KR20140058004A - Recycling system of ndfeb magnet - Google Patents

Recycling system of ndfeb magnet Download PDF

Info

Publication number
KR20140058004A
KR20140058004A KR20120124441A KR20120124441A KR20140058004A KR 20140058004 A KR20140058004 A KR 20140058004A KR 20120124441 A KR20120124441 A KR 20120124441A KR 20120124441 A KR20120124441 A KR 20120124441A KR 20140058004 A KR20140058004 A KR 20140058004A
Authority
KR
South Korea
Prior art keywords
alloy
ndfeb
molten
magnet
metal material
Prior art date
Application number
KR20120124441A
Other languages
Korean (ko)
Other versions
KR101495531B1 (en
Inventor
이진규
윤덕환
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Priority to KR20120124441A priority Critical patent/KR101495531B1/en
Publication of KR20140058004A publication Critical patent/KR20140058004A/en
Application granted granted Critical
Publication of KR101495531B1 publication Critical patent/KR101495531B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to a recirculation system of an NdFeB-based magnet using molten Mg including an elution step for eluting Nd by submerging NdFeB-based magnet scraps or waste magnets in molten Mg; a separation step for separating the molten Mg including the Nd from a solid residue; and a manufacturing step for manufacturing an Mg-Nd-based amorphous metallic material using an Mg-Nd alloy manufactured in the separated molten Mg. The recirculation system of NdFeB-based magnet can control the weight ratio of the Mg-Nd alloy by controlling the elution step based on the weight ratio of Mg and Nd included in the Mg-Nd-based amorphous metallic material. The present invention can recycle Nd included in the NdFeB-based magnet without an additional process of separating the Nd from the molten Mg by using the molten Mg containing the Nd generated in the recirculation process of the NdFeB-based magnet. Also, the present invention can recycle a Fe-B solid material remaining after the Nd is eluted without a separation process.

Description

NdFeB계 자석의 재순환 시스템{RECYCLING SYSTEM OF NdFeB MAGNET}RECYCLING SYSTEM OF NdFeB MAGNET BACKGROUND OF THE INVENTION [

본 발명은 NdFeB계 자석의 재순환 시스템에 관한 것으로, 더욱 자세하게는 Mg 용탕을 이용한 NdFeB계 자석의 재순환 시스템에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NdFeB magnet recirculation system, and more particularly, to a recirculation system of NdFeB magnet using Mg melt.

최근 주요 산업의 부품에 필수적으로 사용되는 희토류 금속은 산업 경쟁력 확보에 필수 불가결한 소재이나, 자원의 희소성 및 원소재의 가격 변동 폭 증가로 인한 문제가 발생하고 있다. 따라서 여러 가지 희토류 금속에 대하여 재활용에 의한 순환 소재화 기술에 대한 관심이 증가하고 있다.Recently, rare-earth metals, which are essential for major industry components, are indispensable for securing industrial competitiveness, but problems arise due to scarcity of resources and increase in price fluctuations of raw materials. Therefore, there is an increasing interest in the recycling technology of recycled rare earth metals.

NdFeB계 자석은 1983년 Sagawa 등에 의해서 개발된 이후에 뛰어난 성능으로 인해서 적용범위가 확대되어왔다. 특히, NdFeB계 자석은 페라이트 자석에 비해 자기적 특성이 강하여 소형 자석에 적합하며, 이동통신 단말기 등 전자제품의 소형화가 빠르게 진행되면서 수요가 크게 증가하고 있다.NdFeB magnets have been developed since 1983 by Sagawa et al. Particularly, NdFeB magnets are more suitable for small magnets because they have strong magnetic properties compared to ferrite magnets, and demand for them is rapidly increasing as miniaturization of electronic products such as mobile communication terminals is progressing rapidly.

이러한 NdFeB계 자석은 희토류 금속인 Nd가 주요 원소로 사용되고 있기 때문에, Nd의 희소성에 따른 원료비의 상승으로 인해 제조원가가 증가하고 있으며, NdFeB계 자석으로부터 Nd를 회수하는 방법에 대한 관심이 증가하고 있다. 특히, 현재에 NdFeB계 자석을 제조하는 주요한 방법들은 제조과정에서 많은 양의 스크랩이 발생하므로 이들을 활용하려는 노력이 이어지고 있다.Since Nd, which is a rare earth metal, is used as a main element of this NdFeB-based magnet, manufacturing cost is increasing due to an increase in raw material cost due to the scarcity of Nd, and there is an increasing interest in a method for recovering Nd from NdFeB-based magnets. In particular, the main methods of manufacturing NdFeB magnets at present present a large amount of scrap in the manufacturing process, and efforts are being made to utilize them.

