro Leu Pro Tyr Asp Gly Val Asp 325 330 335 Gly Ala Met Cys Thr Ala Asp Gly Ile Tyr Leu Leu Arg Gly Asp Arg 340 345 350 Tyr His Arg His Arg Asp Val Ala Glu Leu Leu Ala Ala His Pro Pro 355 360 365 Ala Asp Pro Pro Ser Ile Ala Val Asp Leu Phe His Cys Ala Gln 370 375 380 <210> 5 <211> 231 <212> PRT <213> IGY-FCU3-4 <400> 5 Asp Ile Ser Pro Asp Gly Ala Gln Ser Cys Ser Pro Ile Gln Leu Tyr 1 5 10 15 Ala Ile Pro Pro Ser Pro Gly Glu Leu Tyr Ile Ser Leu Asp Ala Lys 20 25 30 Leu Arg Cys Leu Val Val Asn Leu Pro Ser Asp Ser Ser Leu Ser Val 35 40 45 Thr Trp Thr Arg Glu Lys Ser Gly Asn Leu Arg Pro Asp Pro Met Val 50 55 60 Leu Gln Glu His Phe Asn Gly Thr Tyr Ser Ala Ser Ser Ala Val Pro 65 70 75 80 Val Ser Thr Gln Asp Trp Leu Ser Gly Glu Arg Phe Thr Cys Thr Val 85 90 95 Gln His Glu Glu Leu Pro Leu Pro Leu Ser Lys Ser Val Tyr Arg Asn 100 105 110 Thr Gly Pro Thr Thr Pro Pro Leu Ile Tyr Pro Phe Ala Pro His Pro 115 120 125 Glu Glu Leu Ser Leu Ser Arg Val Thr Leu Ser Cys Leu Val Arg Gly 130 135 140 Phe Arg Pro Arg Asp Ile Glu Ile Arg Trp Leu Arg Asp His Arg Ala 145 150 155 160 Val Pro Ala Thr Glu Phe Val Thr Thr Ala Val Leu Pro Glu Glu Arg 165 170 175 Thr Ala Asn Gly Ala Gly Gly Asp Gly Asp Thr Phe Phe Val Tyr Ser 180 185 190 Lys Met Ser Val Glu Thr Ala Lys Trp Asn Gly Gly Thr Val Phe Ala 195 200 205 Cys Met Ala Val His Glu Ala Leu Pro Met Arg Phe Ser Gln Arg Thr 210 215 220 Leu Gln Lys Gln Ala Gly Lys 225 230 <210> 6 <211> 178 <212> PRT <213> Extracellular fatty acid-binding protein <400> 6 Met Arg Thr Leu Ala Leu Ser Leu Ala Leu Ala Leu Leu Cys Leu Leu 1 5 10 15 His Thr Glu Ala Ala Ala Thr Val Pro Asp Arg Ser Glu Val Ala Gly 20 25 30 Lys Trp Tyr Ile Val Ala Leu Ala Ser Asn Thr Asp Phe Phe Leu Arg 35 40 45 Glu Lys Gly Lys Met Lys Met Val Met Ala Arg Ile Ser Phe Leu Gly 50 55 60 Glu Asp Glu Leu Glu Val Ser Tyr Ala Ala Pro Ser Pro Lys Gly Cys 65 70 75 80 Arg Lys Trp Glu Thr Thr Phe Lys Lys Thr Ser Asp Asp Gly Glu Leu 85 90 95 Tyr Tyr Ser Glu Glu Ala Glu Lys Thr Val Glu Val Leu Asp Thr Asp 100 105 110 Tyr Lys Ser Tyr Ala Val Ile Phe Ala Thr Arg Val Lys Asp Gly Arg 115 120 125 Thr Leu His Met Met Arg Leu Tyr Ser Arg Ser Arg Glu Val Ser Pro 130 135 140 Thr Ala Met Ala Ile Phe Arg Lys Leu Ala Arg Glu Arg Asn Tyr Thr 145 150 155 160 Asp Glu Met Val Ala Val Leu Pro Ser Gln Glu Glu Cys Ser Val Asp 165 170 175 Glu Val <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Biomarker protein specific for environmental stress of poultry <130> P12-0044 <160> 6 <170> Kopatentin 2.0 <210> 1 <211> 472 <212> PRT <213> Ovoinhibitor <400> 1 Met Arg Thr Ala Arg Gln Phe Val Gln