KR20140039117A - Uo2 nuclear fuel by adding affiliation of carbon nanoparticles - Google Patents

Uo2 nuclear fuel by adding affiliation of carbon nanoparticles Download PDF

Info

Publication number
KR20140039117A
KR20140039117A KR1020120105502A KR20120105502A KR20140039117A KR 20140039117 A KR20140039117 A KR 20140039117A KR 1020120105502 A KR1020120105502 A KR 1020120105502A KR 20120105502 A KR20120105502 A KR 20120105502A KR 20140039117 A KR20140039117 A KR 20140039117A
Authority
KR
South Korea
Prior art keywords
carbon
nuclear fuel
coating material
uranium dioxide
thermal conductivity
Prior art date
Application number
KR1020120105502A
Other languages
Korean (ko)
Inventor
방인철
김지현
이승원
박성대
강사라
김성만
서한
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to KR1020120105502A priority Critical patent/KR20140039117A/en
Publication of KR20140039117A publication Critical patent/KR20140039117A/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

An objective of the present invention is to mix carbon-based nanoparticles with small neutron absorption areas with Uranium dioxide (UO2), so as to provide a nuclear fuel with an increased thermal conductivity. To this end, the present invention comprises a pellet, which is made by sintering a mixture of UO2 powders and carbon-based nanoparticle powders, a coating material which encloses the pellet, and a spacing which is formed between the pellet and the coating material. In the UO2 based nuclear fuel consisting of mixed carbon based nanoparticles according to the present invention has a high thermal conductivity, since carbon-based nanoparticles, which are inferior in degrading the reactivity of UO2, are added. Furthermore, even when SiC is employed as the coating material, a proper temperature of the coating material is maintained by adjusting a volume of the carbon nanoparticles, such that various materials are to be used as the coating material.

Description

탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료{UO2 nuclear fuel by adding affiliation of carbon nanoparticles}Uranium-based nuclear fuel mixed with carbon-based nanoparticles {UO2 nuclear fuel by adding affiliation of carbon nanoparticles}

본 발명은 핵연료에 관한 것으로 더욱 상세하게는 열전도도가 우수한 탄소계열 나노 입자가 혼합된 산화우라늄 기반의 핵연료에 관한 것이다.
The present invention relates to a nuclear fuel, and more particularly, to a uranium oxide-based nuclear fuel mixed with carbon-based nanoparticles having excellent thermal conductivity.

원자력 발전소의 핵연료로 사용되는 이산화우라늄(UO2)는 분말 형태를 성형 및 소결하여 소결체 형태로 제조되며, 제조된 이산화우라늄의 소결체는 지르코늄(Zr) 합금 피복관에 삽입되어 연료봉으로 제조되어 원자로 내에 장입되어 핵연료로 사용하는 방식이 주를 이루고 있다.Uranium dioxide (UO 2 ), which is used as nuclear fuel in nuclear power plants, is manufactured in the form of sintered body by molding and sintering powder form. It is mainly used as a fuel.

그러나 상기와 같이 제조되어 핵연료로 사용되는 이산화우라늄은 낮은 열전도도는 원자력 발전의 출력을 증가시키는 것에 한계를 나타내고, 1차계통에서 열교환기 열전달능력에도 한계를 나타내고, 열교환기 표면을 통한 트리튬 확산 경로의 제어는 공정열 응용을 위한 초고온가스로 개발에서 중요한 안전 규제 현안으로 부각되며, 핵융합로 개발에 있어 헬륨, 트리튬 확산 문제 대두 등의 문제점을 내포하고 있다.However, uranium dioxide prepared as described above and used as a nuclear fuel has low thermal conductivity, which limits the output of nuclear power generation, limits the heat transfer capacity of the heat exchanger in the primary system, and the tritium diffusion path through the surface of the heat exchanger. Control is emerging as an important safety regulatory issue in the development of ultra-high temperature gas furnaces for process heat applications, and it has problems such as helium and tritium diffusion problems in the development of fusion reactors.

상기와 같은 우라늄의 단점을 극복하기 위하여 별도의 물질을 추가하여 열전도성 또는 방응성을 향상시키는 연구들이 제안되었다.In order to overcome the drawbacks of uranium as described above, studies have been proposed to improve thermal conductivity or anticorrosion by adding a separate material.