종래에는 NdFeB계 자석의 스크랩 또는 폐자석으로부터 Nd를 회수하기 위하여 황산 또는 초산과 같은 산을 첨가하는 방식을 이용하였지만, 다량의 산을 사용하고 처리공정이 복잡하며 공정 중에 불필요한 부산물이 생성되어 회수율이 낮은 단점이 있다.Conventionally, a method of adding an acid such as sulfuric acid or acetic acid to recover Nd from scrap of NdFeB-based magnets or a closed magnet has been used. However, since a large amount of acid is used and the process is complicated and unnecessary by- There are low disadvantages.

최근에는 특정 온도 범위에서 Mg 내에 Nd는 충분히 고용도를 가지는 반면에 Fe와 B의 경우 용해도가 극히 낮은 것을 이용하여, NdFeB계 자석의 스크랩 또는 폐자석을 700~850℃ 범위의 Mg 용탕 내에 침지시켜, 자석에 포함된 Nd만을 Mg 용탕으로 확산시킴으로써 Nd를 선택적으로 용출시키는 기술이 개발되었다. 이 기술은 도 8에 도시된 것과 같이, Nd 함유 Mg 용탕에서 Mg를 기화하는 등의 방법으로 Mg를 분리함으로써, 최종적으로 Nd를 재순환하는 것이다.
Recently, Nd in Mg has a sufficiently high solubility in a specific temperature range, but Fe and B have extremely low solubility, so that scraps of NdFeB magnet or a magnet of the magnet are immersed in Mg melt at 700 to 850 ° C , And a technique of selectively eluting Nd by diffusing only Nd contained in the magnet into the molten Mg was developed. This technique is to recycle Nd finally by separating Mg by vaporizing Mg in the Nd-containing Mg molten bath, as shown in Fig.

최한신, 김용환 : "Nd-Fe-B 희토자석 순환기술", Journal of Korean Powder Metallurgy Institute, Vol. 17, No. 6, 2010Choi, H. and Kim, YH: "Nd-Fe-B rare earth magnet circulation technology", Journal of Korean Powder Metallurgy Institute, Vol. 17, No. 6, 2010 O. Takeda, T. H. Okabo and Y. Umetsu : J. Alloys Compd., 392 (2005) 206.O. Takeda, T. H. Okabo and Y. Umetsu: J. Alloys Compd., 392 (2005) 206.

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 Nd와 Mg를 분리하는 단계를 생략하여, 효율화된 NdFeB계 자석의 재순환 공정을 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a process for recycling efficient NdFeB magnets by omitting the step of separating Nd and Mg.

상기 목적을 달성하기 위한 본 발명에 의한 NdFeB계 자석의 재순환 시스템은, NdFeB계자석 스크랩 또는 폐자석을 Mg 용탕에 침지하여 Nd를 용출시키는 용출단계; Nd가 포함된 Mg 용탕과 고상의 잔류물을 분리하는 분리단계; 및 분리된 용탕으로 제조된 Mg-Nd 합금을 이용하여 Mg-Nd계 비정질 금속재료를 제조하는 제조단계를 포함하며, 상기 Mg-Nd계 비정질 금속재료에 포함된 Mg와 Nd의 중량비를 기준으로 상기 용출단계를 조절하여 상기 Mg-Nd 합금의 중량비를 조절하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a NdFeB magnet recirculation system comprising: an elution step of immersing NdFeB-based magnet scrap or a pulsed magnet in a molten Mg melt to elute Nd; A separation step of separating the Mg melt containing Nd and the residue of the solid phase; And a manufacturing step of manufacturing an Mg-Nd-based amorphous metal material by using a Mg-Nd alloy made of a separated molten metal, wherein the weight ratio of Mg to Nd in the Mg-Nd- And the weight ratio of the Mg-Nd alloy is adjusted by controlling the elution step.

본 발명의 발명자들은 Mg 용탕을 이용하여 Nd를 재순환하는 방법에서 Mg와 Nd를 분리하는 단계를 생략하고, 재순환 과정에서 Mg-Nd 합금의 중량비를 조절함으로써 직접 Mg-Nd계 비정질 합금을 제조할 수 있는 재순환 시스템을 개발하였다.The inventors of the present invention have succeeded in producing a Mg-Nd-based amorphous alloy by directly omitting the step of separating Mg and Nd from the Nd recycling method using the molten magnesium and regulating the weight ratio of the Mg-Nd alloy in the recycling process Recirculation system.

이때, Mg-Nd 합금의 중량비를 조절하는 방법은 용출단계에서 Mg 용탕의 온도 또는 침지하는 시간을 조절하여 수행될 수 있다.At this time, the method of controlling the weight ratio of the Mg-Nd alloy can be performed by controlling the temperature of the molten Mg melt or the immersion time in the elution step.

