KR20140056449A - In-ga-zn based oxide sputtering target and method for manufacturing the same - Google Patents

In-ga-zn based oxide sputtering target and method for manufacturing the same Download PDF

Info

Publication number
KR20140056449A
KR20140056449A KR1020120119140A KR20120119140A KR20140056449A KR 20140056449 A KR20140056449 A KR 20140056449A KR 1020120119140 A KR1020120119140 A KR 1020120119140A KR 20120119140 A KR20120119140 A KR 20120119140A KR 20140056449 A KR20140056449 A KR 20140056449A
Authority
KR
South Korea
Prior art keywords
oxide
gallium
indium
powder
zinc oxide
Prior art date
Application number
KR1020120119140A
Other languages
Korean (ko)
Inventor
김주영
이영주
오윤석
양혁
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020120119140A priority Critical patent/KR20140056449A/en
Publication of KR20140056449A publication Critical patent/KR20140056449A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention relates to a sputtering target of indium-gallium-zinc oxide and a method for producing the same, which includes firstly pulverizing indium oxide (In_2O_3), gallium oxide (Ga_2O_3), and zinc oxide (ZnO) powder; calcinating the firstly pulverized powder at the temperature of 1000°C or lower and secondly pulverizing the calcination-processed powder; and spherizing and sieving the secondly pulverized powder and filling the spherized and sieved powder in a mold for compress molding and sintering. The mole ratio composition of indium oxide, gallium oxide and the zinc oxide satisfies 0.5 <= ZnO / (In_2O_3 + Ga_2O_3 + ZnO) <= 0.95.

Description

인듐-갈륨-아연계 산화물의 스퍼터링 타겟 및 그 제조방법{In-Ga-Zn BASED OXIDE SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a sputtering target of indium-gallium-

본 발명은 스퍼터링 타겟 및 그 제조방법에 관한 것으로, 보다 구체적으로는 투명전극 물질로 이용되는 인듐-갈륨-아연계 산화물의 스퍼터링 타겟 및 그 제조방법에 관한 것이다.More particularly, the present invention relates to a sputtering target of an indium-gallium-zinc-based oxide used as a transparent electrode material and a method of manufacturing the same.

최근, 액정 디스플레이나 태양전지 등에는 도전성이고 또한 빛에 대하여 투명한 전극(투명전극)이 사용되고 있다. 이와 같은 성질을 갖는 재료로서는, 예를 들면, In2O3-SnO2(ITO), In2O3-ZnO(IZO), ZnO-Al2O3(AZO) 등의 산화물 재료가 알려져 있다. 이와 같은 재료는 스퍼터링(sputtering)법에 의하여 액정 디스플레이나 태양전지 상에 박막으로서 형성된 후에, 전극으로 패터닝되어, 투명전극이 된다. Recently, electrodes (transparent electrodes), which are conductive and transparent to light, are used for liquid crystal displays, solar cells, and the like. As materials having such properties, for example, oxide materials such as In 2 O 3 -SnO 2 (ITO), In 2 O 3 -ZnO (IZO) and ZnO-Al 2 O 3 (AZO) are known. Such a material is formed as a thin film on a liquid crystal display or a solar cell by a sputtering method, and then is patterned as an electrode to become a transparent electrode.

상기 스퍼터링법은 박막을 형성해야 하는 액정 디스플레이 등의 액정과 스퍼터링 타겟(이하, 타겟이라 한다)을 대향시켜서 배치하고, 이들 사이에서 가스 방전을 발생시켜, 이 가스 방전에 의해 발생한 이온이 타겟의 표면에 부딪혀, 그 충격에 의해 방출된 원자(입자)를 대향하는 기판에 부착시켜서 박막이 형성된다. The sputtering method is a method in which a liquid crystal such as a liquid crystal display for forming a thin film and a sputtering target (hereinafter, referred to as a target) are arranged to face each other and a gas discharge is generated therebetween, And the atoms (particles) emitted by the impact are attached to the opposing substrate to form a thin film.

상기 타겟은 박막(투명전극)이 되는 재료로 형성되고, 투명전극의 특성은 이 타겟의 특성을 반영한다. 또한, 일반적으로 상기 타겟은 매우 고가여서, 이 가격이 액정 디스플레이나 태양전지의 제조비용에서 차지하는 비율은 크다. 이 때문에, 액정 디스플레이나 태양전지의 저비용화를 위해서는 저렴한 타겟이 요구된다.The target is formed of a material that becomes a thin film (transparent electrode), and the characteristics of the transparent electrode reflect the characteristics of the target. In addition, the target is generally very expensive, and the ratio of this price to the manufacturing cost of a liquid crystal display or a solar cell is large. Therefore, an inexpensive target is required for lowering the cost of a liquid crystal display or a solar cell.

상기 ITO는 주석(Sn)이 도프(dope)된 산화인듐(In2O3)으로, ITO를 사용하면 빛의 투과율이 85% 이상, 비저항값은 1.0ㅧ10-4Ωㅇcm 정도의 투명전극이 얻어지므로, 그 특성은 액정 디스플레이나 태양전지에 사용하기에 충분하다. The ITO is indium oxide (In 2 O 3 ) doped with tin (Sn). When ITO is used, a transparent electrode having a light transmittance of 85% or more and a resistivity of 1.0 ㅧ 10 -4 Ω · cm So that the characteristics are sufficient for use in a liquid crystal display or a solar cell.

그러나, 큰 면적의 액정 디스플레이나 태양전지용의 투명전극을 형성하는 경우, 타겟도 투명전극과 유사하게 큰 면적의 것이 필요한데, 상기 ITO 원료의 주성분인 인듐(In)이 고가이기 때문에, 타겟이 고비용이 되는 원인이 되고 있었다. However, when a large-area liquid crystal display or a transparent electrode for a solar cell is formed, it is necessary to have a large area similar to a target in a transparent electrode. Since indium (In), which is a main component of the ITO raw material, is expensive, .

따라서, 보다 저가이면서, 동등한 특성을 갖는 투명전극이 필요하게 되었는데, 저가의 물질인 산화아연을 이용한 투명전극 물질이 개발되었으나 그 특성이 인듐산화물에 기반한 투명전극의 특성에 미치지 못하여 현재 디스플레이 산업의 핵심소재인 투명도전 소재의 90% 이상을 ITO가 차지하고 있고 나머지 10%정도를 IZO가 차지한다. Therefore, a transparent electrode having a lower cost and equivalent characteristics has been required. However, a transparent electrode material using zinc oxide, which is a low-priced material, has been developed. However, its characteristics are less than the characteristics of a transparent electrode based on indium oxide, ITO accounts for more than 90% of transparent conductive materials, and IZO accounts for the remaining 10%.

결국, ITO와 IZO 모두 인듐산화물 분말을 90%이상 사용하고 있어, 디스플레이의 투명전극용 소재산업이 인듐 시장의 70%이상을 차지하고 있는 실정이다. As a result, both ITO and IZO use more than 90% of indium oxide powder, and the transparent electrode material industry of display accounts for more than 70% of the indium market.

상기와 같은 문제를 해결하기 위한 본 발명은 ITO를 대체할 저가의 투명전극 물질로 난소결 물질인 ZnO 기반의 산화인듐-산화갈륨-산화아연(In2O3-Ga2O3-ZnO, IGZO) 산화물의 소결 스퍼터링 타겟 및 그 제조방법을 제공하고자 한다.In order to solve the above-mentioned problems, the present invention provides a low-cost transparent electrode material which is a substitute for ITO, which is a ZnO-based indium oxide-gallium oxide-zinc oxide (In 2 O 3 - Ga 2 O 3 - ZnO, IGZO ) Oxide sintered sputtering target and a method of manufacturing the same.

본 발명의 하나 또는 다수의 실시예에서는 산화인듐(In2O3), 산화갈륨(Ga2O3) 및 산화아연(ZnO) 분말을 1차 분쇄하는 단계; 1차 분쇄된 분말을 1000℃ 이하의 온도에서 하소처리하는 단계; 하소처리된 분말을 2차 분쇄하는 단계; 2차 분쇄된 분말을 구형화하거나 분급(sieving)하는 단계; 구형화 또는 분급된 분말을 몰드에 충진하여 압축 성형하는 단계; 및 압축 성형된 성형체를 소결하는 단계를 포함하되, 상기 산화인듐, 산화갈륨 및 산화아연의 조성은 몰비로 0.5 ≤ ZnO/(In2O3 + Ga2O3 + ZnO) ≤ 0.95를 만족하는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법이 제공될 수 있다.In one or more embodiments of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of: firstly pulverizing indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ) and zinc oxide (ZnO) Calcining the primary pulverized powder at a temperature of 1000 占 폚 or lower; Secondarily pulverizing the calcined powder; Spheronizing or sieving the second milled powder; Filling the spheroidized or classified powder into a mold and performing compression molding; And comprising the step of sintering the compression molded shaped body, that the composition of the indium oxide, gallium oxide and zinc oxide satisfies 0.5 ≤ ZnO / (In 2 O 3 + Ga 2 O 3 + ZnO) ≤ 0.95 in a molar ratio A method of manufacturing an indium-gallium-zinc-based oxide sputtering target can be provided.

상기 2차 분쇄하는 단계는 Ba2O3, GeO2 또는 B2O3로부터 선택되는 하나 이상의 첨가물을 첨가하는 단계를 포함하거나, 2차 분쇄 후 구상화 또는 분급하는 단계 이전에 SnO 또는 Al2O3 분말로부터 선택되는 하나 이상의 첨가물을 첨가하는 단계를 포함할 수 있다.It said secondary pulverizing is Ba 2 O 3, GeO 2 or B 2 O 3 comprises a step of adding one or more additives, or a secondary and then pulverized prior to the step of spheroidizing or classifying SnO or Al 2 O is selected from 3 And adding at least one additive selected from powder.

상기 첨가물은 인듐-갈륨-아연계 산화물에 대하여 0.1~10 원자 퍼센트(at%)인 것을 특징으로 한다.The additive is characterized by 0.1 to 10 atomic percent (at%) based on the indium-gallium-zinc-based oxide.

상기 1차 분쇄하는 단계에서는, 상기 산화인듐, 산화갈륨을 1㎛이하로 분쇄하고, 산화아연을 0.8㎛이하로 분쇄하는 것을 특징으로 하며, 상기 하소처리하는 단계는 1~3시간 동안 실시하는 것을 특징으로 하며, 상기 2차 분쇄하는 단계에서는, 하소된 분말의 평균입도의 크기가 1㎛이하가 되도록 분쇄하는 것을 특징으로 한다.Characterized in that, in the primary grinding step, the indium oxide and the gallium oxide are ground to a particle size of not more than 1 mu m and the zinc oxide is ground to a particle diameter of not more than 0.8 mu m, and the calcination is performed for 1 to 3 hours And pulverizing the calcined powder so that the average particle size of the calcined powder is not more than 1 탆.

또한, 상기 분급하는 단계는, 2차 분쇄된 분말 중 50㎛이상의 분말을 제거하는 것을 특징으로 하며, 상기 소결하는 단계는 1400℃이하의 온도에서 이루어지는 것을 특징으로 한다.The classifying step is characterized in that powder of 50 mu m or more is removed from the second pulverized powder, and the sintering step is performed at a temperature of 1400 DEG C or less.

또한, 본 발명의 하나 또는 다수의 실시예에서는 방법에 의해 제조되는 인듐-갈륨-아연계 산화물 스퍼터링 타겟이 제공될 수 있다.Further, in one or more embodiments of the present invention, an indium-gallium-zinc oxide sputtering target manufactured by a method can be provided.

본 발명의 실시예에 따르면 난소결 물질인 ZnO에 기반한 저가의 산화인듐-산화갈륨-산화아연(In2O3-Ga2O3-ZnO, IGZO) 화합물 스퍼터링 타겟을 제작할 수 있다.According to the embodiment of the present invention, it is possible to manufacture a low-cost sputtering target of indium-gallium oxide-zinc oxide (In 2 O 3 -Ga 2 O 3 - ZnO) based on ZnO which is a sintered material.

또한, 하소공정을 통하여 In-Ga-Zn-O 화합물을 형성하고, 상기 화합물을 미세하게 분쇄, 압축하여 소결을 행함으로써 높은 밀도의 스퍼터링 타겟을 제조할 수 있다. In addition, a high density sputtering target can be produced by forming an In-Ga-Zn-O compound through a calcination process, finely pulverizing, compressing and sintering the compound.

도 1은 본 발명의 실시예에 따른 인듐-갈륨-아연계 산화물 스퍼터링 타겟제조 공정 순서도이다.FIG. 1 is a flow chart of an indium-gallium-zinc-based oxide sputtering target manufacturing process according to an embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.

산화인듐-산화갈륨-산화아연 혼합 화합물(In2O3-Ga2O3-ZnO, IGZO)은 투명전극 특성이 우수한 것으로 알려져 있으며 In 함량을 감소시킬 수 있는 가능성이 있는데, 본 발명에 따른 실시예에서는 상기 인듐-갈륨-아연계 산화물 스퍼터링 타겟 및 그 제조방법에 관한 것이다.The indium oxide-gallium oxide-zinc oxide mixed compound (In 2 O 3 --Ga 2 O 3 - ZnO, IGZO) is known to have excellent transparent electrode characteristics and has a possibility to reduce the In content. The present invention relates to the indium-gallium-zinc oxide sputtering target and a method of manufacturing the same.

먼저, 도 1은 본 발명의 실시예에 따른 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조 공정의 순서도인데, 도 1을 참조하면, 산화인듐(In2O3), 산화갈륨(Ga2O3) 및 산화아연(ZnO) 분말을 1차 분쇄(S110)하고, 분쇄된 분말을 하소처리(S120)한다. 상기 하소처리된 분말을 2차 분쇄(S130)하여 분말의 입도를 1㎛이하가 되도록 한 다음 구형화 또는 분급처리(S140)한 다음 압축 성형(S150)하고 이를 소결(S160)하여 인듐-갈륨-아연계 산화물 스퍼터링 타겟을 제조한다.First, Figure 1 is indium according to the embodiment of the present invention a gallium-inde flow chart of the manufacturing process of the zinc oxide sputtering target 1, the indium oxide (In 2 O 3), gallium oxide (Ga 2 O 3 ) And zinc oxide (ZnO) powder are firstly pulverized (S110), and the pulverized powder is calcined (S120). The calcined powder is subjected to secondary sintering (S130) so that the particle size of the powder becomes 1 탆 or less, followed by sphering or classification (S140), compression molding (S150), and sintering (S160) Thereby preparing a zinc-based oxide sputtering target.

이때, 본 발명에 따른 실시예에서는 몰비로, 0.5 ≤ ZnO/(In2O3 + Ga2O3 + ZnO) ≤ 0.95를 만족하도록 한다. 만약, ZnO/(In2O3 + Ga2O3 + ZnO), 즉 스퍼터링 타겟 중 산화아연의 몰분율의 값이 0.5보다 작은 경우에는 희유원소인 In, Ga의 저감효과를 기대할 수 없으며, 0.95를 초과하는 경우에는 균일한 In-Ga-Zn-O 화합물 타겟을 형성할 수 없고 전기 전도도가 매우 낮아져 투명전극으로의 응용이 곤란하게 되므로 본 발명에 따른 실시예에서의 ZnO/(In2O3 + Ga2O3 + ZnO)의 값은 상기 범위로 한정한다. In this case, in the embodiment according to the present invention, 0.5? ZnO / (In 2 O 3 + Ga 2 O 3 + ZnO)? 0.95 is satisfied as a molar ratio. If the value of the mole fraction of zinc oxide in ZnO / (In 2 O 3 + Ga 2 O 3 + ZnO), that is, the sputtering target is less than 0.5, the effect of reducing In and Ga being rare elements can not be expected. The In-Ga-Zn-O compound target can not be formed uniformly, and the electric conductivity is very low, making it difficult to apply it to a transparent electrode. Therefore, the ZnO / (In 2 O 3 + Ga 2 O 3 + ZnO) is limited to the above range.

또한, 본 발명에 따른 실시예에서는 산화아연(ZnO)의 비율이 높아질수록 희유원소인 In2O3와 Ga2O3의 사용 비율을 낮출 수 있는데, 소결 밀도 및 전기적 특성(전기 전도도)을 향상시키기 위하여 상기 조성에 Ba2O3, SnO, GeO2, Al2O3 또는 B2O3 로부터 선택되는 하나 이상의 분말을 첨가(S135, S137)할 수 있는데, 상기 인듐-갈륨-아연계 산화물에 대하여 원자 퍼센트(at%)로 0.1~10%를 첨가한다. 만약, 0.1%보다 적게 첨가하면 상기 첨가물의 첨가 효과가 미미하고, 10%를 초과하여 첨가하면 투명전극이 불투명해져 최종 박막의 광 투과특성에 악영향을 미치므로, 본 발명에 따른 실시예에서의 상기 첨가물의 함량은 0.1~10at% 로 한정한다.
Further, in the embodiment according to the present invention, as the proportion of zinc oxide (ZnO) is increased, the ratio of the rare-earth elements In 2 O 3 and Ga 2 O 3 can be lowered, and the sintering density and electric characteristics One or more powders selected from Ba 2 O 3 , SnO 2 , GeO 2 , Al 2 O 3 or B 2 O 3 may be added to the above composition (S135 and S137). In this case, the indium-gallium- 0.1 to 10% by atomic percent (at%) is added. If it is added in an amount of less than 0.1%, the addition effect of the additive is insignificant. When the content exceeds 10%, the transparent electrode becomes opaque and adversely affects the light transmission characteristics of the final thin film. The content of the additive is limited to 0.1 to 10 at%.

이하에서는 본 발명에 따른 실시예의 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법에 대하여 보다 구체적으로 설명하기로 한다.Hereinafter, a method of preparing an indium-gallium-zinc oxide sputtering target according to an embodiment of the present invention will be described in more detail.

먼저, 산화인듐(In2O3), 산화갈륨(Ga2O3) 및 산화아연(ZnO)을 분쇄하는데, 1차 분쇄에서는 산화인듐(In2O3), 산화갈륨(Ga2O3) 및 산화아연(ZnO)을 습식 분쇄법 또는 건식 분쇄법으로 분쇄할 수 있다. 이때, 상기 산화인듐, 산화갈륨의 분쇄분말의 입도는 평균입도가 1㎛ 이하가 되도록 분쇄하고, 산화아연의 경우는 0.8㎛ 이하가 되도록 분쇄한다. 만약, 상기 산화인듐 및 산화갈륨의 평균입도가 1㎛를 초과하는 경우에는 후공정인 하소(S120)하는 단계에서 균일한 화합물 형성이 어려우며, 산화아연의 입도가 0.8㎛를 초과하는 경우에는 최종 소결하는 단계(S160)에서 조대한 산화아연 입자가 하소입자의 소결을 방해하여 높은 소결밀도를 얻기 어렵게 되므로, 본 발명에 따른 실시예에서의 1차 분쇄입도는 상기 범위로 한정한다.First, indium (In 2 O 3), gallium oxide (Ga 2 O 3) and to crush the zinc oxide (ZnO), the primary crushing indium oxide (In 2 O 3), gallium oxide (Ga 2 O 3) And zinc oxide (ZnO) can be pulverized by a wet grinding method or a dry grinding method. At this time, the particle size of the ground powder of the indium oxide and the gallium oxide is pulverized so that the average particle size is not more than 1 탆, and in the case of zinc oxide, the particle size is not more than 0.8 탆. If the average particle size of the indium oxide and the gallium oxide exceeds 1 탆, it is difficult to form a uniform compound in the subsequent calcination step (S120). If the particle size of the zinc oxide exceeds 0.8 탆, the final sintering The coarse zinc oxide particles interfere with the sintering of the calcined particles and it becomes difficult to obtain a high sintered density in the step (S160). Therefore, the primary particle size in the embodiment of the present invention is limited to the above range.

이후, 상기 1차 분쇄된 분말을 혼합하여 균질하게 분산시킨 후, 1000℃ 이하의 온도에서 하소(S120)처리를 수행한다. 본 발명에 따른 실시예에서의 하소처리 시간은 1~3시간인데, 만약 1시간 미만으로 하소처리하면 효과가 미미하고, 3시간 이상 하소하면 하소 분말의 입도가 커져서 최종 소결 밀도를 악화시키므로 본 발명에 따른 실시예에서는 하소 시간을 1~3시간으로 한정한다. Thereafter, the primary pulverized powders are mixed and dispersed homogeneously, and calcination (S120) is performed at a temperature of 1000 ° C or lower. The calcination treatment time in the examples according to the present invention is 1 to 3 hours. If the calcination treatment is performed for less than 1 hour, the effect is insignificant. If calcination for 3 hours or more, the calcination powder particle size becomes large and the final sintering density is deteriorated. The calcination time is limited to 1 to 3 hours.

