KR20140057786A - Transgenic silkworms producing red fluorescent cocoons - Google Patents

Transgenic silkworms producing red fluorescent cocoons Download PDF

Info

Publication number
KR20140057786A
KR20140057786A KR1020120123971A KR20120123971A KR20140057786A KR 20140057786 A KR20140057786 A KR 20140057786A KR 1020120123971 A KR1020120123971 A KR 1020120123971A KR 20120123971 A KR20120123971 A KR 20120123971A KR 20140057786 A KR20140057786 A KR 20140057786A
Authority
KR
South Korea
Prior art keywords
silkworm
gene
expression vector
recombinant expression
silk
Prior art date
Application number
KR1020120123971A
Other languages
Korean (ko)
Other versions
KR101510437B1 (en
Inventor
구태원
윤은영
최광호
김성렬
박승원
김성완
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR20120123971A priority Critical patent/KR101510437B1/en
Publication of KR20140057786A publication Critical patent/KR20140057786A/en
Application granted granted Critical
Publication of KR101510437B1 publication Critical patent/KR101510437B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/70Invertebrates
    • A01K2227/706Insects, e.g. Drosophila melanogaster, medfly
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a transgenic silkworm that produces red fluorescent silk. More specifically, a recombinant expression vector which includes a gene construct in which a marker gene regulatory promoter, a marker gene, a silkworm-derived fibroin promoter, and an anemone-derived red fluorescent gene are operatively linked and a silkworm is transformed by the recombinant expression vector so that a transgenic silkworm that produces red fluorescent silk can be produced. The red fluorescent silk that the transgenic silkworm produces represents thin natural red color even in natural light so that a separated coloring process is not needed and the silk is environment-friendly and economical. When a light beam of a particular wavelength is irradiated, the silk represents bright red fluorescent color in the darkness so as to be usefully used as material for high value clothes and fashion or wallpaper compared with general silk.

Description

적색 형광 실크를 생산하는 형질전환 누에{TRANSGENIC SILKWORMS PRODUCING RED FLUORESCENT COCOONS}TRANSGENIC SILKWORMS PRODUCING RED FLUORESCENT COCOONS PRODUCING RED FLUORESCENT SILK

본 발명은 적색 형광 실크를 생산하는 형질전환 누에, 및 상기 형질전환 누에를 이용하여 적색 형광 실크를 생산하는 방법에 관한 것이다.
The present invention relates to a transformed silk producing a red fluorescent silk and a method of producing a red fluorescent silk using the transformed silkworm.

누에는 분류학상 곤충각(Insectada), 인시목(lepidoptera), 가잠아과 (Bombyxidae), 가잠아속(Bombyx), 가잠종(mori)에 속한다. 누에는 완전변태 곤충으로 알에서 부화한 유충이 발육하여 번데기가 되고, 성충(나방)이 되어 알을 낳고 일생을 마친다. 누에의 일생은 평균 60일 정도로 비교적 짧아 실험동물로서 이점을 가지고 있다. 산란된 알에는 방치하면 착색하여 다음해 봄까지 부화하지 않는 것과 착색하지 않고 부화하는 것이 있다. 1년에 몇 회 부화하는가는 각각의 유전자 작용에 의하여 식도 하 신경절 내에서 생산되는 휴면 호르몬의 분비량에 의해 결정된다. 누에알에서 수정 핵은 여러 번 분열하여 분열 핵을 형성하고 핵 주위에 원형질이 둘러싸게 되고 이들은 알의 가장자리를 향하여 이동하게 된다. 예를 들면 개미누에는 산란 후 12시간이 지나면 세포융합(Syncytial blastoderm)이 형성되고 20시간 후면 인공부화법의 하나인 침산 처리가 가능해진다. 산란 후 30시간이면, 완전한 난황세포가 되고 약 10일 후 개미누에로 부화된다.The silkworm belongs to the taxonomic insecta, lepidoptera, Bombyxidae, Bombyx, and moth species. The silkworm is a complete transformational insect, which develops larvae hatching from eggs, becomes a pupa, becomes an adult (moth), gives birth to an egg, and finishes its life. The life of the silkworm is relatively short, on average 60 days, and it has an advantage as an experimental animal. Eggs that have been scattered are colored when left untreated, and hatched and hatch without coloring until the following spring. The number of hatchings per year is determined by the amount of dormant hormone produced in the ganglion below the esophagus by each gene action. In silkworm eggs, fertilized nuclei divide several times to form cleavage nuclei, surrounded by protoplasts around the nuclei, and they migrate toward the edges of eggs. For example, after 12 hours of spawning, ants silkworms form a syncytial blastoderm, and 20 hours later, it is possible to carry out pickling, one of the artificial incubation methods. At 30 hours after spawning, it becomes full yolk cells and hatches into ants silkworm after about 10 days.

누에는 연구용뿐만 아니라 그 산업적 가치로 인해 형질전환된 누에를 생산하기 위한 다양한 연구가 진행되어 왔다. 누에 형질전환 기술 개발은 일본의 Tamura 등에 의해 나비목곤충인 Trichopusia ni에서 유래한 piggyBac 유전자를 이용하여 형질전환용 전이벡터를 구축하고 이를 다화성 누에 품종의 알에 미세주입(microinjection)하여 최초로 형질전환 누에 제작에 성공하였다. 최근에는 다양한 바이오의약품을 생산하는 형질전환누에가 보고되고 있다. 한편, 누에알에 전이벡터를 주입하는 것은 2000년 Tamura 등이 사용한 미세주입법으로서 미세주입의 위치는 배아의 주공과 후부 사이의 가운데 배면 부분에 주사함으로써 형질전환 효율을 향상시킬 수 있음이 보고된바 있다. 또한, 형질전환에 사용된 누에 품종인 금옥잠은 잠125와 잠140의 교잡종으로서 일반 원종에 비해 누에알이 크고, 인공사료에 의한 연중 사육이 가능하며, 월년 종의 특징인 염산처리에 의해 부화된다. 그러므로 선발된 누에형질전환체를 장기간 보관할 수 있는 장점을 가지고 있다.
Various studies have been conducted to produce silkworm transgenic silkworms due to their industrial value as well as research use. The development of transgenic silkworms was carried out by the Japanese Tamura et al. Transgenic transgenic vectors were constructed using the piggyBac gene derived from ni and microinjection into transgenic silkworm cultivars was succeeded in producing transgenic silkworms for the first time. Recently, transgenic silkworms producing various biopharmaceuticals have been reported. On the other hand, it has been reported that the transfection vector is injected into the silkworm eggs by the microinjection method used by Tamura et al. In 2000, and the injection efficiency can be improved by injecting the microinjection position in the middle part between the main part and the posterior part of the embryo have. In addition, the silkworm varieties used in the transgenic cultivation are the hybrids of sleeping 125 and sleeping 140. The silkworm eggs are larger than the normal species, and they can be raised by artificial feed during the year. do. Therefore, the selected silkworm transgenic can be stored for a long period of time.

누에는 헤비사슬 피브로인(heavy-chain fibroin), 라이트사슬 피브로인(light-chain fibroin), 및 P25 단백질로 이루어진 견 단백질을 생산한다. 견 단백질 발현은, 특히 피브로인은 5령기 유충의 후부견사선에서 아주 강력한 발현을 하여 전체 체중의 약 20% 이상이나 되는 피프로인 단백질을 생산한다. 이러한 피브로인의 강력하고 조직 특이적인 발현 조절 기작을 해명하는 것은 유전자 발현조절 연구에 중요한 실마리를 제공할 수 있을 것으로 기대되며, 이 조절 기작은 진핵생물에서 유용물질의 대량생산에 이용될 수 있다.Silkworms produce a silk protein composed of heavy-chain fibroin, light-chain fibroin, and P25 protein. Raw protein expression, especially fibroin, produces a strongly expressed protein in the posterior silk gland of the fifth instar larva, producing a phytoene protein that is approximately 20% or more of the total body weight. It is expected that clarifying the powerful and tissue-specific expression control mechanism of fibroin can provide important clues to gene expression control research, and this regulatory mechanism can be used for the mass production of useful substances in eukaryotes.