Val Ala Leu Ala Leu Cys Cys   1 5 10 15 Phe Ala Asp Ile Ala Phe Gly Ile Glu Val Asn Cys Ser Leu Tyr Ala              20 25 30 Ser Gly Ile Gly Lys Asp Gly Thr Ser Trp Val Ala Cys Pro Arg Asn          35 40 45 Leu Lys Pro Val Cys Gly Thr Asp Gly Ser Thr Tyr Ser Asn Glu Cys      50 55 60 Gly Ile Cys Leu Tyr Asn Arg Glu His Gly Ala Asn Val Glu Lys Glu  65 70 75 80 Tyr Asp Gly Glu Cys Arg Pro Lys His Val Met Ile Asp Cys Ser Pro                  85 90 95 Tyr Leu Gln Val Val Arg Asp Gly Asn Thr Met Val Ala Cys Pro Arg             100 105 110 Ile Leu Lys Pro Val Cys Gly Ser Asp Ser Phe Thr Tyr Asp Asn Glu         115 120 125 Cys Gly Ile Cys Ala Tyr Asn Ala Glu His His Thr Asn Ile Ser Lys     130 135 140 Leu His Asp Gly Glu Cys Lys Leu Glu Ile Gly Ser Val Asp Cys Ser 145 150 155 160 Lys Tyr Pro Ser Thr Val Ser Lys Asp Gly Arg Thr Leu Val Ala Cys                 165 170 175 Pro Arg Ile Leu Ser Pro Val Cys Gly Thr Asp Gly Phe Thr Tyr Asp             180 185 190 Asn Glu Cys Gly Ile Cys Ala His Asn Ala Glu Gln Arg Thr His Val         195 200 205 Ser Lys Lys His Asp Gly Lys Cys Arg Gln Glu Ile Pro Glu Ile Asp     210 215 220 Cys Asp Gln Tyr Pro Thr Arg Lys Thr Thr Gly Gly Lys Leu Leu Val 225 230 235 240 Arg Cys Pro Arg Ile Leu Leu Pro Val Cys Gly Thr Asp Gly Phe Thr                 245 250 255 Tyr Asp Asn Glu Cys Gly Ile Cys Ala His Asn Ala Gln His Gly Thr             260 265 270 Glu Val Lys Lys Ser His Asp Gly Arg Cys Lys Glu Arg Ser Thr Pro         275 280 285 Leu Asp Cys Thr Gln Tyr Leu Ser Asn Thr Gln Asn Gly Glu Ala Ile     290 295 300 Thr Ala Cys Pro Phe Ile Leu Gln Glu Val Cys Gly Thr Asp Gly Val 305 310 315 320 Thr Tyr Ser Asn Asp Cys Ser Leu Cys Ala His Asn Ile Glu Leu Gly                 325 330 335 Thr Ser Val Ala Lys Lys His Asp Gly Arg Cys Arg Glu Glu Val Pro             340 345 350 Glu Leu Asp Cys Ser Lys Tyr Lys Thr Ser Thr Leu Lys Asp Gly Arg         355 360 365 Gln Val Val Ala Cys Thr Met Ile Tyr Asp Pro Val Cys Ala Thr Asn     370 375 380 Gly Val Thr Tyr Ala Ser Glu Cys Thr Leu Cys Ala His Asn Leu Glu 385 390 395 400 Gln Arg Thr Asn Leu Gly Lys Arg Lys Asn Gly Arg Cys Glu Glu Asp                 405 410 415 Ile Thr Lys Glu His Cys Arg Glu Phe Gln Lys Val Ser Pro Ile Cys             420 425 430 Thr Met Glu Tyr Val Pro His Cys Gly Ser Asp Gly Val Thr Tyr Ser         435 440 445 Asn Arg Cys Phe Phe Cys Asn Ala Tyr Val Gln Ser Asn Arg Thr Leu     450 455 460 Asn Leu Val Ser Ser Ala Ala Cys 465 470 <210> 2 <211> 232 <212> PRT <213> Ovalbumin-related protein X <400> 2 Gln Ile Lys Asp Leu Leu Val Ser Ser Ser Thr Asp Leu Asp Thr Thr   1 5 10 15 Leu Val Leu Val Asn Ale Ile Tyr Phe Lys Gly Met Trp Lys Thr Ala              20 25 30 Phe Asn Ala Glu Asp Thr Arg Glu Met Pro Phe His Val Thr Lys Gln          35 40 45 Glu Ser Lys Pro Val Gln Met Met Cys Met Asn Asn Ser Phe Asn Val      50 55 60 Ala Thr Leu Pro Ala Glu Lys Met Lys Ile Leu Glu Leu Pro Phe Ala  65 70 75 80 Ser Gly Asp Leu Ser Met Leu Val Leu Leu Pro Asp Glu Val Ser Asp                  85 90 95 Leu Glu Arg Ile Glu Lys Thr Ile Asn Phe Glu Lys Leu Thr Glu Trp             100 105 110 Thr Asn Pro Asn Thr Met Glu Lys Arg Arg Val Lys Val Tyr Leu Pro         115 120 125 Gln Met Lys Ile Glu Glu Lys Tyr Asn Leu Thr Ser Val Leu Met Ala     130 135 140 Leu Gly Met Thr Asp Leu Phe Ile Pro Ser Ala Asn Leu Thr Gly Ile 145 150 155 160 Ser Ser Ala Glu Ser Leu Lys Ile Ser Gln Ala Val His Gly Ala Phe                 165 170 175 Met Glu Leu Ser Glu Asp Gly Ile Glu Met Ala Gly Ser Thr Gly Val             180 185 190 Ile Glu Asp Ile Lys His Ser Pro Glu Ser Glu Gln Phe Arg Ala Asp         195 200 205 His Pro Phe Leu Phe Leu Ile Lys His Asn Pro Thr Asn Thr Ile Val     210 215 220 Tyr Phe Gly Arg Tyr Trp Ser Pro 225 230 <210> 3 <211> 440 <212> PRT <213> TENP <400> 3 Met Gly Ala Leu Leu Ala Leu Leu Asp Pro Val Gln Pro Thr Arg Ala   1 5 10 15 Pro Asp Cys Gly Gly Ile Leu Thr Pro Leu Gly Leu Ser Tyr Leu Ala              20 25 30 Glu Val Ser Lys Pro His Ala Glu Val Val Leu Arg Gln Asp Leu Met          35 40 45 Pro Lys Glu Pro Gln Thr Cys Ser Leu Ala Pro Trp Ser Pro Ala Gly      50 55 60 Thr Glu Leu Pro Ala Val Lys Val Ala Asp Leu Trp Leu Ser Val Ile  65 70 75 80 Pro Glu Ala Gly Leu Arg Leu Gly Ile Glu Val Glu Leu Arg Ile Ala                  85 90 95 Pro Leu His Thr Val Pro Met Pro Val Arg Ile Ser Ile Arg Ala Asp             100 105 110 Leu His Val Asp Met Gly Pro Asp Gly Asn Leu Gln Leu Leu Thr Ser         115 120 125 Ala Cys Arg Pro Thr Val Gln Ala Gln Ser Thr Arg Glu Ala Glu Ser     130 135 140 Lys Ser Ser Arg Ser Ser Leu Asp Lys Val Val Asp Val Asp Lys Leu 145 150 155 160 Cys Leu Asp Val Ser Lys Leu Leu Leu Phe Pro Asn Glu Gln Leu Met                 165 170 175 Ser Leu Thr Ala Leu Phe Pro Val Thr Pro Asn Cys Gln Leu Gln Tyr             180 185 190 Leu Ala Leu Ala Ala Pro Val Phe Ser Lys Gln Gly Ile Ala Leu Ser         195 200 205 Leu Gln Thr Thr Phe Gln Val Ala Gly Ala Val Val Pro Val Val     210 215 220 Ser Pro Val Pro Phe Ser Met Pro Glu Leu Ala Ser Thr Ser Thr Ser 225 230 235 240 His Leu Ile Leu Ala Leu Ser Glu His Phe Tyr Thr Ser Leu Tyr Phe                 245 250 255 Thr Leu Glu Arg Ala Gly Ala Phe Asn Met Thr Ile Pro Ser Met