예를 들면, 공개특허 제12004-0047522호는 텅스텐 금속망을 함유한 핵연료 및 그 제조방법에 관한 것으로, 핵연료에 텅스텐을 추가한 구성이 개시되어 있다. 구체적 구성은 텅스텐 금속이 핵연료 물질의 내부에 망 형태를 유지하며 상기 망이 핵연료 물질로 구성된 소결체 내부의 전체 또는 일부 영역에 형성된 핵연료소결체 및 그의 제조방법에 관한 것으로, 핵연료소결체의 내부에 열전도성이 우수한 텅스텐 금속망을 함유하여 핵연료소결체의 열전도도를 향상시킬 수 있어 원자로 연소 중 핵연료의 온도를 감소시키며 이로 인해 원자로의 안전성을 향상시킬 수 있는 특성을 제공한다.For example, Japanese Patent Laid-Open No. 12004-0047522 relates to a nuclear fuel containing tungsten metal nets and a method of manufacturing the same, and discloses a configuration in which tungsten is added to nuclear fuel. Specifically, the present invention relates to a fuel sintered body in which a tungsten metal is retained in a net shape within a nuclear fuel material and the net is formed in all or a part of a sintered body composed of a nuclear fuel material and a method of manufacturing the same. It can improve the thermal conductivity of the nuclear fuel sintered body by containing an excellent tungsten metal mesh, thereby reducing the temperature of the nuclear fuel during the combustion of the nuclear reactor, thereby providing the property that the safety of the nuclear reactor can be improved.

또한, 등록특허 제643794호는 감마상 U―Mo 또는 U―Mo-X계 합금의 조대 입자가 규칙적으로 배열된 판상 핵연료 및 그 제조방법에 관한 구성이 개시되어 있다. 구체적인 구성은 감마상 안정성 U-Mo 또는 U-Mo-X계 합금의 조대한 구형 입자가 알루미늄 피복재 위에 하나 이상의 층상으로 규칙적으로 배열된 판상 핵연료 및 그 제조 방법에 대한 것으로서, 핵연료와 Al 간의 반응 계면의 면적을 최소화하여 핵연료와 Al 기지 간의 과도한 반응을 방지하고 이에 의해 금속간 화합물 반응층의 형성을 억제하고, 기공 및 팽윤량의 발생을 최소화하며, 더욱이 핵연료 내부의 온도를 잘 전달할 수 있도록 열전도도를 높게 유지함으로써, 종래 U 합금 분산 핵연료에 비하여 사용 제한 출력, 온도 등 우수한 고온 조사 안정성 및 성능을 향상시키는 유용한 효과를 제공한다.In addition, Korean Patent No. 643794 discloses a plate-shaped nuclear fuel in which coarse particles of a gamma-like or M-based alloy are regularly arranged and a method of manufacturing the same. The specific configuration relates to a plate-like fuel in which coarse spherical particles of a gamma-phase stable U-Mo or U-Mo-X-based alloy are regularly arranged in one or more layers on an aluminum cladding, and a method of manufacturing the same. Minimizes the area of the metal to prevent excessive reaction between the fuel and the Al base, thereby suppressing the formation of the intermetallic compound reaction layer, minimizing the occurrence of pore and swelling amount, and furthermore, thermal conductivity to transfer the temperature inside the fuel well By maintaining the high, it provides a useful effect of improving the high temperature irradiation stability and performance, such as the use limit output power, temperature, and the like compared to the conventional U alloy dispersed nuclear fuel.

상기 발명들은 이산화우라늄에 텅스텐 및 몰리브덴 합금을 추가하여 핵연료의 특성을 향상시키는 구성을 제안하고 있으나, 상기와 같은 물질은 비교적 높은 중성자 흡수 면적에 기인하여 이산화우라늄의 반응성을 감소시키는 단점 역시 나타난다. 따라서, 반응성의 저하를 최소한으로 하고, 핵연료 자체의 열전도도를 증가시킬 수 있는 새로운 물질이 필요한 실정이다.
The above inventions propose a configuration in which tungsten and molybdenum alloys are added to uranium dioxide to improve nuclear fuel properties, but such a material also exhibits a disadvantage of reducing the reactivity of uranium dioxide due to a relatively high neutron absorption area. Therefore, there is a need for a new material that can minimize the degradation of reactivity and increase the thermal conductivity of the nuclear fuel itself.

