KR20140013462A - 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법 - Google Patents

히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법 Download PDF

Info

Publication number
KR20140013462A
KR20140013462A KR1020120080459A KR20120080459A KR20140013462A KR 20140013462 A KR20140013462 A KR 20140013462A KR 1020120080459 A KR1020120080459 A KR 1020120080459A KR 20120080459 A KR20120080459 A KR 20120080459A KR 20140013462 A KR20140013462 A KR 20140013462A
Authority
KR
South Korea
Prior art keywords
pcr
heater
real
electrode
temperature
Prior art date
Application number
KR1020120080459A
Other languages
English (en)
Other versions
KR101950210B1 (ko
Inventor
김성우
이정환
이유진
김덕중
Original Assignee
나노바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스 주식회사 filed Critical 나노바이오시스 주식회사
Priority to KR1020120080459A priority Critical patent/KR101950210B1/ko
Priority to PCT/KR2013/006621 priority patent/WO2014017821A1/ko
Publication of KR20140013462A publication Critical patent/KR20140013462A/ko
Application granted granted Critical
Publication of KR101950210B1 publication Critical patent/KR101950210B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control

Abstract

본 발명의 일 실시예는 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 PCR 장치, 및 이를 이용한 실시간 PCR 방법에 관한 것으로서, 이에 따르면 히터 유닛이 반복 배치된 열 블록 및 판 형상의 PCR 칩을 통해 다수의 샘플을 동시에 초고속으로 분석할 수 있을 뿐만 아니라, 핵산 증폭 과정에서 발생하는 연속적인 전기화학적 신호를 쉽게 검출할 수 있는 단순한 모듈 구현을 통해 제품의 극-소형화 및 휴대화에 상당히 기여할 수 있다.