피브로인 유전자의 연구는 분자량이 큰 아미노산 배열의 특수성을 이용하여 5령 말기의 후부 견사선으로부터 Suzuki와 Brown에 의하여 처음으로 1972년에 mRNA가 분리되었으며, 이어서 1976년에는 누에의 게놈(genomic) DNA로부터 피브로인 유전자를 클로닝하였다. 그리고 이후의 연구로 가잠에서 H 사슬과 L 사슬이, 야잠에서 H 사슬이 클로닝되어 그 구조와 조절의 연구가 활발하게 진행 중에 있다.Using the specificity of amino acid sequences with large molecular weights, the study of fibroin genes was first carried out by Suzuki and Brown from the posterior silk glands at the end of the fifth instar in 1972, followed by the isolation of mRNA from the genomic DNA of silkworms in 1976 Gene was cloned. Later, the H chain and the L chain in the silkworm, and the H chain in the knuckle were cloned, and the structure and the control of the mutation were actively studied.

가잠의 H사슬은 16 내지 17 kb의 길이로 2개의 엑손(exon)으로 이루어져 있으며, L 사슬의 경우 13472 bp 길이로 7개의 엑손(exon)으로 이루어져 있다. 피브로인의 H 사슬 유전자의 전사는 배 발생의 25 stage에서 활성화된 후 유충 발생시기에 후부견사선에서 스위치 온과 오프가 반복적으로 일어난다. Nuclear run-on assay를 통한 전사 조절 연구에 의하여 5령기 유충의 후부견사선의 전반부에서 국한되어 전사가 일어남을 밝혀졌다. 그리고 이때 L 사슬이 H 사슬과 같이 전사됨이 밝혀졌다. 피브로인 유전자는 세포 분화 과정에 유전자의 증폭이나 메틸레이션(methylation)과 같은 구조적 변화가 일어나지 않는 것이 확인되었는데, 이것은 피브로인 유전자의 발현이 대부분 전사에 의해 조절된다는 것을 의미한다.
The H chain of the silkworm consists of two exons with a length of 16 to 17 kb, and the L chain consists of 7 exons with a length of 13472 bp. The transcription of fibroin H chain gene is activated at 25 stages of embryogenesis and repeatedly switch on and off at the posterior silk line at the larval stage. Transcriptional regulation studies using the nuclear run-on assay revealed that the transcription was localized in the first half of the posterior silk gland of the fifth instar larva. At this time, it was found that L chain was transcribed as H chain. The fibroin gene has been shown to undergo no structural changes such as gene amplification or methylation during cell differentiation, which means that the expression of the fibroin gene is largely regulated by transcription.

형질전환 동물이란 외래의 유전자가 숙주의 게놈상에 삽입되어 그 형질의 일부가 변한 동물을 말하며 그때의 외래유전자를 트랜스젠(transgene)이라 한다. 1970년 중반부터 체세포나 생식세포에 유전자재조합 바이러스를 사용하여 외래유전자를 도입하기 시작하였고, 1980년도에는 미세주사방법(microinjection)으로 고든에 의해 슈퍼마우스를 생산하게 되었다.A transgenic animal is an animal in which an exogenous gene has been inserted into the genome of a host and a part of its trait has changed, and the foreign gene at that time is called a transgene. In the mid 1970's, we started to import foreign genes by using recombinant viruses in somatic cells or germ cells. In 1980, Gordon produced super-mice by microinjection.

외래유전자를 도입하는 기술로는 인산칼슘법, 전기천공법, DEAE-덱스트란법, 리포좀법, 미세주사법, bombardment법 등이 있다. 상기 방법들 중 DEAE-덱스트란법과 전기 천공법은 세포를 DNA가 열린 구멍을 통해 직접 세포질로 들어가게 하는 방법인데, 이 두 방법에서는 DNA가 손상을 입을 수도 있다. 리포좀을 이용하는 방법은 DNA를 인공지질 소포체인 리포좀을 넣어 세포막과 융합시켜 직접 세포 내로 운반시키는 방법으로 광범위하게 사용되고 있다. 미세주사법은 1세포기 수정란에 미세조작기를 사용하여 난에 손상을 주지 않을 정도의 미세주사침으로 DNA를 직접 주입하는 방법이다. 실용화 단계에 있는 외래유전자 도입기술은 도입되는 외래 유전자들이 성장률 조절, 극한 환경에서의 내성, 유전자 치료에 관련된 것이라면 인류에게 무한한 혜택을 줄 수 있을 것이다.
Techniques for introducing a foreign gene include calcium phosphate, electroporation, DEAE-dextran, liposome, microinjection, and bombardment. Among these methods, the DEAE-dextran method and the electroporation method allow the cells to enter the cytoplasm directly through the open hole of the DNA, which may damage the DNA. The method using liposomes is widely used as a method of directly transferring DNA into a cell by fusing the DNA with a liposome, an artificial lipid vesicle, into the cell membrane. The microinjection method is a method of directly injecting DNA with a micro needle to such an extent that it does not damage the eggs by using a micro manipulator in the first embryo transfer embryo. Outpatient gene transfer technology at the practical stage will have infinite benefits to human beings if introduced foreign genes are related to growth rate control, tolerance in extreme environments, gene therapy.

우리나라 잠사업은 70년대에 연간 5억불을 수출한 최고의 농산물 이었으나(세계 5위의 잠업 국가), 국내 잠사업은 급속한 경제성장에 따른 임금상승과 노동력 부족, 농약 사용의 증가에 다른 양잠피해의 속출, 중국산 저가 고치의 수입 증가에 따라 급격히 감소하여 우리나라의 누에고치 생산은 거의 전무한 실정이다. 따라서, 국내 양잠산업의 규모 확대와 양잠농가의 획기적인 소득증대를 위하여 고부가가치의 형질전환누에 개발이 요구되고 있는 실정이다.
In Korea, sleeping business was the best agricultural product exported $ 500 million per year in the 70s (the world's fifth largest country), but the domestic sleeping business has been affected by rapid growth of wages, labor shortage, , The price of Chinese cocoons dropped sharply due to the increase in imports of cocoons, and there was almost no production of silkworm cocoons in Korea. Therefore, it is required to develop high value-added transgenic silkworms for the expansion of the domestic silkworm industry and the epoch-making income of the silkworm farmers.

관련 선행기술로는 대한민국등록특허 제10-0267742호(등록일: 2000년 07월 07일, 명칭: 녹색 형광단백질 유전자가 삽입된 재조합 베큘로바이러스를 이용한 형광누에 및 제조방법)과 대한민국등록특허 제10-0323550호(등록일: 2002년 01월 24일, 명칭: 누에의 형질전환방법과 형질전환된 누에)가 있다.
As related prior arts, Korean Patent No. 10-0267742 (filed on July 07, 2000, entitled "Fluorescent silkworms using recombinant baculovirus inserted with green fluorescent protein gene and preparation method thereof") and Korea Patent No. 10 -0323550 (registered on Jan. 24, 2002, titled: Transgenic silkworm transfection method and transgenic silkworm).

본 발명의 목적은 고부가가치의 형질전환누에 개발을 위해 말미잘(anemone) 유래 적색 형광유전자의 변이체를 누에에 최적화되도록 코돈을 최적화(codon optimization)시킨 변이 유전자가 누에 실크의 주성분인 피브로인(Fibroin) 단백질의 프로모터(pFibH)로 발현 조절이 되도록 구성된 재조합 발현벡터를 제작하고, 상기 제작된 재조합 발현벡터로 누에를 형질전환시킨 적색 형광 실크를 생산하는 형질전환 누에를 제공하는 것이다.It is an object of the present invention to provide a novel silkworm-like silkworm which is characterized in that a mutation gene codon optimized to optimize silkworm mutants of anemone- (PFibH), and producing the transformed silkworm transformed silkworm transformed with silkworm silkworm transformed with the recombinant expression vector.

본 발명의 다른 목적은 본 발명에 따른 상기 형질전환 누에를 이용하여 적색 형광 실크를 대량으로 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for mass-producing red fluorescent silks using the transgenic silkworm according to the present invention.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the invention to the particular embodiments that are described. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, There will be.

상기 목적을 달성하기 위하여, 본 발명은 표지 유전자 조절 프로모터, 표지 유전자, 누에 유래의 피브로인(Fibroin) 프로모터 및 말미잘(anemone) 유래 적색 형광 유전자가 작동가능하게 연결된 유전자 컨스트럭트를 포함하는 재조합 발현벡터를 제공한다.In order to achieve the above object, the present invention provides a recombinant expression vector comprising a marker gene-regulated promoter, a marker gene, a silkworm-derived fibroin promoter, and a gene construct operably linked to an anemone-derived red fluorescent gene Lt; / RTI >

상기 적색 형광 유전자는 mKate2 유전자를 코돈 최적화 (codon optimization)를 통해 변이시킨 mKate2co 유전자인 것을 특징으로, 특히 상기 mKate2co 유전자는 서열번호 1의 염기서열로 구성된 것을 특징으로 한다.The red fluorescent gene is an mKate2co gene, which mutates mKate2 gene through codon optimization. Especially, the mKate2co gene is composed of the nucleotide sequence of SEQ ID NO: 1.