본 발명은 상기와 같은 종래 기술의 단점을 극복하기 위하여 안출된 것으로 중성자 흡수 단면적이 적은 탄소 계열 나노입자를 이산화우라늄에 혼합하여 높은 열전도도를 갖는 핵연료를 제공하는 것에 그 목적이 있다.
The present invention has been made to overcome the disadvantages of the prior art as described above is to provide a nuclear fuel having a high thermal conductivity by mixing carbon-based nanoparticles having a small neutron absorption cross-sectional area with uranium dioxide.

상기 목적을 달성하기 위하여 본 발명은 이산화우라늄 분말과 탄소 계열 나노 입자 분말을 소결 성형하여 제조되는 펠릿; 상기 펠릿을 감싸는 피복재; 및 상기 펠릿과 상기 피복재 사이에 형성되는 간극을 포함한다.The present invention in order to achieve the above object is a pellet prepared by sintering the uranium dioxide powder and carbon-based nanoparticle powder; A covering material surrounding the pellets; And a gap formed between the pellet and the coating material.

바람직하게는, 상기 탄소 계열 나노 입자는 그래핀, xGnP 및 CNT 중 선택된 어느 하나 이상인 것을 특징으로 한다.Preferably, the carbon-based nanoparticles are characterized in that any one or more selected from graphene, xGnP and CNT.

더욱 바람직하게는, 상기 탄소 계열 나노 입자는 이산화우라늄 100체적부에 대하여 1체적부 내지 15체적부인 것을 특징으로 한다.More preferably, the carbon-based nanoparticles are characterized in that 1 to 15 parts by volume with respect to 100 parts by volume of uranium dioxide.

바람직하게는, 상기 피복재는 Fe 0.2중량%, Sn 1.0중량%, Nb 1.9중량% 이며, 나머지가 Zr인 Zirlo인 것을 특징으로 한다.Preferably, the coating material is 0.2% by weight of Fe, 1.0% by weight of Sn, 1.9% by weight of Nb, and the remainder is Zirlo which is Zr.

바람직하게는, 상기 피복재는 Cr 0.07중량% 내지 0.13중량%, Fe 0.18중량% 내지 0.24중량%, Sn 1.2중량% 내지 1.7중량%이며, 나머지가 Zr인 Zircaloy4인 것을 특징으로 한다.Preferably, the coating material is 0.07% to 0.13% by weight of Cr, 0.18% to 0.24% by weight of Fe, 1.2% to 1.7% by weight of Sn, and the remainder is Zircaloy4, which is Zr.

바람직하게는, 상기 피복재는 SiC인 것을 특징으로 한다.
Preferably, the coating material is characterized in that the SiC.

본 발명에 따른 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료는 이산화우라늄의 반응성을 저하시키는 특성이 낮은 탄소를 기반으로 하는 나노 입자를 첨가하여 높은 열전도도를 갖는 핵연료를 제공하는 효과가 있으며, 또한 피복재로 SiC를 적용하더라도 탄소 나노 입자의 체적부를 조절하는 경우 적절한 피복재의 온도를 유지시킬 수 있어, 다양한 피복재를 사용할 수 있는 효과가 있다.
The uranium dioxide-based nuclear fuel in which the carbon-based nanoparticles are mixed according to the present invention has an effect of providing a nuclear fuel having high thermal conductivity by adding carbon-based nanoparticles having low properties to decrease the reactivity of uranium dioxide. In addition, even when SiC is applied as the coating material, when controlling the volume of the carbon nanoparticles, an appropriate coating material temperature can be maintained, and thus various coating materials can be used.

도 1은 본 발명에 따른 핵연료의 단면도이며,
도 2는 본 발명에 따른 핵연료 조립체의 평면도이며,
도 3은 본 발명에 따른 핵연료의 시뮬레이션을 위한 노달 포인터를 설명하는 설명도이며,
도 4는 본 발명에 따른 핵연료의 시뮬레이션을 위한 체널의 구성을 나타내는 설명도이며,
도 5는 본 발명에 따른 핵연료의 열전도도를 시뮬레이션한 결과 그래프이며,
도 6은 본 발명에 따른 핵연료의 피복재 온도를 시뮬레이션한 결과 그래프이며,
도 7은 본 발명에 따른 핵연료의 또 다른 피복재 온도를 시뮬레이션한 결과 그래프이며,
도 8은 본 발명에 따른 핵연료의 또 다른 피복재 온도를 시뮬레이션한 결과 그래프이며,
도 9는 본 발명에 따른 핵연료의 또 다른 피복재 온도를 시뮬레이션한 결과 그래프이다.
1 is a cross-sectional view of a nuclear fuel according to the present invention,
2 is a plan view of a nuclear fuel assembly according to the invention,
3 is an explanatory diagram illustrating a nodal pointer for the simulation of nuclear fuel according to the present invention;
4 is an explanatory diagram showing a configuration of a channel for simulation of nuclear fuel according to the present invention;
5 is a graph showing the results of simulating the thermal conductivity of nuclear fuel according to the present invention,
6 is a graph showing a simulation result of the cladding temperature of the nuclear fuel according to the present invention;
7 is a graph showing a result of simulating another cladding temperature of nuclear fuel according to the present invention,
8 is a graph showing a result of simulating another cladding temperature of a nuclear fuel according to the present invention,
9 is a graph showing a simulation result of another cladding temperature of the nuclear fuel according to the present invention.