또한, 1000℃를 초과하는 온도에서 하소처리를 하면 분말들이 엉겨붙어 단단한 덩어리를 형성하게 되어 후공정인 2차 분쇄(S130)단계에서 분쇄가 곤란해지므로 본 발명에 따른 실시예에서의 하소 온도는 1000℃이하로 한정한다. 즉, 산화인듐(In2O3), 산화갈륨(Ga2O3) 및 산화아연(ZnO) 분말이 화학반응이 일어나 화합물을 형성할 정도의 온도에서 하소하면 충분하다.In addition, if calcination is performed at a temperature exceeding 1000 캜, the powder tends to clump to form a hard lump, which makes it difficult to pulverize in the secondary milling step (S130), which is a post-process. Therefore, 1000 ℃ or less. That is, it is sufficient to calcine indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), and zinc oxide (ZnO) powders at such a temperature that a chemical reaction occurs to form a compound.

이후, 상기 하소된 분말은 습식 분쇄법 또는 건식 분쇄법으로 2차 분쇄(S130)한다. 이때의 분쇄 분말의 평균입도는 1㎛ 이하가 되도록 한다. 그러나, 50㎛보다 큰 입도를 가진 조대분말들이 함께 존재하기도 하고, 분말의 모양이 다양하다. 분말의 모양 및 크기가 다양하면 고밀도 성형이 곤란하여 밀도 균일성이 떨어진다. Thereafter, the calcined powder is secondarily pulverized (S130) by a wet grinding method or a dry grinding method. The average particle size of the pulverized powder at this time is set to be 1 mu m or less. However, coarse powders having a particle size larger than 50 탆 are present together, and the shape of the powder varies. If the shape and size of the powder are varied, it is difficult to form a high-density powder and the density uniformity is reduced.

따라서, 본 발명에 따른 실시예에서는 2차 분쇄된 분말을 구형화하거나 분급(sieving)(S140)단계를 거친다. 즉, 2차 분쇄된 분말은 분무건조(Spray dry) 공정을 통해 구형화하거나 분급 작업을 통해 50㎛ 이상의 조대분말을 제거한다. Therefore, in the embodiment of the present invention, the secondary pulverized powder is sphered or sieved (S140). That is, the second pulverized powder is sphered through a spray drying process or a coarse powder of 50 탆 or more is removed through classification.

이는 후공정인 압축 성형(S150)시 50㎛ 이상의 조대분말은 성형체의 밀도 불균형을 초래하고 고온 소결을 통한 수축시 소결체의 내부 또는 외부에 크랙이 형성되거나 소결체가 파손되는 것을 방지하기 위함이다. 이때, 성형체의 부피가 100cm3이상인 대형 성형체의 경우는 분무 건조 공정을 통하여 20~50㎛ 크기의 구형입자를 형성하여 균일한 성형밀도를 갖도록 한다. This is because coarse powder of 50 mu m or more in the post-process compression molding (S150) causes unevenness in density of the formed body and prevents cracks from being formed inside or outside of the sintered body or breakage of the sintered body during shrinkage through high-temperature sintering. At this time, in the case of a large molded body having a volume of 100 cm 3 or more, spherical particles having a size of 20 to 50 μm are formed through a spray drying process to have a uniform molding density.

이후, 구형화 또는 분급 공정이 완료된 분말을 성형 몰드에 충진하고 5ton/cm2 이하의 압력으로 1축 가압 성형을 수행한다. 이때, 정수압 성형 공정을 거쳐 성형체를 완성하며, 이때의 성형밀도는 3.6~4.3g/cc 가 되도록 한다. Thereafter, the powder subjected to the sphering or classification process is filled in a molding mold, and uniaxial pressing is performed at a pressure of 5 ton / cm 2 or less. At this time, the shaped body is completed through the hydrostatic forming process, and the molding density at this time is set to 3.6 to 4.3 g / cc.

이후, 상기 압축 성형된 성형체를 1400℃ 이하의 온도에서 3~9시간 동안 소결(S160)처리 한다. 산화아연은 고온에서 기화가 잘 일어나므로 1400℃를 초과하는 온도에서 소결하면, 산화아연이 증발하게 되어 최종 조성이 잘 맞지 않게 되므로, 본 발명에 따른 실시예에서는 소결 온도를 1400℃이하로 한정한다. 이때, 최종 소결된 스퍼터링 타겟의 밀도는 4.4~6.4g/cc가 된다. 상기 타겟의 밀도는 산화아연의 양에 따라 달라지는데, 산화아연은 산화인듐 또는 산화갈륨에 비하여 밀도가 낮으므로, 산화아연의 함량이 높을수록 스퍼터링 타겟의 밀도는 낮아진다.Then, the compression-molded body is sintered (S160) at a temperature of 1400 占 폚 or less for 3 to 9 hours. Since zinc oxide is easily vaporized at a high temperature, sintering at a temperature exceeding 1,400 ° C. causes zinc oxide to evaporate, resulting in a poor final composition. Therefore, in the embodiment of the present invention, the sintering temperature is limited to 1400 ° C. or less . At this time, the final sintered sputtering target has a density of 4.4 to 6.4 g / cc. The density of the target varies depending on the amount of zinc oxide. Since the density of zinc oxide is lower than that of indium oxide or gallium oxide, the density of the sputtering target becomes lower as the content of zinc oxide is higher.

