KR20140023661A - Membrane for sulfur dioxide separation and preparation method thereof - Google Patents

Membrane for sulfur dioxide separation and preparation method thereof Download PDF

Info

Publication number
KR20140023661A
KR20140023661A KR1020120089869A KR20120089869A KR20140023661A KR 20140023661 A KR20140023661 A KR 20140023661A KR 1020120089869 A KR1020120089869 A KR 1020120089869A KR 20120089869 A KR20120089869 A KR 20120089869A KR 20140023661 A KR20140023661 A KR 20140023661A
Authority
KR
South Korea
Prior art keywords
sulfur dioxide
separator
polyethylene glycol
polyether block
membrane
Prior art date
Application number
KR1020120089869A
Other languages
Korean (ko)
Inventor
임지원
조은혜
김광배
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020120089869A priority Critical patent/KR20140023661A/en
Publication of KR20140023661A publication Critical patent/KR20140023661A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a separation membrane for sulfur dioxide separation and a preparation method thereof, more specifically to a separation membrane for sulfur dioxide separation which includes a polyether block amide and polyethylene glycol and a preparation method thereof. The separation membrane of the present invention has high transmittancy for SO2 and selectivity for SO2 against CO2, and is capable of being applied to a ultra-clean desulfurization technique for collecting CO2.

Description

이산화황 분리용 분리막 및 이의 제조방법{Membrane for Sulfur dioxide Separation and Preparation Method Thereof}Membrane for Sulfur dioxide Separation and Preparation Method Thereof}

본 발명은 SO2 투과도와 CO2에 대한 SO2 선택도가 높아 이산화탄소 포집용 초청정 탈황기술에 적용할 수 있는 이산화황 분리용 분리막 및 이의 제조방법에 관한 것이다. The present invention is SO 2 The present invention relates to a membrane for separating sulfur dioxide that can be applied to ultra-clean desulfurization technology for capturing carbon dioxide and having a high selectivity to SO 2 for permeability and CO 2 .

배연 탈황설비(Flue gas desulfurization, FGD)란 석탄, 석유 등 화석연료가 연소할 때 발생하는 황산화물(SOx)을 석회석, 슬러지에 흡수, 반응시켜 제거하고 부산물로 석고를 발생시키는 환경오염 방지설비다.Flue gas desulfurization (FGD) is an environmental pollution prevention system that absorbs and reacts sulfur oxides (SOx) generated when burning fossil fuels such as coal and petroleum to limestone and sludge and generates gypsum as a byproduct. .

2010년 말 현재 국내 화력발전소에는 총 59기의 배연 탈황설비가 운전되고 있으며 한전 이외의 산업용 보일러로서 에너지 사용량의 30%를 차지하는 20여 기의 유연탄 보일러와 다수의 B-C유 사용 대형 보일러를 포함하면 이보다 많은 수의 설비가 운전되고 있다.As of the end of 2010, a total of 59 flue gas desulfurization plants were operating in domestic thermal power plants.In addition, KEPCO is an industrial boiler other than KEPCO. Many facilities are in operation.

대부분의 설비는 습식 석회석 석고 공정으로 석회석을 흡수 반응제로 사용하고 석고를 반응생성물로 생산하여 시멘트나 석고보드의 원료로 판매하고 있으나 근래 고유황 연료의 활용빈도 증가로 인해 유입 SO2 농도가 상승하고 있으며 그에 따라 탈황공정 운전조건 악화로 석고의 품질도 떨어져 재활용을 위협받고 있는 형편이다.Most plants using limestone zero absorption reaction by the wet limestone gypsum process, and to produce gypsum as a reaction product is sold as a raw material of cement or gypsum board, but in recent years its own because of the utilization frequency of the increase in sulfur fuel inlet SO 2 concentration rises and As a result, deterioration of operating conditions of the desulfurization process lowers the quality of gypsum, which threatens recycling.

탈황설비 문제점 중에 SO2 제거율 감소로 인해 발생하는 문제로는, 배가스 유량 증가, GGH 누설율 증가, 흡수탑 PH, 산화용 공기 유량 감소, 산화용 공기 분배관 일부 막힘에 의한 흡수탑 수위 불균형, 석회석 용해 차단현상(Limestone blinding), 흡수액 입도 및 순도, 입구 SO2 농도증가, 액-기비 (L/G ration) 감소가 있다.SO 2 during desulfurization problems Problems caused by reduced removal rate include increased exhaust gas flow rate, increased GGH leakage rate, absorption tower PH, oxidation air flow rate decrease, absorption tower water level imbalance due to partial blockage of oxidation air distribution pipe, limestone blinding ), Absorbent particle size and purity, inlet SO 2 There is an increase in concentration and a decrease in L / G ratio.

근래 온실가스 배출저감을 위한 이산화탄소 포집저장(CCS; Carbon Capture and Storage) 기술 개발이 본격화되면서 CO2 포집기술(Carbon Capture) 수준은 상용화 단계에 이르고 있으며 기존 화력 발전용 설비에의 설치 운전이 시도되고 있다.With the recent development of carbon capture and storage (CCS) technology to reduce greenhouse gas emissions, the level of carbon capture (CO 2) capture has reached the commercialization stage. have.

석탄은 화석연료중 C/H비가 높아서 석탄연소설비는 CO2 배출 저감의 주요 목표가 되고 있다. 국내 석탄 화력발전소에서는 탈황 공정(Flue Gas Desulfurization, FGD)이 설치되어 운전되고 있으나 현재 기술수준이나 운전조건상으로는 수십 100 ppm 정도의 SO2가 배출되고 있다.Since coal has a high C / H ratio among fossil fuels, coal combustion facilities have become a major target for reducing CO 2 emissions. Flue Gas Desulfurization (FGD) has been installed and operated in domestic coal-fired power plants, but SO 2 is emitted by several tens of ppm by current technology level or operating conditions.