본 발명에 따른 핵연료(10)는 이산화우라늄 분말에 탄소 계열 나노 입자를 혼합하여 소결 성형하여 제조되는 것을 그 특징으로 한다.Nuclear fuel 10 according to the present invention is characterized by being manufactured by sintering molding by mixing carbon-based nanoparticles in uranium dioxide powder.

통상 원자로에 장입되는 핵연료(10)(핵연료봉)는 도 1에 도시된 바와 같이 이산화우라늄을 주재로 다른 물질이 혼합되어 소결 형태로 이루어지는 펠릿(1)과 상기 펠릿(1)을 감싸는 피복재(2) 그리고 상기 펠릿(1)과 피복재(2) 사이의 간극(3)을 포함하여 구성된다.As shown in FIG. 1, a nuclear fuel 10 (nuclear fuel rod) charged into a nuclear reactor includes pellets 1 formed of sintered form by mixing different materials mainly based on uranium dioxide and a coating material surrounding the pellets 1. And a gap 3 between the pellet 1 and the covering 2.

상기 펠릿(1)의 직경은 예를 들면, 9mm내외의 크기를 가지며, 간극(3)의 크기는 0.1mm 내외 그리고 피복재(2)의 두께는 0.6mm 내외의 크기를 갖는다.The diameter of the pellet 1 has, for example, a size of about 9 mm, the size of the gap 3 is about 0.1 mm and the thickness of the coating material 2 is about 0.6 mm.

실제 원자로에는 상기 핵연료(10)가 평면상에 다수개 배열된(예를 들면 16×16) 조립체가 투입되어 사용된다.In an actual reactor, an assembly in which a plurality of nuclear fuels 10 are arranged on a plane (for example, 16 × 16) is used.

상기 펠릿(1)은 이산화우라늄과 탄소 계열 나노 입자를 혼합하여 소결 성형하여 제조한다.The pellet 1 is prepared by sintering molding by mixing uranium dioxide and carbon-based nanoparticles.

상기 탄소 계열 나노 입자는 우라늄 100체적부에 대하여 1체적부 이상 15체적부 이하가 바람직하다.The carbon-based nanoparticles are preferably 1 volume part or more and 15 volume parts or less with respect to 100 volume parts of uranium.

상기 탄소 계열 나노 입자가 1체적부 미만인 경우에는 열전도도 증가가 미미하고, 15체적부를 초과하는 경우에는 이산화우라늄 분포가 낮아져 발열량이 떨어질 우려가 있다.When the carbon-based nanoparticles are less than 1 volume part, the thermal conductivity is insignificant, and when the carbon-based nanoparticles are more than 15 volume parts, the uranium dioxide distribution may be lowered, resulting in a decrease in calorific value.

또한, 탄소의 경우에는 0.0002728 cm-1 같은 거시적 흡수단면적(Σa)을 가지므로, 다른 물질들 예를 들면, 텅스텐 1.163cm-1 , 몰리브덴 0.1697cm-1 등에 비하여 월등히 낮은값을 나타내므로 이산화우라늄과 혼합하는 경우에도 핵연료의 반응성 저하를 최소화할 수 있는 장점이 있다.In the case of carbon is 0.0002728 cm -1 macroscopic absorption cross-section such as (a Σ) of the so, other materials, for example, tungsten 1.163cm -1, molybdenum 0.1697cm -1 exhibits a much lower value than that of uranium dioxide, etc. Even when mixed with, there is an advantage to minimize the deterioration of nuclear fuel reactivity.