상기 표지 유전자 조절 프로모터는 3xP3 프로모터인 것을 특징으로 한다.The marker gene-regulated promoter is a 3xP3 promoter.

상기 표지 유전자는 EGFP(green fluorescent protein) 유전자인 것을 특징으로 한다.The marker gene is an EGFP (green fluorescent protein) gene.

상기 유전자 컨스트럭트는 도 1의 구조로 구성되는 것을 특징으로 한다.The gene construct is characterized in that it has the structure of FIG.

상기 발현벡터는 piggyBac 벡터인 것을 특징으로 한다.And the expression vector is a piggyBac vector.

본 발명은 상기 본 발명에 따른 재조합 발현벡터를 누에(Bombyx mori) 또는 누에알에 형질전환시켜 제조한, 적색 형광 실크를 생산하는 형질전환 누에를 제공한다.The present invention provides a transgenic silk producing a red fluorescent silk produced by transforming the recombinant expression vector according to the present invention into silkworm (Bombyx mori) or silkworm eggs.

또한, 본 발명은 In addition,

1) 상기 본 발명에 따른 재조합 발현벡터를 제조하는 단계;1) preparing the recombinant expression vector according to the present invention;

2) 상기 단계 1)의 재조합 발현벡터를 누에알에 형질전환시켜 형질전환된 누에알을 제조하는 단계; 및2) transforming the recombinant expression vector of step 1) into silkworm eggs to produce transformed silkworm eggs; And

3) 상기 단계 2)의 형질전환된 누에알을 부화시켜 형질전환 누에를 제조하는 단계를 포함하는 적색 형광 실크를 생산하는 형질전환 누에를 제조하는 방법을 제공한다.3) hatching the transformed silkworm in step 2) to produce a transformed silkworm. The present invention also provides a method for producing a transformed silkworm producing red silkworm comprising the step of:

상기 단계 2)의 형질전환은 미세주입법(microinjection)을 이용하는 것을 특징으로 한다.The transformation of step 2) is characterized by using microinjection.

상기 단계 3)에 있어서 i) 발현벡터에 표지 유전자를 도입한 후, 형질전환 누에에서 상기 표지 유전자의 발현을 확인하는 방법 또는 ii) 형질전환 누에에서 적색 형광 유전자의 발현을 확인하는 방법 중 하나의 방법으로 형질전환 누에를 선발하는 단계를 추가적으로 포함하는 것을 특징으로 한다.In step 3), a method of confirming the expression of the above-mentioned marker gene in a transformed silkworm after i) introducing a marker gene into an expression vector or ii) a method of confirming the expression of a red fluorescent gene in a transformed silkworm The method comprising the step of selecting a transgenic silkworm.

아울러, 본 발명은 In addition,

1) 상기 본 발명에 따른 재조합 발현벡터를 제조하는 단계;1) preparing the recombinant expression vector according to the present invention;

2) 상기 단계 1)의 재조합 발현벡터를 누에 또는 누에알에 형질전환시켜 형질전환 누에를 제조하는 단계; 및2) transforming the recombinant expression vector of step 1) into silkworm or silkworm to produce a transformed silkworm; And

3) 상기 단계 2)의 형질전환된 누에를 사육하여 실크를 획득하는 단계를 포함하는 적색 형광 실크를 대량으로 생산하는 방법을 제공한다.
3) culturing the transformed silkworm of step 2) to obtain silk, and a method of mass-producing the red fluorescent silk.

본 발명의 형질전환 누에가 생산하는 적색 형광 실크는 자연광에서도 엷은 천연의 적색을 나타내어 별도의 염색이 필요 없어 친환경적이면서도 매우 경제적이다. 또한, 상기 적색 형광 실크는 특정 파장의 빛을 쏘이면 어둠 속에서 영롱한 적색 형광을 나타내어 일반 실크에 비해 훨씬 고부가가치의 고급 패션의류나 벽지 등의 소재에 적용이 가능하다. 특히, 양잠농가는 현재 사육하고 있는 일반 누에와는 차별화된 고품질의 패션의류 등의 소재로 활용할 수 있는 적색 형광 실크를 생산하는 형질전환누에를 사육함으로써 소득향상에 크게 기여할 수 있다.
The red fluorescent silk produced by the transgenic silkworms of the present invention exhibits a pale natural red color even in natural light, so that it is environmentally friendly and very economical since no additional dyeing is required. In addition, the red fluorescent silk exhibits red fluorescence speckled in the dark when light of a specific wavelength is shot, so that it can be applied to materials such as high-end fashion garments and wallpaper having a much higher added value than general silk. In particular, the silkworm farmers can contribute to the income increase by breeding the transgenic silk producing the red fluorescent silk which can be used as the material of the high quality fashion clothes differentiated from the general silkworms currently being raised.

도 1은 전이벡터(p3xP3-EGFP-pFigH-mKate2co)의 구조를 나타내는 그림이다.
도 2는 G2 형질전환 누에의 EGFP의 형광을 나타내는 그림이다.
A는 알의 경우, F1 7령 배아의 눈 및 신경계에서 형광이 나타나는 것을 보여준다. 이때, 화살표는 눈 및 신경계를 표시한다.
B는 유충의 경우, F1 1령충의 눈에서 형광이 나타나는 것을 보여준다. 이때, 화살표는 눈을 표시한다.
C는 번데기의 경우, 눈에서 형광이 나타나는 것을 보여준다. 이때, 화살표는 눈을 표시한다.
D는 성충의 경우, 눈에서 형광이 나타나는 것을 보여준다. 이때, 화살표는 눈을 표시한다.
도 3은 F2 형질전환 누에의 5령충의 3일째에 견사선(silkgland)에서 mKate2co 형광을 나타내는 그림이다.
A는 명시야(bright field) 조건에서 관찰되는 견사선을 보여준다.
B는 적색 형광 시스템 조건에서 관찰되는 견사선을 보여준다.
도 4는 형질전환 누에의 누에고치에서 mKate2co 형광을 나타내는 그림이다.
A는 명시야(bright field) 조건에서 관찰되는 한 쌍의 누에고치를 보여준다.
B는 적색 형광 시스템 조건에서 관찰되는 한 쌍의 누에고치를 보여준다.
Fig. 1 is a diagram showing the structure of a transition vector (p3xP3-EGFP-pFigH-mKate2co).
Fig. 2 shows fluorescence of EGFP of G2-transgenic silkworm.
A shows that fluorescence appears in the eye and nervous system of the F1 7th embryo in the case of eggs. At this time, the arrow indicates the eye and the nervous system.
B shows that fluorescence appears in the eye of the F1 lizard in the larval case. At this time, the arrow marks the eye.
C shows that in the case of the pupa, fluorescence appears in the eye. At this time, the arrow marks the eye.
D shows fluorescence in the eyes in the case of an adult. At this time, the arrow marks the eye.
Fig. 3 shows mKate2co fluorescence in the silkgland on the third day of the fifth instar of the F2-transformed silkworm.
A shows the silk lines observed under bright field conditions.
B shows the silk lines observed under red fluorescence system conditions.
Fig. 4 is a figure showing mKate2co fluorescence in the cocoon of a transgenic silkworm.
A shows a pair of cocoon cocoons observed under bright field conditions.
B shows a pair of cocoon cocoons observed under red fluorescence system conditions.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 표지 유전자 조절 프로모터, 표지 유전자, 누에 유래의 피브로인(Fibroin) 프로모터 및 말미잘(anemone) 유래 적색 형광 유전자가 작동가능하게 연결된 유전자 컨스트럭트를 포함하는 재조합 발현벡터를 제공한다.The present invention provides a recombinant expression vector comprising a marker gene-regulated promoter, a marker gene, a silkworm-derived fibroin promoter, and a gene construct operably linked to an anemone-derived red fluorescent gene.