탈황공정에 대한 일예로, 대한민국 특허등록 제10-1121912호는 내부로 유입되는 배가스에 함유된 황산화물을 제거하는 흡수탑을 포함하는 배가스의 황산화물 처리장치에 있어서, 상기 흡수탑은 전기로 슬래그 처리장의 침출수를 내부로 유입시키는 유입배관과, 상기 침출수를 외부로 배출시키는 배출배관을 포함하고, 상기 유입배관을 통해 유입된 침출수와 상기 배가스의 반응에 의해 상기 배가스에 함유된 황산화물이 제거되고, 상기 배출배관을 통해 상기 침출수가 배출되는 것을 특징으로 하는 배가스의 황산화물 처리장치를 개시하고 있다. As an example of a desulfurization process, Korean Patent Registration No. 10-1121912 discloses an apparatus for treating sulfur oxides in exhaust gases including an absorption tower for removing sulfur oxides contained in exhaust gases introduced therein, wherein the absorption tower is an electric furnace slag. It includes an inlet pipe for introducing the leachate of the treatment plant and the discharge pipe for discharging the leachate to the outside, the sulfur oxide contained in the exhaust gas is removed by the reaction of the leachate and the exhaust gas introduced through the inlet pipe The apparatus for treating sulfur oxides of exhaust gas is characterized in that the leachate is discharged through the discharge pipe.

이와 같은 SO2가 CO2 포집공정으로 유입되는 경우 공정에서 사용되는 흡수제의 열화에 의한 성능 저하와 포집된 CO2의 오염으로 인한 CO2저장 공정에 악영향을 주게 되므로 CO2 포집 공정에 대한 SO2를 비롯한 각종 오염물질의 유입이 엄격히 규제되고 있다.This SO 2 is to give an adverse effect on performance due to the contamination of the collected CO 2 CO 2 storage process by the deterioration of the absorber used in the process when entering the CO 2 absorption step, so CO 2 The introduction of various pollutants, including SO 2, into the capture process is strictly regulated.

SO2의 경우 10ppm을 초과하지 않아야 한다는 것이 일반적이며 MHI에서는 1ppm 이하로 규제하는 것을 목표로 하고 있기도 하다. CO2 포집공정이 요구하는 SO2의 유입조건에 대응하기 위하여 기존 배연탈황 공정에서 탈황효율을 99.5% 정도로 극단적으로 높여 배출되는 SO2의 농도를 10ppm 이하로 유지하려면 흡수탑의 기하학적인 크기를 대폭(2배 이상) 늘리고 충진물 및 내부구조 등을 전면적으로 개조함과 동시에 흡수반응액 순환량을 증가시키기 위해 순환펌프 등의 기본 설비나 장치를 추가하거나 대용량으로 교체하여야 한다.It is common that SO 2 should not exceed 10 ppm, and the MHI also aims to regulate it below 1 ppm. In order to cope with SO 2 inflow conditions required by the CO 2 capture process, in order to keep the SO 2 concentration below 10ppm by increasing the desulfurization efficiency to 99.5% in the existing flue gas desulfurization process, the geometric size of the absorption tower is greatly reduced. (2 times or more) Basic facilities or devices such as circulation pumps should be added or replaced in a large capacity to increase the circulation of absorbent reaction liquids and to improve the filling and internal structure.

따라서 이미 설치되어 운전중인 설비에서 CO2 포집설비를 추가하여야 하는 경우 기존의 배연 탈황설비에 대한 대폭적인 개조가 불가능한 경우가 대부분이다. 이와 같은 경우 추가적인 초청정 배연 탈황 설비의 도입이 불가피하다.Therefore, in the case of adding a CO 2 capture facility in a facility that is already installed and in operation, it is often impossible to drastically modify the existing flue gas desulfurization facility. In such cases, the introduction of additional ultra-clean flue gas desulfurization facilities is inevitable.

그러므로 이와 같은 기존 탈황 공정(FGD)의 성능 보완과 이산화탄소 포집저장 공정의 운전 효율 및 경제성 유지를 위한 초청정 탈황 공정의 필요성이 시급히 요구되고 있다. Therefore, there is an urgent need for a super clean desulfurization process for supplementing the performance of the existing desulfurization process (FGD) and maintaining the operation efficiency and economical efficiency of the carbon dioxide storage and storage process.

특히, 막분리 공정은 분리공정 중에 상의 변화를 위한 추가적인 에너지(잠열)가 필요하지 않기 때문에 이산화탄소를 비롯한 각종 가스 분리기술 중 가장 에너지를 절감할 수 있는 기술 중 하나로 평가되고 있으며 시스템을 설비하기 위해 필요한 장치요소들이 매우 단순 집약적이며 작동 및 제어방법이 매우 간편하고 규모의 확장이 용이한 장점을 갖는다.In particular, the membrane separation process is evaluated as one of the most energy-saving technologies among various gas separation technologies including carbon dioxide because it does not require additional energy (latent heat) for phase change during the separation process. The device elements are very simple intensive, very simple to operate and control, and easy to scale.

따라서, SO2 가스에 대한 선택도가 높은 분리막을 탈황 공정에 적용한다면 기존 공정에 추가적으로 적용이 가능하고 손상되거나 문제가 발생한 분리막 모듈의 교체가 용이하고 모듈 단위로 적층이 가능하므로 처리용량의 증가에 유연한 대응이 가능하다.Thus, SO 2 If the membrane with high selectivity for gas is applied to the desulfurization process, it can be additionally applied to the existing process, and it is easy to replace the damaged or problematic separator module and can be stacked in units of modules. Do.

대한민국 특허등록 제10-1121912호Korea Patent Registration No. 10-1121912

상기한 문제점을 개선하기 위해, 본 발명의 과제는 SO2에 대한 투과도와 CO2에 대한 SO2 선택도가 높은 이산화황 분리용 분리막 및 이의 제조방법을 제공하는 것이다.In order to improve the above problems, an object of the present invention is to provide a membrane for separation of sulfur dioxide having a high permeability to SO 2 and a high selectivity to SO 2 for CO 2 , and a method for manufacturing the same.

이를 위해 본 발명은 폴리에테르 블록 아미드와 폴리에틸렌 글리콜을 포함하는 이산화황 분리용 분리막을 제공한다.
To this end, the present invention provides a separator for separating sulfur dioxide comprising polyether block amide and polyethylene glycol.