한편, 탄소의 결정 구조가 다른 탄소 계열 나노 입자 예를 들면, 그래핀(Graphene), xGnP(Exfoliated Graphite nanoplate), CNT(Carbon Nano Tube) 등에서도 동일한 물리적 특성을 가진다.Meanwhile, carbon-based nanoparticles having different crystal structures of carbon, for example, graphene, graphene nanoplates (xGnP), carbon nanotubes (CNTs), and the like, have the same physical properties.

특히 상기 그래핀의 경우에는 뛰어난 전기전도도와 열전도도의 특성을 가지고 있으면서, 육각형의 탄소구조가 가지는 전자배치 특성 때문에 전도성을 잃지 않아 화학적으로도 안정한 특성이 있으며, xGnP 및 CNT 역시 높은 전기전도도 및 열전도도의 특성을 가진다.In particular, the graphene has excellent electrical conductivity and thermal conductivity, and does not lose conductivity due to the electron arrangement characteristic of the hexagonal carbon structure, and thus it is chemically stable, and xGnP and CNT also have high electrical conductivity and thermal conductivity. Has the characteristics of degrees.

한편, 상기 피복재(2)는 Zirlo, Zilcaloy를 적용할 수 있으며, 또한, SiC로 구성될 수 있다.On the other hand, the coating material 2 may be applied to Zirlo, Zilcaloy, it may also be composed of SiC.

상기 Zirlo의 조성은 Fe 0.2중량%, Sn 1.0중량%, Nb 1.0중량% 나머지 Zr이며, 상기 Zircaloy4의 조성은 Fe 0.18 내지 0.24중량%, Sn 1.2 내지 1.7 중량% 나머지 Zr로 구성된다.The composition of the Zirlo is 0.2% by weight of Fe, 1.0% by weight of Sn, 1.0% by weight of Nb remaining Zr, the composition of the Zircaloy4 is composed of 0.18 to 0.24% by weight Fe, 1.2 to 1.7% by weight of the remaining Zr.

여기서 지르코늄을 포함하는 Zirlo 및 Zilcaloy는 열수력 측면에서 우수한 피복재료이나, 지르코늄이 1,100℃이상에서 물과 쉽게 반응하여 수소를 발생시키는 단점이 있으며, SiC는 화학적으로 매우 안정된 물질이나, 열전도도가 낮은 단점이 있다.Here, Zirlo and Zilcaloy containing zirconium are excellent coating materials in terms of thermal power, but zirconium easily reacts with water at 1,100 ℃ or higher to generate hydrogen. SiC is a chemically stable material, but has low thermal conductivity. There are disadvantages.

따라서, 탄소 계열 나노 입자와 혼합된 이산화우라늄인 경우 핵연료의 열전도도가 높아지므로 상기 SiC도 피복재(2)로 활용 가능하다.Therefore, in the case of uranium dioxide mixed with carbon-based nanoparticles, the thermal conductivity of nuclear fuel increases, so that SiC may be used as the coating material 2.

이하 본 발명을 실시예를 통하여 더욱 자세히 설명한다.
Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example 1 One

실시예는 산화우라늄 100체적부에 대하여 탄소 나노 계열 입자 중 하나인 그래핀을 1체적부 혼합한 핵연료 모델을 이용하여 전산 시뮬레이션을 실행하였다.In the embodiment, computational simulation was performed using a nuclear fuel model in which one volume of graphene, which is one of the carbon nano-based particles, was mixed with respect to 100 volumes of uranium oxide.

여기서 전사 시뮬레이션용 소프트웨어는 MARS-KS를 사용하였다.The software for transcription simulation used MARS-KS.

Code input deck은 영광 3, 4호기 모델을 기반으로 한 OPR-1000 (Optimized Power Reactor) 모델의 개발에 쓰인 것을 사용하였으며,. RCS (Reactor Coolant System)의 주 열수력 파라미터와 안전 시스템은 울진 5, 6호기 모델의 FSAR (Final Safety Analysis Report)를 기반으로 사용되었다.The code input deck was used to develop the OPR-1000 (Optimized Power Reactor) model based on Glory Units 3 and 4. The main thermal hydraulic parameters and safety system of the Reactor Coolant System (RCS) were used based on the Final Safety Analysis Report (FSAR) of Uljin Units 5 and 6.

또한, 핵연료봉은 도 1과 같이 모델링하였으며, 펠릿(1)의 두께는 8.1916 mm이고, 갭(3)의 두께는 0.0825 mm, 피복재(2)의 두께는 0.5714 mm로 설정하였으며, 도 2와 같은 16×16의 핵연료 조립체로 설정하였다.In addition, the nuclear fuel rod was modeled as shown in Figure 1, the thickness of the pellet (1) is 8.1916 mm, the thickness of the gap (3) is 0.0825 mm, the thickness of the coating material (2) was set to 0.5714 mm, 16 as shown in FIG. A nuclear fuel assembly of x 16 was set.