상기 재조합 발현벡터에 있어서, 상기 적색 형광 유전자는 mKate2 유전자를 코돈 최적화 (codon optimization)를 통해 변이시킨 mKate2co 유전자인 것이 바람직하나 이에 한정되지 않는다. 상기 mKate2co 유전자는 서열번호 1의 염기서열로 구성된 것이 바람직하나 이에 한정되지 않으며, 상기 염기서열에서 하나 또는 둘 이상의 염기가 삽입, 결실 또는 치환된 서열로 구성된 것도 포함할 수 있다.In the recombinant expression vector, the red fluorescent gene is preferably mKate2co gene that mutates mKate2 gene through codon optimization, but is not limited thereto. The mKate2co gene is preferably composed of the nucleotide sequence of SEQ ID NO: 1, but is not limited thereto. The mKate2co gene may also include one or two or more bases inserted, deleted or substituted in the nucleotide sequence.

상기 재조합 발현벡터에 있어서, 상기 피브로인 프로모터는 누에 유래 피브로인 H 프로모터(pFibH)를 사용하는 것이 바람직하다.In the recombinant expression vector, the fibroin promoter is preferably a silkworm-derived fibroin H promoter (pFibH).

상기 재조합 발현벡터에 있어서, 상기 표지 유전자 조절 프로모터는 3xP3 프로모터인 것이 바람직하나 이에 한정되지 않으며, 표지 유전자를 발현시킬 수 있는 프로모터는 모두 사용가능하다.In the recombinant expression vector, the marker gene-regulated promoter is preferably a 3xP3 promoter, but not limited thereto, and any promoter capable of expressing the marker gene can be used.

상기 재조합 발현벡터에 있어서, 상기 표지 유전자는 형광단백질을 발현하는 유전자는 모두 사용가능하며, EGFP(green fluorescent protein) 유전자를 사용하는 것이 더욱 바람직하나 이에 한정되지 않는다.In the recombinant expression vector, all of the genes that express the fluorescent protein can be used as the marker gene, and it is more preferable to use EGFP (green fluorescent protein) gene, but the present invention is not limited thereto.

본 발명의 한가지 실시예에서는 형질전환체 선발을 위해서, 형광단백질(EGFP)을 표지유전자로 사용하였고, 표지유전자의 발현조절은 눈과 신경시스템에서 특이적으로 발현하는 3xP3 프로모터를 사용하였다. In one embodiment of the present invention, a fluorescent protein (EGFP) was used as a marker gene for the selection of transformants, and a 3xP3 promoter specifically expressed in the eye and nervous system was used to regulate the expression of the marker gene.

상기 재조합 발현벡터에 있어서, 상기 유전자 컨스트럭트는 도 1의 구조로 구성된 컨스트럭트를 갖는 것이 바람직하나 이에 한정되지 않는다.In the recombinant expression vector, the gene construct preferably has a construct comprising the structure of FIG. 1, but is not limited thereto.

상기 재조합 발현벡터에 있어서, 상기 유전자 컨스트럭트가 도입되는 발현벡터는 piggyBac 벡터인 것이 바람직하나 이에 한정되지 않는다.In the recombinant expression vector, the expression vector into which the gene construct is introduced is preferably a piggyBac vector, but is not limited thereto.

또한, 본 발명은 본 발명에 따른 상기 재조합 발현벡터를 누에(Bombyx mori) 또는 누에알에 형질전환시켜 제조한, 적색 형광 실크를 생산하는 형질전환 누에를 제공한다.The present invention also provides a transformed silkworm producing a red fluorescent silk prepared by transforming the recombinant expression vector according to the present invention into silkworm (Bombyx mori) or silkworm eggs.

피브로인 H-chain의 긴 반복서열은 소수성 상호작용에 의해 결정구조를 형성하는데, 이러한 구조를 형성하기 위해서는 2가지 요소가 꼭 필요하다. 첫 번째는 H-chain의 N 말단과 C 말단에 실크 속으로 피브로인 분자를 분비시키기 위한 시그날 서열이 있어야 하고, 두 번째는 H-chain C 말단의 20번째 시스테인 잔기와 L-chain N 말단의 172번 시스테인 잔기가 이황화결합을 형성하고 있어야 한다. 따라서 본 발명에서는 이러한 시스템을 기반으로 피브로인 H-chain에서 재조합 단백질인 적색 형광 단백질 유전자를 발현시키는 누에 형질전환체를 제작하였다.
Long repeated sequences of the fibroin H-chain form a crystal structure by hydrophobic interaction. Two factors are necessary to form such a structure. First, the N-terminal and C-terminal of the H-chain should have a signal sequence to secrete the fibroin molecule into the silk. Second, the 20th cysteine residue of the H-chain C-terminal and 172 The cysteine residue must form a disulfide bond. Therefore, in the present invention, a silkworm transformant expressing a red fluorescent protein gene as a recombinant protein in the fibroin H-chain was constructed based on such a system.

또한, 본 발명은In addition,

1) 본 발명에 따른 상기 재조합 발현벡터를 제조하는 단계;1) preparing the recombinant expression vector according to the present invention;

2) 상기 단계 1)의 재조합 발현벡터를 누에알에 형질전환시켜 형질전환된 누에알을 제조하는 단계; 및2) transforming the recombinant expression vector of step 1) into silkworm eggs to produce transformed silkworm eggs; And

3) 상기 단계 2)의 형질전환된 누에알을 부화시켜 형질전환 누에를 제조하는 단계를 포함하는 적색 형광 실크를 생산하는 형질전환 누에를 제조하는 방법을 제공한다.3) hatching the transformed silkworm in step 2) to produce a transformed silkworm. The present invention also provides a method for producing a transformed silkworm producing red silkworm comprising the step of:

상기 방법에 있어서, 상기 단계 2)의 형질전환은 미세주입법(microinjection)을 이용하는 것이 바람직하나 이에 한정되지 않으며, 공지된 형질전환법은 모두 사용가능하다.In the above method, the transformation in step 2) is preferably performed using microinjection, but not limited thereto, and all known transformation methods can be used.

상기 방법에 있어서, 상기 단계 3)에 있어서, 하기 중 하나의 방법으로 형질전환 누에를 선발하는 단계를 추가적으로 포함할 수 있다.In the method, in the step 3), the step of selecting a transgenic silkworm may be further included by one of the following methods.

i) 발현벡터에 표지 유전자를 도입한 후, 형질전환 누에에서 상기 표지 유전자의 발현을 확인하는 방법; 또는,i) a method of inserting a marker gene into an expression vector and then confirming the expression of the marker gene in the transformed silkworm; or,

ii) 형질전환 누에에서 적색 형광 단백질 유전자의 발현을 확인하는 방법.
ii) a method for confirming expression of a red fluorescent protein gene in a transgenic silkworm.

본 발명의 한가지 실시예에서는 공지된 미세주입법을 이용하여 상기 재조합 발현벡터로 누에알을 형질전환시킨 후, 그 중 일부를 유충으로 부화시켰으며, 그 중 일부 성충이 된 나방들을 서로 교배시켜 F1세대의 누에알을 획득하였다. 그런 다음, 이들 F1세대의 누에알의 산란 후 초기배, 유충, 번데기 또는 성충에서 각각 눈 또는 신경조직에서의 표지 유전자의 발현을 관찰함으로써 형질전환체를 선발하였다. 그런 다음, 최종적으로 이들만을 교배시켜 F2세대의 형질전환체를 획득하였다(표 1 및 도 2 참조). In one embodiment of the present invention, silkworm eggs were transformed with the recombinant expression vector using a known microinjection method, and some of them were hatched with larvae, and some adult moths were mated with each other to generate F1 generations Of silkworm eggs were obtained. Then, the transgenic plants were selected by observing the expression of the marker gene in the eye or nerve tissue in the early embryo, larva, pupa, or adult after spawning of the F1 generations. Then, finally, only these were crossed to obtain F2 generation transformants (see Table 1 and Fig. 2).

본 발명의 한가지 실시예에서는 상기 획득한 F2세대의 형질전환체를 해부하여 후부 견사선을 형광현미경으로 관찰함으로써 적색 형광 실크의 생산을 확인한 결과, 피브로인을 생성하는 기관인 후부 견사선에서 적색 형광의 발현을 관찰할 수 있었고, 세리신을 생성하는 중부 견사선에서도 적색 형광의 발현을 관찰할 수 있었다(도 3 및 도 4 참조).
In one embodiment of the present invention, the obtained F2 generation transformant was dissected and the rear silk gland was observed with a fluorescence microscope to confirm the production of red fluorescent silk. As a result, the expression of red fluorescence was observed in the posterior silk gland, And the expression of red fluorescence was also observed in the middle silk gland producing sericin (see FIGS. 3 and 4).