Description

히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 PCR 장치, 및 이를 이용한 실시간 PCR 방법{Real-time PCR device for detecting electrochemcial signal comprising heating block of repetitively disposed heater unit, and Real-time PCR using the same}
본 발명의 일 실시예는 증폭 핵산에 따른 전기화학적 신호를 실시간으로 검출 및 측정할 수 있는 실시간 PCR 장치 및 이를 이용한 실시간 PCR 방법에 관한 것이다.
중합효소 연쇄 반응, 즉 PCR(Polymerase Chain Reaction)은 주형 핵산의 특정 부위를 반복적으로 가열 및 냉각하여 상기 특정 부위를 연쇄적으로 복제하여 그 특정 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 생명과학, 유전공학 및 의료 분야 등에서 분석 및 진단 목적으로 널리 사용되고 있다. 최근 상기 PCR을 수행하기 위한 PCR 장치가 다양하게 개발되고 있다. 종래 PCR 장치의 일 예는 하나의 반응 챔버에 주형 핵산을 포함하는 샘플 용액을 포함하는 용기를 장착하고, 상기 용기를 반복적으로 가열 및 냉각하여 PCR 반응을 수행한다. 그러나, 상기 PCR 장치는 하나의 반응 챔버를 구비하기 때문에 전체적인 구조가 복잡하진 않지만, 정확한 온도 제어를 위해 복잡한 회로를 구비해야 하고, 하나의 반응 챔버에 대한 반복적인 가열 및 냉각으로 인해 전체 PCR 수행 시간이 길어지는 문제점이 있다. 또한, 종래 PCR 장치의 다른 예는 PCR 진행 온도를 갖는 복수 개의 반응 챔버를 장착하고, 이들 반응 챔버를 통과하는 하나의 채널을 통해 핵산을 포함하는 샘플 용액을 흐르게 하여 PCR을 수행한다. 그러나, 상기 PCR 장치는 복수 개의 반응 챔버를 이용하기 때문에 정확한 온도 제어를 위한 복잡한 회로가 요구되진 않지만, 고온 및 저온의 반응 챔버를 통과하기 위한 긴 유로가 반드시 필요하므로 전체 구조가 복잡하고, 상기 반응 챔버를 통과하는 채널에 흐르는 핵산을 포함하는 샘플 용액의 유속을 제어하기 위한 별도의 제어 장치가 요구된다. 한편, 최근 PCR 장치는 PCR 수율을 개선하기 위한 노력뿐만 아니라 PCR 진행 과정을 실시간으로 파악하기 위한 효율적인 방법을 개방하기 위한 방향으로 개발되고 있다. 이와 같이 PCR 진행 과정을 실시간으로 파악할 수 있는 기술을 소위 "실시간 PCR(real-time PCR)"이라고 하는데, 실시간 PCR 장치는 PCR 챔버에 형광물질을 투입하여 증폭 산물과의 결합으로 발생하는 광신호를 측정하는 기술이 채용된다. 그러나, 이 경우 상기 실시간 PCR 장치는 형광물질로부터 광신호를 활성화하기 위한 별도의 광원 모듈, 증폭 핵산으로부터 획득된 광신호를 검출하기 위한 광검출 모듈, 및 기타 광 경로를 조절하기 위한 반사경 등 복잡한 구조를 반드시 채용해야 하는바, 기기의 소형화가 어렵고, 휴대용으로 활용하기 어려운 문제점이 있다.
따라서, PCR 시간을 줄임과 동시에 신뢰할 수 있는 PCR 수율을 얻을 수 있고, 더 나아가 제품의 소형화 및 휴대화가 가능한 실시간 PCR 장치의 필요성이 부각되고 있는 실정이다.
위와 같은 배경기술의 문제점을 해결하고자, 본 발명의 일 실시예는 PCR 시간 및 수율을 합리적으로 개선하고, 더 나아가 제품의 소형화 및 휴대화가 가능한 실시간 PCR 장치 및 이를 이용한 실시간 PCR 방법을 제안하고자 한다.
본 발명의 일 실시예는 1 이상의 히터를 구비하는 히터 군, 상기 히터 군을 2 이상 구비하고 상기 2 이상의 히터 군은 상호 열 교환이 일어나지 않도록 이격 배치된 히터 유닛이 2 이상 반복 배치된 것으로서, 적어도 일 면에 시료 및 시약이 수용되는 PCR 칩의 접촉 면을 구비하는 열 블록; 상기 열 블록에 구비된 히터들에 전력을 공급하도록 연결된 열 전극을 구비하는 열 전극부; 양 말단에 유입부 및 유출부가 구현된 1 이상의 반응 채널, 및 상기 반응 채널의 길이 방향으로 그 하단 면을 가로질러 반복 이격 배치되되 상기 반응 채널 내부에서 증폭 핵산과 활성물질의 결합으로 인해 발생하는 전기화학적 신호를 검출하도록 구현된 검출 전극을 구비하는 것으로서, 상기 열 블록과의 열 접촉시 상기 검출 전극은 상기 2 이상의 히터 군 사이에 배치되도록 구현된 판 형상의 PCR 칩; 상기 PCR 칩이 장착되되 상기 PCR 칩의 검출 전극 말단과 전기적으로 연결되도록 구현된 연결 포트를 구비하는 칩 홀더; 및 상기 칩 홀더의 연결 포트와 전기적으로 연결되어 상기 PCR 칩의 반응 채널 내부에서 발생하는 전기화학적 신호를 실시간으로 측정하도록 구현된 전기화학적 신호 측정 모듈를 포함하는, 실시간 PCR(Polymerase Chain Reaction) 장치를 제공한다.
본 발명의 일 실시예에 따른 실시간 PCR 장치에 있어서,
상기 활성물질은 이온결합성 물질의 이온화 산물 중 양이온 물질일 수 있다.
상기 이온결합성 물질은 메틸렌 블루(methylene blue)일 수 있다.
상기 전기화학적 신호는 상기 증폭 핵산의 음 전하와 상기 활성물질의 양 전하의 결합에 인한 총 전류값 변화에 기인하는 것일 수 있다.
상기 검출 전극은 금(Au), 코발트(Co), 백금(Pt), 은(Ag), 탄소나노튜브(carbon nanotube), 그래핀(graphene), 및 탄소(Carbon)로 구성된 군으로부터 1 이상 선택될 수 있다.
상기 검출 전극은 상기 증폭 핵산과 활성물질의 결합이 일어나는 지시 전극(working electrode) 및 상기 증폭 핵산과 활성물질의 결합이 일어나지 않는 기준 전극(reference electrode)을 구비하는 2-전극 모듈, 또는 상기 지시 전극, 상기 기준 전극, 및 상기 지시 전극으로부터 발생하는 전자 밸런스를 조절하는 카운터 전극(counter electrode)을 구비하는 3-전극 모듈로 구현될 수 있다.
상기 전기화학적 신호 측정 모듈은 양극 벗김 전압전류계(anodic stripping voltammetry, ASV), 대시간 전류계 (chronoamperometry, CA), 순환 전압전류계(cyclic voltammetry), 네모파 전압전류계(square wave voltammetry, SWV), 펄스 전압전류계(differential pulse voltammetry, DPV), 및 임피던스계(impedance)로 구성된 군으로부터 선택될 수 있다.
상기 열 블록은 2개 내지 4개의 히터 군을 구비하는 것일 수 있다.
상기 열 블록은 2개의 히터 군을 구비하고, 상기 제1 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제2 히터 군은 PCR 어닐링/연장 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 어닐링/연장 단계 온도를 유지하고 상기 제2 히터 군은 PCR 변성 단계 온도를 유지하는 것일 수 있다.
상기 열 블록은 3개의 히터 군을 구비하고, 상기 제1 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제2 히터 군은 PCR 어닐링 단계 온도를 유지하고 상기 제3 히터 군은 PCR 연장 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 어닐링 단계 온도를 유지하고 상기 제2 히터 군은 PCR 연장 단계 온도를 유지하고 상기 제3 히터 군은 PCR 변성 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 연장 단계 온도를 유지하고 상기 제2 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제3 히터 군은 PCR 어닐링 단계 온도를 유지하는 것일 수 있다.
상기 1 이상의 반응 채널은 상기 히터 유닛 중 최선 배치된 히터의 상측 대응 부분과 최후 배치된 히터의 상측 대응 부분을 직선 길이 방향으로 통과하도록 연장 배치된 것일 수 있다.
상기 PCR 칩은 상기 검출 전극이 구비된 제1 판; 상기 제1 판 상에 배치되되 상기 1 이상의 반응 채널이 구비된 제2 판; 및 상기 제2 판 상에 배치되되 상기 유입부 및 유출부가 구비된 제3 판을 포함하는 것일 수 있다.
상기 PCR 칩은 상기 칩 홀더에 탈착 가능하게 구현될 수 있다.
상기 열 전극부에 전력을 공급하기 위한 전력 공급부를 더 포함할 수 있다.
상기 1 이상의 반응 채널 내에서 유동하는 유체의 유량 및 유속을 제어하기 위해 양압 또는 음압을 제공하도록 배치된 펌프를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 실시간 PCR 장치 및 방법에 따르면, 히터 유닛이 반복 배치된 열 블록 및 판 형상의 PCR 칩을 통해 다수의 샘플을 동시에 초고속으로 분석할 수 있을 뿐만 아니라, 핵산 증폭 과정에서 발생하는 연속적인 전기화학적 신호를 쉽게 검출할 수 있는 단순한 모듈 구현을 통해 제품의 극-소형화 및 휴대화에 상당히 기여할 수 있다.
도 1 내지 5는 본 발명의 일 실시예에 따른 실시간 PCR 장치의 열 블록 및 열 전극부를 도시한다.
도 6 내지 8은 본 발명의 일 실시예에 따른 실시간 PCR 장치의 PCR 칩을 도시한다.
도 9 내지 10은 본 발명의 일 실시예에 따른 실시간 PCR 장치의 PCR 칩의 검출 전극을 도시한다.
도 11은 본 발명의 일 실시예에 따른 실시간 PCR 장치의 칩 홀더를 도시한다.
도 12는 PCR 칩, 전력 공급부, 및 펌프를 구비하는 본 발명의 일 실시예에 따른 실시간 PCR 장치를 도시한다.
도 13은 본 발명의 일 실시예에 따른 실시간 PCR 장치에 의한 핵산 증폭 과정, 및 그에 따른 핵산 증폭 신호를 실시간으로 검출 및 측정하는 과정을 도시한다.
도 14는 본 발명의 일 실시예에 따른 실시간 PCR 장치를 이용하여 핵산 증폭, 및 그에 따른 핵산 증폭 신호를 실시간으로 검출 및 측정하는 일련의 과정을 도시한다.
이하, 첨부 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 이하 설명은 본 발명에 따른 일 실시예들을 용이하게 이해하기 위한 것일 뿐이며, 보호범위를 제한하기 위한 것은 아니다.
본 발명의 일 실시예에 따른 PCR 장치란 특정 염기 서열을 갖는 핵산을 증폭하는 PCR(Polymerase Chain Reaction)에 사용하는 장치를 말한다. 예를 들어, 특정 염기 서열을 갖는 DNA(deoxyribonucleic acid)를 증폭하기 위해 PCR 장치는 주형 핵산인 이중 가닥의 DNA를 포함하는 PCR 시료 및 시약을 포함하는 용액을 특정 온도, 예를 들어 약 95℃로 가열하여 상기 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 증폭하고자 하는 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 상기 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 상기 단일 가닥의 DNA의 특정 염기 서열에 상기 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 상기 어닐링 단계 이후 상기 용액을 적정 온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 상기 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장 (혹은 증폭) 단계(extension step)를 수행하고, 상기 3 단계를 예를 들어 20회 내지 40회로 반복함으로써 상기 특정 염기 서열을 갖는 DNA를 기하급수적으로 증폭할 수 있다. 경우에 따라, 상기 PCR 장치는 상기 어닐링 단계와 상기 연장(혹은 증폭) 단계를 동시에 수행할 수 있고, 이 경우 PCR 장치는 상기 연장 단계와 상기 어닐링 및 연장(혹은 증폭) 단계로 구성된 2 단계를 수행함으로써, 제1 순환을 완성할 수도 있다. 따라서, 본 발명의 일 구체예에 따른 실시간 PCR 장치(1)는 상기 단계들을 수행하기 위한 모듈들을 포함하는 장치를 말하며, 본 명세서에 기재되지 아니한 세부적인 모듈들은 PCR을 수행하기 위한 종래 기술 중 개시되거나 또는 자명한 범위에서 모두 구비하고 있는 것을 전제로 한다.