또한, 본 발명은 1) 폴리에테르 블록 아미드, 폴리에틸렌 글리콜 및 용매를 포함하는 고분자 용액으로 기판을 코팅(coating)하여 고분자막을 형성하는 단계; 및 2) 상기 고분자막을 건조하는 단계를 포함하는, 이산화황 분리용 분리막을 제조하는 방법을 제공한다. In addition, the present invention comprises the steps of: 1) coating a substrate with a polymer solution containing polyether block amide, polyethylene glycol and a solvent to form a polymer film; And 2) provides a method for producing a separator for sulfur dioxide separation, comprising the step of drying the polymer membrane.

본 발명에 따른 분리막은 SO2 투과도와 CO2에 대한 SO2 선택도가 높아 이산화탄소 포집용 초청정 탈황기술에 유용하게 적용이 가능하다. Membrane according to the invention is SO 2 The high permeability and selectivity to SO 2 for CO 2 make it useful for ultra clean desulfurization technology for CO2 capture.

도 1은 비교예 1에서 제조된 분리막의 기체투과도에 대한 선택도를 나타낸 그래프이다.
도 2는 실시예 1 내지 3 및 비교예 1에서 제조된 분리막의 선택도를 나타낸 그래프이다.
도 3은 실시예 4 내지 6 및 비교예 1에서 제조된 분리막의 선택도를 나타낸 그래프이다.
1 is a graph showing the selectivity for the gas permeability of the separator prepared in Comparative Example 1.
2 is a graph showing the selectivity of the separator prepared in Examples 1 to 3 and Comparative Example 1.
3 is a graph showing the selectivity of the separator prepared in Examples 4 to 6 and Comparative Example 1.

이하, 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 이산화황 분리용 분리막은 폴리에테르 블록 아미드와 폴리에틸렌 글리콜을 포함한다. The separator for separating sulfur dioxide according to the present invention includes polyether block amide and polyethylene glycol.

폴리에테르 블록 아미드는 폴리아미드계 열가소성 엘라스토머로서, 하드 세그먼트인 폴리아미드와 소프트 세그먼트인 폴리에테르로 이루어져 있으며, 폴리아미드의 내구성과 고무영역에 달하는 유연성을 함께 가지고 있다. Polyether block amide is a polyamide-based thermoplastic elastomer. It is composed of polyamide, which is a hard segment, and polyether, which is a soft segment. The polyether block amide has both durability and flexibility of polyamide.

상기 폴리에테르 블록 아미드는 폴리아미드/폴리에테르의 비에 따라 친수성 정도가 변화하며, 이산화황의 선택적 분리를 위해선 친수성이 높은 것이 바람직하다. 이를 위해 폴리에테르 블록 아미드를 구성하는 폴리아미드 함량은 30 내지 50 중량%이 바람직하다. 더욱 바람직하기로는 상기 폴리에테르 블록 아미드로 PEBAX 1657를 사용한다. The polyether block amide has a degree of hydrophilicity depending on the ratio of polyamide / polyether, and high hydrophilicity is preferable for the selective separation of sulfur dioxide. For this purpose, the polyamide content constituting the polyether block amide is preferably 30 to 50% by weight. More preferably, PEBAX 1657 is used as the polyether block amide.

상기 폴리에틸렌글리콜은 분자량이 200 내지 800인 것이 바람직하다. 상기 폴리에틸렌글리콜의 분자량은 분리막 제조시 폴리에테르 블록 아미드와 혼화되어 성막이 가능한 범위로서, 분자량이 상기 범위 미만인 경우에는 이산화황에 대한 투과도 및 선택도가 저하되고, 상기 범위를 초과하는 경우에는 폴리에테르 블록 아미드와 혼화가 용이하지 않다.The polyethylene glycol preferably has a molecular weight of 200 to 800. The molecular weight of the polyethylene glycol is a range capable of forming a film by mixing with the polyether block amide at the time of manufacturing the separator, when the molecular weight is less than the above range, the permeability and selectivity to sulfur dioxide is lowered, if the above range is exceeded the polyether block Incompatibility with amides is not easy.

이때 폴리에테르 블록 아미드와 폴리에틸렌글리콜의 혼합비는 1:0.2 내지 1:0.5이 바람직하며, 1:0.5 일 때 이산화황에 대한 투과도가 가장 우수하다. 폴리에틸렌 글리콜의 함량이 증가할수록 이산화황에 대한 투과도가 우수하며, 상기 범위 이상이면 막의 내구성이 저하되어 이산화황 분리용 막으로 적합하지 않고, 이와 반대로 상기 범위 미만이면 투과도가 감소하여 이산화황 분리능이 저하된다.At this time, the mixing ratio of polyether block amide and polyethylene glycol is preferably 1: 0.2 to 1: 0.5, and when the ratio is 1: 0.5, the permeability to sulfur dioxide is the best. As the content of polyethylene glycol increases, the permeability to sulfur dioxide is excellent, and if it is above the above range, the durability of the membrane is lowered, and thus it is not suitable as a membrane for sulfur dioxide separation.

본 발명에 따른 분리막의 재질인 폴리에테르 블록 아미드와 폴리에틸렌 글리콜은 친수성 고분자로서 시간이 경과함에 따라 물과의 접촉에 의해 분리막의 내구성이 저하될 수 있다. 본 발명은 내구성 향상을 위해 선택적으로 폴리에틸렌 글리콜을 가교제를 사용하여 가교한다. Polyether block amide and polyethylene glycol, which are the materials of the separator according to the present invention, are hydrophilic polymers, and the durability of the separator may decrease due to contact with water with time. The present invention optionally crosslinks polyethylene glycol with a crosslinking agent to improve durability.

이와 같은 본 발명의 분리막은 SO2 투과도가 3900 Barrer 이상, SO2/CO2 선택도가 40 이상으로, 특히 CO2에 대한 SO2 선택도가 높아 이산화탄소 포집용 초청정 탈황기술에 유용하게 적용이 가능하다.
Such a separator of the present invention is SO 2 The permeability is more than 3900 Barrer, the SO 2 / CO 2 selectivity is more than 40, especially high SO 2 selectivity for CO 2 can be usefully applied to ultra-clean desulfurization technology for carbon dioxide capture.

이와 같은 본 발명의 분리막은,Such a separator of the present invention,

1) 폴리에테르 블록 아미드, 폴리에틸렌 글리콜 및 용매를 포함하는 고분자 용액으로 기판을 코팅(coating)하여 고분자막을 형성하는 단계; 및 1) coating a substrate with a polymer solution containing polyether block amide, polyethylene glycol and a solvent to form a polymer film; And

2) 상기 고분자막을 건조하는 단계를 거쳐 제조된다.
2) is prepared through the step of drying the polymer film.

이하 각 단계별로 더욱 상세히 설명한다.Each step will be described in more detail below.

먼저, 폴리에테르 블록 아미드, 폴리에틸렌 글리콜 및 용매를 포함하는 고분자 용액으로 기판을 코팅(coating)하여 고분자막을 형성한다. First, a substrate is coated with a polymer solution containing polyether block amide, polyethylene glycol, and a solvent to form a polymer film.

본 발명에 사용될 수 있는 기판으로는 유리, 실리콘, 플라스틱 등을 예로 들 수 있다. 상기한 바와 같은 고분자 용액을 당 분야에 공지된 통상적인 방법에 따라 수십 내지 수백 ㎛ 두께로 기판 위에 코팅한다. 예컨대 닥터 블레이드(doctor's knife), 스핀코팅(spin coating), 딥코팅(dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 흐름코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯(ink jet) 또는 드롭캐스팅(drop casting) 등의 방법을 사용하여 기판 위에 고분자 용액을 코팅할 수 있다. Examples of the substrate that can be used in the present invention include glass, silicon, plastic, and the like. The polymer solution as described above is coated onto the substrate to a thickness of several tens to hundreds of micrometers according to conventional methods known in the art. For example, doctor's knife, spin coating, dip coating, roll coating, screen coating, spray coating, flow coating, The polymer solution may be coated onto the substrate using screen printing, ink jet or drop casting.

상기 용매는 폴리에테르 블록 아미드와 폴리에틸렌 글리콜이 균일하게 용해, 분산시킬 수 있는 것이라면 특별한 제한은 없다. 바람직하기로 용매는 이소프로판올, 에탄올, 메탄올, 아세톤 또는 이들의 혼합물을 사용한다. The solvent is not particularly limited as long as it can uniformly dissolve and disperse the polyether block amide and polyethylene glycol. Preferably the solvent uses isopropanol, ethanol, methanol, acetone or mixtures thereof.

이때 상기 고분자 용액은 폴리에테르 블록 아미드 3 내지 9 중량%, 폴리에틸렌 글리콜 0.6 내지 4.5 중량% 및 용매 잔부를 포함하는 것이 바람직하다.In this case, the polymer solution may include 3 to 9 wt% of polyether block amide, 0.6 to 4.5 wt% of polyethylene glycol, and the remainder of the solvent.

만약 상기 각 성분의 함량이 하한치에 미달하거나 상한치를 초과하는 경우 이산화황에 대한 선택도 및 투과도가 저하되는 문제점이 있다.
If the content of each component is less than the lower limit or exceeds the upper limit there is a problem that the selectivity and permeability for sulfur dioxide is lowered.

이때 선택적으로, 상기 고분자 용액에 추가로 가교제를 포함하여, 폴리에틸렌글리콜을 가교시킬 수 있다. 이때 가교제로서 글루타르알데히드, 이소프탈로일 디클로라이드, 1,3,5-벤젠트리카보닐 트리클로라이드, 또는 토일렌-2,4-디이소시아네이트가 가능하다. In this case, optionally, the polymer solution may further include a crosslinking agent to crosslink the polyethylene glycol. At this time, glutaraldehyde, isophthaloyl dichloride, 1,3,5-benzenetricarbonyl trichloride, or toylene-2,4-diisocyanate may be used as the crosslinking agent.

이때 가교제의 함량은 상기 고분자 용액 중 0.09 내지 0.27 중량%인 것이 바람직하다. 만약 가교제의 함량이 상기 범위 미만이면, 가교 반응이 미미하고, 상기 범위를 초과하는 경우 지나친 가교반응으로 인해 얻어진 분리막의 투과도가 저하되는 문제점이 있다. At this time, the content of the crosslinking agent is preferably 0.09 to 0.27% by weight of the polymer solution. If the content of the crosslinking agent is less than the above range, the crosslinking reaction is insignificant, and if it exceeds the above range, there is a problem that the permeability of the separator obtained due to excessive crosslinking reaction is lowered.

이러한 가교제는 폴리에틸렌글리콜의 작용기와 반응하여 이를 가교시킴으로써, 분리막의 안정성 및 내구성이 더욱 향상된다.
Such a crosslinking agent reacts with and crosslinks the functional group of polyethylene glycol, thereby further improving the stability and durability of the separator.

다음으로, 상기 고분자막을 건조한다. Next, the polymer film is dried.

이때 건조 조건은 본 발명에서 특별히 한정하지는 않으나, 용매를 충분히 제거할 수 있는 조건에서 수행한다. 바람직하기로 30∼150 ℃에서 30분 내지 10시간 동안 수행하며, 필요에 따라 감압 하에 수행한다.
At this time, the drying conditions are not particularly limited in the present invention, but are carried out under the conditions capable of sufficiently removing the solvent. Preferably it is carried out at 30 to 150 ℃ for 30 minutes to 10 hours, if necessary under reduced pressure.

이하 본 발명의 바람직한 실시예를 기재한다. 하기 실시예는 본 발명을 보다 명확히 표현하기 위한 목적으로 기재될 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described. The following examples are provided for the purpose of more clearly illustrating the present invention and are not intended to limit the scope of the present invention.

실험재료Experimental material

실험에 필요한 폴리에테르 블록 아미드(Polyether Block Amides, PEBAX, Arkema S.A, France) 1657을 사용하였다. 용매는 에탄올(J.T.Baker, Malaysia)과 초순수 (Younglin Pure Water System, Seoul Korea)으로부터 생산하여 사용하였다. 첨가제는 폴리에틸렌글리콜(Polyethylen Glycol, Aldrich Co. Milwakee, M.w=400)를 사용하였으며, 가교제는 글루타르알데히드(Glutaraldehyde, Junsei Chemical Co. Ltd) 을 사용하였다. 이상의 제품들은 더 이상의 정제 없이 사용하였다.
Polyether Block Amides (PEBAX, Arkema SA, France) 1657 required for the experiment was used. The solvent was produced and used from ethanol (JTBaker, Malaysia) and ultrapure water (Younglin Pure Water System, Seoul Korea). As an additive, polyethylene glycol (Polyethylen Glycol, Aldrich Co. Milwakee, Mw = 400) was used, and a crosslinking agent was glutaraldehyde (Glutaraldehyde, Junsei Chemical Co. Ltd). The above products were used without further purification.

(실시예 1)      (Example 1)

PEBAX 1657 고분자를 70wt.% 에탄올수용액에 2 시간 동안 중탕(약 100±1 ℃)하여 완전히 용해시킨 후, 3wt.% PEBAX 용액을 만들었다. 3wt.% PEBAX 용액에 폴리에틸렌글리콜을 0.6 wt.%를 넣어 상온(약 24±1 ℃)에서 24시간 동안 교반하여 용액을 제조하였다. 제조된 용액을 7×7cm 유리틀에 15~20ml 정도를 부어 60 ℃ 진공오븐에서 3 시간 동안 건조하여 분리막을 제조하였다.
The PEBAX 1657 polymer was completely dissolved in 70 wt.% Ethanol aqueous solution for 2 hours in a water bath (about 100 ± 1 ° C.), and then a 3 wt.% PEBAX solution was prepared. 0.6 wt.% Of polyethylene glycol was added to a 3 wt.% PEBAX solution, and stirred at room temperature (about 24 ± 1 ° C.) for 24 hours to prepare a solution. The prepared solution was poured into a glass frame of about 7 ~ 7cm 15 ~ 20ml and dried for 3 hours at 60 ℃ vacuum oven to prepare a membrane.

(실시예 2)(Example 2)

폴리에틸렌글리콜을 1.2 wt.% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 분리막을 제조하였다.
A separator was prepared in the same manner as in Example 1 except that 1.2 wt.% Of polyethylene glycol was used.

(실시예 3)(Example 3)

폴리에틸렌글리콜을 1.5 wt.% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 분리막을 제조하였다.
A separator was prepared in the same manner as in Example 1 except that 1.5 wt.% Of polyethylene glycol was used.

(실시예 4)(Example 4)

PEBAX 1657 고분자를 70wt.% 에탄올수용액에 2시간 동안 중탕(약 100±1 ℃)하여 완전히 용해시킨 후, 3wt.% PEBAX 용액을 만들었다. 3wt.% PEBAX 용액에 폴리에틸렌글리콜을 1.5 wt.%를 넣어 상온(약 24±1 ℃)에서 24시간 동안 교반한 뒤 글루타르알데히드 0.09 wt.%를 넣어 24시간 동안 교반하여 혼합용액을 제조하였다. 제조된 용액을 7×7cm 유리틀에 15~20ml 정도를 부어 60 ℃ 진공오븐에서 3시간 동안 건조하여 분리막을 제조하였다.
The PEBAX 1657 polymer was completely dissolved in 70 wt.% Ethanol aqueous solution for 2 hours in a water bath (about 100 ± 1 ° C.), and then a 3 wt.% PEBAX solution was prepared. 1.5 wt.% Polyethylene glycol was added to 3 wt.% PEBAX solution, stirred at room temperature (about 24 ± 1 ° C.) for 24 hours, and then 0.09 wt.% Glutaraldehyde was added and stirred for 24 hours to prepare a mixed solution. The prepared solution was poured into a glass frame of about 7 ~ 7cm 15 ~ 20ml and dried for 3 hours at 60 ℃ vacuum oven to prepare a membrane.

(실시예 5)(Example 5)

글루타르알데히드 0.18 wt.% 사용한 것을 제외하고는 실시예 3과 동일하게 실시하여 분리막을 제조하였다.
Separation membrane was prepared in the same manner as in Example 3 except that glutaraldehyde was used at 0.18 wt.%.

(실시예 6)(Example 6)

글루타르알데히드 0.27 wt.% 사용한 것을 제외하고는 실시예 3과 동일하게 실시하여 분리막을 제조하였다.
Separation membrane was prepared in the same manner as in Example 3 except that 0.27 wt.% Glutaraldehyde was used.

(비교예 1)(Comparative Example 1)

폴리에틸렌글리콜을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 분리막을 제조하였다.
Separation membrane was prepared in the same manner as in Example 1 except that polyethylene glycol was not used.

(실험예 1) (Experimental Example 1)

제조된 분리막의 기체투과특성을 조사하기 위해 투과도 측정 장치(Time-lag)를 이용하여 기체투과도를 측정하였다. 투과도 측정 장치는 항온장치에 넣어 온도를 25로 일정하게 유지하였다. 기체 투과도 계수(permeability coefficient)는 시간에 따른 압력증가율이 일정하게 되는 정상상태에 도달한 후 시간-압력 곡선의 기울기로부터 아래의 식 (1)에 의해 계산하였다.Gas permeability was measured using a permeability measuring device (Time-lag) to investigate the gas permeation characteristics of the prepared membrane. The permeability measuring device was placed in a thermostat and kept at a constant temperature of 25. The gas permeability coefficient was calculated by the following equation (1) from the slope of the time-pressure curve after reaching a steady state where the rate of pressure increase over time became constant.