아울러, 본 발명은 In addition,

1) 본 발명에 따른 상기 재조합 발현벡터를 제조하는 단계;1) preparing the recombinant expression vector according to the present invention;

2) 상기 단계 1)의 재조합 발현벡터를 누에 또는 누에알에 형질전환시켜 형질전환 누에를 제조하는 단계; 및2) transforming the recombinant expression vector of step 1) into silkworm or silkworm to produce a transformed silkworm; And

3) 상기 단계 2)의 형질전환된 누에를 사육하여 실크를 획득하는 단계를 포함하는 적색 형광 실크를 대량으로 생산하는 방법을 제공한다.
3) culturing the transformed silkworm of step 2) to obtain silk, and a method of mass-producing the red fluorescent silk.

이하, 본 발명을 하기 실시예에 의해 상세히 설명한다. Hereinafter, the present invention will be described in detail by the following examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

<< 실시예Example 1> 형질전환용 전이벡터의 제작 1> Construction of transformation vector for transformation

누에 실크에서 적색 형광단백질이 발현되는 형질전환 누에를 만들기 위해, 피브로인 프로모터와 mKate2co 유전자를 piggyBac 벡터에 도입하여 제작하였다. In order to produce transgenic silkworms expressing red fluorescent protein in silkworm silk, fibroin promoter and mKate2co gene were introduced into piggyBac vector.

먼저 피브로인 프로모터를 얻기 위해서, 1,124 bp 프로모터 서열과 1,430 bp N-말단에 피브로인 H 유전자(AF226688의 nt 61,312 - 63,870)의 인트론(972 bp)이 포함된 단편은 누에에서 분리된 게놈(genomic) DNA와 프라이머들(pFibHN-F: 5'-GGCGCGCCGTGCGTGATCAGGAAAAAT-3'(서열번호: 2)(27 mer)) 및 (pFibHN-R: 5'-TGCACCGACTGCAGCACTAGTGCTGAA-3'(서열번호: 3)(27 mer))을 사용하여 PCR로 증폭하였고, pGEM-T Easy Vector System(Promega, Madison WI)에 클로닝하였다. 완성된 플라스미드는 'pGEMT-pFibH-NTD'로 명명하였다. First, to obtain the fibroin promoter, the fragment containing the 1,124 bp promoter sequence and the intron (972 bp) of the fibroin H gene (nt 61, 312 - 63, 870 nt) at the 1,430 bp N-terminus contained genomic DNA isolated from silkworm (PFibHN-F: 5'-GGCGCGCCGTGCGTGATCAGGAAAAAT-3 '(SEQ ID NO: 2) (27 mer)) and pFibHN-R: 5'-TGCACCGACTGCAGCACTAGTGCTGAA-3' , And cloned into pGEM-T Easy Vector System (Promega, Madison Wis.). The completed plasmid was named 'pGEMT-pFibH-NTD'.

H-chain gene ORF의 180 bp 3' 말단과 피브로인 H 유전자(AF226688의 nt 79,021 - 80,009)의 300 bp 3' 영역이 포함된 단편은 누에에서 분리한 게놈 DNA와 프라이머들(pFibHC-F: 5'-AGCGTCAGTTACGGAGCTGGCAGGGGA-3'(서열번호: 4)(27 mer) 및 pFibHC-F: 5'-TATAGTATTCTTAGTTGAGAAGGCATA-3'(서열번호: 5)(27 mer))을 사용하여 PCR로 증폭하였고, pGEM-T Easy Vector System(Promega, USA)에 클로닝하였다. 완성된 플라스미드는 'pGEMT-CTD'로 명명하였다. Fragments containing the 300 bp 3 'region of the 180 bp 3' end of the H-chain gene ORF and the fibroin H gene (nt 79,021 - 80,009 of AF226688) (SEQ ID NO: 4) (27 mer) and pFibHC-F: 5'-TATAGTATTCTTAGTTGAGAAGGCATA-3 '(SEQ ID NO: 5) (27 mer)) and pGEM-T Easy Vector System (Promega, USA). The completed plasmid was named 'pGEMT-CTD'.

그런 다음, 'pGEMT-pFibH-NTD'는 Asc I 및 BamH I으로, 'pGEMT-CTD'는 Sal I 및 Fse I으로 각각 제한효소 처리함으로써 단편들을 준비하였다. 이들 단편들은 Apa I 및 Not I으로 제한효소 처리된 pBluescriptII SK(-) vector(Stratagene, CA)에 함께 클로닝하였고, 'pFibHNC-null'로 명명하였다. Then, fragments were prepared by restriction enzyme treatment of 'pGEMT-pFibH-NTD' with Asc I and BamH I and 'pGEMT-CTD' with Sal I and Fse I, respectively. These fragments were cloned together into a restriction enzyme treated pBluescriptII SK (-) vector (Stratagene, CA) with Apa I and Not I, and named as pFibHNC-null.