도 1 내지 5는 본 발명의 일 실시예에 따른 실시간 PCR 장치의 열 블록 및 열 전극부를 도시한다.
상기 열 블록(100)은 PCR을 수행하기 위해 시료 및 시약에 특정 온도로 열을 공급하도록 구현된 모듈로서, 적어도 일 면에 시료 및 시약이 수용되는 PCR 칩의 접촉 면을 구비하고, 이하 상세하게 설명될 PCR 칩의 일 면에 접촉하여, 1 이상의 반응 채널 내에 존재하는 시료 및 시약에 열을 공급하여 PCR을 수행하도록 한다. 상기 열 블록(100)은 기판을 몸체로 하여 구현될 수 있다. 상기 기판은 상기 기판 내에 배치된 히터의 가열 및 온도 유지로 인해 그 물리적 및/또는 화학적 성질이 변하지 않고, 상기 기판 내에 이격 배치된 2 이상의 히터 사이에서 상호 열 교환이 일어나지 않도록 하는 모든 재질로 구현될 수 있다. 예를 들어, 상기 기판은 플라스틱, 유리, 실리콘 등의 재질로서, 투명 또는 반투명하게 구현될 수 있다. 상기 열 블록(100)은 전체적으로 판 형상으로 구현될 수 있으나, 이에 제한되는 것은 아니다. 상기 열 블록(100)은 1 이상의 히터를 구비하는 히터 군, 상기 히터 군을 2 이상 구비하고 상기 2 이상의 히터 군은 상호 열 교환이 일어나지 않도록 이격 배치된 히터 유닛이 2 이상 반복 배치된다. 또한, 상기 PCR 칩의 접촉 면은 상기 열 블록(100)의 적어도 일 면에 구현되고, 시료 및 시약이 수용된 PCR 칩에 효율적으로 열을 공급하기 위한 다양한 형상, 예를 들어 접촉 면의 표면적을 넓게 하는 평면 형상 또는 필러(pillar) 형상으로 구현될 수 있다.
상기 히터(111, 112, 121, 122, 131, 132)는 발열 소자로서, 그 내부에 열선(도시되지 않음)이 배치되도록 구현될 수 있다. 상기 열선은 일정 온도를 유지하도록 다양한 열원과 구동가능하게 연결될 수 있고, 상기 열선의 온도를 모니터링하기 위한 다양한 온도 센서와 구동가능하게 연결될 수 있다. 상기 열선은 상기 히터의 내부 온도를 전체적으로 일정하게 유지하기 위해 상기 히터의 표면 중심점을 기준으로 상하 및/또는 좌우 방향으로 대칭되도록 배치될 수 있다. 또한, 상기 히터는 그 내부에 박막 히터(thin film heater, 도시되지 않음)가 배치될 수도 있다. 상기 박막 히터는 상기 히터의 내부 온도를 전체적으로 일정하게 유지하기 위해 상기 히터 표면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 일정한 간격으로 배치될 수 있다. 또한, 상기 히터는 발열 소자로서, 동일한 면적에 대한 고른 열 분포 및 신속한 열 전달을 위한 그 자체로 금속 재질, 예를 들어 크롬, 알루미늄, 구리, 철, 은 등일 수 있다. 또한, 상기 히터는 광 투과성 발열 소자, 예를 들어 산화물 반도체 물질 또는 상기 산화물 반도체 물질에 In, Sb, Al, Ga, C 및 Sn로 구성된 군으로부터 선택된 불순물이 첨가된 물질을 포함하는 도전성 나노 입자, 인듐 주석 산화물, 전도성 고분자 물질, 탄소 나노 튜브, 및 그래핀(graphene)이 포함된 군으로부터 선택되는 하나 이상을 포함할 수 있다.
상기 히터 군(110, 120, 130)은 상기 1 이상의 히터를 포함하는 단위로서, PCR 수행을 위한 변성 단계, 어닐링 단계 및/또는 연장 단계를 수행하기 위한 온도를 유지하는 영역이다. 상기 히터 군은 상기 열 블록(100)에 2 이상 배치되고, 상기 2 이상의 히터 군은 상호 열 교환이 일어나지 않도록 이격 배치된다. 상기 히터 군은 상기 열 블록(100)에 2개 내지 4개 포함될 수 있다. 즉, 상기 열 블록은 2개의 히터 군을 구비하고, 상기 제1 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제2 히터 군은 PCR 어닐링/연장 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 어닐링/연장 단계 온도를 유지하고 상기 제2 히터 군은 PCR 변성 단계 온도를 유지할 수 있다. 또한, 상기 열 블록은 3개의 히터 군을 구비하고, 상기 제1 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제2 히터 군은 PCR 어닐링 단계 온도를 유지하고 상기 제3 히터 군은 PCR 연장 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 어닐링 단계 온도를 유지하고 상기 제2 히터 군은 PCR 연장 단계 온도를 유지하고 상기 제3 히터 군은 PCR 변성 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 연장 단계 온도를 유지하고 상기 제2 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제3 히터 군은 PCR 어닐링 단계 온도를 유지할 수 있다. 바람직하게는 상기 히터 군은 상기 열 블록(100)에 3회 배치되어 PCR 수행을 위한 3 단계, 즉 변성 단계, 어닐링 단계 및 연장 단계를 수행하기 위한 온도를 각각 유지할 수 있고, 더 바람직하게는 상기 히터 군은 상기 열 블록(100)에 2회 배치되어 PCR 수행을 위한 2 단계, 즉 변성 단계 및 어닐링/연장 단계를 수행하기 위한 온도를 각각 유지할 수 있으나, 이에 제한되는 것은 아니다. 상기 히터 군은 상기 열 블록(100)에 2회 배치되어 PCR 수행을 위한 2 단계, 즉 변성 단계 및 어닐링/연장 단계를 수행할 경우 PCR 수행을 위한 3 단계, 즉 변성 단계, 어닐링 단계 및 연장 단계를 수행하는 것보다 반응 시간을 줄일 수 있고, 히터의 수를 줄임으로써 구조를 단순화시키는 이점이 있다. 이 경우 PCR 수행을 위한 3 단계에 있어서, 변성 단계를 수행하기 위한 온도는 85℃ 내지 105℃, 바람직하게는 95℃이고, 어닐링 단계를 수행하기 위한 온도는 40℃ 내지 60℃, 바람직하게는 50℃이고, 연장 단계를 수행하기 위한 온도는 50℃ 내지 80℃, 바람직하게는 72℃이고, PCR 수행을 위한 2 단계에 있어서, 변성 단계를 수행하기 위한 온도는 85℃ 내지 105℃, 바람직하게는 95℃이고, 어닐링/연장 단계를 수행하기 위한 온도는 50℃ 내지 80℃, 바람직하게는 72℃이다. 다만, 상기 PCR 수행을 위한 특정된 온도 및 온도 범위는 PCR을 수행함에 있어서 실현 가능한 범위 내에서 조절 가능하다. 한편, 상기 히터 군은 온도 완충 역할을 수행하는 히터를 더 포함할 수 있다.
상기 히터 유닛(10, 20)은 상기 1 이상의 히터를 포함하는 상기 2 이상의 히터 군을 포함하는 단위로서, PCR 수행을 위한 변성 단계, 어닐링 단계 및/또는 연장 단계를 포함하는 제1 순환이 완료되는 영역이다. 상기 히터 유닛은 상기 열 블록(100)에 2 이상 반복 배치된다. 바람직하게는 상기 히터 유닛은 상기 열 블록(100)에 10회, 20회, 30회 또는 40회로 반복 배치될 수 있으나, 이에 제한되는 것은 아니다.
도 1에 따르면, 상기 열 블록(100)은 반복 배치된 히터 유닛(10, 20), 그에 각각 포함된 2개의 히터 군(110, 120), 및 그에 각각 포함된 1개의 히터(111, 121)를 구비함으로써, PCR 수행을 위한 2 단계 온도, 즉 변성 단계의 1 온도 및 어닐링/연장 단계의 1 온도를 순차적으로 반복 제공한다. 예를 들어, 제1 히터(111)는 85℃ 내지 105℃ 범위 중 1 온도, 바람직하게는 95℃를 유지하여 상기 제1 히터 군(110)은 변성 단계를 수행하기 위한 온도를 제공하고, 제2 히터(121)는 50℃ 내지 80℃ 범위 중 1 온도, 바람직하게는 72℃를 유지하여 상기 제2 히터 군(120)은 어닐링/연장 단계를 수행하기 위한 온도를 제공함으로써, 상기 열 블록(100)은 제1 히터 유닛(10) 및 제2 히터 유닛(20)에서 PCR 수행을 위한 2 단계 온도를 순차적으로 반복 제공한다.
도 2에 따르면, 상기 열 블록(100)은 반복 배치된 히터 유닛(10, 20), 그에 각각 포함된 2개의 히터 군(110, 120), 및 그에 각각 포함된 2개의 히터(111, 112, 121, 122)를 구비함으로써, PCR 수행을 위한 2 단계 온도, 즉 변성 단계의 2 온도 및 어닐링/연장 단계의 2 온도를 순차적으로 반복 제공한다. 예를 들어, 제1 히터(111)는 85℃ 내지 105℃ 범위 중 1 온도, 제2 히터(112)는 85℃ 내지 105℃ 범위 중 상기 제1 히터(111)의 온도와 동일한 또는 상이한 1 온도를 유지하여 상기 제1 히터 군(110)은 변성 단계를 수행하기 위한 온도를 제공하고, 제3 히터(121)는 50℃ 내지 80℃ 범위 중 1 온도, 제4 히터(122)는 50℃ 내지 80℃ 범위 중 상기 제3 히터(121)의 온도와 동일한 또는 상이한 1 온도를 유지하여 상기 제2 히터 군(120)은 어닐링/연장 단계를 수행하기 위한 온도를 제공함으로써, 상기 열 블록(100)은 제1 히터 유닛(10) 및 제2 히터 유닛(20)에서 PCR 수행을 위한 2 단계 온도를 순차적으로 반복 제공한다.
도 3에 따르면, 상기 열 블록(100)은 반복 배치된 히터 유닛(10, 20), 그에 각각 포함된 3개의 히터 군(110, 120, 130), 및 그에 각각 포함된 1개의 히터(111, 121, 131)를 구비함으로써, PCR 수행을 위한 3 단계 온도, 즉 변성 단계의 1 온도, 어닐링 단계의 1 온도, 및 연장 단계의 1 온도를 순차적으로 반복 제공한다. 예를 들어, 제1 히터(111)는 85℃ 내지 105℃ 범위 중 1 온도, 바람직하게는 95℃를 유지하여 상기 제1 히터 군(110)은 변성 단계를 수행하기 위한 온도를 제공하고, 제2 히터(121)는 40℃ 내지 60℃ 범위 중 1 온도, 바람직하게는 50℃를 유지하여 상기 제2 히터 군(120)은 어닐링 단계를 수행하기 위한 온도를 제공하고, 제3 히터(131)는 50℃ 내지 80℃ 범위 중 1 온도, 바람직하게는 72℃를 유지하여 상기 제3 히터 군(130)은 연장 단계를 수행하기 위한 온도를 제공함으로써, 상기 열 블록(100)은 제1 히터 유닛(10) 및 제2 히터 유닛(20)에서 PCR 수행을 위한 3 단계 온도를 순차적으로 반복 제공한다.