본 발명의 Mg-Nd계 비정질 금속재료는 Mg-Cu-Y-Nd 비정질 합금일 수 있으며, Mg-Cu-Y-Nd 비정질 합금의 원자량비는 Mg는 57at%, Cu는 31~32at%, Y는 6~10at%, Nd는 2~6at%인 것이 바람직하다.The atomic ratio of the Mg-Cu-Y-Nd amorphous alloy may be Mg: 57 at%, Cu: 31 to 32 at%, Y: Is preferably 6 to 10 at%, and Nd is preferably 2 to 6 at%.

또한 본 발명의 NdFeB계 자석의 재순환 시스템은, 분리단계에서 분리된 고상의 잔류물에서 Nd를 제거하여 Fe-B 모합금을 제조하는 단계;와 Fe-B 모합금을 이용하여 Fe-B계 비정질 금속재료를 제조하는 단계를 더 포함할 수 있다.The NdFeB magnet recirculation system of the present invention further comprises a step of removing Nd from the solid residue separated in the separation step to produce an Fe-B parent alloy, and an Fe-B based amorphous alloy, The method may further include the step of manufacturing a metal material.

이때, Fe-B계 비정질 금속재료는 Fe-C-B-Si-P-Mo 비정질 합금일 수 있으며, Fe-C-B-Si-P-Mo 비정질 합금의 원자량비가 Fe는 67~69at%, C는 7at%, B는 9.5at%, Si는 3.3at%, P는 8.7at%, Mo는 2~3at%인 것이 바람직하다.The atomic ratio of the Fe-CB-Si-P-Mo amorphous alloy is 67 to 69 atomic%, the atomic ratio of Fe is 7 atomic% , B is 9.5 at%, Si is 3.3 at%, P is 8.7 at%, and Mo is at 2 to 3 at%.

상술한 바와 같이 구성된 본 발명은, NdFeB계 자석의 재순환 과정에서 생성된 Nd가 함유된 Mg 용탕을 이용함으로써, Mg 용탕에서 Nd를 분리하는 추가적인 공정 없이 NdFeB계 자석 속에 포함된 Nd를 재활용할 수 있는 효과가 있다.According to the present invention configured as described above, Nd contained in the NdFeB magnet can be recycled without any additional process of separating Nd from the Mg melt by using the Nd-containing Mg melt produced in the recycling process of the NdFeB magnet It is effective.

또한, 본 발명은 Nd가 용출되고 남은 Fe-B 고상물질을 분리하는 공정 없이 재활용할 수 있는 효과가 있다.Further, the present invention has an effect that it can be recycled without the step of separating the remaining Fe-B solid material from Nd.

도 1은 본 발명의 실시예에 따라 구리몰드 주조법으로 제조된 쐐기형상의 Mg-Nd계 시편을 촬영한 사진이다.
도 2는 본 발명의 실시예에 따라 구리몰드 주조법으로 제조된 쐐기형상의 Mg-Nd계 시편에 대한 X선 회절분석 결과이다.
도 3은 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Mg-Nd계 시편을 촬영한 사진이다.
도 4는 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Mg-Nd계 시편에 대한 X선 회절분석 결과이다.
도 5는 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 Mg-Nd계 비정질 금속재료에 대한 열분석 그래프이다.
도 6은 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Fe-B계 시편을 촬영한 사진이다.
도 7은 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Fe-B계 시편에 대한 X선 회절분석 결과이다.
도 8은 Mg 용탕을 이용하여 NdFeB계 자석에서 Nd를 회수하는 공정을 나타낸다.
1 is a photograph of a wedge-shaped Mg-Nd-based specimen manufactured by a copper mold casting method according to an embodiment of the present invention.
FIG. 2 shows X-ray diffraction analysis results of a wedge-shaped Mg-Nd-type specimen produced by a copper mold casting method according to an embodiment of the present invention.
3 is a photograph of a rod-shaped Mg-Nd-based specimen manufactured by an injection casting method according to an embodiment of the present invention.
FIG. 4 is a result of X-ray diffraction analysis of a rod-shaped Mg-Nd-based specimen manufactured by an injection casting method according to an embodiment of the present invention.
FIG. 5 is a thermal analysis graph of an Mg-Nd-based amorphous metal material produced by an injection casting method according to an embodiment of the present invention.
FIG. 6 is a photograph of a rod-shaped Fe-B system specimen produced by an injection casting method according to an embodiment of the present invention.
FIG. 7 is a result of X-ray diffraction analysis of a rod-shaped Fe-B system specimen produced by an injection casting method according to an embodiment of the present invention.
8 shows a process of recovering Nd in an NdFeB magnet using a molten Mg melt.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, embodiments of the present invention will be described in detail.