종결코돈 없는 mKate2co 유전자(ATGGTGAGCGAGCTTATAAAGGAGAATATGCATATGAAACTTTACATGGAAGGCACCGTGAACAACCACCACTTCAAATGCACATCTGAAGGTGAAGGTAAACCGTACGAAGGCACTCAAACTATGAGAATCAAGGCGGTTGAAGGCGGCCCTTTGCCTTTCGCCTTCGACATTTTGGCTACCTCGTTTATGTACGGTAGCAAAACTTTCATCAACCACACGCAGGGTATTCCCGATTTTTTTAAGCAGTCCTTCCCGGAAGGCTTCACATGGGAGAGGGTCACGACATATGAGGACGGGGGCGTCTTAACCGCTACGCAAGACACCTCTCTCCAAGACGGATGCTTGATCTATAATGTCAAGATCCGTGGTGTGAATTTTCCATCCAACGGTCCAGTAATGCAGAAAAAGACACTCGGCTGGGAGGCCTCAACAGAGACTCTGTACCCGGCTGACGGAGGCCTGGAAGGACGCGCAGATATGGCACTGAAACTCGTAGGCGGAGGACATCTGATATGTAACTTGAAGACTACGTACAGATCAAAGAAGCCAGCTAAAAATTTAAAGATGCCCGGAGTTTACTATGTTGATCGCCGGCTAGAAAGAATTAAGGAAGCCGATAAGGAGACCTATGTCGAACAGCATGAGGTTGCCGTGGCGCGTTACTGTGATCTACCTAGTAAATTAGGGCACCGA)는 코돈 최적화를 위해 mKate2 유전자 (ATGGTGAGCGAGCTGATTAAGGAGAACATGCACATGAAGCTGTACATGGAGGGCACCGTGAACAACCACCACTTCAAGTGCACATCCGAGGGCGAAGGCAAGCCCTACGAGGGCACCCAGACCATGAGAATCAAGGCGGTCGAGGGCGGCCCTCTCCCCTTCGCCTTCGACATCCTGGCTACCAGCTTCATGTACGGCAGCAAAACCTTCATCAACCACACCCAGGGCATCCCCGACTTCTTTAAGCAGTCCTTCCCCGAGGGCTTCACATGGGAGAGAGTCACCACATACGAAGACGGGGGCGTGCTGACCGCTACCCAGGACACCAGCCTCCAGGACGGCTGCCTCATCTACAACGTCAAGATCAGAGGGGTGAACTTCCCATCCAACGGCCCTGTGATGCAGAAGAAAACACTCGGCTGGGAGGCCTCCACCGAGACCCTGTACCCCGCTGACGGCGGCCTGGAAGGCAGAGCCGACATGGCCCTGAAGCTCGTGGGCGGGGGCCACCTGATCTGCAACTTGAAGACCACATACAGATCCAAGAAACCCGCTAAGAACCTCAAGATGCCCGGCGTCTACTATGTGGACAGAAGACTGGAAAGAATCAAGGAGGCCGACAAAGAGACCTACGTCGAGCAGCACGAGGTGGCTGTGGCCAGATACTGCGACCTCCCTAGCAAACTGGGGCACAGATGA)에서 코돈변이(codon optimization)을 시켜 누에에서 가장 최적화 발현되도록 하는 유전자 합성과정(Bioneer에서 수행)을 이용하여 제작하였고, pGEM-T easy벡터(Promega Co.)에 클로닝하였다. 상기 플라스미드는 Not I 및 Bbvc I으로 제한효소 처리하였고, 분리된 단편은 Not I 및 Bbvc I으로 제한효소 처리된 'pFibHNC-nul'에 클로닝하였다. 완성된 플라스미드는 'pFibHNC-mKate2co'로 명명하였다. mKate2co gene (ATGGTGAGCGAGCTTATAAAGGAGAATATGCATATGAAACTTTACATGGAAGGCACCGTGAACAACCACCACTTCAAATGCACATCTGAAGGTGAAGGTAAACCGTACGAAGGCACTCAAACTATGAGAATCAAGGCGGTTGAAGGCGGCCCTTTGCCTTTCGCCTTCGACATTTTGGCTACCTCGTTTATGTACGGTAGCAAAACTTTCATCAACCACACGCAGGGTATTCCCGATTTTTTTAAGCAGTCCTTCCCGGAAGGCTTCACATGGGAGAGGGTCACGACATATGAGGACGGGGGCGTCTTAACCGCTACGCAAGACACCTCTCTCCAAGACGGATGCTTGATCTATAATGTCAAGATCCGTGGTGTGAATTTTCCATCCAACGGTCCAGTAATGCAGAAAAAGACACTCGGCTGGGAGGCCTCAACAGAGACTCTGTACCCGGCTGACGGAGGCCTGGAAGGACGCGCAGATATGGCACTGAAACTCGTAGGCGGAGGACATCTGATATGTAACTTGAAGACTACGTACAGATCAAAGAAGCCAGCTAAAAATTTAAAGATGCCCGGAGTTTACTATGTTGATCGCCGGCTAGAAAGAATTAAGGAAGCCGATAAGGAGACCTATGTCGAACAGCATGAGGTTGCCGTGGCGCGTTACTGTGATCTACCTAGTAAATTAGGGCACCGA) no termination codon is a codon optimized gene for mKate2 (ATGGTGAGCGAGCTGATTAAGGAGAACATGCACATGAAGCTGTACATGGAGGGCACCGTGAACAACCACCACTTCAAGTGCACATCCGAGGGCGAAGGCAAGCCCTACGAGGGCACCCAGACCATGAGAATCAAGGCGGTCGAGGGCGGCCCTCTCCCCTTCGCCTTCGACATCCTGGCTACCAGCTTCATGTACGGCAGCAAAACCTTCATCAA In CCACACCCAGGGCATCCCCGACTTCTTTAAGCAGTCCTTCCCCGAGGGCTTCACATGGGAGAGAGTCACCACATACGAAGACGGGGGCGTGCTGACCGCTACCCAGGACACCAGCCTCCAGGACGGCTGCCTCATCTACAACGTCAAGATCAGAGGGGTGAACTTCCCATCCAACGGCCCTGTGATGCAGAAGAAAACACTCGGCTGGGAGGCCTCCACCGAGACCCTGTACCCCGCTGACGGCGGCCTGGAAGGCAGAGCCGACATGGCCCTGAAGCTCGTGGGCGGGGGCCACCTGATCTGCAACTTGAAGACCACATACAGATCCAAGAAACCCGCTAAGAACCTCAAGATGCCCGGCGTCTACTATGTGGACAGAAGACTGGAAAGAATCAAGGAGGCCGACAAAGAGACCTACGTCGAGCAGCACGAGGTGGCTGTGGCCAGATACTGCGACCTCCCTAGCAAACTGGGGCACAGATGA) by a codon mutation (codon optimization) was produced using the gene synthesis process that allows the optimization expressed in silkworm (done in Bioneer), was cloned into the pGEM-T easy vector (Promega Co.). The plasmid was restriction enzyme treated with Not I and Bbvc I, and the isolated fragment was cloned into 'pFibHNC-nul' which was restriction enzyme treated with Not I and Bbvc I. The completed plasmid was named &quot; pFibHNC-mKate2co &quot;.

마지막으로, 'pFibHNC-mKate2co'를 Asc I 및 Fse I으로 제한효소 처리하여 분리된 단편을 Asc I 및 Fse I으로 제한효소 처리된 'pG-3xP3-EGFP'에 클로닝하였다. 이때, 형질전환체를 선발하기 위한 마커 유전자로 EGFP 유전자를 사용하였고, 상기 EGFP 유전자의 조절 프로모터로는 3xP3 프로모터를 사용하였다. 완성된 플라스미드는 'pG-3xP3-EGFP-pFibH-mKate2co'(도 1)로 명명하였다.
Finally, 'pFibHNC-mKate2co' was restriction enzyme treated with Asc I and Fse I and the isolated fragment was cloned into 'pG-3xP3-EGFP' which was restriction enzyme treated with Asc I and Fse I. At this time, the EGFP gene was used as a marker gene for selecting the transformant, and the 3xP3 promoter was used as a regulatory promoter of the EGFP gene. The completed plasmid was named 'pG-3xP3-EGFP-pFibH-mKate2co' (Fig. 1).

<< 실시예Example 2> 누에 형질전환체의 제작 및 선발 2> Preparation and selection of silkworm transformants

<2-1> 누에의 준비 및 사육<2-1> Preparation and breeding of silkworm

형질전환에 사용된 누에(Bombyx mori, 농촌진흥청 국립농업과학원 잠사양봉소재과에서 보유하고 있는 누에를 사용함)는 금옥잠(125 x 140)을 사용하였고, 표준 사육 기준(온도, 24℃- 27℃; 상대습도, 70% - 90%)에 준하여 사육하였다. 형질전환에 사용된 누에알은 산란 후 4시간 이내의 것만 사용하였다.
The silkworm (125 x 140) was used for the transgenic silkworm (Bombyx mori, using silkworms from the National Academy of Agricultural Science, National Institute of Agricultural Science and Technology) and standard feeding standards (temperature, 24 ℃ - 27 ℃; Relative humidity, 70% - 90%). The silkworm eggs used for transformation were used only within 4 hours after spawning.

<2-2> 누에 형질전환체의 제작<2-2> Production of silkworm transformant

누에 형질전환체의 제작은 2000년 Tamura 등이 사용한 미세주입(microinjection)법을 참고로 실험을 진행하였다.(Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G,Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18, 81-84.) The production of silkworm transformants was carried out with reference to the microinjection method used by Tamura et al. In 2000 (Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18, 81-84.

구체적으로, 상기 <실시예 1>에서 제작한 전이벡터'pG-3xP3-EGFP-pFibH-mKate2co'와 헬퍼(Helper) 플라스미드인 pHA3PIG의 농도비는 1 : 1(각각 200 ng/ul)의 비율로 사용하였고, 미세주입용 완충용액(5 mM KCl, 0.5 mM Phosphate buffer, pH 7.0)에 0.2 ㎍/㎕의 농도로 희석하였다. 누에 초기 배로의 미세주입(microinjection)은 배아의 주공과 후부 사이의 가운데 배면 부분에 주입하였는데, 그 과정은 다음과 같이 실시하였다. 먼저 텅스텐 침으로 누에알의 난간에 작은 구멍을 뚫고, 이 구멍에 DNA 용액이 들어있는 미세관(microcapillary)의 끝을 삽입 후, 미세주입기(microinjector)의 공기압을 이용하여 DNA 용액을 알 속으로 주입하였다. 이때, 각 배아에 주입된 DNA 용액의 양은 10-15 nl가 사용되었고, 난간에 생긴 구멍은 시아노크릴레이트(Cyanocrylate) 접착제를 사용하여 막았다. 총1020개의 누에알을 미세주입하였다. 미세주입 후 누에알은 보습한 패트리디쉬에 넣어서 25℃에서 부화할 때까지 보호하였다.
Specifically, the concentration ratio of the transition vector 'pG-3xP3-EGFP-pFibH-mKate2co' prepared in Example 1 and the helper plasmid pHA3PIG was 1: 1 (200 ng / And diluted to a concentration of 0.2 μg / μl in a buffer solution for microinjection (5 mM KCl, 0.5 mM Phosphate buffer, pH 7.0). The microinjection of the silkworm early blastocyst was injected into the middle part of the middle between the main and posterior parts of the embryo. The procedure was as follows. First, a small hole is drilled in the railing of the silkworm with a tungsten needle, the tip of the microcapillary containing the DNA solution is inserted into the hole, and the DNA solution is injected into the egg using the air pressure of the microinjector Respectively. At this time, the amount of DNA solution injected into each embryo was 10-15 nl, and the hole in the railing was blocked with a cyanocrylate adhesive. A total of 1020 silkworm eggs were microinjected. After microinjection, silkworm eggs were placed in a moistened patridish and protected until incubated at 25 ° C.