도 4에 따르면, 반복 배치된 히터 유닛(10, 20), 그에 각각 포함된 3개의 히터 군(110, 120, 130), 및 그에 각각 포함된 2개의 히터(111, 112, 121, 122, 131, 132)를 구비함으로써, PCR 수행을 위한 3 단계 온도, 즉 변성 단계의 2 온도, 어닐링 단계의 2 온도, 및 연장 단계의 2 온도를 순차적으로 반복 제공한다. 예를 들어, 제1 히터(111)는 85℃ 내지 105℃ 범위 중 1 온도, 제2 히터(112)는 85℃ 내지 105℃ 범위 중 상기 제1 히터(111)의 온도와 동일한 또는 상이한 1 온도를 유지하여 상기 제1 히터 군(110)은 변성 단계를 수행하기 위한 온도를 제공하고, 제3 히터(121)는 40℃ 내지 60℃ 범위 중 1 온도, 제4 히터(122)는 40℃ 내지 60℃ 범위 중 상기 제3 히터(121)의 온도와 동일한 또는 상이한 1 온도를 유지하여 제2 히터 군(120)은 어닐링 단계를 수행하기 위한 온도를 제공하고, 제5 히터(131)는 50℃ 내지 80℃ 범위 중 1 온도, 제6 히터(132)는 50℃ 내지 80℃ 범위 중 상기 제5 히터(131)의 온도와 동일한 또는 상이한 1 온도를 유지하여 상기 제3 히터 군(130)은 연장 단계를 수행하기 위한 온도를 제공함으로써, 상기 열 블록(100)은 제1 히터 유닛(10) 및 제2 히터 유닛(20)에서 PCR 수행을 위한 3 단계 온도를 순차적으로 반복 제공한다.
도 1 내지 4와 같이, 일정 온도를 유지하는 2 이상의 히터를 반복 배치함으로써 온도 변화율을 상당히 개선할 수 있다. 예를 들어, 종래 하나의 히터만을 채택하는 단일 히터 방식에 의하면, 온도 변화율이 초당 3℃ 내지 7℃ 범위 내에서 이루어지는 데 반해, 본 발명의 일 실시예에 따른 반복 히터 배치 방식에 의하면, 상기 히터들 간의 온도 변화율이 초당 20℃ 내지 40℃ 범위 내에서 이루어져 반응 시간을 크게 단축할 수 있다. 상기 히터들은 상호 열 교환이 일어나지 않도록 이격 배치되어 있고, 그 결과, 미세한 온도 변화에 의해서도 큰 영향을 받을 수 있는 핵산 증폭 반응에 있어서, 상기 변성 단계, 어닐링 단계 및 연장 단계(또는 상기 변성 단계 및 어닐링/변성 단계)의 정확한 온도 제어가 가능하고, 상기 히터들로부터 열을 공급받는 부위에서만 원하는 온도 또는 온도 범위를 유지하는 것이 가능하다. 또한, 상기 열 블록(100)에는 상기 히터 유닛이 2 이상 반복 배치되어 있고, 상기 히터 유닛(10, 20)의 반복 배치 수는 PCR을 수행하고자 하는 사용자 또는 시료 및 시약의 종류에 따라 다양할 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 PCR 장치를 순환 주기 10회로 하는 PCR에 적용하고자 하는 경우 상기 히터 유닛을 10회 반복 배치할 수 있다. 즉, PCR을 수행하고자 하는 사용자 또는 시료 및 시약의 종류에 따라 PCR 순환 주기를 고려하여 상기 히터 유닛을 10회, 20회, 30회, 40회, 50회 등으로 반복 배치할 수 있고, 이는 특별히 제한되는 것은 아니다. 한편, 상기 히터 유닛을 미리 결정된 PCR 순환 주기의 절반의 수로 반복 배치할 수도 있다. 예를 들어, 본 발명의 일 실시예에 따른 PCR 장치를 순환 주기 20회로 하는 PCR에 적용하고자 하는 경우 상기 히터 유닛을 10회 반복 배치할 수 있다. 이 경우 시료 및 시약 용액은 이하 상세하게 설명될 1 이상의 반응 채널 내에서 유입부로부터 유출부 방향으로 PCR 순환 주기를 10회 반복 실행하되, 뒤이어 반대로 유출부로부터 유입부 방향으로 PCR 순환 주기를 10회 반복 실행할 수 있다.
도 5는 PCR 칩(900)과 열 접촉하는 본 발명의 일 실시예에 따른 PCR 장치의 열 블록(100) 및 상기 열 블록(100)에 구비된 히터들에 전력을 공급하도록 연결된 열 전극(210, 220)을 구비하는 열 전극부(200)를 도시한다. 구체적으로, 상기 PCR 칩(900)과 열 접촉하는 본 발명의 일 실시예에 따른 열 블록(100)에 있어서, 도 5의 상단은 상기 열 블록(100)의 수직 단면도를 도시하고, 도 2의 하단은 상기 열 블록(100)의 평면도를 도시한다. 도 5에 따르면, 상기 열 블록(100)은 10회 반복 배치된 히터 유닛을 포함하고, 상기 히터 유닛은 제1 히터 군 및 제2 히터 군을 포함하며, 상기 제1 히터 군 및 제2 히터 군은 각각 1개의 히터, 즉 제1 히터(110) 및 제2 히터(120)를 포함한다. 도 5에 따른 히터, 히터 군, 히터 유닛 및 열 블록에 관해서는 상기 설명된 것과 같다. 상기 열 전극부(200)는 전력 공급부(도시되지 않음)로부터 상기 열 블록(100)에 전력을 공급하여 상기 열 블록(100)을 가열하는 모듈로서, 상기 열 블록(100)에 구비된 히터들에 전력을 공급하도록 연결된 열 전극(210, 220)을 포함한다. 도 5에 따르면, 상기 열 블록(100)의 상기 제1 열 전극(210)은 상기 제1 히터(110)에 전력을 공급하도록 연결되고, 상기 제2 열 전극(220)은 상기 제2 히터(120)에 전력을 공급하도록 연결되어 있으나, 이에 제한되는 것은 아니다. 만약 상기 제1 히터(110)가 PCR 변성 단계 온도, 예를 들어 85℃ 내지 105℃를 유지하고 상기 제2 히터(120)가 PCR 어닐링/연장 단계 온도, 예를 들어 50℃ 내지 80℃를 유지하는 경우 상기 제1 열 전극(210)은 전력 공급부로부터 PCR 변성 단계 온도 유지를 위한 전력을 공급받고, 상기 제2 열 전극(220)은 전력 공급부로부터 PCR 어닐링/연장 단계 온도 유지를 위한 전력을 공급받을 수 있다. 도 5에 따르면, 상기 제1 열 전극(210) 및 상기 제2 열 전극(220)은 상기 열 블록(100)에 반복 배치된 제1 히터(110) 및 2 이상의 제2 히터(120)에 각각 연결될 수 있다. 상기 제1 열 전극(210) 및 상기 제2 열 전극(220)은 금, 은, 구리 등 전도성 재질일 수 있고, 특별히 제한되는 것은 아니다. 상기 PCR 칩(900)에 대해서는 후술한다.
도 6 내지 8은 본 발명의 일 실시예에 따른 실시간 PCR 장치의 PCR 칩(900)을 도시한다.
본 발명의 일 실시예에 따른 PCR 칩(900)은 판 형상으로 구현되고, 양 말단에 유입부(931) 및 유출부(932)가 구현된 1 이상의 반응 채널(921), 및 상기 반응 채널(921)의 길이 방향으로 그 하단 면을 가로질러 반복 이격 배치되되 상기 반응 채널(921) 내부에서 증폭 핵산과 활성물질의 결합으로 인해 발생하는 전기화학적 신호를 검출하도록 구현된 검출 전극(950)을 구비하는 것으로서, 상기 열 블록(100)과의 열 접촉시 상기 검출 전극(950)은 상기 2 이상의 히터 군(110, 120, 130) 사이에 배치되도록 구현된다.
상기 PCR 칩(900)은 핵산, 예를 들어 PCR 시료인 주형 핵산 이중 가닥 DNA, PCR 시약인 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 완충액 (PCR reaction buffer)을 포함하는 용액을 수용할 수 있다. 상기 PCR 칩(900)은 상기 시료 및 시약을 도입하기 위한 유입부(931), 핵산 증폭 반응을 완료한 용액을 배출하기 위한 유출부(932) 및 상기 시료 및 시약의 핵산 증폭 반응이 수행되는 반응 채널(921)을 구비한다. 도 6에 따르면, 상기 반응 채널(921)은 상기 제1 히터의 상측 대응 부분 및 상기 제2 히터의 상측 대응 부분을 길이 방향으로 통과하도록 연장 배치될 수 있다. 상기 PCR 칩(900)의 일 표면이 상기 열 블록(100)에 열 접촉하면 상기 열 블록(100)으로부터 열을 제공받고, 상기 PCR 칩(900)의 반응 채널(921)에 포함된 PCR 시료 및 시약은 가열 및 유지될 수 있다. 또한, 상기 PCR 칩(900)은 열 전도율을 높이고 2 이상의 반응 채널(921)을 구비할 수 있도록 전체적으로 판 형상으로 구현된다. 또한, 상기 PCR 칩(900)의 외부 구조는 후술할 칩 홀더(300)로부터 이탈되지 않도록 상기 칩 홀더(300)의 내부 공간에 고정 장착되도록 구현된다. 또한, 상기 PCR 칩(900)은 투명 또는 불투명 재질의 플라스틱 재질로 구현될 수 있는데, 플라스틱 재질의 특성상 두께 조절이 용이하여 두께 조절만으로 열 전달 효율을 증대시킬 수 있고, 제작 공정이 단순하여 칩 제조 비용을 절감할 수 있다.
한편, 상기 활성물질(redox indicator)은 증폭 핵산과 화학적으로 반응(결합)하여 전기화학적 신호를 일으키는 물질로 정의되고, 상기 전기화학적 신호는 핵산의 연속적인 증폭에 따라 연속적으로 검출 및 측정될 수 있는 신호를 말한다. 예를 들어, 이중 가닥 핵산(DNA)의 경우 전체적으로 음전하를 띠는데, 활성물질이 양전하를 띠는 경우 핵산의 연속적인 증폭에 따라 증폭 핵산과 상기 활성물질이 반응하여 총 전하량 변화에 의해 검출가능한 신호가 도출될 수 있다. 따라서, 상기 전기화학적 신호는 상기 증폭 핵산의 음 전하와 상기 활성물질의 양 전하의 결합에 인한 총 전류값 변화에 기인할 수 있고, 상기 활성물질은 이온결합성 물질의 이온화 산물 중 양이온 물질일 수 있다. 더 구체적으로, 상기 이온결합성 물질은 메틸렌 블루(methylene blue)이고, 상기 활성물질은 메틸렌 블루의 이온화 산물 중 양이온 물질일 수 있다. 상기 메틸렌 블루(C16H18N3SCl·3H2O)는 용매에 녹이면 이온화 되어 C16H18N3S+와 Cl-로 이온화되고, 전자의 경우 황원자(S)에 의하여 양전하를 띤다. 이중 가닥 핵산(DNA)은 당과 염기와 인산으로 이루어져 있는데, 이 중 인산기가 음전하를 띠고 있어 이중 가닥 핵산(DNA)은 전체적으로 음전하를 띤다. 메틸렌 블루의 양이온이 DNA의 인산기와 결합하여, 메틸렌 블루의 겉보기 확산율보다 이중가닥 핵산과 결합한 메틸렌블루의 겉보기 확산율이 감소하고, 이에 따라 전류의 피크 값을 감소시킨다. 따라서 PCR 주기가 진행됨에 따라 이중 가닥 핵산(DNA)이 증폭되고 이중가닥 핵산(DNA)에 결합되는 메틸렌 블루의 양이 늘어나 전류의 피크 값이 감소하게 되고, 결과적으로 실시간 PCR의 증폭 산물과 메틸렌 블루의 화학적 결합으로 인한 전기적 신호를 통해 증폭 핵산의 실시간 정량이 가능하다.
상기 검출 전극(950)은 상기 1 이상의 반응 채널(921) 내부에서 증폭 핵산과 활성물질의 결합으로 인해 발생하는 전기화학적 신호를 검출할 수 있도록 다양한 재질로 구현될 수 있는데, 예를 들어 금(Au), 코발트(Co), 백금(Pt), 은(Ag), 탄소나노튜브(carbon nanotube), 그래핀(graphene), 및 탄소(Carbon)로 구성된 군으로부터 1 이상 선택될 수 있다. 도 6 내지 8에 따르면, 상기 검출 전극(950)은 상기 반응 채널(921)의 길이 방향으로 그 하단 면을 가로질러 반복 이격 배치되되 상기 열 블록(100)과의 열 접촉시 상기 검출 전극(950)은 상기 2 이상의 히터 군(110, 120, 130) 사이에 배치되도록 구현된다. 상기 PCR 칩(900)의 평면도를 도시하는 도 6에 따르면, 상기 검출 전극(950)은 상기 유입부(931)로부터 유출부(932)까지의 반응 채널(921) 영역에 일정한 간격으로 반복적으로 이격 배치되어 있는데, 이와 같은 구조를 통해 상기 반응 채널(921)을 길이 방향으로 통과하면서 순차적으로 증폭되는 핵산으로부터 반복적으로 전기화학적 신호를 검출할 수 있다. 아울러, 상기 PCR 칩(900)의 수직 단면도를 도시하는 도 7 내지 8에 따르면, 상기 검출 전극(950)은 상기 반응 채널(921)의 하단 면에 배치된 것을 확인할 수 있다. 한편, 도 7 내지 8에 따르면, 상기 PCR 칩(900)은 수직 단면도를 기준으로 크게 3개의 층(layer)으로 구분될 수 있다. 도 7 내지 8에 따르면, 상기 PCR 칩(900)은 상기 전극(950)이 구비된 제1 판(910); 상기 제1 판(910) 상에 배치되되 상기 1 이상의 반응 채널(921)이 구비된 제2 판(920); 및 상기 제2 판(920) 상에 배치되되 상기 유입부(931) 및 유출부(932)가 구비된 제3 판(930)을 포함할 수 있다.