Leu             260 265 270 Thr Thr Ala Thr Leu Ala Gln Lys Ile Thr Gln Val Gly Ser Leu Tyr         275 280 285 His Glu Asp Leu Pro Ile Thr Leu Ser Ala Ala Leu Arg Ser Ser Pro     290 295 300 Arg Val Val Leu Glu Glu Gly Arg Ala Ala Leu Lys Leu Phe Leu Thr 305 310 315 320 Val His Ile Gly Ala Gly Ser Pro Asp Phe Gln Ser Phe Leu Ser Val                 325 330 335 Ser Ala Asp Val Thr Arg Ala Gly Leu Gln Leu Ser Val Ser Asp Thr             340 345 350 Arg Met Met Ile Ser Thr Ala Val Ile Glu Asp Ala Glu Leu Ser Leu         355 360 365 Ala Ala Ser Asn Ale Leu Leu Glu Leu     370 375 380 Phe Leu Ala Pro Val Cys Gln Gln Val Pro Ala Trp Met Asp Asp Val 385 390 395 400 Leu Arg Glu Gly Val His Leu Pro His Met Ser His Phe Thr Tyr Thr                 405 410 415 Asp Val Asn Val Val Val His Lys Asp Tyr Val Leu Val Pro Cys Lys             420 425 430 Leu Lys Leu Arg Ser Thr Met Ala         435 440 <210> 4 <211> 383 <212> PRT <213> Hemopexin <400> 4 Met Leu Phe Phe Arg Gly Gly Asp Val Trp Glu Ile Ser Gly Glu Gly   1 5 10 15 Pro Gln Pro His Ser Arg Pro Leu Ala Glu Ser Trp Pro Glu Leu Glu              20 25 30 Gly Pro Val Asp Ala Ala Leu Arg Ile His Arg Gln Asp His Pro Glu          35 40 45 Glu His Gln Ser Leu Tyr Leu Phe Gln Asp Glu Lys Val Trp Ser Tyr      50 55 60 Ala Gly Gly Gln Leu Arg Pro Gly Phe Pro Arg Leu Ile Gly Asp Glu  65 70 75 80 Phe Pro Gly Val Pro Gly Gly Leu Asp Ala Ala Val Glu Cys His Pro                  85 90 95 Glu Glu Cys Gly Gly Glu Thr Val Leu Phe Phe Lys Gly Asp Lys Val             100 105 110 Phe Ser Phe Asp Leu Glu Leu Arg Val Thr Lys Glu Arg Pro Trp Leu         115 120 125 Asp Ala Gly Pro Cys Asp Ala Ala Leu Arg Trp Leu Glu Arg Tyr Tyr     130 135 140 Cys Leu Gln Gly Thr Gln Phe Tyr Arg Phe Arg Pro His Ser Trp Glu 145 150 155 160 Val Leu Pro Gly Tyr Pro Arg Asp Leu Arg Asp Tyr Phe Ile Pro Cys                 165 170 175 Pro Gly Arg Gly His Arg His Gly Asn Thr Ser Trp Gly Asn Ala Gly             180 185 190 Asp Arg Cys Ser Gly Glu Pro Phe Gln Ala Ile Thr Ser Asp Asp Ser         195 200 205 Gly Arg Ile Tyr Ala Phe Arg Gly Gly Leu Ser Phe Arg Leu Asp Ser     210 215 220 Trp Arg Asp Gly Trp His Ala Trp Pro Gln Ala His Ser Trp Pro Gly 225 230 235 240 Leu Gln Gly Asp Val Asp Ala Phe Ser Trp Asp Lys Arg Met Tyr                 245 250 255 Leu Ile Gln Gly Ser Gln Val Ser Ile Tyr Val Ser Gly Arg Gly Gly             260 265 270 His Gln Leu Val Glu Gly Tyr Pro Arg Ala Leu Gln Glu Glu Leu Gly         275 280 285 Val Pro Lys Ala Asp Ala Phe Thr Cys Pro Gly Ser Ala Glu Leu     290 295 300 Tyr Val Ile Thr Gly Asp Arg Met Gln Arg Val Asp Leu Thr Lys Ser 305 310 315 320 Pro Arg His Ala Asp Glu Pro Gln Pro Leu Pro Tyr Asp Gly Val Asp                 325 330 335 Gly Ala Met Cys Thr Ala Asp Gly Ile Tyr Leu Leu Arg Gly Asp Arg             340 345 350 Tyr His Arg His Arg Asp Val Ala Glu Leu Leu Ala Ala His Pro Pro         355 360 365 Ala Asp Pro Pro Ser Ile Ala Val Asp Leu Phe His Cys Ala Gln     370 375 380 <210> 5 <211> 231 <212> PRT <213> IGY-FCU3-4 <400> 5 Asp Ile Ser Pro Asp Gly Ala Gln Ser Cys Ser Pro Ile Gln Leu Tyr   1 5 10 15 Ala Ile Pro Pro Ser Gly Glu Leu Tyr Ile Ser Leu Asp Ala Lys              20 25 30 Leu Arg Cys Leu Val Val Asn Leu Pro Ser Asp Ser Ser Leu Ser Val          35 40 45 Thr Trp Thr Arg Glu Lys Ser Gly Asn Leu Arg Pro Asp Pro Met Val      50 55 60 Leu Gln Glu His Phe Asn Gly Thr Tyr Ser Ala Ser Ser Ala Val Pro  65 70 75 80 Val Ser Thr Gln Asp Trp Leu Ser Gly Glu Arg Phe Thr Cys Thr Val                  85 90 95 Gln His Glu Glu Leu Pro Leu Pro Leu Ser Lys Ser Val Tyr Arg Asn             100 105 110 Thr Gly Pro Thr Thr Pro Pro Leu Ile Tyr Pro Phe Ala Pro His Pro         115 120 125 Glu Glu Leu Ser Leu Ser Arg Val Thr Leu Ser Cys Leu Val Arg Gly     130 135 140 Phe Arg Pro Arg Asp Ile Glu Ile Arg Trp Leu Arg Asp His Arg Ala 145 150 155 160 Val Pro Ala Thr Glu Phe Val Thr Ala Val Leu Pro Glu Glu Arg                 165 170 175 Thr Ala Asn Gly Asp Gly Asp Gly Asp Thr Phe Phe Val Tyr Ser             180 185 190 Lys Met Ser Val Glu Thr Ala Lys Trp Asn Gly Gly Thr Val Phe Ala         195 200 205 Cys Met Ala Val His Glu Ala Leu Pro Met Arg Phe Ser Gln Arg Thr     210 215 220 Leu Gln Lys Gln Ala Gly Lys 225 230 <210> 6 <211> 178 <212> PRT <213> Extracellular fatty acid-binding protein <400> 6 Met Arg Thr Leu Ala Leu Ale Leu Ale Leu Leu Cys Leu Leu   1 5 10 15 His Thr Glu Ala Ala Thr Val Pro Asp Arg Ser Glu Val Ala Gly              20 25 30 Lys Trp Tyr Ile Val Ala Leu Ala Ser Asn Thr Asp Phe Phe Leu Arg          35 40 45 Glu Lys Gly Lys Met Lys Met Val Met Ala Arg Ile Ser Phe Leu Gly      50 55 60 Glu Asp Glu Leu Glu Val Ser Tyr Ala Ala Pro Ser Pro Lys Gly Cys  65 70 75 80 Arg Lys Trp Glu Thr Thr Phe Lys Lys Thr Ser Asp Asp Gly Glu Leu                  85 90 95 Tyr Tyr Ser Glu Glu Ala Glu Lys Thr Val Glu Val Leu Asp Thr Asp             100 105 110 Tyr Lys Ser Tyr Ala Val Ile Phe Ala Thr Arg Val Lys Asp Gly Arg         115 120 125 Thr Leu His Met Met Arg Leu Tyr Ser Arg Ser Ser Glu Val Ser Pro     130 135 140 Thr Ala Met Ala Ile Phe Arg Lys Leu Ala Arg Glu Arg Asn Tyr Thr 145 150 155 160 Asp Glu Met Val Ala Val Leu Pro Ser Glu Glu Glu Cys Ser Val Asp                 165 170 175 Glu Val        

Claims (18)

가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편을 포함하는 것을 특징으로 하는 가금류의 환경 스트레스에 특이적인 바이오마커 단백질.A biomarker protein specific to environmental stress of a poultry characterized by comprising an egg protein or a fragment thereof specifically expressing environmental stress of poultry. 제1항에 있어서, 상기 난 단백질은 난백 단백질인 것을 특징으로 하는 가금류의 환경 스트레스에 특이적인 바이오마커 단백질.The biomarker protein of claim 1, wherein the egg protein is an egg white protein. 제2항에 있어서, 상기 난백 단백질은 서열번호 1의 Ovoinhibitor, 서열번호 2의 Ovalbumin-related protein X, 서열번호 3의 TENP, 서열번호 4의 Hemopexin, 서열번호 5의 IGY-FCU3-4 및 서열번호 6의 Extracellular fatty acid-binding protein(Ex-FABP)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 가금류의 환경 스트레스에 특이적인 바이오마커 단백질.3. The method of claim 2, wherein the egg white protein is selected from the group consisting of Ovoinhibitor of SEQ ID NO: 1, Ovalbumin-related protein X of SEQ ID NO: 2, TENP of SEQ ID NO: 3, Hemopexin of SEQ ID NO: 4, IGY-FCU3-4 of SEQ ID NO: (Ex-FABP). &Lt; Desc / Clms Page number 13 &gt; 6. A biomarker protein specific for environmental stress of a poultry. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 가금류는 닭인 것을 특징으로 하는 가금류의 환경 스트레스에 특이적인 바이오마커 단백질.The biomarker protein according to any one of claims 1 to 3, wherein the poultry is chicken. 제4항의 바이오마커 단백질에 특이적으로 결합하는 항체를 유효성분으로 포함하는 가금류의 환경 스트레스 진단용 조성물.A composition for diagnosing environmental stress in birds comprising an antibody that specifically binds to the biomarker protein of claim 4 as an active ingredient. 제5항에 있어서, 상기 항체는 모노클로날 항체인 것을 특징으로 하는 가금류의 환경 스트레스 진단용 조성물.6. The composition for diagnosing environmental stress of poultry according to claim 5, wherein the antibody is a monoclonal antibody. 제4항의 바이오마커 단백질에 특이적으로 결합하는 항체를 유효성분으로 포함하는 가금류의 환경 스트레스 진단 키트.An environmental stress diagnostic kit for poultry comprising an antibody that specifically binds to the biomarker protein of claim 4 as an active ingredient. 제7항에 있어서, 상기 항체는 모노클로날 항체인 것을 특징으로 하는 가금류의 환경 스트레스 진단 키트.8. The environmental stress diagnosis kit for poultry according to claim 7, wherein the antibody is a monoclonal antibody. 가금류의 환경 스트레스를 분석하는 방법으로서,
가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편의 발현양의 변화 여부를 검출하는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법.
As a method for analyzing environmental stress of poultry,
A method for analyzing the environmental stress of a poultry, the method comprising detecting whether the expression level of an egg protein or a fragment thereof specifically expressing environmental stress of poultry is changed.
제9항에 있어서, 상기 난 단백질은 난백 단백질인 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법.10. The method according to claim 9, wherein the egg protein is an egg white protein. 제10항에 있어서, 상기 난백 단백질은 서열번호 1의 Ovoinhibitor, 서열번호 2의 Ovalbumin-related protein X, 서열번호 3의 TENP, 서열번호 4의 Hemopexin, 서열번호 5의 IGY-FCU3-4 및 서열번호 6의 Extracellular fatty acid-binding protein(Ex-FABP)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법.11. The method of claim 10, wherein the egg white protein is selected from the group consisting of Ovoinhibitor of SEQ ID NO: 1, Ovalbumin-related protein X of SEQ ID NO: 2, TENP of SEQ ID NO: 3, Hemopexin of SEQ ID NO: 4, IGY-FCU3-4 of SEQ ID NO: 6, &lt; / RTI &gt; and an extracellular fatty acid-binding protein (Ex-FABP). 제11항에 있어서, 서열번호 1의 Ovoinhibitor 또는 서열번호 2의 Ovalbumin-related protein X의 발현 증가는 가금류의 스트레스 가능성이 높음을 나타내는 표지로 사용하는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법.12. The method of claim 11, wherein the increased expression of the Ovoinhibitor of SEQ ID NO: 1 or the Ovalbumin-related protein X of SEQ ID NO: 2 is used as a marker indicating a high probability of stress of the poultry. 제11항에 있어서, 서열번호 3의 TENP, 서열번호 4의 Hemopexin, 서열번호 5의 IGY-FCU3-4 및 서열번호 6의 Extracellular fatty acid-binding protein(Ex-FABP)에서 선택되는 1종 이상의 난백 단백질의 발현 감소는 가금류의 스트레스 가능성이 높음을 나타내는 표지로 사용하는 것을 특징으로 하는 가금류의 환경 스트레스를 분석하는 방법.12. The method according to claim 11, wherein at least one egg white selected from TENP of SEQ ID NO: 3, Hemopexin of SEQ ID NO: 4, IGY-FCU3-4 of SEQ ID NO: 5 and Extracellular fatty acid- Wherein the decrease in expression of the protein is used as a marker indicating a high possibility of stress of the poultry. 난의 품질을 분석하는 방법으로서,
가금류의 환경 스트레스에 특이적으로 발현하는 난 단백질 또는 그 단편의 발현양의 변화 여부를 검출하는 것을 특징으로 하는 난의 품질을 분석하는 방법.
As a method of analyzing the quality of eggs,
A method for analyzing egg quality characterized by detecting whether the expression level of an egg protein or a fragment thereof specifically expressing environmental stress of poultry is changed.
제14항에 있어서, 상기 난 단백질은 난백 단백질인 것을 특징으로 하는 난의 품질을 분석하는 방법.15. The method of claim 14, wherein the egg protein is an egg white protein. 제15항에 있어서, 상기 난백 단백질은 서열번호 1의 Ovoinhibitor, 서열번호 2의 Ovalbumin-related protein X, 서열번호 3의 TENP, 서열번호 4의 Hemopexin, 서열번호 5의 IGY-FCU3-4 및 서열번호 6의 Extracellular fatty acid-binding protein(Ex-FABP)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 난의 품질을 분석하는 방법.16. The method of claim 15, wherein the egg white protein comprises an Ovoinhibitor of SEQ ID NO: 1, Ovalbumin-related protein X of SEQ ID NO: 2, TENP of SEQ ID NO: 3, Hemopexin of SEQ ID NO: 4, IGY- 6. The method for analyzing egg quality according to claim 1, wherein the extract is selected from the group consisting of Extracellular fatty acid-binding protein (Ex-FABP). 제16항에 있어서, 서열번호 1의 Ovoinhibitor 또는 서열번호 2의 Ovalbumin-related protein X의 발현 증가는 스트레스 가능성이 높은 가금류가 생산한 난인 것을 특징으로 하는 난의 품질을 분석하는 방법.17. The method of claim 16, wherein the increased expression of the Ovoinhibitor of SEQ ID NO: 1 or of Ovalbumin-related protein X of SEQ ID NO: 2 is the egg produced by highly stressed poultry. 제16항에 있어서, 서열번호 3의 TENP, 서열번호 4의 Hemopexin, 서열번호 5의 IGY-FCU3-4 및 서열번호 6의 Extracellular fatty acid-binding protein(Ex-FABP)에서 선택되는 1종 이상의 난백 단백질의 발현 감소는 스트레스 가능성이 높은 가금류가 생산한 난인 것을 특징으로 하는 난의 품질을 분석하는 방법.


The method according to claim 16, wherein the TENP of SEQ ID NO: 3, Hemopexin of SEQ ID NO: 4, IGY-FCU3-4 of SEQ ID NO: 5 and the Extracellular fatty acid-binding protein of SEQ ID NO: 6 (Ex-FABP) A method for analyzing egg quality characterized in that the reduction of protein expression is the egg produced by highly stressed poultry.