<2-3> 누에 형질전환체의 선발<2-3> Screening of silkworm transformants

누에 형질전환체의 선발은 형광현미경을 이용하였다. 구체적으로, LEICA MZ16FA 현미경(Leica사, USA) 및 Microscope MZ FLIII Flourescence Filter EGFP 형광필터(Leica사, USA)를 사용하여, 누에의 세대별 및 시기별로 관찰하여 선발하였다. 기존에 보고된 문헌에 의하면 3xP3 프로모터는 누에 초기 배 단계의 눈과 신경조직, 유충과 번데기 및 성충의 눈에서 작용한다고 알려져 있으므로, 이러한 특징을 근거로 형질전환체를 선발하였다. Selection of silkworm transformants was performed by fluorescence microscopy. Specifically, the silkworms were selected for each generation and period by using a LEICA MZ16FA microscope (Leica, USA) and a Microscope MZ FLIII Flourescence Filter EGFP fluorescence filter (Leica, USA). According to the previously reported documents, the 3xP3 promoter is known to act in the eyes and nervous tissues of the silkworm early stage, larvae and pupae, and adult eyes, and thus the transformants were selected based on these characteristics.

그 결과, 60 마리의 유충이 부화되었다. 그 중 성충이 된 20마리의 나방들을 서로 교배시켜 F1세대의 누에알을 얻었고, 형질전환체 선발을 위해 시기에 따라 형광현미경으로 관찰하였다. 또한, 산란 후 3일째부터 누에초기배의 눈과 신경조직에서 녹색 형광이 관찰되었으며, 총 14 아구(Broods)의 형질전환체를 선발할 수 있었다(표 1). 또한 이렇게 선발된 아구에서 녹색형광의 눈을 가진 유충과 번데기 그리고 성충을 선발하였고(도 2), 최종적으로 이들만을 교배하여 F2세대의 형질전환체를 선발하였다.
As a result, 60 larvae hatch. Twenty adult moths were mated with each other to obtain silkworm eggs of the F1 generation. The eggs were observed under fluorescent microscope for selection of transformants. In addition, green fluorescence was observed in the eyes and nerve tissues of the silkworms from the third day after spawning, and a total of 14 transformants (Broods) were selected (Table 1). In addition, the larvae, pupae, and adults with green-fluorescent eyes were selected in the selected agar (Fig. 2). Finally, the transformants of the F2 generation were selected by crossing only these genes.

금옥잠 배아에 대한 컨스트럭트 DNA의 형질전환 비율Transformation ratio of Construct DNA to Geomorphology embryo 주입된 배아Injected embryo 부화된 배아A hatched embryo G0 아구(brood)G0 brood EGFP 양성을 갖는
G1 아구
EGFP positive
G1 Agu
1,020 마리1,020 grains 60 마리60 grains 20 마리20 grains 14마리14 grains

금옥잠 종이 숙주 종으로 사용되었다. 벡터 플라스미드 p3xP3-EGFP-pFibH-mKate2co(200 ng/ul) 및 헬퍼 플라스미드(200 ng/ul)를 주입을 위해 사용되었다.
It was used as a host species. Vector plasmid p3xP3-EGFP-pFibH-mKate2co (200 ng / ul) and helper plasmid (200 ng / ul) were used for injection.

<2-4> 적색 형광 <2-4> Red fluorescence 실크의Silk 선발 Selection

적색 형광 고치의 선별은 Leica (USA)사의 LEICA Z6 APO 현미경과 Leica (USA)사의 Filtersystem 530 LED를 사용하였다. 일반적으로 실크가 생성되는 과정은 누에의 후부 견사선에서 피브로인이 생성된 후 중부 견사선에서 세리신이 코팅되고 전부 견사선에서 토사공을 통해 밖으로 용출된다. 따라서 피브로인에서 적색 형광단백질이 발현되는 것을 확인하기 위해 F2세대의 5령 3일 누에를 해부하여 후부 견사선을 형광현미경으로 확인하였다.For the selection of red fluorescent cocoons, LEICA Z6 APO microscope from Leica (USA) and Filtersystem 530 LED from Leica (USA) were used. Generally, the process of silk formation is the formation of fibroin in the rear silk gland of the silkworm, sericin coating on the middle silk gland, and all of the silk glands are eluted through the silk gland from the silk gland. Therefore, in order to confirm the expression of red fluorescent protein in fibroin, the 5th and 3rd day silkworms of F2 generation were dissected and the rear silkworms were confirmed by fluorescence microscope.

그 결과, 피브로인을 생성하는 기관인 후부 견사선에서 적색 형광의 발현을 관찰할 수 있었고, 세리신을 생성하는 중부 견사선에서도 적색 형광의 발현을 관찰 할 수 있었다(도 3). 또한, F2세대의 고치에서 적색 형광이 관찰됨으로써 피브로인에서 mKate2co 재조합 단백질이 정상적으로 발현된다는 것을 확인할 수 있었다(도 4).
As a result, the expression of red fluorescence could be observed in the posterior silk gland, which is an organ for producing fibroin, and the expression of red fluorescence could also be observed in the middle silk gland producing sericin (FIG. 3). In addition, it was confirmed that mKate2co recombinant protein was expressed normally in fibroin by observing red fluorescence in the F2 generation cocoon (Fig. 4).

이와 같이, 상기 형질전환 누에가 생산하는 적색 형광 실크는 자연광에서도 엷은 천연의 적색을 나타내어 별도의 염색이 필요 없어 친환경적이면서도 매우 경제적이다. 또한, 상기 적색 형광 실크는 특정 파장의 빛을 쏘이면 어둠 속에서 영롱한 적색 형광을 나타내어 일반 실크에 비해 훨씬 고부가가치의 고급 패션의류나 벽지 등의 소재에 적용이 가능하다. 특히, 양잠농가는 현재 사육하고 있는 일반 누에와는 차별화된 고품질의 패션의류 등의 소재로 활용할 수 있는 적색 형광 실크를 생산하는 형질전환누에를 사육함으로써 소득향상에 크게 기여할 수 있다.
As such, the red fluorescent silk produced by the transitional silk exhibits a pale natural red color even in natural light, so that it is environmentally friendly and very economical, since no additional dyeing is required. In addition, the red fluorescent silk exhibits red fluorescence speckled in the dark when light of a specific wavelength is shot, so that it can be applied to materials such as high-end fashion garments and wallpaper having a much higher added value than general silk. In particular, the silkworm farmers can contribute to the income increase by breeding the transgenic silk producing the red fluorescent silk which can be used as the material of the high quality fashion clothes differentiated from the general silkworms currently being raised.

상기의 본 발명은 바람직한 실시예 및 시험예를 중심으로 살펴보았으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적 기술 범위 내에서 상기 본 발명의 상세한 설명과 다른 형태의 실시예들을 구현할 수 있을 것이다. 여기서 본 발명의 본질적 기술범위는 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. You can implement the examples. The scope of the present invention is defined by the appended claims, and all differences within the scope of the claims are to be construed as being included in the present invention.

Claims (12)