상기 검출 전극(950)이 구비된 제1 판(910)의 상부 면은 상기 제2 판(920)의 하부 면에 접착 배치된다. 상기 제1 판(910)이 상기 반응 채널(921)을 구비하는 제2 판(920)에 접착 배치됨으로써 상기 반응 채널(921)에 관한 공간이 확보되고, 더 나아가 상기 반응 채널(921)의 적어도 일 영역(표면)에 상기 검출 전극(950)이 배치된다. 한편, 상기 제1 판(910)은 다양한 재질로 구현될 수 있으나, 바람직하게는 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질일 수 있다. 또한, 상기 제1 판(910)의 상부 면은 친수성 물질(도시되지 않음)이 처리되어 PCR을 원활하게 수행할 수 있다. 상기 친수성 물질 처리에 의해 상기 제1 판(910) 상에 친수성 물질을 포함하는 단일 층이 형성될 수 있다. 상기 친수성 물질은 다양한 물질일 수 있으나, 바람직하게는 카르복시기(-COOH), 아민기(-NH2), 히드록시기(-OH), 및 술폰기(-SH)로 구성된 군으로부터 선택되는 것일 수 있고, 상기 친수성 물질의 처리는 당 업계에 공지된 방법에 따라 수행할 수 있다.
상기 제2 판(920)의 상부 면은 상기 제3 판(930)의 하부 면과 접촉 배치된다. 상기 제2 판(920)은 상기 반응 채널(921)을 포함한다. 상기 반응 채널(921)은 상기 제3 판(910)에 형성된 유입부(931)와 유출부(932)에 대응되는 부분과 연결되어 양 말단에 유입부(931) 및 유출부(932)가 구현된 1 이상의 반응 채널(921)을 완성한다. 따라서, 상기 반응 채널(921)에 PCR 시료 및 시약이 도입된 후 PCR이 진행된다. 또한, 상기 반응 채널(921)은 본 발명의 일 실시예에 따른 PCR 장치의 사용 목적 및 범위에 따라 2 이상 존재할 수 있다. 또한, 상기 제2 판(920)은 다양한 재질로 구현될 수 있으나, 바람직하게는 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC), 폴리아미드(polyamide, PA), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리스티렌(polystyrene, PS), 폴리옥시메틸렌(polyoxymethylene, POM), 폴리에테르에테르케톤(polyetheretherketone, PEEK), 폴리테트라프로오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐클로라이드(polyvinylchloride, PVC), 폴리비닐리덴 플로라이드(polyvinylidene fluoride, PVDF), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate, PBT), 불소화에틸렌프로필렌(fluorinated ethylenepropylene, FEP), 퍼플로로알콕시알칸(perfluoralkoxyalkane, PFA), 및 그의 조합물로 구성된 군으로부터 선택되는 열 가소성 수지 또는 열 경화성 수지 재질일 수 있다. 또한, 상기 제2 판(920)의 두께는 다양할 수 있으나, 100 ㎛ 내지 200 ㎛에서 선택될 수 있다. 또한, 상기 반응 채널(921)의 폭과 길이는 다양할 수 있으나, 바람직하게는 상기 반응 채널(921)의 폭은 0.5 mm 내지 3 mm에서 선택되고, 상기 반응 채널(921)의 길이는 20 mm 내지 40 mm에서 선택될 수 있다. 또한, 상기 제2 판(920) 내벽은 DNA, 단백질(protein) 흡착을 방지하기 위해 실란(silane) 계열, 보바인 시럼 알부민(Bovine Serum Albumin, BSA) 등의 물질로 코팅할 수 있고, 상기 물질의 처리는 당 업계에 공지된 방법에 따라 수행될 수 있다.
상기 제3 판(930)의 하부 면은 상기 제2 판(920)의 상부 면에 배치된다. 상기 제3 판(930)은 상기 제2 판(920)에 형성된 반응 채널(921) 상의 일 영역에 형성된 유입부(931) 및 다른 일 영역에 형성된 유출부(932)를 구비한다. 상기 유입부(931)는 PCR 시료 및 시약이 유입되는 부분이다. 상기 유출부(932)는 PCR이 종료된 후 PCR 산물이 유출되는 부분이다. 따라서, 상기 제3 판(930)은 상기 제2 판(920)에 형성된 반응 채널(921)을 커버하되 상기 유입부(931) 및 유출부(932)는 상기 반응 채널(921)의 유입부 및 유출부 역할을 수행하게 된다. 또한, 상기 제3 판(930)은 다양한 재질로 구현될 수 있지만, 바람직하게는 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질일 수 있다. 또한, 상기 유입부(931)은 다양한 크기를 구비할 수 있으나, 바람직하게는 지름 1.0 mm 내지 3.0 mm에서 선택될 수 있다. 또한, 상기 유출부(932)는 다양한 크기를 구비할 수 있으나, 바람직하게는 지름 1.0 mm 내지 1.5 mm에서 선택될 수 있다. 또한, 상기 유입부(931) 및 유출부(932)는 별도의 커버 수단(도시되지 않음)을 구비하여, 상기 반응 채널(921) 내에서 PCR 시료 및 시약에 대한 PCR이 진행될 때 용액이 누출되는 것을 방지할 수 있다. 상기 커버 수단은 다양한 형상, 크기 또는 재질로서 구현될 수 있다. 또한, 상기 제3 판의 두께는 다양할 수 있으나, 바람직하게는 0.1 mm 내지 2.0 mm에서 선택될 수 있다. 또한, 상기 유입부(931) 및 상기 유출부(932)는 2 이상 존재할 수 있다.
한편, 상기 PCR 칩(900)은 기계적 가공을 통해 유입부(931) 및 유출부(932)를 형성하여 제3 판(930)을 제공하는 단계; 상기 제3 판(930)의 하부 면과 대응되는 크기를 갖는 판재에 상기 제3 판(930)의 유입부(931)와 대응되는 부분으로부터 상기 제3 판(930)의 유출부(932)에 대응되는 부분까지 기계적 가공을 통해 반응 채널(921)을 형성하여 제2 판(920)을 제공하는 단계; 상기 제2 판(920)의 하부 면과 대응되는 크기를 갖는 판재의 상부 면에 표면 처리 가공을 통해 친수성 물질(922)로 구현된 표면을 형성하여 제1 판(910)을 제공하는 단계; 및 상기 제3 판(930)의 하부 면을 상기 제2 판(920)의 상부 면에 접합 공정을 통해 접합하고, 상기 제2 판(920)의 하부 면을 상기 제1 판(910)의 상부 면에 접합 공정을 통해 접합하는 단계를 포함하는 방법에 의해 용이하게 제조될 수 있다. 상기 제3 판(930)의 유입부(931) 및 유출부(932), 및 상기 제2 판(920)의 반응 채널(921)은 사출성형, 핫-엠보싱(hot-embossing), 캐스팅(casting), 및 레이저 어블레이션(laser ablation)으로 구성된 군으로부터 선택되는 가공 방법에 의해 제조될 수 있다. 또한, 상기 제1 판(910) 표면의 친수성 물질(922)은 산소 및 아르곤 플라즈마 처리, 코로나 방전 처리, 및 계면 활성제 도포로 구성된 군으로부터 선택되는 방법에 의해 처리될 수 있고 당 업계에 공지된 방법에 따라 수행될 수 있다. 또한, 상기 제3 판(930)의 하부 면과 상기 제2 판(920)의 상부 면, 및 상기 제2 판(920)의 하부 면과 상기 제1 판(910)의 상부 면은 열 접합, 초음파 융착, 용매 접합 공정에 의해 접착될 수 있고 당 업계에 공지된 방법에 따라 수행될 수 있다. 상기 제3 판(930)과 제2 판(920) 사이 및 상기 제2 판(920)과 제3 판(910) 사이에는 양면 접착제 또는 열가소성 수지 또는 열 경화성 수지(500)가 처리될 수 있다.
한편, 도 6의 "a" 부분을 확대한 도 9 내지 10에 따르면, 상기 검출 전극(950)은 다양하게 구현될 수 있다. 예를 들어, 도 9와 같이 상기 증폭 핵산과 활성물질의 결합이 일어나는 지시 전극(working electrode)(950a) 및 상기 증폭 핵산과 활성물질의 결합이 일어나지 않는 기준 전극(reference electrode)(950b)을 구비하는 2-전극 모듈, 또는 도 10과 같이 상기 지시 전극(950a), 상기 기준 전극(950b), 및 상기 지시 전극으로부터 발생하는 전자 밸런스를 조절하는 카운터 전극(counter electrode)(950c)을 구비하는 3-전극 모듈(도 4의 좌측)로 구현될 수 있다. 이와 같이, 상기 검출 전극(950)의 구조가 도 9 내지 10과 같이 다-전극 모듈 방식으로 구현되면, 상기 반응 채널(921) 내부에서 발생하는 전기화학적 신호의 감도를 높일 수 있을 뿐만 아니라, 발생 신호의 검출 및 측정을 용이하게 수행할 수 있다.
도 11은 본 발명의 일 실시예에 따른 실시간 PCR 장치의 칩 홀더(300)를 도시한다.
도 11에 따르면, 상기 칩 홀더(300)는 상기 PCR 칩(900)이 장착되되 상기 PCR 칩(900)의 전극(950) 말단과 전기적으로 연결되도록 구현된 연결 포트(310)를 구비한다. 상기 칩 홀더(300)는 상기 PCR 칩(900)이 상기 PCR 장치에 장착되는 부분이다. 상기 칩 홀더(300)의 내벽은 판 형상을 갖는 PCR 칩(900)이 상기 칩 홀더(300)로부터 이탈하지 않도록 상기 PCR 칩(900)의 외벽과 고정 장착되기 위한 형상 및 구조를 가질 수 있다. 즉, 상기 PCR 칩(900)이 상기 칩 홀더(300)에 장착되는 경우 상기 PCR 칩(900)의 전극(950) 말단은 상기 칩 홀더(300)의 연결 포트(310)와 전기적으로 연결되어 상기 PCR 칩(900)의 반응 채널(921) 내부에서 증폭 핵산과 활성물질의 결합으로 인해 발생하는 전기화학적 신호가 후술할 전기화학적 신호 측정 모듈(800)로 전달된다. 한편, 상기 PCR 칩(900)은 상기 칩 홀더(300)와 탈착 가능하다. 또한, 상기 칩 홀더(300)는 임의의 구동 수단(도시되지 않음)에 연결되어 상기 실시간 PCR 장치 내부에서 상하 또는 좌우로 이동할 수 있음은 물론이다.
도 12는 PCR 칩(900), 전력 공급부(400), 및 펌프(500)를 구비하는 본 발명의 일 실시예에 따른 실시간 PCR 장치를 도시한다.
도 12에 따르면, 상기 PCR 칩(900)은 상기 열 블록 상에 접촉 배치되어 있고, 구체적으로 상기 검출 전극(950)은 상기 열 블록(100) 상의 반복 배치된 제1 히터 및 제2 히터 사이에 반복 배치되어 있다. 상기 PCR 칩(900) 및 이에 포함된 구성요소에 관해서는 상술한 바와 같다.
상기 전력 공급부(400)는 상기 열 전극부(200)에 전력을 공급하기 위한 모듈로서, 상기 열 전극부(200)의 제1 열 전극(210) 및 제2 열 전극(220)과 각각 연결될 수 있다. 예를 들어, 상기 PCR 칩(900)이 PCR 수행을 위해 상기 열 블록(100) 상에 접촉 배치되면, 상기 전력 공급부(400)의 제1 전력 포트(도시되지 않음)는 상기 제1 열 전극(210)과 전기적으로 연결되고, 상기 전력 공급부(400)의 제2 전력 포트(도시되지 않음)는 상기 제2 열 전극(220)과 전기적으로 연결된다. 뒤이어, PCR 수행을 위한 사용자 지시가 있는 경우 상기 전력 공급부(400)는 상기 제1 열 전극(210) 및 상기 제2 열 전극(220)에 각각 전력을 공급하여 상기 열 블록(100)의 제1 히터(110) 및 제2 히터(120)를 신속히 가열할 수 있고, 각 히터들(110, 120)이 미리 결정된 온도에 도달하게 되면 전력 공급량을 제어하여 상기 미리 결정된 온도를 유지하도록 한다. 예를 들어, 상기 미리 결정된 온도는 상기 제1 히터(110)에서는 PCR 변성 단계 온도(85℃ 내지 105℃, 바람직하게는 95℃) 및 상기 제2 히터(120)에서는 PCR 어닐링/연장 단계 온도(50℃ 내지 80℃, 바람직하게는 72℃)이거나, 또는 상기 제1 히터(110)에서는 PCR 어닐링/연장 단계 온도(50℃ 내지 80℃, 바람직하게는 72℃ 또는 60℃) 및 상기 제2 히터(120)에서는 PCR 변성 단계 온도(85℃ 내지 105℃, 바람직하게는 95℃)일 수 있다.