또한, OPR-1000 모델의 노달 포인터는 도 3과 같이 모델링하였다.Also, the nodal pointer of the OPR-1000 model was modeled as shown in FIG. 3.

또한, MARS-KS 코드 모델링에서 쓰인 주 열수력 파라미터는 다음과 같다.In addition, the main thermal hydraulic parameters used in MARS-KS code modeling are as follows.

Total core thermal power는 2871.3 MWth, Total core thermal power is 2871.3 MWth,

decay heat model은 1.2 X ANS 1973, decay heat model is 1.2 X ANS 1973,

number of axial node은 20, number of axial nodes is 20,

number of fuel channels은 177, number of fuel channels is 177,

active core length은 3.81 m, active core length is 3.81 m,

number of fuel rods은 41,772, number of fuel rods is 41,772,

axial power peaking factor은 1.58, axial power peaking factor is 1.58,

radial power peaking factor은 1.57,radial power peaking factor is 1.57,

average linear power은 18.04 kW/m average linear power is 18.04 kW / m

또한, 핵연료 채널의 노달 포인터는 도 4와 같이 176개의 평균 채널과 한개의 핫(hot) 채널로 구성하였다.In addition, the nodal pointer of the fuel channel is composed of 176 average channels and one hot channel as shown in FIG.

이산화우라늄과 그래핀의 혼합물의 연전도도를 예측하기 위하여 수학식 1과 같은 맥스웰 모델을 적용하였다.In order to predict the conductivity of the mixture of uranium dioxide and graphene, the Maxwell model shown in Equation 1 was applied.

수학식 1: Equation (1)

Figure pat00001
Figure pat00001

여기서 kU +G는 혼합물의 열전도도(W/mK), kG는 그래핀의 열전도도, kU는 이산화우라늄의 열전도도 그리고 VF는 이산화우라늄에 대한 그래핀의 체적비율이다.Where k U + G is the thermal conductivity of the mixture (W / mK), k G is the thermal conductivity of graphene, k U is the thermal conductivity of uranium dioxide, and VF is the volume fraction of graphene to uranium dioxide.

그리고 피복재(2)는 Zirlo, Zircaloy4, SiC로 구성하였다.And the coating | covering material 2 consisted of Zirlo, Zircaloy4, and SiC.

여기서, SiC는 쉽게 방사되고 열전도도가 변화는 특성이 있어, 조사된(radiated) SiC와 비조사된(irradiated) SiC로 구분하여 적용하였다.
Here, SiC is easily radiated and has a change in thermal conductivity, so that it is applied to irradiated SiC and irradiated SiC.

실시예Example 2 2

실시예 1과 동일한 시뮬레이션 환경에서 이산화우라늄 100체적부에 대하여 그래핀 5체적부를 혼합한 핵연료를 적용하였다.
In the same simulation environment as in Example 1, nuclear fuel including 5 parts by volume of graphene was applied to 100 parts by volume of uranium dioxide.

실시예Example 3 3

실시예 1과 동일한 시뮬레이션 환경에서 이산화우라늄 100체적부에 대하여 그래핀 10체적부를 혼합한 핵연료를 적용하였다.
In the same simulation environment as in Example 1, nuclear fuel mixed with 10 parts by volume of graphene was applied to 100 parts by volume of uranium dioxide.

시뮬레이션 결과Simulation result

먼저, 도 5에는 실시예 1 내지 실시예 3의 온도에 따른 열전도도를 나타내었다. 실시예 1(1 volume fraction)의 열전도도는 이산화우라늄에 비해 3.02 %, 실시예 2(5 volume fraction)의 열전도도는 이산화우라늄에 비해 15.76 %, 그리고 실시예 3(10 volume fraction)의 열전도도는 이산화우라늄에 비해 33.26 % 증가함을 알 수 있었다.First, Figure 5 shows the thermal conductivity according to the temperature of Examples 1 to 3. The thermal conductivity of Example 1 (1 volume fraction) is 3.02% compared to uranium dioxide, the thermal conductivity of Example 2 (5 volume fraction) is 15.76% compared to uranium dioxide, and the thermal conductivity of Example 3 (10 volume fraction) Was found to be 33.26% higher than uranium dioxide.

그리고, 피복재의 열전도도를 도 6에 나타내었다. SiC는 Zirlo와 Zircaloy4에 비해 열전도도가 많이 낮음을 알 수 있었다.And the heat conductivity of a coating material is shown in FIG. SiC showed much lower thermal conductivity than Zirlo and Zircaloy4.

도 7 내지 도 10은 실시예에 따른 피복재 표면 온도를 나타내었다. 비조사(Unirradiated) SiC를 피복재로 쓸 경우에 4.9체적부의 그래핀을 이산화우라늄에 혼합시키면, Zirlo와 Zircaloy4를 피복재로 사용한 이산화우라늄과 첨두 피복재 온도가 유사함을 알 수 있었다.7 to 10 show the cladding surface temperature according to the embodiment. When unirradiated SiC was used as the cladding, 4.9 volume of graphene was mixed with uranium dioxide.

한편, 조사된(irradiated) SiC를 피복재로 쓸 경우에는 13.3체적부의 그래핀을 이산화우라늄에 혼합시키면, Zirlo와 Zircaloy4를 피복재로 사용한 이산화우라늄과 유사한 첨두 피복재 온도가 나타남을 알 수 있어, 그래핀과 혼합한 이산화우라늄은 SiC의 피복재 적용도 가능함을 알 수 있었다.
On the other hand, when irradiated SiC is used as a coating material, when 13.3 volume of graphene is mixed with uranium dioxide, it can be seen that a peak coating material temperature similar to that of uranium dioxide using Zirlo and Zircaloy4 as a coating material appears. The mixed uranium dioxide was found to be applicable to the coating of SiC.

이상에서는 본 발명을 특정의 바람직한 실시 예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시 예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 실시할 수 있는 다양한 형태의 실시 예들을 모두 포함한다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, And all of the various forms of embodiments that can be practiced without departing from the technical spirit.

1: 펠릿 2: 피복재
3: 간극 10: 핵연료
1: pellet 2: covering material
3: gap 10: nuclear fuel

Claims (6)

이산화우라늄 분말과 탄소 계열 나노 입자 분말을 소결 성형하여 제조되는 펠릿;
상기 펠릿을 감싸는 피복재; 및
상기 펠릿과 상기 피복재 사이에 형성되는 간극을 포함하는 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료.
Pellets prepared by sintering uranium dioxide powder and carbon-based nanoparticle powder;
A covering material surrounding the pellets; And
A uranium dioxide-based nuclear fuel mixture of carbon-based nanoparticles including a gap formed between the pellet and the coating material.
청구항 1에 있어서, 상기 탄소 계열 나노 입자는 그래핀, xGnP 및 CNT 중 선택된 어느 하나 이상인 것을 특징으로 하는 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료.
The uranium dioxide-based nuclear fuel mixed with carbon-based nanoparticles according to claim 1, wherein the carbon-based nanoparticles are at least one selected from graphene, xGnP, and CNT.
청구항 2에 있어서, 상기 탄소 계열 나노 입자는 이산화우라늄 100체적부에 대하여 1체적부 내지 15체적부인 것을 특징으로 하는 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료.
The uranium dioxide-based nuclear fuel mixed with carbon-based nanoparticles according to claim 2, wherein the carbon-based nanoparticles are 1 to 15 parts by volume with respect to 100 parts by volume of uranium dioxide.
청구항 3에 있어서, 상기 피복재는 Fe 0.2중량%, Sn 1.0중량%, Nb 1.9중량% 이며, 나머지가 Zr인 Zirlo인 것을 특징으로 하는 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료.
The uranium dioxide-based nuclear fuel mixed with carbon-based nanoparticles according to claim 3, wherein the coating material is 0.2% by weight of Fe, 1.0% by weight of Sn, 1.9% by weight of Nb, and Zirlo, which is Zr.
청구항 3에 있어서, 상기 피복재는 Cr 0.07중량% 내지 0.13중량%, Fe 0.18중량% 내지 0.24중량%, Sn 1.2중량% 내지 1.7중량%이며, 나머지가 Zr인 Zircaloy4인 것을 특징으로 하는 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료.
The carbon-based nanoparticles of claim 3, wherein the coating material is 0.07 wt% to 0.13 wt% of Cr, 0.18 wt% to 0.24 wt% of Fe, 1.2 wt% to 1.7 wt% of Sn, and Zircaloy4, which is Zr. Uranium dioxide-based nuclear fuel mixed with water.
청구항 3에 있어서, 상기 피복재는 SiC인 것을 특징으로 하는 탄소 계열 나노 입자가 혼합된 이산화우라늄 기반의 핵연료.
The uranium dioxide-based nuclear fuel mixed with carbon-based nanoparticles according to claim 3, wherein the coating material is SiC.
KR1020120105502A 2012-09-22 2012-09-22 Uo2 nuclear fuel by adding affiliation of carbon nanoparticles KR20140039117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120105502A KR20140039117A (en) 2012-09-22 2012-09-22 Uo2 nuclear fuel by adding affiliation of carbon nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120105502A KR20140039117A (en) 2012-09-22 2012-09-22 Uo2 nuclear fuel by adding affiliation of carbon nanoparticles