표지 유전자 조절 프로모터, 표지 유전자, 누에 유래의 피브로인(Fibroin) 프로모터 및 말미잘(anemone) 유래 적색 형광 유전자가 작동가능하게 연결된 유전자 컨스트럭트를 포함하는 재조합 발현벡터.
A recombinant expression vector comprising a marker gene-regulated promoter, a marker gene, a silkworm-derived fibroin promoter, and a gene construct operably linked to an anemone-derived red fluorescent gene.
제 1항에 있어서, 상기 적색 형광 유전자는 mKate2 유전자를 코돈 최적화 (codon optimization)를 통해 변이시킨 mKate2co 유전자인 것을 특징으로 하는 재조합 발현벡터.
2. The recombinant expression vector according to claim 1, wherein the red fluorescent gene is mKate2co gene which mutates mKate2 gene through codon optimization.
제 2항에 있어서, 상기 mKate2co 유전자는 서열번호 1의 염기서열로 구성된 것을 특징으로 하는 재조합 발현벡터.
3. The recombinant expression vector according to claim 2, wherein the mKate2co gene comprises the nucleotide sequence of SEQ ID NO: 1.
제 1항에 있어서, 상기 표지 유전자 조절 프로모터는 3xP3 프로모터인 것을 특징으로 하는 재조합 발현벡터.
2. The recombinant expression vector according to claim 1, wherein the marker gene-regulated promoter is a 3xP3 promoter.
제 1항에 있어서, 상기 표지 유전자는 EGFP(green fluorescent protein) 유전자인 것을 특징으로 하는 재조합 발현벡터.
The recombinant expression vector according to claim 1, wherein the marker gene is an EGFP (green fluorescent protein) gene.
제 1항에 있어서, 상기 유전자 컨스트럭트는 도 1의 구조로 구성되는 것을 특징으로 하는 재조합 발현벡터.
2. The recombinant expression vector according to claim 1, wherein the gene construct comprises the structure of FIG.
제 1항에 있어서, 상기 발현벡터는 piggyBac 벡터인 것을 특징으로 하는 재조합 발현벡터.
2. The recombinant expression vector according to claim 1, wherein the expression vector is a piggyBac vector.
제 1항 내지 제 7항 중 어느 한 항의 재조합 발현벡터를 누에(Bombyx mori) 또는 누에알에 형질전환시켜 제조한, 적색 형광 실크를 생산하는 형질전환 누에.
A transformed silkworm producing a red fluorescent silk, which is produced by transforming the recombinant expression vector of any one of claims 1 to 7 into silkworm (Bombyx mori) or silkworm.
1) 제 1항 내지 제 7항 중 어느 한 항의 재조합 발현벡터를 제조하는 단계;
2) 상기 단계 1)의 재조합 발현벡터를 누에알에 형질전환시켜 형질전환된 누에알을 제조하는 단계; 및
3) 상기 단계 2)의 형질전환된 누에알을 부화시켜 형질전환 누에를 제조하는 단계를 포함하는, 적색 형광 실크를 생산하는 형질전환 누에의 제조방법.
1) preparing a recombinant expression vector according to any one of claims 1 to 7;
2) transforming the recombinant expression vector of step 1) into silkworm eggs to produce transformed silkworm eggs; And
3) hatching the transformed silkworm in step 2) to produce a transformed silkworm, wherein the transformed silkworm is produced.
제 9항에 있어서, 상기 단계 2)의 형질전환은 미세주입법(microinjection)을 이용하는 것을 특징으로 하는 적색 형광 실크를 생산하는 형질전환 누에의 제조방법.
[Claim 11] The method according to claim 9, wherein the transformation in step 2) is performed using microinjection.
제 9항에 있어서, 상기 단계 3)에 있어서 하기 중 하나의 방법으로 형질전환 누에를 선발하는 단계를 추가적으로 포함하는 것을 특징으로 하는 적색 형광 실크를 생산하는 형질전환 누에의 제조방법.:
i) 발현벡터에 표지 유전자를 도입한 후, 형질전환 누에에서 상기 표지 유전자의 발현을 확인하는 방법; 또는
ii) 형질전환 누에에서 적색 형광 유전자의 발현을 확인하는 방법.
[Claim 11] The method according to claim 9, further comprising the step of selecting the transgenic silkworm by one of the following methods in the step 3):
i) a method of inserting a marker gene into an expression vector and then confirming the expression of the marker gene in the transformed silkworm; or
ii) a method for confirming the expression of a red fluorescent gene in a transgenic silkworm.
1) 제 1항 내지 제 7항 중 어느 한 항의 재조합 발현벡터를 제조하는 단계;
2) 상기 단계 1)의 재조합 발현벡터를 누에 또는 누에알에 형질전환시켜 형질전환 누에를 제조하는 단계; 및
3) 상기 단계 2)의 형질전환된 누에를 사육하여 실크를 획득하는 단계를 포함하는 적색 형광 실크의 대량 생산방법.
1) preparing a recombinant expression vector according to any one of claims 1 to 7;
2) transforming the recombinant expression vector of step 1) into silkworm or silkworm to produce a transformed silkworm; And
3) culturing the silkworm transformed in step 2) to obtain silk.
KR20120123971A 2012-11-05 2012-11-05 Transgenic silkworms producing red fluorescent cocoons KR101510437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120123971A KR101510437B1 (en) 2012-11-05 2012-11-05 Transgenic silkworms producing red fluorescent cocoons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120123971A KR101510437B1 (en) 2012-11-05 2012-11-05 Transgenic silkworms producing red fluorescent cocoons

Publications (2)

Publication Number Publication Date
KR20140057786A true KR20140057786A (en) 2014-05-14
KR101510437B1 KR101510437B1 (en) 2015-04-10

Family

ID=50888325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120123971A KR101510437B1 (en) 2012-11-05 2012-11-05 Transgenic silkworms producing red fluorescent cocoons

Country Status (1)

Country Link
KR (1) KR101510437B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160000527A (en) * 2014-06-24 2016-01-05 대한민국(농촌진흥청장) Transgenic silkworms producing blue fluorescent cocoons
CN113080153A (en) * 2021-05-07 2021-07-09 云南省农业科学院蚕桑蜜蜂研究所 Female backcross method for directionally transforming silkworm vegetarian spot variety into tea spot limiting system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102114194B1 (en) 2018-12-12 2020-05-25 대한민국 Transgenic silkworms producing silk expressed KillerRed protein
KR20230144436A (en) 2022-04-07 2023-10-16 대한민국(농촌진흥청장) Method for fabricating matrix barcodes using fluorescent silk and matrix barcodes generated by the method
KR102666296B1 (en) 2022-04-07 2024-05-16 대한민국(농촌진흥청장) Method for recognizing fluorescent silk matrix barcodes and device using the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100267742B1 (en) 1998-01-10 2000-11-01 대한민국 A green flouresence silworm using by the recombinant baculovirus containing the green protein gene and its method
WO2010131115A1 (en) 2009-05-11 2010-11-18 Evrogen Jsc Modified fluorescent proteins and methods for using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160000527A (en) * 2014-06-24 2016-01-05 대한민국(농촌진흥청장) Transgenic silkworms producing blue fluorescent cocoons
CN113080153A (en) * 2021-05-07 2021-07-09 云南省农业科学院蚕桑蜜蜂研究所 Female backcross method for directionally transforming silkworm vegetarian spot variety into tea spot limiting system

Also Published As

Publication number Publication date
KR101510437B1 (en) 2015-04-10

Similar Documents

Publication Publication Date Title
US7459599B2 (en) Methods for producing proteins using silkworm middle silk gland-specific gene expression system
KR101510437B1 (en) Transgenic silkworms producing red fluorescent cocoons
KR101570784B1 (en) Transgenic silkworms producing yellow fluorescent cocoons
CN109844112B (en) Gene recombination straw rain worm silk
WO2016076240A1 (en) Female silkworm lethal strain of bombyx mori
Tamura et al. An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms
KR101634275B1 (en) Transgenic silkworms producing blue fluorescent cocoons
KR101480153B1 (en) Transgenic silkworms producing cocoons containing melittins antibiotic peptides
CN105400817B (en) Utilize the method for the silkworm simultaneously synthesizing traction of secretion latrodectus mactans silk-fibroin 1 and albumen 2
KR101570783B1 (en) Transgenic silkworms producing antimicrobial peptide
KR101634272B1 (en) Transgenic silkworms producing blue fluorescent cocoons
JP5030610B2 (en) Silkworms with high expression of useful proteins by antiviral protein gene knockdown and use thereof
KR20120124644A (en) Transgenic silkworm egg for producing green fluorescence silk, silkworm transformant manufactured using the same and transgenic silkworm produced using the same
KR20150084152A (en) Transgenic silkworms producing recombinant antibacterial peptide
CN105463022B (en) The method for synthesizing secretion latrodectus mactans traction silk-fibroin 2 using domestic natural silk gland bioreactor
KR102114194B1 (en) Transgenic silkworms producing silk expressed KillerRed protein
JP2006521802A (en) Nucleic acids that direct the expression of useful polypeptides in the posterior silk gland of Lepidoptera and their applications
CN114150016A (en) Method for cultivating special type silkworm variety for golden silk floss
JP2005095063A (en) Method for producing protein with signal region removed from protein having transfer activity from silkworm silk gland cell to silk gland inner lumina
JP4431739B2 (en) Use of DNA encoding the silkworm kynurenine oxidase gene
CN105969801A (en) Bombyx mori middle silkgland bioreactor universal plasmid for expressing T4 ligase as well as application and method of universal plasmid
JP2012187123A (en) Method for producing proteins utilizing silkworm middle silk gland-specific gene expression system
Sezutsu et al. Silkworm Transgenesis and its Applications
WO2023190453A1 (en) Genome-modified silkworm producing chimeric silk yarns
JP2023119400A (en) Method for making transgenic silkworm using dormant egg

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal