KR20140010688A - Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer - Google Patents

Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer Download PDF

Info

Publication number
KR20140010688A
KR20140010688A KR1020120077271A KR20120077271A KR20140010688A KR 20140010688 A KR20140010688 A KR 20140010688A KR 1020120077271 A KR1020120077271 A KR 1020120077271A KR 20120077271 A KR20120077271 A KR 20120077271A KR 20140010688 A KR20140010688 A KR 20140010688A
Authority
KR
South Korea
Prior art keywords
film
slurry composition
polishing
weight
silicon
Prior art date
Application number
KR1020120077271A
Other languages
Korean (ko)
Other versions
KR101955391B1 (en
Inventor
김택래
김대환
박종대
김재현
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020120077271A priority Critical patent/KR101955391B1/en
Publication of KR20140010688A publication Critical patent/KR20140010688A/en
Application granted granted Critical
Publication of KR101955391B1 publication Critical patent/KR101955391B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Disclosed is a chemical mechanical polishing slurry composition capable of increasing or controlling the polishing speed of a copper layer, a silicon layer, and a silicon oxide layer and a polishing method using the same. The chemical mechanical polishing slurry composition includes 1-30 wt% of polishing particles, 0.01-10 wt% of amino acid, 0.001-5 wt% of anticorrosive agents, 0.01-10 wt% of organic acid, 0.1-20 wt% of KCl, 0.00007-0.11 wt% of dispersing stabilizers, 0.1-5 wt% of oxidizing agents, and water.

Description

구리막, 실리콘막 및 실리콘산화막 연마 슬러리 조성물 및 연마 방법{Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer}Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer

본 발명은 화학 기계적 연마 슬러리 조성물에 관한 것으로서, 더욱 상세하게는, 구리막, 실리콘막 및 실리콘산화막의 연마 속도를 증가 및/또는 조절할 수 있는 화학 기계적 연마 슬러리 조성물 및 이를 이용한 연마 방법에 관한 것이다.
The present invention relates to a chemical mechanical polishing slurry composition, and more particularly, to a chemical mechanical polishing slurry composition capable of increasing and / or adjusting the polishing rate of a copper film, a silicon film, and a silicon oxide film, and a polishing method using the same.

반도체 집적회로에 있어서는, 트랜지스터, 커패시터, 저항 등의 수많은 기능 요소(소자)들이 일정한 모양으로 도안된 배선에 의해 연결되어 회로를 구성한다. 집적회로는 각 세대를 거치며 소형화되고 있지만, 단순히 소자나 배선의 크기를 감소시키는 것에는 한계가 있으므로, 최근에는 각 소자를 다층으로 형성하는 다층 배선 구조에 대한 연구가 활발히 이루어지고 있다. 이와 같이 배선의 폭이 작아짐에 따라, 제조 가능성이나 회로의 신뢰성에 영향을 주는 여러 가지 문제가 발생한다. 예를 들어, 금속 배선의 선폭이 작아지면, 배선의 저항과 커패시턴스가 증가하고, 신호 전달 지연(RC time delay) 및 전압 강하를 유발하기 쉽다. 이와 같은 문제점을 해결하기 위하여, 기존의 배선 재료로 사용되는 알루미늄을 구리로 대체하는 방법이 연구되고 있다. 구리는 비저항이 낮아, 집적회로의 신호 처리 속도 및 수명을 증가시킬 수 있는 장점이 있으나, 실리콘막 내부로 확산되기 쉽고, 건식 식각이 곤란하며, 화학 기계적 연마 과정이 복잡한 단점이 있다.
In a semiconductor integrated circuit, a large number of functional elements (elements) such as transistors, capacitors, and resistors are connected by wirings drawn in a uniform shape to constitute a circuit. Although integrated circuits have been miniaturized with each generation, there is a limit to simply reducing the size of elements or wirings. Recently, research on a multilayer wiring structure in which each device is formed in multiple layers has been actively conducted. As the width of the wiring decreases in this manner, various problems affecting the manufacturability and the reliability of the circuit occur. For example, when the line width of the metal wiring becomes small, the resistance and capacitance of the wiring increase, and it is easy to cause a signal time delay (RC time delay) and a voltage drop. In order to solve this problem, a method of replacing aluminum, which is used as an existing wiring material, with copper, has been studied. Copper has a low specific resistance, which may increase the signal processing speed and lifespan of an integrated circuit. However, copper may be easily diffused into a silicon film, is difficult to dry etch, and has a complicated chemical mechanical polishing process.

이와 같이 반도체 집적회로를 형성하는 금속막, 실리콘산화막(이산화규소막) 등을 연마하기 위한 다양한 화학 기계적 연마 슬러리 조성물이 공지되어 있다. 예를 들면, 대한민국 특허공개 10-2006-0044569호에는 과산화수소, 콜로이달 실리카, 글리신, 트리아졸 등을 포함하는 연마용 조성물이 개시되어 있으며, 상기 조성물은 절연막에 도포된 금속(구리)막을 연마하기 위한 것으로서, 다당류 및 폴리비닐알코올류를 사용하여 금속막의 연마 성능을 향상시킨 것을 특징으로 한다. 대한민국 특허공개 10-2010-0118246호에는, 규소(Si) 분말을 직접 산화시켜 제조한 콜로이달 실리카, 산화제, 착화제, 부식방지제 및 아미노알콜을 포함하는 화학 기계적 연마용 슬러리 조성물이 개시되어 있으며, 상기 조성물은 구리 함유 기판의 연마에 사용된다. 대한민국 특허공개 10-2012-0028209호에는, 평균 직경이 5 내지 150 nm인 연마 입자, pKa 값이 9 내지 10 이고, 함량이 연마 입자의 7 내지 28 중량%인 pH 안정화제, 연마 촉진제, 및 물을 포함하는 웨이퍼의 일차 연마용 조성물이 개시되어 있으며, 대한민국 특허공개 10-1990-0009918호에는, 물, 콜로이달 실리카 입자, 수용해성 고분자, 수용해성 염류를 포함하는 웨이퍼의 미세(fine) 연마용 조성물이 개시되어 있고, 미국 특허공개 US 2009-0127501호에는, 실리카 및 폴리아미노폴리카르복실산(polyaminopolycarboxylic acid)을 포함하는 실리콘막(Silicon wafer) 연마 조성물이 개시되어 있다.
As such, various chemical mechanical polishing slurry compositions are known for polishing metal films, silicon oxide films (silicon dioxide films), and the like, which form semiconductor integrated circuits. For example, Korean Patent Publication No. 10-2006-0044569 discloses a polishing composition comprising hydrogen peroxide, colloidal silica, glycine, triazole, and the like, wherein the composition is used to polish a metal (copper) film coated on an insulating film. In order to improve the polishing performance of the metal film, polysaccharides and polyvinyl alcohols are used. Korean Patent Publication No. 10-2010-0118246 discloses a chemical mechanical polishing slurry composition comprising colloidal silica, an oxidizing agent, a complexing agent, a corrosion inhibitor, and an amino alcohol prepared by directly oxidizing silicon (Si) powder. The composition is used for polishing copper-containing substrates. Korean Patent Publication No. 10-2012-0028209 discloses abrasive particles having an average diameter of 5 to 150 nm, pH stabilizers having a pKa value of 9 to 10 and a content of 7 to 28% by weight of the abrasive particles, polishing accelerators, and water. A first polishing composition of a wafer is disclosed, and Korean Patent Publication No. 10-1990-0009918 discloses fine polishing of a wafer containing water, colloidal silica particles, water-soluble polymers, and water-soluble salts. A composition is disclosed, and US Patent Publication No. US 2009-0127501 discloses a silicon wafer polishing composition comprising silica and polyaminopolycarboxylic acid.

본 발명의 목적은, 구리막, 실리콘막 및 실리콘산화막을 빠르고 균일하게 연마시킬 수 있는 화학 기계적 연마 슬러리 조성물 및 연마 방법을 제공하는 것이다. 본 발명의 다른 목적은, 구리막, 실리콘막 및 실리콘산화막의 연마 속도를 증가 및/또는 조절할 수 있는 화학 기계적 연마 슬러리 조성물 및 연마 방법을 제공하는 것이다.
It is an object of the present invention to provide a chemical mechanical polishing slurry composition and polishing method capable of quickly and uniformly polishing a copper film, a silicon film and a silicon oxide film. Another object of the present invention is to provide a chemical mechanical polishing slurry composition and a polishing method capable of increasing and / or adjusting the polishing rate of a copper film, a silicon film and a silicon oxide film.

상기 목적을 달성하기 위하여, 본 발명은, (i) 0.1 내지 30 중량%의 연마 입자; (ii) 0.001 내지 10 중량%의 아미노산, (iii) 0.001 내지 5 중량%의 부식 방지제, (iv) 0.01 내지 10 중량%의 유기산, (v) 0.1 내지 20 중량%의 KCl, (vi) 0.00007 내지 0.11 중량%의 분산 안정제, (vii) 0.1 내지 5 중량%의 산화제 및 나머지 물(water)을 포함하는 화학 기계적 연마 슬러리 조성물을 제공한다. 또한, 본 발명은, (i) 0.1 내지 30 중량%의 연마 입자; (ii) 0.001 내지 10 중량%의 아미노산, (iii) 0.001 내지 5 중량%의 부식 방지제, (iv) 0.01 내지 10 중량%의 유기산, (v) 0.1 내지 20 중량%의 KCl, (vi) 0.00007 내지 0.11 중량%의 분산 안정제, (vii) 0.1 내지 5 중량%의 산화제 및 나머지 물(water)을 포함하는 화학 기계적 연마 슬러리 조성물을 기판에 도포하는 단계; 및 연마 패드를 상기 기판과 접촉시키고, 상기 연마 패드를 기판에 대해 이동시켜, 기판으로부터 구리막, 실리콘막 및 실리콘산화막의 적어도 일부를 제거하는 단계를 포함하는 화학 기계적 연마 방법을 제공한다.
In order to achieve the above object, the present invention, (i) 0.1 to 30% by weight of abrasive particles; (ii) 0.001 to 10 weight percent amino acid, (iii) 0.001 to 5 weight percent corrosion inhibitor, (iv) 0.01 to 10 weight percent organic acid, (v) 0.1 to 20 weight percent KCl, (vi) 0.00007 to A chemical mechanical polishing slurry composition is provided comprising 0.11% by weight of dispersion stabilizer, (vii) 0.1-5% by weight of oxidant, and the remaining water. In addition, the present invention, (i) 0.1 to 30% by weight of abrasive particles; (ii) 0.001 to 10 weight percent amino acid, (iii) 0.001 to 5 weight percent corrosion inhibitor, (iv) 0.01 to 10 weight percent organic acid, (v) 0.1 to 20 weight percent KCl, (vi) 0.00007 to Applying to the substrate a chemical mechanical polishing slurry composition comprising 0.11% by weight of a dispersion stabilizer, 0.1 to 5% by weight of an oxidant and the remaining water; And contacting the polishing pad with the substrate and moving the polishing pad relative to the substrate to remove at least a portion of the copper film, the silicon film, and the silicon oxide film from the substrate.

본 발명에 따른 화학 기계적 연마 슬러리 조성물은 구리막, 실리콘막 및 실리콘산화막을 빠르고 균일하게 연마시킬 수 있고, 필요에 따라, 구리막, 실리콘막 및 실리콘산화막의 연마 속도를 조절할 수 있다.
The chemical mechanical polishing slurry composition according to the present invention can quickly and uniformly polish a copper film, a silicon film and a silicon oxide film, and can adjust the polishing rate of the copper film, the silicon film and the silicon oxide film as necessary.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 화학 기계적 연마 슬러리 조성물은 구리막, 실리콘막 및 실리콘산화막을 연마하기 위한 것으로서, (i) 0.1 내지 30 중량%, 바람직하게는 5 내지 20 중량%의 연마 입자, (ii) 0.001 내지 10 중량%, 바람직하게는 0.01 내지 2 중량%의 아미노산, (iii) 0.001 내지 5 중량%, 바람직하게는 0.01 내지 1 중량%의 부식 방지제, (iv) 0.01 내지 10 중량%, 바람직하게는 0.1 내지 5 중량%의 유기산, (v) 0.1 내지 20 중량%, 바람직하게는 1 내지 10 중량%의 KCl, (vi) 0.00007 내지 0.11 중량%, 바람직하게는 0.00008 내지 0.10 중량%의 분산 안정제, (vii) 0.01 내지 20 중량%, 바람직하게는 0.1 내지 5 중량%, 더욱 바람직하게는 0.5 내지 4 중량%의 산화제 및 나머지 물(water)을 포함한다. 또한, 필요에 따라, 본 발명에 따른 슬러리 조성물은 (viii) 0.01 내지 5 중량%, 바람직하게는 0.1 내지 2 중량%의 유기 아민을 더욱 포함할 수 있다. 여기서, 상기 연마 입자, 아미노산, 부식 방지제, 유기산, KCl, 분산 안정제, 산화제 및 유기 아민의 함량이 너무 작거나 많으면, 구리막, 실리콘막 및 실리콘산화막의 연마 속도가 저하되거나, 구리막, 실리콘막 및 실리콘산화막의 연마 속도 비율이 과도하게 커지거나, 연마면에 스크래치가 발생할 우려가 있다.
The chemical mechanical polishing slurry composition according to the present invention is for polishing a copper film, a silicon film and a silicon oxide film, comprising (i) 0.1 to 30% by weight of abrasive particles, preferably 5 to 20% by weight of abrasive particles, and (ii) 0.001 to 10% by weight, preferably 0.01 to 2% by weight of amino acid, (iii) 0.001 to 5% by weight, preferably 0.01 to 1% by weight of corrosion inhibitor, (iv) 0.01 to 10% by weight, preferably 0.1 to 5% by weight of organic acid, (v) 0.1 to 20% by weight, preferably 1 to 10% by weight of KCl, (vi) 0.00007 to 0.11% by weight, preferably 0.00008 to 0.10% by weight of dispersion stabilizer, (vii) 0.01 to 20% by weight, preferably 0.1 to 5% by weight, more preferably 0.5 to 4% by weight of oxidant and the remaining water. In addition, if desired, the slurry composition according to the present invention may further comprise (viii) 0.01 to 5% by weight, preferably 0.1 to 2% by weight of organic amine. Here, when the content of the abrasive particles, amino acid, corrosion inhibitor, organic acid, KCl, dispersion stabilizer, oxidizing agent and organic amine is too small or too large, the polishing rate of the copper film, silicon film and silicon oxide film is reduced, or the copper film, silicon film And the rate of polishing rate of the silicon oxide film is excessively large, or scratches may occur on the polishing surface.

본 발명의 슬러리 조성물에 사용되는 상기 (i) 연마 입자는, 구리막, 실리콘막 및 실리콘산화막을 물리적으로 연마하기 위한 것으로서, 콜로이달 실리카, 퓸드 실리카(Fumed silica) 등의 실리카, 알루미나, 세리아, 티타니아, 지르코니아(산화지르코늄), 젠나니아 등을 단독 또는 혼합하여 사용할 수 있고, 바람직하게는 실리카, 더욱 바람직하게는 콜로이달 실리카를 사용할 수 있다. 상기 (ii) 아미노산(amino acid)은, 금속막의 산화 및 연마에 의해서 발생하는 금속 이온과 결합하여 금속 착화물을 형성하는 착화제(complexing agent)의 역할을 하거나, 금속막과 결합하여 금속 - 아미노산 복합물층을 형성함으로써, 금속막의 연마 속도를 증가시키는 역할을 하는 것으로서, 아민(-NH2)기와 카르복실기(-COOH)를 모두 가지는 화합물을 특별한 제한 없이 사용할 수 있다. 상기 아미노산의 바람직한 예로는 글리신(glycine, H2NCH2COOH)을 예시할 수 있고, 상기 아미노산 화합물은 히드록시기 등의 치환기를 가질 수도 있다.
The (i) abrasive particles used in the slurry composition of the present invention are for physically polishing a copper film, a silicon film, and a silicon oxide film, and include silica, alumina, ceria, such as colloidal silica and fumed silica, and the like. Titania, zirconia (zirconium oxide), gennania, or the like may be used alone or in combination, preferably silica, more preferably colloidal silica. The (ii) amino acid acts as a complexing agent that combines with metal ions generated by oxidation and polishing of the metal film to form a metal complex, or combines with the metal film to form a metal-amino acid. By forming the composite layer, as a function of increasing the polishing rate of the metal film, a compound having both an amine (-NH 2 ) group and a carboxyl group (-COOH) can be used without particular limitation. Preferred examples of the amino acid may include glycine (H 2 NCH 2 COOH), and the amino acid compound may have a substituent such as a hydroxyl group.

본 발명에 따른 슬러리 조성물에 사용되는 (iii) 부식 방지제는, 금속막의 부식을 억제하기 위한 것으로서, 화학-기계적 연마 슬러리 조성물에 사용되는 통상의 부식 방지제를 특별한 제한 없이 사용할 수 있다. 상기 부식 방지제는 질소 함유 고리(cyclic) 화합물, 요소, 티오요소 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 상기 질소 함유 고리 화합물의 구체적인 예로는, 트리아졸(예를 들면, 1,2,4-트리아졸), 벤조트리아졸, 이미다졸, 벤즈이미다졸, 벤조티아졸 등을 예시할 수 있고, 이들은, 필요에 따라, 히드록시기, 아미노기, 이미노기, 카르복시기, 머캅토기, 니트로기, 알킬기 등의 치환기를 가질 수 있다. 상기 (iv) 유기산도 금속막의 산화 및 연마에 의해서 발생하는 금속 이온과 결합하여 금속 착화물을 형성하거나, 금속막-유기산 복합물층을 형성함으로써, 금속막의 연마 속도를 증가시키는 역할을 하는 것으로서, 상기 유기산 화합물로는 카르복실기(COOH) 또는 수산기(OH)를 가지는 화합물을 사용할 수 있고, 예를 들면, 테트라메틸암모늄 하이드록사이드 (TMAH, tetramethylammonium hydroxide), 타르타르산, 시트르산, 락트산, 말론산, 숙신산, 아세트산, 옥살산, 폴리아크릴산, 프탈산, 포름산, 이들의 혼합물 등을 사용할 수 있다.
(Iii) The corrosion inhibitor used in the slurry composition according to the present invention is for suppressing corrosion of the metal film, and any conventional corrosion inhibitor used in the chemical-mechanical polishing slurry composition can be used without particular limitation. The corrosion inhibitor may be selected from the group consisting of nitrogen-containing cyclic compounds, urea, thiourea and mixtures thereof. Specific examples of the nitrogen-containing cyclic compound include triazoles (eg, 1,2,4-triazoles), benzotriazoles, imidazoles, benzimidazoles, benzothiazoles, and the like. As needed, you may have substituents, such as a hydroxyl group, an amino group, an imino group, a carboxy group, a mercapto group, a nitro group, and an alkyl group. (Iv) the organic acid also plays a role of increasing the polishing rate of the metal film by forming a metal complex by combining with metal ions generated by oxidation and polishing of the metal film or forming a metal film-organic acid composite layer. As the organic acid compound, a compound having a carboxyl group (COOH) or a hydroxyl group (OH) may be used. For example, tetramethylammonium hydroxide (TMAH), tartaric acid, citric acid, lactic acid, malonic acid, succinic acid, acetic acid , Oxalic acid, polyacrylic acid, phthalic acid, formic acid, mixtures thereof and the like can be used.