Figure pat00001
(1)
Figure pat00001
(One)

여기서 V[

Figure pat00002
]는 투과부의 부피, A[
Figure pat00003
]는 막의 투과면적,
Figure pat00004
[cmHg]은 공급부 압력, T[K]는 온도, R은 기체상수, 그리고 p/t는 투과부의 압력변화 속도를 나타낸다. 투과도 계수, P는 GPU 단위를 사용하였으며, 1 GPU는 10-6(STP)/cm2·sec·cmHg이다. 이상분리인자는 다음의 식(2)와 같이 순수기체 투과도 계수의 비로 정의 되며, 확산 선택도(diffusivity selectivity)와 용해선택도(solubility selectivity)의 곱으로 나타낼 수 있다. 확산선택도는 분리막이 기체의 크기와 모양을 구별할 수 있는 매체로서의 기능을 수행할 수 있는가에 기초한 것으로, 사슬의 운동성이나 사슬간의 충진(packing)등에 의하여 변화하며, 용해선택도는 기체의 응축성과 기체와 분리막간의 상호작용 등에 의해 결정된다.Where V [
Figure pat00002
] Is the volume of permeate, A [
Figure pat00003
] Is the permeation area of the membrane,
Figure pat00004
[cmHg] is the feed pressure, T [K] is the temperature, R is the gas constant, and p / t is the rate of pressure change in the permeate. The transmittance coefficient, P, was used in GPU units, and one GPU was 10 −6 (STP) / cm 2 · sec · cmHg. The anomaly separation factor is defined as the ratio of the pure gas permeability coefficients as shown in Equation (2), and can be expressed as the product of diffusivity selectivity and solubility selectivity. The diffusion selectivity is based on whether the membrane can function as a medium to distinguish the size and shape of the gas. The diffusion selectivity is changed by chain mobility or packing between the chains. Performance and the interaction between the gas and the membrane.

Figure pat00005
(2)
Figure pat00005
(2)

실시예 1 내지 6 및 비교예 1의 분리막의 기체투과도 측정결과를 아래 표 1에 나타내었다.       Gas permeability measurement results of the separators of Examples 1 to 6 and Comparative Example 1 are shown in Table 1 below.


N2 N 2 O2 O 2 CO2 CO 2 SO2 SO 2
비교예 1
Comparative Example 1
기체투과도
(Barrer*)
Gas permeability
(Barrer *)
0.90.9 2.62.6 47.947.9 2192.02192.0
확산도**Diffusivity ** 3.21×10-7 3.21 × 10 -7 7.58×10-7 7.58 × 10 -7 5.28×10-6 5.28 × 10 -6 4.52×10-7 4.52 × 10 -7 용해도***Solubility *** 0.000280.00028 0.000340.00034 0.009060.00906 0.484960.48496 실시예 1

Example 1

기체투과도
(Barrer*)
Gas permeability
(Barrer *)
1.31.3 3.63.6 82.682.6 3900.03900.0
확산도**Diffusivity ** 3.61×10-7 3.61 × 10 -7 8.00×10-7 8.00 × 10 -7 7.01×10-7 7.01 × 10 -7 6.09×10-7 6.09 × 10 -7 용해도***Solubility *** 0.000360.00036 0.000450.00045 0.011960.01196 0.555210.55521 실시예 2

Example 2

기체투과도
(Barrer*)
Gas permeability
(Barrer *)
2.32.3 5.25.2 112.0112.0 5993.85993.8
확산도**Diffusivity ** 4.04×10-7 4.04 × 10 -7 8.39×10-7 8.39 × 10 -7 7.41×10-7 7.41 × 10 -7 8.10×10-7 8.10 × 10 -7 용해도***Solubility *** 0.000570.00057 0.000620.00062 0.015100.01510 0.739930.73993 실시예 3

Example 3

기체투과도
(Barrer*)
Gas permeability
(Barrer *)
3.13.1 7.07.0 186.3186.3 9039.69039.6
확산도**Diffusivity ** 4.92×10-7 4.92 × 10 -7 8.43×10-7 8.43 × 10 -7 7.71×10-7 7.71 × 10 -7 9.92×10-7 9.92 × 10 -7 용해도***Solubility *** 0.000630.00063 0.000830.00083 0.024150.02415 0.91000.9100 실시예 4
Example 4
기체투과도
(Barrer*)
Gas permeability
(Barrer *)
1.51.5 3.83.8 81.681.6 3896.43896.4
확산도**Diffusivity ** 1.53×10-7 1.53 × 10 -7 2.99×10-7 2.99 × 10 -7 8.63×10-7 8.63 × 10 -7 7.91×10-7 7.91 × 10 -7 용해도***Solubility *** 0.000980.00098 0.001270.00127 0.009460.00946 0.492590.49259 실시예 5

Example 5

기체투과도
(Barrer*)
Gas permeability
(Barrer *)
1.71.7 4.24.2 95.095.0 4975.74975.7
확산도**Diffusivity ** 1.24×10-7 1.24 × 10 -7 2.56×10-7 2.56 × 10 -7 7.07×10-7 7.07 × 10 -7 9.51×10-7 9.51 × 10 -7 용해도***Solubility *** 0.001370.00137 0.001640.00164 0.013430.01343 0.523200.52320 실시예 6

Example 6

기체투과도
(Barrer*)
Gas permeability
(Barrer *)
1.81.8 4.64.6 114.8114.8 6081.56081.5
확산도**Diffusivity ** 9.52×10-8 9.52 × 10 -8 2.14×10-7 2.14 × 10 -7 6.11×10-7 6.11 × 10 -7 1.7×10-6 1.7 × 10 -6 용해도***Solubility *** 0.001890.00189 0.002140.00214 0.018760.01876 0.568360.56836 *Barrer:10-10(cm3(STP)cm/cm2·s·cmHg , **10-7cm2/s, *** 1-3(STP)/cm3·cmHg * Barrer: 10 -10 (cm 3 (STP) cm / cm 2 · s · cmHg, ** 10 -7 cm 2 / s, *** 1 -3 (STP) / cm 3 · cmHg

표 1에 나타낸 바와 같이, 측정결과 분리막은 N2 < O2 < CO2 < SO2 순으로 투과도가 증가하는 경향을 보였다. 실시예 1의 분리막의 투과도가 비교예 1과 비교하여 N2 31%, O2 28%, CO2 42%, SO2 44% 향상되었다. 실시예 2의 경우 비교예 1과 비교하여 분리막의 투과도가 N2 61%, O2 50%, CO2 57%, SO2 63% 향상된 것을 확인할 수 있었다. 폴리에틸렌글리콜이 1.5 wt.% 첨가된 실시예 3의 분리막은 비교예 1과 비교하여 투과도가 N2 71%, O2 63%, CO2 74%, SO2 76% 향상된 것을 확인할 수 있었다. 또한 글루타르알데히드 첨가량이 증가할수록 N2, O2, CO2, SO2에 대한 투과도가 증가하는 경향을 보였다.
As shown in Table 1, the separation membrane showed a tendency to increase the transmittance in the order of N 2 <O 2 <CO 2 <SO 2 . The permeability of the separator of Example 1 was improved by 31% N 2 , 28% O 2 , 42% CO 2 , and 44% SO 2 compared with Comparative Example 1. In the case of Example 2, it was confirmed that the permeability of the separator was improved compared to Comparative Example 1 N 2 61%, O 2 50%, CO 2 57%, SO 2 63%. Polyethylene glycol 1.5 wt.% Of the membrane in Example 3 was added is confirmed in comparison with Comparative Example 1 that the transmission rate is N 2 71%, O 2 63 %, CO 2 74%, SO 2 76% improved. Also, as the amount of glutaraldehyde added increased, the permeability to N 2 , O 2 , CO 2 , SO 2 tended to increase.

도 1은 비교예 1에서 제조된 분리막의 기체투과도에 대한 선택도를 나타낸 것이다. 도 1을 참조하면, 선택도의 값은 CO2/N2의 결과 값이 가장 큰 값을 보였으며, SO2/CO2 , O2/N2의 순서로 작아졌다. CO2에 대한 SO2의 선택도는 46이었다.Figure 1 shows the selectivity for the gas permeability of the separator prepared in Comparative Example 1. Referring to FIG. 1, the selectivity value of CO 2 / N 2 showed the largest value, and was decreased in the order of SO 2 / CO 2 and O 2 / N 2 . The choice of SO 2 for CO 2 was also 46.

도 2는 실시예 1 내지 3 및 비교예 1에서 제조된 분리막에 대한 선택도를 나타낸 그래프이다. 도 2를 참조하면, O2/N2 < SO2/CO2 < CO2/N2순으로 선택도가 증가하였으며, 실시예 2에서는 SO2/CO2의 선택도가 CO2/N2값보다 더 크게 나타났다. SO2/CO2의 선택도는 전체적으로 40이상의 값을 나타내었다.Figure 2 is a graph showing the selectivity for the separator prepared in Examples 1 to 3 and Comparative Example 1. 2, the selectivity was increased in the order of O 2 / N 2 <SO 2 / CO 2 <CO 2 / N 2 , and in Example 2, the selectivity of SO 2 / CO 2 was CO 2 / N 2. Larger than The selectivity of SO 2 / CO 2 was over 40.

도 3은 실시예 4 내지 6 및 비교예 1에서 제조된 분리막에 대한 선택도를 나타낸 그래프이다. 도 3을 참조하면, N2/CO2 < SO2/CO2 < CO2/N2순으로 선택도가 증가하였으며, 글루타르알데히드 0.27 wt.%를 사용한 실시예 6에서 SO2/CO2의 선택도는 전체적으로 50 이상의 값을 나타내었다.
3 is a graph showing the selectivity for the separator prepared in Examples 4 to 6 and Comparative Example 1. Referring to FIG. 3, the selectivity was increased in the order of N 2 / CO 2 <SO 2 / CO 2 <CO 2 / N 2 , and SO 2 / CO 2 in Example 6 using 0.27 wt.% Glutaraldehyde. Selectivity exhibited a value of at least 50 overall.

Claims (13)