또한, 본 발명에 따른 실시예에서는 Ba2O3, GeO2, B2O3, SnO 또는 Al2O3 분말로부터 선택되는 하나 이상의 첨가물을 첨가(S135, S137)하는데, Ba2O3, GeO2, B2O3와 같이 수용성 화합물의 경우에는, 하소 후 2차 분쇄 공정에서 수용액 형태로 첨가하여 건조한다. 이 경우 첨가물은 균일한 분포로 첨가되며 분말 표면에 첨가물이 증착되어 소결체의 밀도 및 첨가물이 균일하게 분포되도록 할 수 있다. Further, in the embodiment of the present invention, Ba 2 O 3, GeO 2, B 2 O 3, to (S135, S137) the addition of one or more additives selected from SnO or Al 2 O 3 powder, Ba 2 O 3, GeO 2 and B 2 O 3 in the case of water-soluble compounds, it is added in the form of an aqueous solution in the second pulverization step after the calcination and dried. In this case, the additive is added in a uniform distribution, and the additive is deposited on the powder surface, so that the density and additives of the sintered body can be uniformly distributed.

즉, 본 발명에 따른 실시예에서는 Ba2O3, GeO2, B2O3의 분말을 습식 분쇄법으로 2차 분쇄하는 동안 첨가하여, 상기 Ba2O3, GeO2, B2O3 분말은 용매에 녹아 균일하게 분포되며 이때, 용매를 증발시키면 상기 Ba2O3, GeO2, B2O3 이 인듐-갈륨-아연계 산화물 분말의 표면에 코팅되면서 균일하게 분포하게 된다.That is, in the embodiment of the present invention, Ba 2 O 3 , GeO 2 and B 2 O 3 powders are added during the second milling by wet pulverization to form Ba 2 O 3 , GeO 2 and B 2 O 3 powders Are dispersed uniformly in the solvent. When the solvent is evaporated, the Ba 2 O 3 , GeO 2, and B 2 O 3 are uniformly distributed while being coated on the surface of the indium-gallium-zinc oxide powder.

또한, SnO 또는 Al2O3 첨가물은 구형화 또는 분급 공정 전에 혼합하여 첨가되는데, 이는 용매에 녹지 않으므로 하소된 분말을 분쇄한 후 첨가할 물질을 혼합하여 구형화 또는 분급 공정을 진행한다. 이때, 본 발명에 따른 실시예에서는 첨가 물질의 균일한 혼합을 위하여 SnO 또는 Al2O3 첨가물의 입도를 0.2㎛ 이하로 한정한다.
In addition, the SnO or Al 2 O 3 additive is added before the sphering or classifying process. Since the powder is not dissolved in the solvent, the sintered powder is pulverized and the material to be added is mixed to proceed the sphering or classification process. In this case, in the embodiment of the present invention, the particle size of the SnO or Al 2 O 3 additive is limited to 0.2 μm or less for uniform mixing of the additive material.

이하에서는 본 발명에 따른 실시예와 비교예를 비교하여 설명하기로 한다.Hereinafter, embodiments of the present invention and comparative examples will be described in detail.

본 발명에 따른 실시예에서는 상기의 공정조건에 따라 제작한 In-Ga-Zn-O 타겟의 밀도를 표 1에 나타냈다. 이때, 소결공정은 1400℃에서 6시간 동안 실시하였다.In the example according to the present invention, the density of the In-Ga-Zn-O target produced according to the above process conditions is shown in Table 1. At this time, the sintering process was performed at 1400 ° C for 6 hours.

조성(몰비)Composition (molar ratio) 소결온도(℃)Sintering temperature (℃) 소결시간Sintering time 소결체 밀도(g/cc)Sinter density (g / cc) 상대밀도Relative density In2O3 In 2 O 3 Ga2O3 Ga 2 O 3 ZnOZnO 1One 1One 22 14001400 6시간6 hours 6.216.21 9797 1One 1One 22 14001400 6시간6 hours 6.236.23 9898 1One 1One 44 14001400 6시간6 hours 6.056.05 9797 1One 1One 44 14001400 6시간6 hours 6.036.03 9797 1One 1One 66 14001400 6시간6 hours 5.985.98 9898 1One 1One 66 14001400 6시간6 hours 6.176.17 101101 1One 1One 88 14001400 6시간6 hours 5.775.77 9696 1One 1One 88 14001400 6시간6 hours 5.735.73 9595 1One 1One 1010 14001400 6시간6 hours 5.735.73 9696 1One 1One 1010 14001400 6시간6 hours 5.945.94 9999 1One 1One 1212 14001400 6시간6 hours 5.455.45 9292 1One 1One 1212 14001400 6시간6 hours 5.245.24 8888 1One 1One 1414 14001400 6시간6 hours 4.944.94 8484 1One 1One 1414 14001400 6시간6 hours 5.005.00 8585 1One 1One 1616 14001400 6시간6 hours 4.744.74 8484 1One 1One 1616 14001400 6시간6 hours 4.754.75 8484 1One 1One 1818 14001400 6시간6 hours 4.624.62 8282 1One 1One 1818 14001400 6시간6 hours 4.654.65 8282 1One 1One 2020 14001400 6시간6 hours 4.504.50 8080 1One 1One 2020 14001400 6시간6 hours 4.434.43 7979

또한, 비교예로써 하소공정 없이 1차 분쇄후 분급, 압축성형, 소결작업을 거친 In-Ga-Zn-O 타겟의 밀도를 표 2에 나타내었다. 이때의 소결공정은 1400℃에서 6시간 동안 실시하였다.Table 2 shows the densities of the In-Ga-Zn-O targets subjected to the classification, compression molding and sintering after the first grinding without calcining as a comparative example. The sintering process was performed at 1400 ° C for 6 hours.