Publications (1)

Publication Number Publication Date
KR20140039117A true KR20140039117A (en) 2014-04-01

Family

ID=50649961

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120105502A KR20140039117A (en) 2012-09-22 2012-09-22 Uo2 nuclear fuel by adding affiliation of carbon nanoparticles

Country Status (1)

Country Link
KR (1) KR20140039117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664738C1 (en) * 2017-08-04 2018-08-22 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (НИЦ "Курчатовский институт") Method of manufacturing pelletized nuclear fuel
CN114141394A (en) * 2021-12-03 2022-03-04 中国核动力研究设计院 Uranium dioxide-graphene fuel pellet and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664738C1 (en) * 2017-08-04 2018-08-22 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (НИЦ "Курчатовский институт") Method of manufacturing pelletized nuclear fuel
CN114141394A (en) * 2021-12-03 2022-03-04 中国核动力研究设计院 Uranium dioxide-graphene fuel pellet and preparation method thereof
CN114141394B (en) * 2021-12-03 2024-05-07 中国核动力研究设计院 Uranium dioxide-graphene fuel pellet and preparation method thereof

Similar Documents

Publication Publication Date Title
Zhou et al. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety–A comprehensive review
JP7113828B2 (en) Sintered nuclear fuel pellets, fuel rods, nuclear fuel assemblies, and methods of making sintered nuclear fuel pellets
Meyer et al. Fuel development for gas-cooled fast reactors
JP5905835B2 (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly, and nuclear fuel manufacturing method
CN102770921A (en) Nuclear fuel rod and method for manufacturing pellets for such a fuel rod
KR101652729B1 (en) Preparation method of nuclear fuel pellet with thermal conductive metal network, and the nuclear fuel pellet thereby
CN108039210A (en) Fuel pellet and its manufacture method
CN111933313A (en) Long-life neutron absorbing material
Lee et al. Evaluation of thermomechanical behaviors of UO2-5 vol% Mo nuclear fuel pellets with sandwiched configuration
US20200027602A1 (en) Nuclear fuel pellet having enhanced thermal conductivity and method of manufacturing the same
KR20140039117A (en) Uo2 nuclear fuel by adding affiliation of carbon nanoparticles
KR100821373B1 (en) Annular nuclear fuel rod for improving the heat flux split
US11062810B2 (en) Manufacture of large grain powders with granular coatings
CN110853769A (en) Pellet fuel core, fuel rod and small-size reactor of metal cooling
KR101574224B1 (en) oxide nuclear fuel pellet and the method for manufacturing thereof
Medvedev Effect of diamond additive on the fission gas release in UO2 fuel irradiated to 7.2 GWd/tHM
JP2012237574A (en) Cladding tube and nuclear reactor
Li et al. Innovative accident tolerant fuel concept enabled through direct manufacturing technology
Senor et al. A new innovative spherical cermet nuclear fuel element to achieve an ultra-long core life for use in grid-appropriate LWRs
Ozdemir et al. Thoria based inert matrix fuel production via sol–gel process
de Souza Gomes 2021 International Nuclear Atlantic Conference–INAC 2021 Virtual meeting, Brazil, November 29–December 2, 2021
Sun et al. Development Background and Research Progress of UN-U3Si2 Composite Fuel
KR101474153B1 (en) Fission products capture Uranium dioxide nuclear fuel containing metal microcell and method of manufacturing the same
Kim et al. Thermal Conductivity measurement of Zr-ZrO 2 simulated inert matrix nuclear fuel pellet
Grandi et al. Application of Studsvik’s CMS5 Code System to Accident Tolerant Fuel Core Design and Analysis

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application