본 실시예의 NdFeB계 자석의 재순환 시스템은 NdFeB계 자석 스크랩 또는 폐자석을 Mg 용탕에 침지하여 Nd를 용출시키는 단계와 Nd가 포함된 Mg 용탕과 고상의 잔류물을 분리하는 단계 및 분리된 용탕으로 제조된 Nd-Mg 합금을 이용하여 비정질 금속재료를 제조하는 단계를 포함하여 이루어진다.The NdFeB-based magnet recirculation system of this embodiment comprises the steps of immersing the NdFeB-based magnet scrap or the pulsed magnet in the Mg melt to elute Nd, separating the Mg-containing Mg melt and the solid residue from the Nd- And a step of preparing an amorphous metal material using the Nd-Mg alloy.

먼저, 조성비가 Nd33Fe66B1인 NdFeB 자석의 스크랩을 700℃의 순수한 Mg 용탕에 반응시켜 Mg 용탕에 Nd를 용출시켰다.First, scrap of an NdFeB magnet having a composition ratio of Nd 33 Fe 66 B 1 was reacted with a pure Mg molten metal at 700 ° C to elute Nd into the Mg molten metal.

그리고 Nd가 포함된 액상의 Mg 용탕과 Nd가 용출되고 남은 고상의 Fe-B를 분리하였다.The liquid Mg melt containing Nd and Nd were eluted and the remaining solid Fe-B was separated.

Nd가 포함된 Mg 용탕에서 얻어진 Mg-Nd 합금과 아크용해법으로 제조된 Cu-Y 합금을 혼합하여, 유도용해법으로 Mg-Cu-Y-Nd계 모합금을 제조하고, 이 모합금을 이용하여 벌크형태의 비정질 금속재료를 제조하였다.Mg-Cu-Y-Nd system alloy was prepared by the induction melting method by mixing the Mg-Nd alloy obtained from the molten Mg containing Nd and the Cu-Y alloy produced by the arc melting method, Type amorphous metal material.

먼저, 원자량비가 Mg57Cu31.5Y8Nd3.5인 모합금을 구리몰드 주조법으로 급랭하여 쐐기형상의 시편을 제조하였다.First, a wedge shaped specimen was prepared by quenching the mother alloy with atomic ratio of Mg 57 Cu 31.5 Y 8 Nd 3.5 by copper mold casting method.

도 1은 본 발명의 실시예에 따라 구리몰드 주조법으로 제조된 쐐기형상의 Mg-Nd계 시편을 촬영한 사진이다.1 is a photograph of a wedge-shaped Mg-Nd-based specimen manufactured by a copper mold casting method according to an embodiment of the present invention.

사진에 나타난 것과 같이, Mg 용탕을 이용한 NdFeB계 자석의 재순환 시스템에서 Mg와 Nd를 분리하지 않은 Mg-Nd 합금과 Cu-Y 합금을 혼합하여 제조된 모합금에 구리몰드 주조법을 적용한 결과, 길이 5cm 가량의 쐐기 형상 벌크 시편을 제조할 수 있었다.As shown in the photograph, the copper mold casting method was applied to the parent alloy produced by mixing Mg-Nd alloy and Cu-Y alloy in which Mg and Nd were not separated in the recycling system of NdFeB magnet using Mg melt, It was possible to manufacture a wedge shaped bulk specimen.

도 2는 본 발명의 실시예에 따라 구리몰드 주조법으로 제조된 쐐기형상의 Mg-Nd계 시편에 대한 X선 회절분석 결과이다.FIG. 2 shows X-ray diffraction analysis results of a wedge-shaped Mg-Nd-type specimen produced by a copper mold casting method according to an embodiment of the present invention.

분석 결과, 비정질 금속재료에서 전형적으로 나타나는 넓은 할로 피크(broad halo peak)가 관찰되었고, 기타 결정상에 의한 피크는 확인되지 않은 점에서 본 실시예에서 제조된 쐐기 형상의 벌크 시편이 비정질상으로 구성됨을 알 수 있다.As a result of analysis, a broad halo peak typically observed in amorphous metal materials was observed, and no peaks due to other crystal phases were observed. Thus, it was found that the wedge-shaped bulk specimen prepared in this example was composed of an amorphous phase .

다음으로, 원자량비가 Mg57Cu31.5Y9.2Nd2.3인 모합금을 인젝션(injection) 주조법으로 급랭하여 봉 형상의 시편을 제조하였다.Next, rod shaped specimens were prepared by quenching the parent alloy with atomic ratio of Mg 57 Cu 31.5 Y 9.2 Nd 2.3 by injection casting method.

도 3은 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Mg-Nd계 시편을 촬영한 사진이다.3 is a photograph of a rod-shaped Mg-Nd-based specimen manufactured by an injection casting method according to an embodiment of the present invention.