조성(몰비)Composition (molar ratio) 소결온도(℃)Sintering temperature (℃) 소결시간Sintering time 소결체 밀도(g/cc)Sinter density (g / cc) 상대밀도Relative density In2O3 In 2 O 3 Ga2O3 Ga 2 O 3 ZnOZnO 1One 1One 22 14001400 6시간6 hours 4.104.10 6464 1One 1One 44 14001400 6시간6 hours 3.683.68 5959 1One 1One 66 14001400 6시간6 hours 4.494.49 7474 1One 1One 88 14001400 6시간6 hours 4.144.14 6969 1One 1One 1010 14001400 6시간6 hours 4.454.45 7474 1One 1One 1212 14001400 6시간6 hours 4.384.38 7373 1One 1One 1414 14001400 6시간6 hours 4.384.38 7575 1One 1One 1616 14001400 6시간6 hours 4.714.71 8383 1One 1One 1818 14001400 6시간6 hours 4.914.91 8787 1One 1One 2020 14001400 6시간6 hours 4.664.66 8383

상기 표 1 및 표 2에서 알 수 있듯이, 하소 공정을 거친 경우에는 소결체 밀도가 대부분 5.0g/cc를 초과하였으나, 비교예의 경우에는 소결체의 밀도가 3.68~4.91g/cc의 범위에 속하였다. 또한, 본 발명에 따른 실시예에서의 상대밀도는 대부분 80~100의 값을 가지는 반면, 비교예의 경우에는 59~87의 값을 가지는 것을 알 수 있다. 이때의 상대밀도는 성분 조성에 따른 이론적 밀도에 대한 실제 타겟의 밀도를 의미한다.As can be seen from Tables 1 and 2, the sintered body density exceeded 5.0 g / cc in the case of calcination, while the density of the sintered body in the comparative example was in the range of 3.68 to 4.91 g / cc. In addition, the relative density in the embodiment according to the present invention has a value of 80 to 100, while in the comparative example, it has a value of 59 to 87. [ The relative density at this time means the density of the actual target relative to the theoretical density according to the composition of the components.

이로써 본 발명에 따른 실시예의 경우는 소결체의 밀도가 더욱 향상된 것을 알 수 있으며, 이는 하소 처리에 기인하는 것임을 알 수 있다. 즉, 하소공정 없이 소결할 경우 소결체의 수축이 일어나기 전에 산화인듐, 산화갈륨 및 산화아연이 화학반응을 일으켜 InGaZn5O9 등의 화합물을 형성하여, 소결체에 보이드(void)가 형성되고 입자간 접촉면적이 줄어들어 소결 후에도 낮은 소결 밀도를 갖게 되는데, 본 발명에 따른 실시예에서는 하소처리를 함으로써 소결체의 밀도를 향상시켰다.As a result, it can be seen that the density of the sintered body is further improved in the case of the embodiment according to the present invention, which is attributable to the calcination treatment. That is, when sintering without calcination, a chemical reaction occurs between indium oxide, gallium oxide and zinc oxide before shrinkage of the sintered body forms a compound such as InGaZn 5 O 9 , voids are formed in the sintered body, The area is reduced and the sintering density is low even after the sintering. In the embodiment of the present invention, the density of the sintered body is improved by performing the calcining treatment.

즉, 본 발명에 따른 실시예에서는 하소 공정을 통하여 인듐-갈륨-아연계 산화물을 형성하여, 상기 산화물을 미세하게 분쇄, 압축하여 소결을 함으로써 높은 밀도를 갖는 스퍼터링 타겟을 제조할 수 있었다.That is, in the embodiment according to the present invention, the indium-gallium-zinc-based oxide is formed through the calcination process, and the oxide is finely pulverized, compressed and sintered to produce a sputtering target having a high density.

이상 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.While the present invention has been described in connection with certain exemplary embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .

Claims (9)