상기 펌프(500)는 상기 PCR 칩(900)의 1 이상의 반응 채널(921) 내에서 유동하는 유체의 유량 및 유속을 제어하기 위한 모듈로서, 양압 펌프 또는 음압 펌프일 수 있고, 예를 들어 실린지(syringe) 펌프일 수 있다. 상기 펌프(500)는 상기 반응 채널(921)의 일 부분에 구동가능하게 배치될 수 있으나, 바람직하게는 상기 반응 채널(921)의 양 말단에 형성된 유입부(931) 및/또는 유출부(932)에 연결 배치된다. 상기 펌프(500)가 상기 유입부(931) 및/또는 유출부(932)에 연결 배치된 경우 펌프 역할을 수행할 뿐만 아니라 상기 유입부(931) 및/또는 유출부(932)를 통해 시료 및 시약 용액이 새어 나오는 것을 방지하는 마개 역할을 수행할 수도 있다. 또한, 상기 반응 채널(921) 내에서 유동하는 유체, 즉 시료 및 시약 용액의 유량 및 유속을 일 방향으로 제어하고자 하는 경우 상기 펌프(500)는 상기 유입부(931) 및 상기 유출부(932) 중 어느 하나에만 연결 배치되고, 남은 하나에는 일반적인 마개가 밀봉 연결될 수 있고, 상기 반응 채널(921) 내에서 유동하는 유체, 즉 시료 및 시약 용액의 유량 및 유속을 양 방향으로 제어하고자 하는 경우에는 상기 펌프(500)는 상기 유입부(931) 및 상기 유출부(932) 모두에 연결 배치될 수 있다.
상기 PCR 칩(900), 상기 전력 공급부(400) 및 상기 펌프(500)를 포함하는 PCR 장치 내에서 시료 및 시약의 핵산 증폭 반응은 일 실시예로서, 아래와 같은 단계를 통해 수행될 수 있다.
1. 원하는 이중 가닥 표적 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 반응 완충액(PCR reaction buffer)를 포함하는 시료 및 시약 용액을 준비한다.
2. 상기 시료 및 시약 용액을 PCR 칩(100)에 도입한다. 이 경우 상기 시료 및 시약 용액은 상기 유입부(931)를 통해 PCR 칩(900) 내부의 반응 채널(921)에 배치된다.
3. 상기 열 전극부(200), 구체적으로 제1 열 전극(210) 및 제2 열 전극(220)이 상기 전력 공급부(400)과 각각 연결되도록 하고, 상기 PCR 칩(900)의 상기 유입부(931) 및 상기 유출부(932)를 펌프(500)와 밀봉 연결한다.
4. 상기 전력 공급부(400)에 전력 공급 지시를 하여 상기 제1 열 전극(210) 및 상기 제2 열 전극(220)을 통해 상기 제1 히터(110) 및 상기 제2 히터(120)를 발열시키고, 특정 온도, 예를 들어 제1 히터(110)의 경우 PCR 변성 단계 온도(95℃) 및 제2 히터(120)의 경우 PCR 어닐링/연장 단계 온도(72℃)를 유지한다.
5. 상기 유입부(931)와 연결된 펌프(500)에 의해 양압이 제공되거나 또는 상기 유출부(932)와 연결된 펌프(500)에 의해 음압이 제공되면 상기 시료 및 시약 용액은 상기 반응 채널(921) 내부에서 수평 방향으로 유동하도록 한다. 이 경우 상기 시료 및 시약 용액의 유량 및 유속은 상기 펌프(500)에 의해 제공되는 양압 또는 음압의 세기를 조절하여 제어될 수 있다.
상기 단계들을 수행함으로써, 상기 시료 및 시약 용액은 상기 반응 채널(921)의 유입부(931) 말단으로부터 유출부(932) 말단까지 상기 제1 히터(110)의 상측 대응 부분(301) 및 상기 제2 히터(120)의 상측 대응 부분(302)을 길이 방향으로 이동하면서 PCR을 수행한다. 도 12에 따르면, 상기 시료 및 시약 용액은 상기 제1 히터(110) 및 상기 제2 히터(120)를 포함하는 히터 유닛이 10회 반복 배치된 열 블록(100)으로부터 열을 공급받아 상기 제1 히터(110)의 상측 대응 부분(301)에서 PCR 변성 단계 및 상기 제2 히터(120)의 상측 대응 부분(302)에서 PCR 어닐링/연장 단계를 거치면서 10회 PCR 순환 주기를 완료하게 된다. 뒤이어, 선택적으로, 상기 시료 및 시약 용액은 상기 반응 채널(921)의 유출부(931) 말단으로부터 유입부(932) 말단까지 상기 제1 히터(110)의 상측 대응 부분 및 상기 제2 히터(120)의 상측 대응 부분을 길이 방향으로 역 이동하면서 PCR을 재수행할 수 있다.
도 13은 본 발명의 일 실시예에 따른 실시간 PCR 장치에 의한 핵산 증폭 과정, 및 그에 따른 핵산 증폭 신호를 실시간으로 검출 및 측정하는 과정을 도시한다.
도 13에 따르면, 본 발명의 일 실시예에 따른 PCR 장치는 제1 히터(110) 및 제2 히터(120)가 수평 방향으로 반복 배치된 열 블록(100), 상기 제1 히터(110) 및 제2 히터(120) 사이 공간에 검출 전극(950)이 대응하도록 반복 배치된 PCR 칩(900)을 포함하되, 상기 칩 홀더(도시되지 않음)의 연결 포트(도시되지 않음)와 전기적으로 연결되어 상기 PCR 칩(900)의 반응 채널(921) 내부에서 발생하는 전기화학적 신호를 실시간으로 측정하도록 구현된 전기화학적 신호 측정 모듈(800), 기타 비록 도시되지는 않았지만, 전력 공급부, 펌프 등을 포함한다. 상기 전기화학적 신호 측정 모듈(800)은 상기 칩 홀더의 연결 포트와 전기적 연결 수단(700), 예를 들어 리드 전선을 통해 전기 소통가능하게 연결될 수 있다. 따라서, 상기 PCR 칩(900)의 반응 채널(921) 내부에서 순차적인 핵산 증폭에 의해 반복적으로 발생하는 전기화학적 신호는 상기 PCR 칩(900)의 검출 전극(950)을 통해 순차적으로 검출되고, 상기 검출된 신호는 상기 칩 홀더의 연결 포트와 상기 전기적 연결 수단(700)을 경유하여 상기 전기화학적 신호 측정 모듈(800)에서 측정되고 더 나아가 가공 또는 분석될 수 있다. 상기 전기화학적 신호 측정 모듈(800)은 다양할 수 있으나, 양극 벗김 전압전류계(anodic stripping voltammetry, ASV), 대시간 전류계 (chronoamperometry, CA), 순환 전압전류계(cyclic voltammetry), 네모파 전압전류계(square wave voltammetry, SWV), 펄스 전압전류계(differential pulse voltammetry, DPV), 및 임피던스계(impedance)로 구성된 군으로부터 선택될 수 있다. 따라서, 도 13에 따른 본 발명의 일 실시예에 따른 PCR 장치에 의하면, PCR 수행시 핵산 증폭 과정을 실시간(real-time)으로 측정 및 분석할 수 있다. 이 경우 상기 시료 및 시약 용액은 종래 실시간 PCR 장치와는 달리 별도의 형광 물질이 첨가될 수 필요가 없다. 아울러, 본 발명의 일 실시예에 따른 실시간 PCR 장치에 의해 핵산 증폭 반응이 실시간(real-time)으로 측정되는 단계를 확인할 수 있다. 예를 들어, 시료 및 시약 용액은 상기 반응 채널(921) 내에서 상기 제1 히터(110)의 상측 대응 부분(301) 및 상기 제2 히터(120)의 상측 대응 부분(302)을 연이어 통과하면서 PCR 변성 단계 및 PCR 어닐링/연장 단계를 수행하는데, 이 경우 시료 및 시약 용액은 상기 제1 히터(110)와 상기 제2 히터(120) 사이, 및 상기 제1 히터(110)와 상기 제2 히터(120)를 포함하는 히터 유닛 사이에서 반복 배치된 상기 검출 전극(950) 영역을 통과하게 된다. 상기 시료 및 시약 용액이 상기 검출 전극(950)의 상측 대응 부분을 통과할 때 유체 제어를 통해 상기 시료 및 시약 용액의 유속을 느리게 하거나 잠시 정지 상태로 유지한 후 증폭 핵산과 활성물질의 결합으로 인해 발생하는 전기화학적 신호를 상기 검출 전극(950)을 통해 순차적으로 실시간으로 검출 및 측정할 수 있다. 따라서, PCR 각 순환 주기가 진행되는 동안 상기 반응 채널(921) 내에서 (형광 물질 및 광 검출 시스템 없이) 핵산의 증폭에 의한 반응 결과를 실시간(real-time)으로 모니터링함으로써 표적 핵산의 양을 실시간(real-time)으로 검출 및 측정할 수 있다.
도 14는 본 발명의 일 실시예에 따른 실시간 PCR 장치를 이용하여 핵산 증폭, 및 그에 따른 핵산 증폭 신호를 실시간으로 검출 및 측정하는 일련의 과정을 도시한다.
도 14에 따르면, 본 발명의 일 실시예에 따른 실시간 PCR 장치를 이용한 실시간 PCR 방법은 상술한 실시간 PCR 장치를 제공하는 단계; 주형 핵산을 포함하는 PCR 시료 및 상기 활성물질을 포함하는 PCR 시약을 상기 PCR 칩(900)의 반응 채널(921)에 주입하는 단계; 상기 PCR 칩(900)의 전극(950) 말단이 상기 연결 포트(310)에 전기적으로 연결되도록 상기 PCR 시료 및 PCR 시약이 주입된 PCR 칩(900)을 상기 칩 홀더(300)에 장착하는 단계; 상기 PCR 시료 및 PCR 시약을 상기 반응 채널(921)을 길이 방향으로 이동하게 하면서 PCR의 변성 단계 온도 및 PCR의 어닐링 및 연장(혹은 증폭) 단계 온도를 각각 유지하는 제1 히터 및 제2 히터에 순차적이고 반복적으로 열 접촉하여 PCR을 수행하는 단계; 및 상기 PCR 수행 중 상기 PCR 칩(900) 내부에서 증폭 핵산과 상기 활성물질의 결합으로 인해 발생하는 전기화학적 신호를 실시간으로 검출 및 측정하는 단계를 포함한다.
실시간 PCR 장치 제공 단계(S1)는 상술한 실시간 PCR 장치를 준비하는 단계이다. 따라서, 이하 본 발명의 일 실시예에 따른 실시간 PCR 방법은 상기 실시간 PCR 장치의 구동을 전제로 한다.
시료 및 시약 주입 단계(S2)는 상기 PCR 칩(900)에 PCR 시료 및 시약, 아울러 증폭하고자 하는 주형 핵산과 화학적 반응(결합)을 통해 전기적 신호를 발생시킬 수 있는 물질, 예를 들어 메틸렌 블루를 주입하는 단계이다.
PCR 칩 장착 단계(S3)는 상기 PCR 시료 및 시약이 수용된 PCR 칩(900)을 상기 실시간 PCR 장치(1)의 칩 홀더(300)에 장착하는 단계이다. 이 경우 전기화학적 신호 검출을 위해 상기 PCR 칩(900)의 전극(950)이 상기 칩 홀더(300)의 연결 포트(310)와 전기적으로 연결되어야 한다.
PCR 단계(S4)는 상기 열 블록(100)의 제1 히터(110) 및 제2 히터(120)의 온도를 가열 유지하고, 상기 PCR 칩(900)의 반응 채널(921)에서 시료 및 시약이 길이 방향으로 이동하면서 PCR이 수행되는 단계이다. 이 경우 상기 반응 채널(921) 내부를 이동하는 시료 및 시약 중에 주형 핵산을 기초로 표적 핵산 부위가 순차적으로 증폭되고, 표적 핵산 부위의 연속적인 증폭에 따라 상기 활성물질과의 연속적인 반응(결합)으로 인해 전기화학적 신호가 발생한다.
전기화학적 신호 검출 및 측정 단계(S5)는 상기 S4 단계에서 핵산의 연속적인 증폭에 의해 발생한 전기화학적 신호(전류값 변화)를 상기 PCR 칩(900)의 전극(950), 상기 칩 홀더(300)의 연결 포트(310), 상기 전기적 연결 수단(700), 및 상기 전기화학적 신호 측정 모듈(800)을 통해 검출 및 측정하는 단계이다.

Claims (15)

1 이상의 히터를 구비하는 히터 군, 상기 히터 군을 2 이상 구비하고 상기 2 이상의 히터 군은 상호 열 교환이 일어나지 않도록 이격 배치된 히터 유닛이 2 이상 반복 배치된 것으로서, 적어도 일 면에 시료 및 시약이 수용되는 PCR 칩의 접촉 면을 구비하는 열 블록;
상기 열 블록에 구비된 히터들에 전력을 공급하도록 연결된 열 전극을 구비하는 열 전극부;
양 말단에 유입부 및 유출부가 구현된 1 이상의 반응 채널, 및 상기 반응 채널의 길이 방향으로 그 하단 면을 가로질러 반복 이격 배치되되 상기 반응 채널 내부에서 증폭 핵산과 활성물질의 결합으로 인해 발생하는 전기화학적 신호를 검출하도록 구현된 검출 전극을 구비하는 것으로서, 상기 열 블록과의 열 접촉시 상기 검출 전극은 상기 2 이상의 히터 군 사이에 배치되도록 구현된 판 형상의 PCR 칩;
상기 PCR 칩이 장착되되 상기 PCR 칩의 검출 전극 말단과 전기적으로 연결되도록 구현된 연결 포트를 구비하는 칩 홀더; 및
상기 칩 홀더의 연결 포트와 전기적으로 연결되어 상기 PCR 칩의 반응 채널 내부에서 발생하는 전기화학적 신호를 실시간으로 측정하도록 구현된 전기화학적 신호 측정 모듈;
를 포함하는, 실시간 PCR(Polymerase Chain Reaction) 장치.
제1항에 있어서,
상기 활성물질은 이온결합성 물질의 이온화 산물 중 양이온 물질인 것을 특징으로 하는 실시간 PCR 장치.
제2항에 있어서,
상기 이온결합성 물질은 메틸렌 블루(methylene blue)인 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 전기화학적 신호는 상기 증폭 핵산의 음 전하와 상기 활성물질의 양 전하의 결합에 인한 총 전류값 변화에 기인하는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 검출 전극은 금(Au), 코발트(Co), 백금(Pt), 은(Ag), 탄소나노튜브(carbon nanotube), 그래핀(graphene), 및 탄소(Carbon)로 구성된 군으로부터 1 이상 선택되는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 검출 전극은 상기 증폭 핵산과 활성물질의 결합이 일어나는 지시 전극(working electrode) 및 상기 증폭 핵산과 활성물질의 결합이 일어나지 않는 기준 전극(reference electrode)을 구비하는 2-전극 모듈, 또는 상기 지시 전극, 상기 기준 전극, 및 상기 지시 전극으로부터 발생하는 전자 밸런스를 조절하는 카운터 전극(counter electrode)을 구비하는 3-전극 모듈로 구현되는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 전기화학적 신호 측정 모듈은 양극 벗김 전압전류계(anodic stripping voltammetry, ASV), 대시간 전류계 (chronoamperometry, CA), 순환 전압전류계(cyclic voltammetry), 네모파 전압전류계(square wave voltammetry, SWV), 펄스 전압전류계(differential pulse voltammetry, DPV), 및 임피던스계(impedance)로 구성된 군으로부터 선택되는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 열 블록은 2개 내지 4개의 히터 군을 구비하는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 열 블록은 2개의 히터 군을 구비하고, 상기 제1 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제2 히터 군은 PCR 어닐링/연장 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 어닐링/연장 단계 온도를 유지하고 상기 제2 히터 군은 PCR 변성 단계 온도를 유지하는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 열 블록은 3개의 히터 군을 구비하고, 상기 제1 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제2 히터 군은 PCR 어닐링 단계 온도를 유지하고 상기 제3 히터 군은 PCR 연장 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 어닐링 단계 온도를 유지하고 상기 제2 히터 군은 PCR 연장 단계 온도를 유지하고 상기 제3 히터 군은 PCR 변성 단계 온도를 유지하거나, 또는 상기 제1 히터 군은 PCR 연장 단계 온도를 유지하고 상기 제2 히터 군은 PCR 변성 단계 온도를 유지하고 상기 제3 히터 군은 PCR 어닐링 단계 온도를 유지하는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 1 이상의 반응 채널은 상기 히터 유닛 중 최선 배치된 히터의 상측 대응 부분과 최후 배치된 히터의 상측 대응 부분을 직선 길이 방향으로 통과하도록 연장 배치된 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 PCR 칩은 상기 검출 전극이 구비된 제1 판; 상기 제1 판 상에 배치되되 상기 1 이상의 반응 채널이 구비된 제2 판; 및 상기 제2 판 상에 배치되되 상기 유입부 및 유출부가 구비된 제3 판을 포함하는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 PCR 칩은 상기 칩 홀더에 탈착 가능하게 구현된 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 열 전극부에 전력을 공급하기 위한 전력 공급부를 더 포함하는 것을 특징으로 하는 실시간 PCR 장치.
제1항에 있어서,
상기 1 이상의 반응 채널 내에서 유동하는 유체의 유량 및 유속을 제어하기 위해 양압 또는 음압을 제공하도록 배치된 펌프를 더 포함하는 것을 특징으로 하는 PCR 장치.
KR1020120080459A 2012-07-24 2012-07-24 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법 KR101950210B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120080459A KR101950210B1 (ko) 2012-07-24 2012-07-24 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
PCT/KR2013/006621 WO2014017821A1 (ko) 2012-07-24 2013-07-24 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120080459A KR101950210B1 (ko) 2012-07-24 2012-07-24 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법

Publications (2)

Publication Number Publication Date
KR20140013462A true KR20140013462A (ko) 2014-02-05
KR101950210B1 KR101950210B1 (ko) 2019-02-22

Family

ID=49997566

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120080459A KR101950210B1 (ko) 2012-07-24 2012-07-24 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법

Country Status (2)

Country Link
KR (1) KR101950210B1 (ko)
WO (1) WO2014017821A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150103852A (ko) * 2014-03-04 2015-09-14 가천대학교 산학협력단 단일히터를 구비하는 pcr 마이크로 디바이스 시스템

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618113B1 (ko) * 2014-02-10 2016-05-09 나노바이오시스 주식회사 일 방향 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072054A1 (en) * 2000-12-13 2002-06-13 The Regents Of The University Of California Sensor using impedance change to detect the end-point for PCR DNA amplification
KR20040042021A (ko) * 2002-11-12 2004-05-20 삼성전자주식회사 전기적 신호를 측정하는 pcr 증폭 산물을 검출하는 방법
US20050053962A1 (en) * 1998-01-27 2005-03-10 Gary Blackburn Amplification of nucleic acids with electronic detection
KR100668320B1 (ko) * 2003-12-10 2007-01-12 삼성전자주식회사 중합 효소 연쇄 반응용 모듈 및 이를 채용한 다중중합효소 연쇄 반응 시스템
KR20100019409A (ko) * 2007-01-22 2010-02-18 웨이퍼젠, 인크. 고효율 화학 반응을 위한 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053962A1 (en) * 1998-01-27 2005-03-10 Gary Blackburn Amplification of nucleic acids with electronic detection
US20020072054A1 (en) * 2000-12-13 2002-06-13 The Regents Of The University Of California Sensor using impedance change to detect the end-point for PCR DNA amplification
KR20040042021A (ko) * 2002-11-12 2004-05-20 삼성전자주식회사 전기적 신호를 측정하는 pcr 증폭 산물을 검출하는 방법
KR100668320B1 (ko) * 2003-12-10 2007-01-12 삼성전자주식회사 중합 효소 연쇄 반응용 모듈 및 이를 채용한 다중중합효소 연쇄 반응 시스템
KR20100019409A (ko) * 2007-01-22 2010-02-18 웨이퍼젠, 인크. 고효율 화학 반응을 위한 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150103852A (ko) * 2014-03-04 2015-09-14 가천대학교 산학협력단 단일히터를 구비하는 pcr 마이크로 디바이스 시스템

Also Published As

Publication number Publication date
KR101950210B1 (ko) 2019-02-22
WO2014017821A1 (ko) 2014-01-30

Similar Documents

Publication Publication Date Title
KR101618113B1 (ko) 일 방향 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
KR102041205B1 (ko) 패턴 히터가 반복 배치된 pcr 열 블록 및 이를 포함하는 pcr 장치
JP6498298B2 (ja) 繰り返し摺動駆動手段を備えるポリメラーゼ連鎖反応(pcr)装置及びこれを用いるポリメラーゼ連鎖反応(pcr)方法
KR101404455B1 (ko) 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
KR101983593B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 pcr 칩, 이를 포함하는 pcr 장치, 및 이를 이용한 실시간 pcr 방법
KR101983580B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 pcr 칩, 이를 포함하는 pcr 장치, 및 이를 이용한 실시간 pcr 방법
KR20120137054A (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 플루이딕 pcr 칩 및 이를 포함하는 pcr 장치
KR101394134B1 (ko) 금속 나노입자를 이용하여 전기화학적 신호를 검출하는 실시간 pcr 장치
KR101950210B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
KR101946339B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
CN209451869U (zh) 一种基于电渗流实现多样检测的微流控装置
KR20120139205A (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 플루이딕 pcr 장치
ITRM20070574A1 (it) Ciclatore termico miniaturizzato per amplificazione ed analisi di molecole biologiche biochip operante attraverso elettrosmosi ac

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right