사진에 나타난 것과 같이, Mg 용탕을 이용한 NdFeB계 자석의 재순환 시스템에서 Mg와 Nd를 분리하지 않은 Mg-Nd 합금과 Cu-Y 합금을 혼합하여 제조된 모합금에 인젝션 주조법을 적용한 결과, 길이 3.5cm 가량의 봉 형상 벌크 시편을 제조할 수 있었다.As shown in the photograph, the injection casting method was applied to the mother alloy produced by mixing Mg-Nd alloy and Cu-Y alloy which did not separate Mg and Nd in the recycling system of NdFeB magnet using Mg melt, It was possible to produce a rod-shaped bulk specimen.

도 4는 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Mg-Nd계 시편에 대한 X선 회절분석 결과이다.FIG. 4 is a result of X-ray diffraction analysis of a rod-shaped Mg-Nd-based specimen manufactured by an injection casting method according to an embodiment of the present invention.

분석 결과, 비정질 금속재료에서 전형적으로 나타나는 넓은 할로 피크(broad halo peak)가 관찰되었고, 기타 결정상에 의한 피크는 확인되지 않은 점에서 본 실시예에서 제조된 봉 형상의 벌크 시편이 비정질상으로 구성됨을 알 수 있다.As a result of analysis, a broad halo peak typically observed in amorphous metal materials was observed, and peaks due to other crystal phases were not observed. Thus, it was found that the rod-shaped bulk specimen produced in this example was composed of an amorphous phase .

도 5는 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 Mg-Nd계 비정질 금속재료에 대한 열분석 그래프이다.FIG. 5 is a thermal analysis graph of an Mg-Nd-based amorphous metal material produced by an injection casting method according to an embodiment of the present invention.

열분석기를 이용하여 Mg57Cu31.5Y9.2Nd2.3 비정질 금속재료 시편을 0.33K/s의 가열속도로 연속적으로 가열하면서 분석을 수행하였다. 열분석 결과, Mg57Cu31.5Y9.2Nd2.3 비정질 금속재료의 비정질 천이온도(Tg)는 434K이고, 결정화 온도(Tx)는 489K이며, 결정화 엔탈피(ΔH)는 -72J/g 이다.The analysis was carried out by continuously heating the Mg 57 Cu 31.5 Y 9.2 Nd 2.3 amorphous metal specimen at a heating rate of 0.33 K / s using a thermal analyzer. Thermal analysis, Mg 57 Cu 31.5 Y 9.2 Nd 2.3 amorphous transition temperature (Tg) of the amorphous metal material is 434K and, (Tx) the crystallization temperature is 489K, the crystallization enthalpy (ΔH) is -72J / g.

이상과 같이, 본 실시예를 통해서 원자량비가 Mg57Cu31 .5Y8Nd3 .5와 Mg57Cu31 .5Y9 .2Nd2 .3인 두 종류의 Mg-Cu-Y-Nd 비정질 금속재료를 Mg-Nd를 분리하지 않는 NdFeB계 자석의 재순환 시스템으로부터 제조할 수 있음을 확인할 수 있다.As described above, the atomic weight ratio through this embodiment Mg 57 Cu 31 .5 Y 8 Nd 3 .5 and Mg 57 Cu 31 .5 Y 9 .2 Nd 2 .3 of two types of Mg-Cu-Y-Nd amorphous It can be confirmed that the metal material can be manufactured from a recirculating system of NdFeB magnet without Mg-Nd separation.

한편, 이러한 Mg-Cu-Y-Nd 비정질 금속재료에 포함된 Mg와 Nd의 중량 비율, 즉 용탕으로부터 제조된 Mg-Nd 합금의 중량비를 조절하는 것은 NdFeB계 자석 재순환 시스템의 첫 단계인 NdFeB계 자석을 Mg 용탕에 침지하는 단계에서 조절할 수 있다.In order to control the weight ratio of Mg and Nd contained in the Mg-Cu-Y-Nd amorphous metal material, that is, the weight ratio of the Mg-Nd alloy produced from the molten metal, Can be adjusted in the step of immersing in an Mg molten metal.

다음은 조성비가 Nd33Fe66B1인 자석의 스크랩을 700℃의 순수한 Mg 용탕에 반응시켜 얻어진 Mg-Nd 합금의 중량비를 분석한 결과이다.The following is a result of analysis of the weight ratio of the Mg-Nd alloy obtained by reacting the scrap of the magnet having the composition ratio Nd 33 Fe 66 B 1 with the pure Mg molten iron at 700 ° C.

반응시간(min)Reaction time (min) Mg(wt%)Mg (wt%) Nd(wt%)Nd (wt%) 3030 94.432594.4325 5.40265.4026 6060 87.768987.7689 12.104812.1048 9090 81.990281.9902 17.017317.0173 120120 81.176281.1762 21.12621.126

표 1에 나타난 것과 같이, 700℃의 순수한 Mg 용탕과 반응하는 시간이 길어질수록 Mg-Nd 합금에 포함된 Nd의 양이 증가하는 것을 확인할 수 있다.As shown in Table 1, it can be seen that the amount of Nd contained in the Mg-Nd alloy increases as the reaction time with the pure Mg melt at 700 ° C becomes longer.

이로부터, Mg 용탕과 NdFeB계 자석이 반응하는 용탕의 온도와 반응 시간과 같은 조건을 조절함으로써, Mg-Nd 합금의 중량비를 조절할 수 있음을 알 수 있다. 최종적으로, Mg용탕에 포함된 Nd를 별도로 분리하지 않고 조성이 조절된 Mg-Nd 합금을 바로 원하는 조성의 Mg-Nd계 비정질 금속재료의 제조에 적용할 수 있다.
From this, it can be seen that the weight ratio of the Mg-Nd alloy can be controlled by controlling the conditions such as the temperature and the reaction time of the molten metal in which the molten magnesium is reacted with the NdFeB-based magnet. Finally, the Mg-Nd alloy whose composition is controlled without separately separating Nd contained in the Mg molten metal can be directly applied to the production of a Mg-Nd-based amorphous metal material having a desired composition.

한편, 다른 실시예에 의한 NdFeB계 자석의 재순환 시스템은 NdFeB계 자석 스크랩 또는 폐자석을 Mg 용탕에 침지하여 Nd를 용출시키는 용출단계와 Nd가 포함된 Mg 용탕과 고상의 잔류물을 분리하는 분리단계, 분리된 용탕으로 제조된 Nd-Mg 합금을 이용하여 비정질 금속재료를 제조하는 제조단계이외에, 분리단계에서 분리된 고상의 잔류물에서 Nd를 제거하여 Fe-B 모합금을 제조하는 단계 및 Fe-B 모합금을 이용하여 Fe-B계 비정질 금속재료를 제조하는 단계를 더 포함한다.Meanwhile, the NdFeB-based magnet recirculation system according to another embodiment includes an elution step of immersing the NdFeB-based magnet scrap or the pulsed magnet in the Mg molten metal to elute Nd, the separation step of separating the Mg- , A step of preparing an amorphous metal material by using Nd-Mg alloy prepared from a separated molten metal, a step of removing Nd from the residue of the solid phase separated in the separation step to produce an Fe-B parent alloy, B-based amorphous metal material using an Fe-B-based alloy.

본 실시예는 Nd를 완전히 제거하여 고상의 Fe-B 모합금을 제조하며, Fe-B 모합금에 설계된 비정질 금속재료 물질을 첨가하고 아크 용해함으로써 Fe-C-B-Si-P-Mo계 모합금을 제조하고, 이 모합금을 이용하여 벌크형태의 비정질 금속재료를 제조하였다.In this embodiment, Nd is completely removed to prepare a solid phase Fe-B parent alloy, and an amorphous metal material designed for the Fe-B parent alloy is added and arc-melted to form a Fe-CB-Si-P- And a bulk amorphous metal material was produced using the mother alloy.

구체적으로 원자량비가 Fe68.5C7B9.5Si3.3P8.7Mo3인 모합금을 인젝션 주조법으로 급랭하여 봉 형상의 시편을 제조하였다.Specifically, a rod-like specimen was prepared by quenching the parent alloy having an atomic weight ratio of Fe 68.5 C 7 B 9.5 Si 3.3 P 8.7 Mo 3 by an injection casting method.

도 6은 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Fe-B계 시편을 촬영한 사진이다.FIG. 6 is a photograph of a rod-shaped Fe-B system specimen produced by an injection casting method according to an embodiment of the present invention.

사진에 나타난 것과 같이, Mg 용탕을 이용한 NdFeB계 자석의 재순환 시스템에서 발생하는 고상의 잔류물로부터 제조된 Fe-B 모합금으로부터 제조된 모합금에 인젝션 주조법을 적용한 결과, 길이가 약 4cm이고 직경이 2mm와 3mm인 봉 형상 벌크 시편을 제조할 수 있었다.As shown in the photograph, the injection casting method was applied to the parent alloy produced from the Fe-B parent alloy produced from the solid residue generated in the recirculation system of the NdFeB magnet using the Mg melt, and as a result, the length was about 4 cm and the diameter Bar-shaped bulk specimens of 2 mm and 3 mm were produced.

도 7은 본 발명의 실시예에 따라 인젝션 주조법으로 제조된 봉 형상의 Fe-B계 시편에 대한 X선 회절분석 결과이다.FIG. 7 is a result of X-ray diffraction analysis of a rod-shaped Fe-B system specimen produced by an injection casting method according to an embodiment of the present invention.

분석 결과, 직경이 2mm인 시편에서는 비정질 금속재료에서 전형적으로 나타나는 넓은 할로 피크(broad halo peak)가 관찰되었고, 기타 결정상에 의한 피크는 확인되지 않았다. 반면에 직경이 3mm인 시편에서는 넓은 할로 피크와 결정상의 피크가 동시에 관찰되었다. 이상으로부터 원자량비가 Fe68.5C7B9.5Si3.3P8.7Mo3인 시편은 비정질상으로 구성되지만, 크기가 제한적임을 알 수 있다.As a result of the analysis, a broad halo peak typically observed in amorphous metal materials was observed in a specimen having a diameter of 2 mm, and no peak due to other crystal phases was observed. On the other hand, in the specimen with a diameter of 3 mm, a wide halo peak and a crystal phase peak were observed at the same time. From the above, it can be seen that the specimen with the atomic ratio of Fe 68.5 C 7 B 9.5 Si 3.3 P 8.7 Mo 3 is composed of amorphous phase, but its size is limited.

이상의 결과에서, 원자량비가 Fe68.5C7B9.5Si3.3P8.7Mo3인 Fe-C-B-Si-P-Mo 비정질 금속재료를 NdFeB계 자석의 재순환 시스템으로부터 제조할 수 있음을 확인할 수 있다. 특히, Fe-C-B-Si-P-Mo 비정질 금속재료는 Mo를 첨가하여 비정질 형성능을 높임으로써 벌크형 비정질 금속재료를 제조할 수 있다.
From the above results, it can be confirmed that an Fe-CB-Si-P-Mo amorphous metal material having an atomic ratio of Fe 68.5 C 7 B 9.5 Si 3.3 P 8.7 Mo 3 can be manufactured from a recycle system of NdFeB magnet. In particular, a Fe-CB-Si-P-Mo amorphous metal material can be produced by increasing the amorphous forming ability by adding Mo to the bulk amorphous metal material.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Those skilled in the art will understand. Therefore, the scope of protection of the present invention should be construed not only in the specific embodiments but also in the scope of claims, and all technical ideas within the scope of the same shall be construed as being included in the scope of the present invention.

Claims (7)

NdFeB계 자석 스크랩 또는 폐자석을 Mg 용탕에 침지하여 Nd를 용출시키는 용출단계;
Nd가 포함된 Mg 용탕과 고상의 잔류물을 분리하는 분리단계; 및
분리된 용탕으로 제조된 Mg-Nd 합금을 이용하여 Mg-Nd계 비정질 금속재료를 제조하는 제조단계를 포함하며,
상기 Mg-Nd계 비정질 금속재료에 포함된 Mg와 Nd의 중량비를 기준으로 상기 용출단계를 조절하여 상기 Mg-Nd 합금의 중량비를 조절하는 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
An elution step of immersing an NdFeB-based magnet scrap or a pulsed magnet in a molten Mg melt to elute Nd;
A separation step of separating the Mg melt containing Nd and the residue of the solid phase; And
And a manufacturing step of manufacturing an Mg-Nd-based amorphous metal material by using a Mg-Nd alloy manufactured from a separated molten metal,
Wherein the weight ratio of the Mg-Nd alloy is controlled by controlling the elution step based on the weight ratio of Mg and Nd contained in the Mg-Nd-based amorphous metal material.
청구항 1에 있어서,
상기 Mg-Nd 합금의 중량비를 조절하는 방법이 상기 용출단계에서 Mg 용탕의 온도 또는 침지하는 시간을 조절하여 수행되는 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
The method according to claim 1,
Wherein the method of controlling the weight ratio of the Mg-Nd alloy is performed by adjusting the temperature of the Mg melt or the immersion time in the elution step.
청구항 1에 있어서,
상기 Mg-Nd계 비정질 금속재료가 Mg-Cu-Y-Nd 비정질 합금인 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
The method according to claim 1,
Wherein the Mg-Nd-based amorphous metal material is an Mg-Cu-Y-Nd amorphous alloy.
청구항 3에 있어서,
상기 Mg-Cu-Y-Nd 비정질 합금의 원자량비가 Mg는 57at%, Cu는 31~32at%, Y는 6~10at%, Nd는 2~6at%인 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
The method of claim 3,
Wherein the atomic ratio of the Mg-Cu-Y-Nd amorphous alloy is 57 at% of Mg, 31 to 32 at% of Cu, 6 to 10 at% of Y, and 2 to 6 at% of Nd.
청구항 1에 있어서,
상기 분리단계에서 분리된 고상의 잔류물에서 Nd를 제거하여 Fe-B 모합금을 제조하는 단계;와
상기 Fe-B 모합금을 이용하여 Fe-B계 비정질 금속재료를 제조하는 단계를 더 포함하는 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
The method according to claim 1,
Removing Nd from the solid residue separated in the separation step to produce an Fe-B parent alloy;
Further comprising the step of preparing an Fe-B based amorphous metal material by using the Fe-B parent alloy.
청구항 5에 있어서,
상기 Fe-B계 비정질 금속재료가 Fe-C-B-Si-P-Mo 비정질 합금인 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
The method of claim 5,
Wherein the Fe-B-based amorphous metal material is an Fe-CB-Si-P-Mo amorphous alloy.
청구항 6에 있어서,
상기 Fe-C-B-Si-P-Mo 비정질 합금의 원자량비가 Fe는 67~69at%, C는 7at%, B는 9.5at%, Si는 3.3at%, P는 8.7at%, Mo는 2~3at%인 것을 특징으로 하는 NdFeB계 자석의 재순환 시스템.
The method of claim 6,
The Fe-CB-Si-P-Mo amorphous alloy has an atomic ratio of Fe of 67 to 69 at%, C of 7 at%, B of 9.5 at%, Si of 3.3 at%, P of 8.7 at%, Mo of 2 to 3 at% % ≪ / RTI > of the NdFeB-based magnet.
KR20120124441A 2012-11-05 2012-11-05 METHOD FOR RECYCLING NdFeB MAGNET KR101495531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120124441A KR101495531B1 (en) 2012-11-05 2012-11-05 METHOD FOR RECYCLING NdFeB MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120124441A KR101495531B1 (en) 2012-11-05 2012-11-05 METHOD FOR RECYCLING NdFeB MAGNET

Publications (2)

Publication Number Publication Date
KR20140058004A true KR20140058004A (en) 2014-05-14
KR101495531B1 KR101495531B1 (en) 2015-02-26

Family

ID=50888499

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120124441A KR101495531B1 (en) 2012-11-05 2012-11-05 METHOD FOR RECYCLING NdFeB MAGNET

Country Status (1)

Country Link
KR (1) KR101495531B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351931B2 (en) 2015-01-15 2019-07-16 Worcester Polytechnic Institute Separation of recycled rare earths

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362459A (en) 1993-05-17 1994-11-08 Pure-Etch Co. Neodymium recovery process
JP2002012921A (en) 2000-06-30 2002-01-15 Sumitomo Metal Ind Ltd Method for regenerating rare earth magnet scrap
JP4296372B2 (en) * 2000-08-22 2009-07-15 信越化学工業株式会社 Recycling method of Nd-based rare earth magnet scrap
KR100578712B1 (en) 2004-11-04 2006-05-12 한국지질자원연구원 Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351931B2 (en) 2015-01-15 2019-07-16 Worcester Polytechnic Institute Separation of recycled rare earths

Also Published As

Publication number Publication date
KR101495531B1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
CN104485192B (en) A kind of iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
CN107275025A (en) A kind of Nd-Fe-B magnet steel containing cerium and manufacture method
CN102592777A (en) Low-cost sintered neodymium iron boron magnet and production method thereof
CN106128677B (en) A kind of multistage sintering method of neodymium iron boron magnetic body
CN109712770B (en) Samarium cobalt magnet and method of making same
JP6842824B2 (en) Manufacturing method of metal soft magnetic alloy and magnetic core
CN108063045A (en) A kind of no heavy rare earth Nd-Fe-B permanent magnet material and preparation method thereof
EP2857547B1 (en) Method for making a rare-earth magnet sputtering target
CN113278830A (en) Preparation method of high-uniformity copper-iron alloy
CN107739949B (en) Phase-rich alloy for recycling magnet waste and method for recycling waste magnet
WO2007119846A1 (en) Method of recovering useful materials from scrap of rare earth-iron-boron magnet
Kruse et al. Influencing factors on the melting characteristics of NdFeB-Based production wastes for the recovery of rare earth compounds
JP2015193925A (en) R-t-b alloy powder and r-t-b sintered magnet
US20150110664A1 (en) Process for preparing scalable quantities of high purity manganese bismuth magnetic materials for fabrication of permanent magnets
CN100555481C (en) A kind of have a TbCu 7The SmCo1:7 type nano crystal permanent magnetic material and the preparation method of structure
CN1254338C (en) Method for producing Sm-Fe-N permanent magnet alloy powder by reduction diffusion
KR101495531B1 (en) METHOD FOR RECYCLING NdFeB MAGNET
JP2007266199A (en) Manufacturing method of rare earth sintered magnet
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
Park et al. Effect of Mg Ratio on the Extraction of Dy from (Nd, Dy)-Fe-B permanent magnet using liquid Mg
Bujnovskij et al. Basic stages of magnet production by fluoride technology
JPS6248744B2 (en)
CN113539600A (en) Dy-containing rare earth permanent magnet with high magnetic energy product and high coercivity and preparation method thereof
Xu et al. Effective rare earth extraction from Nd-Fe-B waste by liquid cuprum extraction method
CN112970081A (en) Method for producing sintered magnet and sintered magnet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200218

Year of fee payment: 6