본 발명의 슬러리 조성물에 사용되는 (v) KCl은 구리막 및 실리콘막과 착물을 형성하는 무기염으로서, 구리막 및 실리콘막의 연마를 촉진하는 기능을 한다. 또한, 상기 (vi) 분산 안정제는, 보관, 숙성 등에 의하여, 본 발명에 따른 슬러리 조성물이 겔화하거나 입자가 침전되는 현상을 억제하고 분산 안정성을 유지하기 위한 첨가제로서, 수산화암모늄(NH4OH), 수산화칼륨(KOH), 수산화나트륨(NaOH), 염산(HCl), 질산(HNO3), 황산(H2SO4), 이들의 혼합물 등의 무기 화합물을 사용하거나, 양이온성 계면활성제, 음이온성 계면활성제, 양쪽성 계면활성제, 비이온성 계면활성제, 이들의 혼합물 등의 계면 활성제를 사용할 수 있다. 상기 분산 안정제로서, 바람직하게는 상기 무기 화합물 분산 안정제를 사용할 수 있고, 더욱 바람직하게는 수산화칼륨(KOH)을 사용할 수 있다.
(V) KCl used in the slurry composition of the present invention is an inorganic salt which forms a complex with the copper film and the silicon film, and functions to promote polishing of the copper film and the silicon film. In addition, the (vi) dispersion stabilizer is an additive for suppressing the phenomenon that the slurry composition according to the present invention gels or precipitates particles by storage, aging, etc., and maintains dispersion stability, ammonium hydroxide (NH 4 OH), Inorganic compounds such as potassium hydroxide (KOH), sodium hydroxide (NaOH), hydrochloric acid (HCl), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), and mixtures thereof, or cationic surfactants, anionic interfaces Surfactants, such as active agent, amphoteric surfactant, nonionic surfactant, and mixtures thereof, can be used. As said dispersion stabilizer, Preferably the said inorganic compound dispersion stabilizer can be used, More preferably, potassium hydroxide (KOH) can be used.

상기 (vii) 산화제는, 금속막의 표면에 산화막을 형성하여, 금속막의 연마를 촉진시키기 위한 것으로서, 상기 산화제는 웨이퍼, 기판 등의 금속층을 상응하는 산화물, 수산화물, 이온 등으로 산화시킨다. 상기 산화제로는 화학-기계적 연마 슬러리 조성물에 사용되는 통상의 산화제가 특별한 제한 없이 사용될 수 있고, 바람직하게는, 무기 또는 유기 퍼-화합물(per-compound)이 사용될 수 있다. 상기 퍼-화합물은 하나 이상의 퍼옥시기(-O-O-)를 포함하는 화합물 또는 그 자신의 가장 높은 산화 상태에 있는 원소를 포함하는 화합물을 의미한다. 상기 산화제의 구체적인 예로는, 과산화수소(H2O2), 우레아 과산화수소, 모노퍼설페이트, 디퍼설페이트, 퍼아세트산, 퍼카보네이트, 벤조일페록사이드, 퍼요오드산, 퍼요오디에이트염, 퍼브롬산, 과붕산, 과붕산염, 퍼클로로산, 퍼클로로산염, 퍼망가네이트, 퍼망가네이트염 등을 단독 또는 혼합하여 사용할 수 있고, 바람직하게는 과산화수소를 사용할 수 있다. 필요에 따라, 본 발명에 사용되는 (viii) 유기 아민도, 금속막의 산화 및 연마에 의해서 발생하는 금속 이온과 결합하여 금속 착화물을 형성함으로써, 금속막의 연마 속도를 증가시키는 것으로 예상된다. 상기 유기 아민 화합물은 아민기(NH2, NH, N)를 포함하는 화합물로서, 예를 들면, 노닐아민, 도데실아민, 피페라진(piperazine), 이들의 혼합물 등의 탄소수 1 내지 20의 알킬아민을 사용할 수 있다.
The (vii) oxidant forms an oxide film on the surface of the metal film to promote polishing of the metal film, and the oxidant oxidizes metal layers such as wafers and substrates with corresponding oxides, hydroxides, ions and the like. As the oxidant, conventional oxidants used in chemical-mechanical polishing slurry compositions can be used without particular limitation, and preferably inorganic or organic per-compounds can be used. The per-compound means a compound comprising at least one peroxy group (-OO-) or a compound comprising an element in its highest oxidation state. Specific examples of the oxidant include hydrogen peroxide (H 2 O 2 ), urea hydrogen peroxide, monopersulfate, dipersulfate, peracetic acid, percarbonate, benzoyl peroxide, periodic acid, periodic salt, perbromic acid, perboric acid , Perborate, perchloro acid, perchloroate, permanganate, permanganate salt, and the like can be used alone or in combination, preferably hydrogen peroxide. If necessary, the organic amine (viii) used in the present invention is also expected to increase the polishing rate of the metal film by combining with metal ions generated by oxidation and polishing of the metal film to form a metal complex. The organic amine compound is a compound containing an amine group (NH 2 , NH, N), for example, alkylamine having 1 to 20 carbon atoms, such as nonylamine, dodecylamine, piperazine (piperazine), mixtures thereof, etc. Can be used.

또한, 본 발명에 따른 슬러리 조성물은, 발명의 목적 및 효과를 달성하는 한도 내에서, pH 조절제 등의 통상적인 다른 첨가제를 더욱 포함할 수 있다. 본 발명에 따른 슬러리 조성물은, 공지된 임의의 방법으로 제조될 수 있고, 예를 들면, 연마 입자, 아미노산, 부식 방지제, 유기산, KCl 등의 각 성분을 탈이온수, 증류수 등의 수성매질(이하, 필요에 따라, 단순히 "물"이라 한다)에 필요한 농도로 첨가한 다음, 산화제 또는 산화제 수용액을 상기 수성 매질에 원하는 농도로 첨가하여 제조할 수 있다. 본 발명의 조성물을 구성하는 각 성분은, 웨이퍼의 연마 공정 직전에 혼합되어 연마 공정에 사용될 수도 있고, 혼합 후 소정의 시간이 경과된 후 연마 공정에 사용될 수도 있으며, 1 이상의 성분을 포함하는 2이상의 포장(package) 단위로 제공된 후, 연마 공정 직전에 상기 2 이상의 포장 단위에 포함된 성분들을 혼합하여 사용할 수도 있다.
In addition, the slurry composition according to the present invention may further include other conventional additives such as a pH adjusting agent, to the extent that the objects and effects of the present invention are achieved. The slurry composition according to the present invention may be prepared by any known method, and for example, each component such as abrasive particles, amino acids, corrosion inhibitors, organic acids, KCl, etc. may be replaced with an aqueous medium such as deionized water or distilled water (hereinafter, If desired, it may be prepared by adding it in the required concentration simply referred to as "water" and then adding the oxidizing agent or aqueous solution of oxidant to the aqueous medium at the desired concentration. Each component constituting the composition of the present invention may be mixed immediately before the polishing process of the wafer and used in the polishing process, or may be used in the polishing process after a predetermined time has passed after mixing, and may include two or more components containing one or more components. After being provided in a packaging unit, the components included in the two or more packaging units may be mixed and used immediately before the polishing process.

본 발명에 따른 슬러리 조성물에 있어서, 구성 성분의 배합비를 조절하여, 다중막(구리막, 실리콘막 및 실리콘산화막)의 연마 선택비를 자유롭게 조절할 수 있다. 구체적으로, 분산 안정제(특히 바람직하게는, KOH) : KCl의 함량비(중량%)를 1 : 50,000 ~ 45의 범위로 조절함으로써, 구리막, 실리콘막 및 실리콘산화막의 연마 속도를 모두 증가시킬 수 있다. 만일, KOH(분산 안정제)에 대한 KCl 함량비(중량%)가 50,000을 초과하면, 실리콘산화막의 연마 속도가 감소하고, 50 미만이면, 구리막 및 실리콘막의 연마 속도가 감소한다. 또한, 연마 입자(특히 바람직하게는, 콜로이달 실리카) : 아미노산(특히 바람직하게는, 글리신)의 함량비(중량%)를 1 : 1800 ~ 7.5의 범위로 조절함으로써, 구리막의 연마 속도는 증가시키고, 실리콘막 및 실리콘산화막의 연마 속도를 감소시킬 수 있다. 이와 같이, 분산 안정제와 KCl의 함량비를 조절함으로써, 구리막, 실리콘막 및 실리콘산화막의 연마 속도를 모두 증가시킬 수 있으며, 또한 연마 입자와 아미노산의 함량비를 조절함으로써, 구리막의 연마 속도는 증가시키고, 실리콘막 및 실리콘산화막의 연마 속도를 감소시킬 수 있다. 즉, 본 발명은, 분산 안정제, KCl, 연마 입자 및 아미노산의 함량비를 조절하여, 다중막의 연마 선택비 조절이 가능하다. 또한, 본 발명에 따른 슬러리 조성물이 피페라진을 포함하면, 실리콘막 및 실리콘산화막의 연마 속도가 증가한다. 따라서, 본 발명에 따른 슬러리 조성물은, 반도체 집적회로의 제조에 있어서, 구리막, 실리콘막 및 실리콘산화막의 다중막 연마에 특히 유용하다.
In the slurry composition according to the present invention, by adjusting the blending ratio of the constituents, it is possible to freely adjust the polishing selectivity of the multiple films (copper film, silicon film and silicon oxide film). Specifically, by controlling the dispersion ratio (particularly preferably, KOH): KCl content ratio (wt%) in the range of 1: 50,000 to 45, it is possible to increase the polishing rate of all of the copper film, silicon film and silicon oxide film. have. If the KCl content ratio (% by weight) to KOH (dispersion stabilizer) exceeds 50,000, the polishing rate of the silicon oxide film is reduced, and if less than 50, the polishing rate of the copper film and the silicon film is decreased. Further, by adjusting the content ratio (weight%) of the abrasive particles (particularly colloidal silica) to the amino acid (particularly glycine) in the range of 1: 1800 to 7.5, the polishing rate of the copper film is increased and The polishing rate of the silicon film and the silicon oxide film can be reduced. Thus, by adjusting the content ratio of the dispersion stabilizer and KCl, it is possible to increase the polishing rate of all of the copper film, silicon film and silicon oxide film, and also by adjusting the content ratio of abrasive particles and amino acid, the polishing rate of the copper film is increased. The polishing rate of the silicon film and the silicon oxide film can be reduced. That is, the present invention, by adjusting the content ratio of the dispersion stabilizer, KCl, abrasive particles and amino acid, it is possible to adjust the polishing selectivity of the multi-film. In addition, when the slurry composition according to the present invention contains piperazine, the polishing rate of the silicon film and the silicon oxide film is increased. Therefore, the slurry composition according to the present invention is particularly useful for polishing a multilayer film of a copper film, a silicon film and a silicon oxide film in the manufacture of a semiconductor integrated circuit.

본 발명의 슬러리 조성물을 이용하여, 웨이퍼, 유리 등의 기판에 형성된 구리막, 실리콘막 및 실리콘산화막을 연마하는 방법으로는 통상의 다양한 화학 기계적 연마 방법이 사용될 수 있다. 예를 들면, 본 발명의 슬러리 조성물을 기판에 도포하고, 연마 패드를 기판과 접촉시키고, 연마 패드를 기판에 대해 이동시켜, 기판으로부터 구리막, 실리콘막 및 실리콘산화막의 적어도 일부를 제거할 수 있다.
Using the slurry composition of the present invention, as a method for polishing a copper film, a silicon film and a silicon oxide film formed on a substrate such as a wafer or glass, various conventional chemical mechanical polishing methods can be used. For example, the slurry composition of the present invention may be applied to a substrate, the polishing pad may be brought into contact with the substrate, and the polishing pad may be moved relative to the substrate to remove at least a portion of the copper film, silicon film, and silicon oxide film from the substrate. .

이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples. The following examples are intended to illustrate the present invention in more detail, and the present invention is not limited by the following examples.

[실시예 1~7, 비교예 1~6] 화학-기계적 연마 슬러리 조성물의 제조 Examples 1-7, Comparative Examples 1-6 Preparation of Chemical-Mechanical Polishing Slurry Composition

하기 표 1에 나타낸 함량(중량%) 및 성분의 '용액 A' 1 리터(liter)와 탈이온수 0.5 리터를 혼합하여 '희석 용액 A'를 제조하고, 하기 표 2에 나타낸 함량(중량%) 및 성분의 '용액 B' 1 리터(liter)와 탈이온수 0.5 리터를 혼합하여 '희석 용액 B'를 제조한 다음, 희석 용액 A : 희석 용액 B : 산화제(H2O2, 31 부피% 수용액)을 1 리터 : 1 리터 : 0.015 리터의 비율로 혼합하여, 슬러리 조성물(실시예 1~7, 비교예 1~6)을 제조하였다. 하기 표에서, TMAH(25 % sol)은 25 부피%의 테트라메틸암모늄하이드록사이드 수용액을 나타낸다.Table 1 shows the content (% by weight) of the 'solution A' and 1 liter (liter) of the component and 0.5 liters of deionized water were mixed to prepare a 'dilution solution A', the content (% by weight) and Diluted solution B was prepared by mixing 1 liter of solution 'B' of solution and 0.5 liters of deionized water, followed by dilution solution A: dilution solution B: oxidizing agent (H 2 O 2 , 31 vol% aqueous solution). The slurry composition (Examples 1-7, Comparative Examples 1-6) was prepared by mixing in the ratio of 1 liter: 1 liter: 0.015 liter. In the table below, TMAH (25% sol) represents 25% by volume aqueous tetramethylammonium hydroxide solution.

용액 ASolution A 실리카Silica Glycine (powder)Glycine (powder) 1,2,4-
Triazole (powder)
1,2,4-
Triazole (powder)
TMAH
(25% sol)
TMAH
(25% sol)
Piperazine (powder)Piperazine (powder) 실리카:
글리신
함량비
Silica:
Glycine
Content ratio
탈이온수Deionized water
실시예 1Example 1 18.00 18.00 0.01 0.01 0.20 0.20 1.90 1.90   1800 : 11800: 1 79.8979.89 실시예 2Example 2 18.00 18.00 0.10 0.10 0.20 0.20 1.90 1.90   180 : 1180: 1 79.80 79.80 실시예 3Example 3 18.00 18.00 1.00 1.00 0.20 0.20 1.90 1.90   18 : 118: 1 78.90 78.90 실시예 4Example 4 18.0018.00 1.20 1.20 0.20 0.20 1.90 1.90   15 : 115: 1 78.70 78.70 실시예 5Example 5 18.00 18.00 2.40 2.40 0.20 0.20 1.90 1.90   8 : 18: 1 77.50 77.50 실시예 6Example 6 18.00 18.00 1.20 1.20 0.20 0.20 1.90 1.90 0.50 0.50 15 : 115: 1 78.20 78.20 실시예 7Example 7 18.00 18.00 1.20 1.20 0.20 0.20 1.90 1.90 1.00 1.00 15 : 115: 1 77.70 77.70 비교예 1Comparative Example 1 12.00 12.00 2.40 2.40 0.20 0.20 1.90 1.90   5 : 15: 1 83.50 83.50 비교예 2Comparative Example 2 14.00 14.00 2.40 2.40 0.20 0.20 1.90 1.90   6 : 16: 1 81.50 81.50 비교예 3Comparative Example 3 16.00 16.00 2.40 2.40 0.20 0.20 1.90 1.90   7 : 17: 1 79.50 79.50 비교예 4Comparative Example 4 20.00 20.00 0.01 0.01 0.20 0.20 1.90 1.90   2000 : 12000: 1 77.89 77.89 비교예 5Comparative Example 5 22.00 22.00 0.01 0.01 0.20 0.20 1.90 1.90   2200 : 12200: 1 75.89 75.89 비교예 6Comparative Example 6 24.00 24.00 0.01 0.01 0.20 0.20 1.90 1.90   2400 : 12400: 1 73.89 73.89

용액 BSolution B KCl (powder)KCl (powder) KOHKOH 탈이온수Deionized water 실시예 1 ~ 7 및 비교예 1 ~ 6Examples 1-7 and Comparative Examples 1-6 14.50 14.50 0.00090.0009 85.499185.4991

[실시예 8~13, 비교예 7~10] 화학-기계적 연마 슬러리 조성물의 제조 Examples 8-13 and Comparative Examples 7-10 Preparation of Chemical-Mechanical Polishing Slurry Composition

하기 표 3에 나타낸 함량(중량%) 및 성분의 '용액 A' 1 리터(liter)와 탈이온수 0.5 리터를 혼합하여 '희석 용액 A'를 제조하고, 하기 표 4에 나타낸 함량(중량%) 및 성분의 '용액 B' 1 리터(liter)와 탈이온수 0.5 리터를 혼합하여 '희석 용액 B'를 제조한 다음, 희석 용액 A : 희석 용액 B : 산화제(H2O2, 31 부피% 수용액)을 1 리터 : 1 리터 : 0.015 리터의 비율로 혼합하여, 슬러리 조성물(실시예 8~13, 비교예 7~10)을 제조하였다.Table 1 shows a mixture (liter) of 'solution A' (liter) and 0.5 liters of deionized water (liter) of the content (% by weight) and components to prepare 'dilution solution A', and the content (% by weight) shown in Table 4 and Diluted solution B was prepared by mixing 1 liter of solution 'B' of solution and 0.5 liters of deionized water, followed by dilution solution A: dilution solution B: oxidizing agent (H 2 O 2 , 31 vol% aqueous solution). A slurry composition (Examples 8-13 and Comparative Examples 7-10) was prepared by mixing in the ratio of 1 liter: 1 liter: 0.015 liter.

용액 ASolution A 실리카Silica Glycine
(powder)
Glycine
(powder)
1,2,4-Triazole (powder)1,2,4-Triazole (powder) TMAH
(25% sol)
TMAH
(25% sol)
탈이온수Deionized water
실시예 8 ~ 13 및
비교예 7 ~ 10
Examples 8-13 and
Comparative Examples 7 to 10
18.00 18.00 1.20 1.20 0.20 0.20 1.901.90 78.7078.70

용액 BSolution B KCl (powder)KCl (powder) KOHKOH 탈이온수Deionized water KCl : KOH 함량비KCl: KOH content ratio 실시예 8Example 8 14.5014.50 0.00030.0003 85.499785.4997 48,333:1 48,333: 1 실시예 9Example 9 14.50 14.50 0.00090.0009 85.499185.4991 16,111:1 16,111: 1 실시예 10Example 10 14.50 14.50 0.010.01 85.4985.49 1,450:11,450: 1 실시예 11Example 11 14.50 14.50 0.10.1 85.485.4 145:1145: 1 실시예 12Example 12 14.50 14.50 0.20.2 85.385.3 73:1 73: 1 실시예 13Example 13 14.50 14.50 0.30.3 85.285.2 48:1 48: 1 비교예 7Comparative Example 7 14.50 14.50 0.00010.0001 85.499985.4999 145,000:1 145,000: 1 비교예 8Comparative Example 8 14.50 14.50 0.00020.0002 85.499885.4998 72,500:1 72,500: 1 비교예 9Comparative Example 9 14.50 14.50 0.350.35 85.1585.15 41:141: 1 비교예 10Comparative Example 10 14.50 14.50 0.40.4 85.185.1 36:1 36: 1

[실험예] 구리막 , 실리콘막 실리콘산화막의 연마 평가 [Experimental example] Polishing evaluation of copper film , silicon film and silicon oxide film

두산 세미콘테크사(DOOSAN SEMICON TECH)의 Unipla 211 연마 장비(Polisher)에 연마 패드를 부착하고, 구리막(Cu), 실리콘막(Si) 및 실리콘산화막(PETEOS (Tetraethylortho silicate)막)이 형성된 웨이퍼(wafer)를 장착하였다. 다음으로, 상기 슬러리 조성물(실시예 1 ~ 13, 비교예 1~10)을 200 ml/min의 속도로 상기 웨이퍼로 공급하면서, 24 rpm의 압반(platen) 속도, 93 rpm의 선두(head) 속도, 2.1 psi의 하중 압력(back pressure)으로 구리막(Cu), 실리콘막(Si) 및 실리콘산화막(PETEOS)을 연마하였다. 구리막, 실리콘막 및 실리콘산화막의 연마속도(Removal Rate, 단위: Angstrom(Å)/min, 이하 R/R)를 각각 저항 측정기(CMT-2000, 4-point probe, ㈜창민 Tech.), 소수점 4자리 저울(연마 전후의 무게차를 측정하고, 연마율 = (무게차 x 10000)/(비중 x πr2 x 시간)으로 계산) 및 엘립소미터(Ellipsometer)로 측정하였으며, 그 결과를 하기 표 5 및 6에 나타내었다A wafer with a polishing pad attached to a Unipla 211 polishing machine of DOOSAN SEMICON TECH, and a copper film (Cu), a silicon film (Si) and a silicon oxide film (PETEOS (Tetraethylortho silicate) film) wafer). Next, the platen speed of 24 rpm and the head speed of 93 rpm while feeding the slurry compositions (Examples 1 to 13 and Comparative Examples 1 to 10) to the wafer at a rate of 200 ml / min. The copper film (Cu), silicon film (Si) and silicon oxide film (PETEOS) were polished at a back pressure of 2.1 psi. The polishing rate (removal rate, unit: Angstrom / min, hereinafter R / R) of the copper film, silicon film, and silicon oxide film was respectively measured by the resistance measuring instrument (CMT-2000, 4-point probe, Changmin Tech.), Decimal point. 4 digit scale (measured before and after polishing, and calculated by the polishing rate = (weight difference x 10000) / (specific gravity x π r 2 x time)) and the Ellipsometer, the results are shown in the following table Shown in 5 and 6

구분division Cu R/R(Å/min)Cu R / R (Å / min) PETEOS R/R(Å/min)PETEOS R / R (Å / min) Si R/R(Å/min)Si R / R (Å / min) 실시예 1Example 1 235235 542542 82598259 실시예 2Example 2 526526 419419 79867986 실시예 3Example 3 951951 402402 78257825 실시예 4Example 4 12541254 395395 73637363 실시예 5Example 5 18651865 251251 69206920 실시예 6Example 6 1252 1252 467467 79627962 실시예 7Example 7 1249 1249 791791 86928692 비교예 1Comparative Example 1 17541754 259259 69036903 비교예 2Comparative Example 2 1685 1685 261261 69216921 비교예 3Comparative Example 3 1667 1667 248248 69186918 비교예 4Comparative Example 4 224 224 523523 82498249 비교예 5Comparative Example 5 231 231 529529 82468246 비교예 6Comparative Example 6 219 219 519519 82388238

상기 표 5로부터, 실리카 : 글리신의 함량비가 1800 ~ 8 : 1 인 경우(실시예 1 ~ 5), 글리신의 함량이 증가할수록 구리막의 연마율이 규칙적으로 증가하는 반면, 실리콘산화막 및 실리콘막의 연마율은 규칙적으로 감소한다. 또한, 피페라진을 첨가하면(실시예 6 ~ 7), 실리콘산화막과 실리콘막의 연마율이 증가한다. 한편, 실리카 : 글리신의 함량비가 1800 ~ 8 : 1을 벗어나는 경우(비교예 1 ~ 6), 구리막, 실리콘산화막 및 실리콘막의 연마율의 규칙적 상관 관계가 형성되지 않으며, 따라서, 슬러리 조성물의 성분을 조절하여 특정의 연마 대상에 대하여, 특정 연마율을 예측 또는 설계할 수 없게 된다.From Table 5, when the silica: glycine content ratio is 1800 to 8: 1 (Examples 1 to 5), as the glycine content increases, the polishing rate of the copper film is regularly increased, while the polishing rate of the silicon oxide film and the silicon film is increased. Decreases regularly. In addition, adding piperazine (Examples 6 to 7) increases the polishing rate of the silicon oxide film and the silicon film. On the other hand, when the content ratio of silica to glycine deviates from 1800 to 8: 1 (Comparative Examples 1 to 6), no regular correlation between the polishing rates of the copper film, the silicon oxide film, and the silicon film is formed. By adjusting, it becomes impossible to predict or design a specific polishing rate for a specific polishing target.

구분division Cu R/R(Å/min)Cu R / R (Å / min) PETEOS R/R(Å/min)PETEOS R / R (Å / min) Si R/R(Å/min)Si R / R (Å / min) 실시예 8Example 8 10481048 315315 68216821 실시예 9Example 9 12541254 395395 73637363 실시예 10Example 10 14261426 421421 75327532 실시예 11Example 11 15731573 465465 78047804 실시예 12Example 12 17621762 496496 82108210 실시예 13Example 13 1932 1932 504504 84298429 비교예 7Comparative Example 7 1052 1052 157157 68246824 비교예 8Comparative Example 8 10571057 204204 68196819 비교예 9Comparative Example 9 1542 1542 510510 75237523 비교예 10Comparative Example 10 1035 1035 502502 68316831

상기 표 6으로부터, KCl : KOH의 함량비가 48,333 ~ 48 : 1 인 경우(실시예 8 ~ 13), KOH 함량이 증가할수록 구리막, 실리콘막, 및 실리콘산화막의 연마율이 증가하는 반면, KOH에 대한 KCl의 함량비가 48,333을 초과하는 경우(비교예 7~8), 실리콘산화막의 연마율이 급격히 감소하고, KOH에 대한 KCl의 함량비가 45 미만인 경우(비교예 9~10), 구리막과 실리콘막의 연마율의 상관 관계가 없어진다. 즉, KCl : KOH의 함량비가 48,333 ~ 48 : 1 을 벗어나는 경우, 구리막, 실리콘막, 및 실리콘산화막의 연마율의 상관 관계가 나타나지 않음을 알 수 있다. 상기 실시예로부터 알 수 있듯이, 본 발명에 있어서는, KCl : KOH의 함량비 및 실리카 : 글리신의 함량비를 조절하여, 다중막(실리콘막/SiO2막/구리막)을 한번에 연마할 수 있고, 각 성분의 배합비 내에서, 각 성분의 함량을 적절히 조절함으로써, 각각의 막에 대하여 원하는 연마율을 설정할 수 있다. From Table 6, when the content ratio of KCl to KOH is 48,333 to 48: 1 (Examples 8 to 13), as the KOH content increases, the polishing rate of the copper film, silicon film, and silicon oxide film increases, whereas When the ratio of KCl to K content exceeds 48,333 (Comparative Examples 7 to 8), the polishing rate of the silicon oxide film is drastically reduced, and the ratio of KCl to KOH is less than 45 (Comparative Examples 9 to 10). There is no correlation between the polishing rates of the films. That is, when the content ratio of KCl: KOH is out of 48,333 to 48: 1, it can be seen that the correlation between polishing rates of the copper film, the silicon film, and the silicon oxide film does not appear. As can be seen from the above embodiment, in the present invention, by controlling the content ratio of KCl: KOH and the content ratio of silica: glycine, multiple films (silicon film / SiO 2 film / copper film) can be polished at once, Within the compounding ratio of each component, the desired polishing rate can be set for each film by appropriately adjusting the content of each component.

Claims (6)

(i) 0.1 내지 30 중량%의 연마 입자; (ii) 0.001 내지 10 중량%의 아미노산, (iii) 0.001 내지 5 중량%의 부식 방지제, (iv) 0.01 내지 10 중량%의 유기산, (v) 0.1 내지 20 중량%의 KCl, (vi) 0.00007 내지 0.11 중량%의 분산 안정제, (vii) 0.01 내지 20 중량%의 산화제 및 나머지 물(water)을 포함하는 화학 기계적 연마 슬러리 조성물.(i) 0.1 to 30 weight percent abrasive particles; (ii) 0.001 to 10 weight percent amino acid, (iii) 0.001 to 5 weight percent corrosion inhibitor, (iv) 0.01 to 10 weight percent organic acid, (v) 0.1 to 20 weight percent KCl, (vi) 0.00007 to A chemical mechanical polishing slurry composition comprising 0.11% by weight of a dispersion stabilizer, (vii) 0.01-20% by weight of an oxidant and the remaining water. 청구항 1에 있어서, (viii) 0.01 내지 5 중량%의 유기 아민을 더욱 포함하는, 화학 기계적 연마 슬러리 조성물.The chemical mechanical polishing slurry composition of claim 1, further comprising (viii) 0.01 to 5% by weight of an organic amine. 청구항 1에 있어서, 상기 아미노산은 글리신이고, 상기 부식 방지제는 1,2,4-트리아졸이며, 상기 유기산은 테트라메틸암모늄 하이드록사이드이고, 상기 분산 안정제는 수산화칼륨인 것인, 화학 기계적 연마 슬러리 조성물.The chemical mechanical polishing slurry composition of claim 1, wherein the amino acid is glycine, the corrosion inhibitor is 1,2,4-triazole, the organic acid is tetramethylammonium hydroxide, and the dispersion stabilizer is potassium hydroxide. . 청구항 1에 있어서, 상기 분산 안정제 : KCl의 함량비(중량%)는 1 : 50,000 ~ 45인 것인, 화학 기계적 연마 슬러리 조성물.The chemical mechanical polishing slurry composition of claim 1, wherein the content ratio (wt%) of the dispersion stabilizer: KCl is 1: 50,000 to 45. 청구항 1에 있어서, 상기 연마 입자 : 아미노산의 함량비(중량%)는 1 : 1800 ~ 7.5인 것인 화학 기계적 연마 슬러리 조성물.The chemical mechanical polishing slurry composition of claim 1, wherein the content ratio (wt%) of the abrasive particles: amino acid is 1: 1800 to 7.5. (i) 0.1 내지 30 중량%의 연마 입자; (ii) 0.001 내지 10 중량%의 아미노산, (iii) 0.001 내지 5 중량%의 부식 방지제, (iv) 0.01 내지 10 중량%의 유기산, (v) 0.1 내지 20 중량%의 KCl, (vi) 0.00007 내지 0.11 중량%의 분산 안정제, (vii) 0.1 내지 5 중량%의 산화제 및 나머지 물(water)을 포함하는 화학 기계적 연마 슬러리 조성물을 기판에 도포하는 단계; 및
연마 패드를 상기 기판과 접촉시키고, 상기 연마 패드를 기판에 대해 이동시켜, 기판으로부터 구리막, 실리콘막 및 실리콘산화막의 적어도 일부를 제거하는 단계를 포함하는 화학 기계적 연마 방법.
(i) 0.1 to 30 weight percent abrasive particles; (ii) 0.001 to 10 weight percent amino acid, (iii) 0.001 to 5 weight percent corrosion inhibitor, (iv) 0.01 to 10 weight percent organic acid, (v) 0.1 to 20 weight percent KCl, (vi) 0.00007 to Applying to the substrate a chemical mechanical polishing slurry composition comprising 0.11% by weight of a dispersion stabilizer, 0.1 to 5% by weight of an oxidant and the remaining water; And
Contacting the polishing pad with the substrate and moving the polishing pad relative to the substrate to remove at least a portion of the copper film, the silicon film, and the silicon oxide film from the substrate.
KR1020120077271A 2012-07-16 2012-07-16 Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer KR101955391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120077271A KR101955391B1 (en) 2012-07-16 2012-07-16 Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120077271A KR101955391B1 (en) 2012-07-16 2012-07-16 Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer

Publications (2)

Publication Number Publication Date
KR20140010688A true KR20140010688A (en) 2014-01-27
KR101955391B1 KR101955391B1 (en) 2019-03-08

Family

ID=50143229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120077271A KR101955391B1 (en) 2012-07-16 2012-07-16 Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer

Country Status (1)

Country Link
KR (1) KR101955391B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974714A (en) * 2014-04-03 2015-10-14 昭和电工株式会社 Polishing composition and method for polishing substrate using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010062729A (en) * 1999-12-28 2001-07-07 니시가키 코지 Slurry for chemical mechanical polishing
JP2002231666A (en) * 2001-01-31 2002-08-16 Fujimi Inc Composition for polishing, and polishing method using the composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010062729A (en) * 1999-12-28 2001-07-07 니시가키 코지 Slurry for chemical mechanical polishing
JP2002231666A (en) * 2001-01-31 2002-08-16 Fujimi Inc Composition for polishing, and polishing method using the composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974714A (en) * 2014-04-03 2015-10-14 昭和电工株式会社 Polishing composition and method for polishing substrate using the same
CN104974714B (en) * 2014-04-03 2019-03-08 昭和电工株式会社 The grinding method of abrasive composition and the substrate using the abrasive composition

Also Published As

Publication number Publication date
KR101955391B1 (en) 2019-03-08

Similar Documents

Publication Publication Date Title
JP5449248B2 (en) Chemical mechanical polishing composition
JP4261058B2 (en) Chemical mechanical polishing slurry useful for copper / tantalum substrates
KR100594561B1 (en) Chemical Mechanical Polishing Slurry Useful for Copper Substrates
JP5032214B2 (en) Chemical mechanical polishing slurry useful for copper / tantalum substrates
US7767581B2 (en) Barrier polishing fluid
JP2002519471A5 (en)
JP2015029083A (en) Chemical mechanical polishing slurry compositions and method using the same for copper and through-silicon via applications
KR20120068575A (en) Chemical-mechanical polishing slurry composition and method for manufacturing semiconductor device by using the same
US20050126588A1 (en) Chemical mechanical polishing slurries and cleaners containing salicylic acid as a corrosion inhibitor
TWI664280B (en) Elevated temperature cmp compositions and methods for use thereof
US20070293048A1 (en) Polishing slurry
JP2009004748A (en) Alkaline barrier polishing slurry
WO2019181399A1 (en) Polishing liquid and chemical mechanical polishing method
KR101955391B1 (en) Slurry composition and method for polishing copper layer, silicon layer and silicon oxide layer
KR101955390B1 (en) Slurry composition and method for polishing copper layer and silicon oxide layer
JP2018157164A (en) Polishing composition, manufacturing method thereof, polishing method and method for manufacturing semiconductor substrate
KR102343435B1 (en) Cmp slurry composition for polishing copper layer and method for polishing copper layer using the same
JP4231950B2 (en) Metal film abrasive
KR20200102514A (en) Polishing liquid and chemical mechanical polishing method
KR102589505B1 (en) Cmp slurry composition for polishing copper and method for polishing copper layer using the same
KR20100045295A (en) Chemical mechanical polishing slurry composition
KR20100079441A (en) Chemical mechanical polishing slurry composition having advanced removal rate and selectivity for metal layer
KR20180062785A (en) Integrated slurry composition for chemical mechanical polishing and polishing method using the same
KR20070002217A (en) Aqueous polishing slurry comprising zeolite abrasive for polishing metal circuits
KR102640744B1 (en) Polishing slurry composition for tungsten layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right