폴리에테르 블록 아미드와 폴리에틸렌 글리콜을 포함하는 이산화황 분리용 분리막. Separation membrane for the separation of sulfur dioxide containing polyether block amide and polyethylene glycol. 제1항에 있어서, 상기 폴리에테르 블록 아미드의 폴리아마이드 함량은 30 내지 50 중량%인 것을 특징으로 하는 이산화황 분리용 분리막. The separator for separating sulfur dioxide according to claim 1, wherein the polyamide content of the polyether block amide is 30 to 50% by weight. 제1항에 있어서, 상기 폴리에테르 블록 아미드는 PEBAX 1657인 것을 특징으로 하는 이산화황 분리용 분리막. The separator for sulfur dioxide separation according to claim 1, wherein the polyether block amide is PEBAX 1657. 제1항에 있어서, 상기 폴리에틸렌 글리콜은 가교제에 의해 가교된 것을 특징으로 하는 이산화황 분리용 분리막. The separator for sulfur dioxide separation according to claim 1, wherein the polyethylene glycol is crosslinked by a crosslinking agent. 제1항에 있어서, 상기 폴리에테르 블록 아미드와 폴리에틸렌글리콜의 혼합비는 1:0.2 내지 1:0.5인 것을 특징으로 하는 이산화황 분리용 분리막. The separation membrane for sulfur dioxide separation according to claim 1, wherein the mixing ratio of the polyether block amide and polyethylene glycol is 1: 0.2 to 1: 0.5. 제1항에 있어서, 상기 분리막의 SO2/CO2 선택도는 40 이상인 것을 특징으로 하는 이산화황 분리용 분리막. The separator for sulfur dioxide separation according to claim 1, wherein the SO 2 / CO 2 selectivity of the separator is 40 or more. 1) 폴리에테르 블록 아미드, 폴리에틸렌 글리콜 및 용매를 포함하는 고분자 용액으로 기판을 코팅하여 고분자막을 형성하는 단계; 및
2) 상기 고분자막을 건조하는 단계
를 포함하는, 이산화황 분리용 분리막을 제조하는 방법.
1) coating a substrate with a polymer solution containing polyether block amide, polyethylene glycol and a solvent to form a polymer film; And
2) drying the polymer membrane
A method of manufacturing a separator for sulfur dioxide separation comprising a.
제7항에 있어서, 상기 용매는 이소프로판올, 에탄올, 메탄올, 아세톤 또는 이들의 혼합물인 것을 특징으로 하는 이산화황 분리용 분리막을 제조하는 방법.8. The method of claim 7, wherein the solvent is isopropanol, ethanol, methanol, acetone or a mixture thereof. 제7항에 있어서, 상기 용액 중 폴리에테르 블록 아미드의 함량은 3 내지 9 중량%인 것을 특징으로 하는 이산화황 분리용 분리막을 제조하는 방법.The method of claim 7, wherein the content of the polyether block amide in the solution is 3 to 9 wt%. 제7항에 있어서, 상기 용액 중 폴리에틸렌 글리콜의 함량은 0.6 내지 4.5 중량%인 것을 특징으로 하는 이산화황 분리용 분리막을 제조하는 방법.The method of claim 7, wherein the content of polyethylene glycol in the solution is 0.6 to 4.5 wt%. 제7항에 있어서, 상기 용액은 추가로 가교제를 포함하는 것을 특징으로 하는 이산화황 분리용 분리막을 제조하는 방법.8. The method of claim 7, wherein the solution further comprises a crosslinking agent. 제11항에 있어서, 상기 가교제는 글루타르알데히드, 이소프탈로일 디클로라이드, 1,3,5-벤젠트리카보닐 트리클로라이드, 또는 토일렌-2,4-디이소시아네이트인 것을 특징으로 하는 이산화황 분리용 분리막을 제조하는 방법.12. The method of claim 11, wherein the crosslinking agent is for separating sulfur dioxide, characterized in that glutaraldehyde, isophthaloyl dichloride, 1,3,5-benzenetricarbonyl trichloride, or toylene-2,4-diisocyanate Method of preparing a separator. 제11항에 있어서, 상기 용액 중 가교제의 함량은 0.09 내지 0.27 중량%인 것을 특징으로 하는 이산화황 분리용 분리막을 제조하는 방법.12. The method of claim 11, wherein the content of the crosslinking agent in the solution is 0.09 to 0.27 wt%.
KR1020120089869A 2012-08-17 2012-08-17 Membrane for sulfur dioxide separation and preparation method thereof KR20140023661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120089869A KR20140023661A (en) 2012-08-17 2012-08-17 Membrane for sulfur dioxide separation and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120089869A KR20140023661A (en) 2012-08-17 2012-08-17 Membrane for sulfur dioxide separation and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20140023661A true KR20140023661A (en) 2014-02-27

Family

ID=50269005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120089869A KR20140023661A (en) 2012-08-17 2012-08-17 Membrane for sulfur dioxide separation and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20140023661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042944A (en) * 2017-08-30 2020-04-24 사우디 아라비안 오일 컴퍼니 Crosslinked polymeric blend membrane for gas separation
KR20210098374A (en) * 2020-01-31 2021-08-10 경상국립대학교산학협력단 coating solution for hollow fiber membrane, composite membrane using the same, preparation method thereof and carbon dioxide separation membrane comprising the same
KR20230056299A (en) * 2021-10-20 2023-04-27 한국화학연구원 Method for producing an organic polymer membrane with improved gas permeation performance using a low molecular weight hydrophilic organic oligomer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042944A (en) * 2017-08-30 2020-04-24 사우디 아라비안 오일 컴퍼니 Crosslinked polymeric blend membrane for gas separation
KR20210098374A (en) * 2020-01-31 2021-08-10 경상국립대학교산학협력단 coating solution for hollow fiber membrane, composite membrane using the same, preparation method thereof and carbon dioxide separation membrane comprising the same
KR20230056299A (en) * 2021-10-20 2023-04-27 한국화학연구원 Method for producing an organic polymer membrane with improved gas permeation performance using a low molecular weight hydrophilic organic oligomer

Similar Documents

Publication Publication Date Title
Kárászová et al. Post-combustion carbon capture by membrane separation, Review
Kim et al. Gas-liquid membrane contactors for carbon dioxide separation: A review
He A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries
Du et al. Advances in high permeability polymeric membrane materials for CO 2 separations
Sandru et al. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants
US10479684B2 (en) Enhancement of claus tail gas treatment by sulfur dioxide-selective membrane technology and sulfur dioxide-selective absorption technology
US20120055385A1 (en) Method for the separation of gases
Cao et al. Recent advancements in molecular separation of gases using microporous membrane systems: A comprehensive review on the applied liquid absorbents
Bazhenov et al. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation
CN107708840B (en) Separation of CO from a gas stream 2 Method (2)
US9943802B1 (en) Enhancement of claus tail gas treatment with membrane and reducing step
US10106410B2 (en) Enhancement of Claus tail gas treatment by sulfur dioxide-selective membrane technology
CN102631843A (en) Preparation method of ionic liquid supported liquid membrane for separating CO2 in gas
Pasichnyk et al. Membrane technology for challenging separations: Removal of CO2, SO2 and NOX from flue and waste gases
KR20140023661A (en) Membrane for sulfur dioxide separation and preparation method thereof
CN104418303B (en) The process of carbon dioxide in a kind of membrance separation removing conversion gas
JP4326276B2 (en) Gas purification device and flue gas desulfurization system
Lee et al. Integrated membrane contactor absorber/regeneration column process for CO2 capture with large scale module at various operating conditions
Kunalan et al. Polymeric composite membranes in carbon dioxide capture process: a review
Fajrina et al. A crucial review on the challenges and recent gas membrane development for biogas upgrading
Chen et al. Boosting membranes for CO2 capture toward industrial decarbonization
KR102235015B1 (en) Method for producing nitrogen-enriched air using flue gas
Joarder et al. Solution to air pollution for removing CO2 and SO2 from flue gases: a prospective approach
Frappa et al. Membrane condenser for particulate abatement from waste-gaseous streams
Wazir et al. Application of Membrane Contactor Technology for Post‐combustion Carbon Dioxide (CO 2) Capture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application