KR1020120124457A 2012-11-05 2012-11-05 Diagnostic compositions and kit For environmental stress in poultry and Environmental stress predictable way in poultry KR101459669B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120124457A KR101459669B1 (en) 2012-11-05 2012-11-05 Diagnostic compositions and kit For environmental stress in poultry and Environmental stress predictable way in poultry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120124457A KR101459669B1 (en) 2012-11-05 2012-11-05 Diagnostic compositions and kit For environmental stress in poultry and Environmental stress predictable way in poultry

Publications (2)

Publication Number Publication Date
KR20140058010A true KR20140058010A (en) 2014-05-14
KR101459669B1 KR101459669B1 (en) 2014-11-20

Family

ID=50888504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120124457A KR101459669B1 (en) 2012-11-05 2012-11-05 Diagnostic compositions and kit For environmental stress in poultry and Environmental stress predictable way in poultry

Country Status (1)

Country Link
KR (1) KR101459669B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589970B1 (en) * 2014-11-10 2016-02-01 경상대학교산학협력단 Diagnostic compositions and kit including the compositions for environmental stress in poultry, and Method for prediction of Environmental stress in poultry by using the compositions and the kit
CN112020651A (en) * 2018-04-24 2020-12-01 根特大学 Gut and stool biomarkers for poultry gut health

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589970B1 (en) * 2014-11-10 2016-02-01 경상대학교산학협력단 Diagnostic compositions and kit including the compositions for environmental stress in poultry, and Method for prediction of Environmental stress in poultry by using the compositions and the kit
CN112020651A (en) * 2018-04-24 2020-12-01 根特大学 Gut and stool biomarkers for poultry gut health

Also Published As

Publication number Publication date
KR101459669B1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5011410B2 (en) Proteomic analysis of biological fluids
US20090297546A1 (en) Avian-derived antibody capable of binding specifically to human hmgb1, immunological determination method for human hmgb1, and immunological determination reagent for human hmgb1
KR20100110818A (en) Compositions and methods for early pregnancy diagnosis
Makino et al. Expression of filaggrin-2 protein in the epidermis of human skin diseases: a comparative analysis with filaggrin
Liu et al. Comparative proteomic analysis of egg white proteins during the rapid embryonic growth period by combinatorial peptide ligand libraries
KR20100055390A (en) Method for detection or treatment of graft versus host disease
CA2646040A1 (en) Detection of a biomarker of aberrant cells of neuroectodermal origin in a body fluid
Fu et al. Anti-ACTL7a antibodies: a cause of infertility
WO2011157905A1 (en) Polyclonal antibody binding to acetylated hmgb1
Boschetti et al. Progress in farm animal proteomics: the contribution of combinatorial peptide ligand libraries
Akazawa et al. Migration of chicken egg-white protein ovalbumin-related protein X and its alteration in heparin-binding affinity during embryogenesis of fertilized egg
Nakamura et al. Comparative study of GH-transgenic and non-transgenic amago salmon (Oncorhynchus masou ishikawae) allergenicity and proteomic analysis of amago salmon allergens
Tidwell et al. Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription
KR101459669B1 (en) Diagnostic compositions and kit For environmental stress in poultry and Environmental stress predictable way in poultry
Wang et al. Differential proteomic analysis revealed crucial egg white proteins for hatchability of chickens
Gondret et al. Proteomic analysis of adipose tissue during the last weeks of gestation in pure and crossbred Large White or Meishan fetuses gestated by sows of either breed
Gao et al. Proteomics‐based generation and characterization of monoclonal antibodies against human liver mitochondrial proteins
Domanski et al. Analysis of the Rana catesbeiana tadpole tail fin proteome and phosphoproteome during T 3-induced apoptosis: identification of a novel type I keratin
Agnetti et al. Proteomic profiling of endothelin-1-stimulated hypertrophic cardiomyocytes reveals the increase of four different desmin species and α-B-crystallin
McNeil et al. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat
Katoh et al. Distribution of annexins I, II, and IV in bovine mammary gland
US20220091129A1 (en) Reagents and methods for detecting protein lysine lactylation
Fortgens et al. Anti-cathepsin D chicken IgY antibodies: characterisation, cross-species reactivity and application in immunogold labelling of human splenic neutrophils and fibroblasts
JP6854515B2 (en) Screening method for glycolytic metabolism regulators and glycolytic metabolism regulators
KR101590035B1 (en) Biomaker gene and diagnostic composition specific for environmental stress of poultry, and Prediction method of stress possibility, egg production using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 5