산화인듐(In2O3), 산화갈륨(Ga2O3) 및 산화아연(ZnO) 분말을 1차 분쇄하는 단계;
1차 분쇄된 분말을 1000℃ 이하의 온도에서 하소처리하는 단계;
하소처리된 분말을 2차 분쇄하는 단계;
2차 분쇄된 분말을 구형화하거나 분급(sieving)하는 단계;
구형화 또는 분급된 분말을 몰드에 충진하여 압축 성형하는 단계; 및
압축 성형된 성형체를 소결하는 단계를 포함하되,
상기 산화인듐, 산화갈륨 및 산화아연의 조성은 몰비로 하기 식을 만족하는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
0.5 ≤ ZnO/(In2O3 + Ga2O3 + ZnO) ≤ 0.95
Firstly pulverizing indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ) and zinc oxide (ZnO) powders;
Calcining the primary pulverized powder at a temperature of 1000 占 폚 or lower;
Secondarily pulverizing the calcined powder;
Spheronizing or sieving the second milled powder;
Filling the spheroidized or classified powder into a mold and performing compression molding; And
And sintering the compression-molded body,
Wherein the composition of the indium oxide, gallium oxide and zinc oxide is a molar ratio satisfying the following formula.
0.5 ≤ ZnO / (In 2 O 3 + Ga 2 O 3 + ZnO) ≤ 0.95
제1항에 있어서,
상기 2차 분쇄하는 단계는 Ba2O3, GeO2 또는 B2O3로부터 선택되는 하나 이상의 첨가물을 첨가하는 단계를 포함하거나, 2차 분쇄 후 구상화 또는 분급하는 단계 이전에 SnO 또는 Al2O3 분말로부터 선택되는 하나 이상의 첨가물을 첨가하는 단계를 포함하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
The method according to claim 1,
It said secondary pulverizing is Ba 2 O 3, GeO 2 or B 2 O 3 comprises a step of adding one or more additives, or a secondary and then pulverized prior to the step of spheroidizing or classifying SnO or Al 2 O is selected from 3 Gallium-zinc-based oxide sputtering target comprising the step of adding at least one additive selected from the group consisting of an oxide and a powder.
제2항에 있어서,
상기 첨가물은 인듐-갈륨-아연계 산화물에 대하여 0.1~10 원자 퍼센트(at%)인 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
3. The method of claim 2,
Wherein the additive is 0.1 to 10 atomic percent (at%) based on the indium-gallium-zinc-based oxide.
제1항에 있어서,
상기 1차 분쇄하는 단계에서는,
상기 산화인듐, 산화갈륨을 1㎛이하로 분쇄하고, 산화아연을 0.8㎛이하로 분쇄하는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
The method according to claim 1,
In the primary pulverizing step,
Wherein the indium oxide and the gallium oxide are ground to a particle size of not more than 1 mu m and the zinc oxide is ground to a particle size of not more than 0.8 mu m.
제1항에 있어서,
상기 하소처리하는 단계는 1~3시간 동안 실시하는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
The method according to claim 1,
Wherein the calcining step is performed for 1 to 3 hours. 2. The method of manufacturing an indium-gallium-zinc oxide sputtering target according to claim 1,
제1항에 있어서,
상기 2차 분쇄하는 단계에서는, 하소된 분말의 평균입도의 크기가 1㎛이하가 되도록 분쇄하는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
The method according to claim 1,
The method for producing an indium-gallium-zinc oxide sputtering target according to claim 1, wherein in the second pulverizing step, the pulverized powder is pulverized so that the average particle size of the calcined powder is 1 탆 or less.
제1항에 있어서,
상기 분급하는 단계는,
2차 분쇄된 분말 중 50㎛이상의 분말을 제거하는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
The method according to claim 1,
Wherein the classifying step comprises:
And removing powder of 50 mu m or more in the second pulverized powder. The method of manufacturing an indium-gallium-zinc oxide sputtering target according to claim 1,
제1항에 있어서,
상기 소결하는 단계는 1400℃이하의 온도에서 이루어지는 것을 특징으로 하는 인듐-갈륨-아연계 산화물 스퍼터링 타겟의 제조방법.
The method according to claim 1,
Wherein the sintering step is performed at a temperature of 1400 ° C or lower. The method of manufacturing an indium-gallium-zinc oxide sputtering target according to claim 1,
제1항 내지 제8항 중 어느 하나의 항에 의해 제조되는 인듐-갈륨-아연계 산화물 스퍼터링 타겟. An indium-gallium-zinc oxide sputtering target produced by any one of claims 1 to 8.
KR1020120119140A 2012-10-25 2012-10-25 In-ga-zn based oxide sputtering target and method for manufacturing the same KR20140056449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120119140A KR20140056449A (en) 2012-10-25 2012-10-25 In-ga-zn based oxide sputtering target and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120119140A KR20140056449A (en) 2012-10-25 2012-10-25 In-ga-zn based oxide sputtering target and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20140056449A true KR20140056449A (en) 2014-05-12

Family

ID=50887588

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120119140A KR20140056449A (en) 2012-10-25 2012-10-25 In-ga-zn based oxide sputtering target and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20140056449A (en)

Similar Documents

Publication Publication Date Title
KR100995196B1 (en) Sputtering target, transparent conductive film, and their manufacturing method
CN101913856B (en) Method for preparing high-quality AZO target under protection of inert gas
US9214253B2 (en) Sintered compact of indium oxide system, and transparent conductive film of indium oxide system
CN105712703A (en) Preparation method of ITO target material with high purity and high density
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5149262B2 (en) Indium oxide-zinc oxide sintered target and method for producing the same
KR100960222B1 (en) Zinc oxide based sputtering target, method for mamufacturing the same and zinc oxide based thin film manufactured by using the same
CN116655372B (en) Tin oxide-based target material and preparation method thereof
KR101240197B1 (en) Transparent conducting film, target for transparent conducting film and method of preparing target for transparent conducting film
CN103833351A (en) Microwave dielectric ceramic and preparation method thereof
KR20120062341A (en) Indium zinc oxide transparent condutive layer for an electrode and the preparing method thereof
KR101264111B1 (en) Transparent conducting film, target for transparent conducting film and method for preparing target for transparent conducting film
JP2021150140A (en) Method for manufacturing garnet type solid electrolyte sintered compact for all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery
KR20140056449A (en) In-ga-zn based oxide sputtering target and method for manufacturing the same
KR101404404B1 (en) Method for manufacturing zinc oxide target and zinc oxide target by using the same
KR20150084834A (en) Oxide sinter, sputtering target using same, and oxide film
KR101056948B1 (en) Metal oxide target for amorphous oxide film containing aluminum and its manufacturing method
CN113087519A (en) Conductive zinc-tin oxide target material and preparation method and application thereof
KR101349675B1 (en) Zinc oxide based sputtering target
WO2015020029A1 (en) Sputtering target and method for producing same
KR101616881B1 (en) METHOD FOR MANUFACTURING In-Ga-Zn BASED SPUTTERING TARGET
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
US10090137B2 (en) In—Ce—O-based sputtering target and method for producing the same
KR101440594B1 (en) MIXING METHOD FOR In2O3, Ga2O3 AND ZnO
JP2014073959A (en) Oxide sintered body, and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment