KR20130142480A - 기판 처리 장치 및 기판 처리 방법 - Google Patents

기판 처리 장치 및 기판 처리 방법 Download PDF

Info

Publication number
KR20130142480A
KR20130142480A KR1020120065731A KR20120065731A KR20130142480A KR 20130142480 A KR20130142480 A KR 20130142480A KR 1020120065731 A KR1020120065731 A KR 1020120065731A KR 20120065731 A KR20120065731 A KR 20120065731A KR 20130142480 A KR20130142480 A KR 20130142480A
Authority
KR
South Korea
Prior art keywords
gas
plasma
substrate
electrode
space
Prior art date
Application number
KR1020120065731A
Other languages
English (en)
Other versions
KR101351399B1 (ko
Inventor
임재용
김성국
하윤규
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020120065731A priority Critical patent/KR101351399B1/ko
Publication of KR20130142480A publication Critical patent/KR20130142480A/ko
Application granted granted Critical
Publication of KR101351399B1 publication Critical patent/KR101351399B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것으로, 본 발명에 따른 기판 처리 장치는 반응 공간을 제공하는 공정 챔버; 상기 공정 챔버의 내부에 배치되어 기판을 지지하는 기판 지지부; 상기 기판 지지부와 마주보도록 상기 공정 챔버의 상부에 설치된 챔버 리드; 및 상기 챔버 리드의 하면에 설치되며, 제 1 및 제 2 가스가 분리되어 공급되도록 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 포함하여 이루어져 상기 제 2 가스를 활성화시켜 상기 기판에 분사하는 가스 분사 모듈을 포함하여 구성되고, 상기 가스 분사 모듈은 상기 제 1 가스 버퍼 공간으로부터 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하고, 상기 제 2 가스 버퍼 공간으로부터 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 활성화시키는 것을 특징으로 한다.

Description

기판 처리 장치 및 기판 처리 방법{APPARATUS AND METHOD OF PROCESSING SUBSTRATE}
본 발명은 기판 처리 장치에 관한 것으로, 보다 구체적으로, 기판에 증착되는 박막의 증착 균일도를 증가시킬 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
일반적으로, 태양전지(Solar Cell), 반도체 소자, 평판 디스플레이 등을 제조하기 위해서는 기판 표면에 소정의 박막층, 박막 회로 패턴, 또는 광학적 패턴을 형성하여야 하며, 이를 위해서는 기판에 특정 물질의 박막을 증착하는 박막 증착 공정, 감광성 물질을 사용하여 박막을 선택적으로 노출시키는 포토 공정, 선택적으로 노출된 부분의 박막을 제거하여 패턴을 형성하는 식각 공정 등의 반도체 제조 공정을 수행하게 된다.
이러한 반도체 제조 공정은 해당 공정을 위해 최적의 환경으로 설계된 기판 처리 장치의 내부에서 진행되며, 최근에는 플라즈마를 이용하여 증착 또는 식각 공정을 수행하는 기판 처리 장치가 많이 사용되고 있다.
플라즈마를 이용한 기판 처리 장치에는 플라즈마를 이용하여 박막을 형성하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치, 박막을 식각하여 패터닝하는 플라즈마 식각장치 등이 있다.
도 1은 종래의 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 1을 참조하면, 일반적인 기판 처리 장치는 챔버(10), 플라즈마 전극(20), 서셉터(30), 및 가스 분사 수단(40)을 구비한다.
챔버(10)는 기판 처리 공정을 위한 반응 공간을 제공한다. 이때, 챔버(10)의 일측 바닥면은 반응 공간을 배기시키기 위한 배기구(12)에 연통된다.
플라즈마 전극(20)은 반응 공간을 밀폐하도록 챔버(10)의 상부에 설치된다.
플라즈마 전극(20)의 일측은 정합 부재(22)를 통해 RF(Radio Frequency) 전원(24)에 전기적으로 접속된다. 이때, RF 전원(24)은 RF 전력을 생성하여 플라즈마 전극(20)에 공급한다.
또한, 플라즈마 전극(20)의 중앙 부분은 기판 처리 공정을 위한 공정 가스를 공급하는 가스 공급관(26)에 연통된다.
정합 부재(22)는 플라즈마 전극(20)과 RF 전원(24) 간에 접속되어 RF 전원(24)으로부터 플라즈마 전극(20)에 공급되는 RF 전력의 부하 임피던스와 소스 임피던스를 정합시킨다.
서셉터(30)는 챔버(10)의 내부에 설치되어 외부로부터 로딩되는 복수의 기판(S)을 지지한다. 이러한 서셉터(30)는 플라즈마 전극(20)에 대향되는 대향 전극으로써, 서셉터(30)를 지지하는 지지축(32)을 통해 전기적으로 접지된다. 이때, 지지축(32)은 지지축(32)과 챔버(10)의 하면을 밀봉하는 벨로우즈(34)에 의해 감싸여진다.
가스 분사 수단(40)은 서셉터(30)에 대향되도록 플라즈마 전극(20)의 하부에 설치된다. 상기 가스 분사 수단(40)과 플라즈마 전극(20) 사이에는 플라즈마 전극(20)을 관통하는 가스 공급관(26)으로부터 공급되는 공정 가스가 공급되는 가스 버퍼 공간(42)이 형성된다. 이때, 공정 가스는 기판(S) 상에 소정의 박막을 형성하기 위한 소스 가스와 반응 가스가 혼합된 형태로 이루어져 상기 가스 버퍼 공간(42)에 공급된다. 이러한, 가스 분사 수단(40)은 가스 버퍼 공간(42)에 연통된 복수의 가스 분사 홀(44)을 통해 공정 가스를 반응 공간에 분사한다.
이와 같은, 일반적인 기판 처리 장치는 기판(S)을 서셉터(30)에 로딩시킨 다음, 챔버(10)의 반응 공간에 소정의 공정 가스를 분사하면서 플라즈마 전극(20)에 RF 전력을 공급하여 가스 분사 수단(40)과 서셉터(30) 사이에 플라즈마 방전(P)을 형성함으로써 플라즈마 방전(P)에 의해 이온화되는 공정 가스의 분자들을 기판(S)에 증착시켜 기판(S) 상에 소정의 박막을 형성한다.
그러나, 종래의 기판 처리 장치는 상기 공정 가스가 분사되는 공간과 상기 플라즈마 방전(P)이 형성되는 공간이 동일하기 때문에, 플라즈마 방전(P)이 기판(S) 위에서 이루어지고, 그에 따라, 플라즈마 방전(P)에 의해서 기판(S)이 손상되고 막질이 떨어지는 문제점이 있다. 또한, 종래의 기판 처리 장치는 플라즈마 방전(P)에 의해 이온화된 공정 가스가 가스 분사 홀(44)의 주변에 증착되어 파우더 성분의 이상 박막이 형성되고, 상기 이상 박막이 기판에 떨어지는 파티클을 유발시키는 문제점이 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있도록 한 기판 처리 장치 및 기판 처리 방법을 제공하는 것을 목적으로 한다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 장치는 반응 공간을 제공하는 공정 챔버; 상기 공정 챔버의 내부에 배치되어 기판을 지지하는 기판 지지부; 상기 기판 지지부와 마주보도록 상기 공정 챔버의 상부에 설치된 챔버 리드; 및 상기 챔버 리드의 하면에 설치되며, 제 1 및 제 2 가스가 분리되어 공급되도록 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 포함하여 이루어져 상기 제 2 가스를 활성화시켜 상기 기판에 분사하는 가스 분사 모듈을 포함하여 구성되고, 상기 가스 분사 모듈은 상기 제 1 가스 버퍼 공간으로부터 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하고, 상기 제 2 가스 버퍼 공간으로부터 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 활성화시키는 것을 특징으로 한다.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 포함하여 구성되고, 상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.
상기 플라즈마 전극과 상기 접지 전극은 소정의 높이 차를 가지도록 단차진 것을 특징으로 한다.
상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스는 제 1 가스 분사 부재를 통해 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고, 상기 제 2 가스 버퍼 공간에 공급되는 상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 부재를 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 한다.
상기 제 1 가스 분사 부재는 제 1 직경을 가지도록 형성되어 상기 제 1 가스 버퍼 공간에 연통된 제 1 가스 공급 홀; 및 상기 제 1 직경보다 작은 제 2 직경을 가지도록 형성되어 상기 제 1 가스 공급 홀에 연통되면서 상기 가스 분사 공간에 연통된 제 1 가스 분사 홀을 포함하여 이루어지는 것을 특징으로 한다.
상기 가스 분사 부재는 상기 제 2 가스 버퍼 공간에 연통되도록 상기 플라즈마 전극의 내부에 수직하게 형성된 제 2 가스 공급 홀; 상기 제 2 가스 공급 홀에 연통되도록 상기 플라즈마 전극의 길이 방향을 따라 상기 플라즈마 전극의 하부 내부에 형성된 제 2 가스 분배 홀; 및 상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하부에 형성되어 상기 제 2 가스를 하부 및 양측부 방향으로 분사하는 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 한다.
상기 제 2 가스 분사 홀은 상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하면 중앙부에 형성되어 상기 제 2 가스를 하부 방향으로 분사하는 중앙 홀; 및 상기 제 2 가스 분배 홀에 연통되도록 상기 중앙 홀을 기준으로 상기 플라즈마 전극의 하면 양측면 각각에 형성되어 상기 제 2 가스를 양측부 방향으로 분사하는 한 쌍의 측면 홀을 포함하여 구성되는 것을 특징으로 한다.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 일정한 간격을 가지도록 나란하게 돌출된 복수의 접지 전극을 가지는 하부 프레임; 상기 제 1 가스 버퍼 공간이 마련되도록 상기 하부 프레임의 상면에 결합되고, 상기 제 2 가스 버퍼 공간이 마련되도록 상기 챔버 리드의 하면에 결합된 상부 프레임; 상기 제 1 가스 버퍼 공간에 연통되도록 상기 하부 프레임에 형성되어 상기 접지 전극과 상기 플라즈마 전극 사이의 가스 분사 공간에 상기 제 1 가스를 분사하는 복수의 제 1 가스 분사 홀; 상기 기판의 상면으로부터 이격되면서 상기 접지 전극들 사이에 배치되도록 상기 하부 프레임의 하면에 수직하게 설치된 복수의 플라즈마 전극; 상기 하부 프레임의 하면에 설치되어 플라즈마 전원을 분배하여 상기 플라즈마 전극에 공급하는 플라즈마 전원 분배 부재; 및 상기 제 2 가스 버퍼 공간에 연통되도록 상기 복수의 플라즈마 전극 각각의 내부에 형성되어 상기 제 2 가스를 상기 플라즈마 방전 공간에 분사하는 복수의 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 한다.
상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.
상기 가스 분사 모듈은 상기 상부 프레임의 하면에 설치되어 상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스를 상기 제 1 가스 버퍼 공간의 내부로 확산시키는 가스 확산 부재를 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 방법은 공정 챔버의 내부에 설치된 기판 지지부 상에 적어도 하나의 기판을 안착시키는 단계; 상기 기판 지지부 상에 설치된 가스 분사 모듈의 제 1 가스 버퍼 공간에 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하는 단계; 및 상기 제 1 가스 버퍼 공간과 공간적으로 분리된 상기 가스 분사 모듈의 제 2 가스 버퍼 공간에 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 상기 플라즈마를 통해 상기 제 2 가스를 활성화시켜 상기 기판의 상면에 증착시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 더 포함하여 이루어지고, 상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 더 포함하여 이루어지고, 상기 플라즈마 방전 공간은 소정의 높이 차를 가지도록 단차진 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.
상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스는 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고, 상기 제 2 가스 버퍼 공간에 공급되는 상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 홀을 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 한다.
상기 제 2 가스는 제 2 가스 분사 홀에 의해 상기 플라즈마 전극의 하부 및 양측부 방향으로 분사되는 것을 특징으로 한다.
상기 과제의 해결 수단에 의하면, 본 발명에 따른 기판 처리 장치 및 기판 처리 방법은 다음과 같은 효과가 있다.
첫째, 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 통해 제 1 및 제 2 가스를 분리하고, 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성함으로써 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있다.
둘째, 제 1 가스와 제 2 가스를 분리하여 분사함으로써 접지 전극과 플라즈마 전극의 내벽에 이상 박막이 증착되는 것을 최소화할 수 있다.
도 1은 종래의 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 2는 본 발명의 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 3은 도 2에 도시된 챔버 리드와 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이다.
도 4는 도 3에 도시된 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이다.
도 5는 도 3에 도시된 I-I' 선의 단면을 개략적으로 나타내는 단면도이다.
도 6은 도 3에 도시된 Ⅱ-Ⅱ' 선의 단면을 개략적으로 나타내는 단면도이다.
도 7은 본 발명에 있어서, 기판 위에 교대로 배치된 접지 전극과 플라즈마 전극을 개념적으로 나타내는 평면도이다.
이하, 도면을 참조로 본 발명에 따른 바람직한 실시 예에 대해서 상세히 설명하기로 한다.
도 2는 본 발명의 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이고, 도 3은 도 2에 도시된 챔버 리드와 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이고, 도 4는 도 3에 도시된 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이고, 도 5는 도 3에 도시된 I-I' 선의 단면을 개략적으로 나타내는 단면도이며, 도 6은 도 3에 도시된 Ⅱ-Ⅱ' 선의 단면을 개략적으로 나타내는 단면도이다.
도 2 내지 도 6을 참조하면, 본 발명의 실시 예에 따른 기판 처리 장치는 반응 공간을 제공하는 공정 챔버(110), 공정 챔버(110)의 내부에 배치되어 기판(S)을 지지하는 기판 지지부(120), 기판 지지부(120)와 마주보도록 공정 챔버(110)의 상부에 설치된 챔버 리드(130), 및 챔버 리드(130)의 하면에 설치되고 기판(S)의 상면에 중첩되지 않는 플라즈마 전극(PE)과 접지 전극(GE) 사이의 플라즈마 방전 공간(PDS)에서 플라즈마(P)를 형성해 공정 가스(PG)를 활성화시켜 기판(S) 상에 분사하는 가스 분사 모듈(140)을 포함하여 구성된다.
공정 챔버(110)는 기판 처리 공정(예를 들어, 박막 증착 공정)을 위한 반응 공간을 제공한다. 상기의 공정 챔버(110)의 바닥면 및/또는 측면은 반응 공간의 가스 등을 배기시키기 위한 배기관(112)에 연통될 수 있다.
기판 지지부(120)는 공정 챔버(110) 내부에 설치되며, 복수의 기판(S) 또는 하나의 대면적 기판(S)을 지지한다. 이때, 복수의 기판(S) 각각의 면적은 상기 하나의 대면적 기판(S)에 1/4 면적을 가질 수 있다.
상기 기판 지지부(120)는 전기적으로 플로팅(Floating)될 수도 있고 접지(ground)될 수도 있다. 상기 기판 지지부(120)는 공정 챔버(110)의 중앙 바닥면을 관통하는 지지축(122)에 의해 지지된다. 이때, 공정 챔버(110)의 하면 외부로 노출되는 상기의 지지축(122)은 공정 챔버(110)의 하면에 설치되는 벨로우즈(124)에 의해 밀폐된다.
상기 기판 지지부(120)는 기판 처리 공정의 공정 조건에 대한 승강될 수도 있다. 이 경우, 상기 기판 지지부(120)의 지지축(122)은 승강 장치(128)의 승강축(126)에 지지된다. 이에 따라, 기판 지지부(120)의 상면은, 승강 장치(128)의 구동에 따른 승강축(126)의 승강에 의해, 상기 공정 조건 범위 내에서 가스 분사 모듈(140)의 하면에 상대적으로 가깝게 위치하거나 상대적으로 멀게 위치하게 된다.
챔버 리드(130)는 공정 챔버(110)의 상부를 덮도록 설치되어 반응 공간을 밀폐한다. 그리고, 챔버 리드(130)는 가스 분사 모듈(140)을 지지한다. 이를 위해, 챔버 리드(130)의 하면에는 가스 분사 모듈(140)이 삽입되어 결합되는 모듈 결합 홈이 마련되어 있다.
상기 챔버 리드(130)의 상면에는 가스 분사 모듈(140)에 공정 가스(PG), 즉 제 1 및 제 2 가스(G1, G2)를 개별적으로 분리하여 공급하기 위한 제 1 및 제 2 가스 공급부(150, 160)가 설치되고, 가스 분사 모듈(140)의 플라즈마 전극(PE)에 플라즈마 전원을 공급하기 위한 플라즈마 전원 공급부(170)가 설치된다.
제 1 가스 공급부(150)는 플라즈마 전극(PE)과 접지 전극(GE) 사이의 공간에서 플라즈마(P)를 형성하기 위한 제 1 가스(G1)를 생성하여 가스 분사 모듈(140)에 공급한다. 제 2 가스 공급부(160)는 기판(S) 상에 증착될 박막의 재질을 포함하는 제 2 가스(G2)를 생성하여 가스 분사 모듈(140)에 공급한다. 여기서, 상기 제 1 가스(G1)는 상기 제 2 가스(G2)와 반응하여 상기 박막을 형성하는 반응 가스로 이루어질 수도 있고, 미증착 제 2 가스(G2)를 퍼지(또는 세정)시키기 위한 퍼지 가스(또는 세정 가스)로 이루어질 수도 있다. 예를 들어, 기판(S)에 실리콘 박막을 형성할 경우에, 상기 제 1 가스(G1)는 수소(H2)일 수 있으며, 상기 제 2 가스(G2)는 실란(SiH4)일 수 있다.
플라즈마 전원 공급부(170)는 플라즈마 전극(PE)과 접지 전극(GE) 사이의 공간에서 플라즈마(P)를 형성하기 위한 플라즈마 전원을 생성하여 상기 플라즈마 전극(PE)에 공급한다. 이때, 상기 플라즈마 전원은 고주파 전력 또는 RF(Radio Frequency) 전력, 예를 들어, LF(Low Frequency) 전력, MF(Middle Frequency), HF(High Frequency) 전력, 또는 VHF(Very High Frequency) 전력이 될 수 있다. 이때, LF 전력은 3㎑ ~ 300㎑ 범위의 주파수를 가지고, MF 전력은 300㎑ ~ 3㎒ 범위의 주파수를 가지고, HF 전력은 3㎒ ~ 30㎒ 범위의 주파수를 가지며, VHF 전력은 30㎒ ~ 300㎒ 범위의 주파수를 가질 수 있다.
상기 플라즈마 전원 공급부(170)는 플라즈마 전극(PE)에 공급되는 플라즈마 전원의 부하 임피던스와 소스 임피던스를 정합시키기 위한 임피던스 매칭 회로(미도시)를 포함하여 이루어질 수 있다. 상기 임피던스 매칭 회로는 가변 커패시터 및 가변 인덕터 중 적어도 하나로 구성되는 적어도 2개의 임피던스 소자(미도시)를 포함하여 이루어질 수 있다.
가스 분사 모듈(140)은 서로 마주보는 접지 전극(GE)과 플라즈마 전극(PE)을 포함하여 이루어져 챔버 리드(130)의 하면에 마련된 모듈 결합 홈에 삽입 결합된다. 이러한 가스 분사 모듈(140)은 플라즈마 전극(PE)과 접지 전극(GE) 각각의 종단부 사이의 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성해 공정 가스(PG), 즉 제 2 가스(G2)를 활성화시켜 기판(S) 상에 분사한다. 즉, 가스 분사 모듈(140)은 서로 나란하도록 교대로 배치된 접지 전극(GE)과 플라즈마 전극(PE) 사이에 마련되는 가스 분사 공간에 제 1 가스(G1)를 분사하면서 플라즈마 전극(PE)에 플라즈마 전원을 인가하여 상기 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고, 상기 플라즈마 전극(PE)의 내부를 통해 플라즈마 방전 공간(PDS)에 제 2 가스(G2)를 분사함으로써 플라즈마(P)를 통해 제 2 가스(G2)를 활성화시켜 기판(S) 상에 분사한다. 이를 위해, 가스 분사 모듈(140)은 하부 프레임(210), 지지 프레임(220), 상부 프레임(230), 플라즈마 전원 분배 부재(240), 및 복수의 플라즈마 전극(PE)을 포함하여 이루어진다.
하부 프레임(210)은 접지 플레이트(211), 접지 측벽(213), 복수의 접지 전극(GE), 복수의 전극 접속 부재(215), 복수의 관 관통 홀(217), 및 복수의 제 1 가스 분사 부재(219)를 포함하여 구성된다.
접지 플레이트(211)는 평판 형태로 형성되어 기판 지지부(120)에 대향된다.
접지 측벽(213)은 접지 플레이트(211)의 가장자리 부분을 따라 소정 높이를 가지도록 돌출된다. 이러한, 접지 측벽(213)은 상부 프레임(230)의 하면 가장자리 부분에 결합됨으로써 접지 플레이트(211)의 상면과 상부 프레임(230)의 하면을 소정의 높이 차로 이격시킨다. 이에 따라, 상기 하부 프레임(210)의 상면과 상부 프레임(230)의 하면 사이에는 제 1 가스 버퍼 공간(142)이 마련된다.
복수의 접지 전극(GE)은 접지 플레이트(211)의 하면으로부터 제 1 높이를 가지도록 돌출되고, 접지 플레이트(211)의 하면에 일정한 간격을 가지도록 서로 나란하게 배치된다. 이에 따라, 나란한 복수의 접지 전극(GE) 사이사이에는 제 1 가스 분사 공간(GSS)이 마련된다.
복수의 전극 접속 부재(215) 각각은 접지 플레이트(211)의 상면에 설치되어 복수의 플라즈마 전극(PE)과 전기적으로 접속된다. 이때, 복수의 전극 접속 부재(215) 각각은 절연체(미도시)에 의해 접지 플레이트(211)와 전기적으로 절연되도록 접지 플레이트(211)의 상면에 설치된다. 이러한 복수의 전극 접속 부재(215) 각각은 복수의 플라즈마 전원 분배 부재(240)에 전기적으로 접속되어 복수의 플라즈마 전원 분배 부재(240)와 복수의 플라즈마 전극(PE) 각각을 전기적으로 접속시킨다.
복수의 관 관통 홀(217) 각각은 접지 플레이트(211)를 관통하도록 형성되어 복수의 플라즈마 전극(PE) 각각에 중첩된다. 이때, 하나의 플라즈마 전극(PE)에 중첩되는 접지 플레이트(211)에는 3개의 제 1 관통 홀(217)이 일정한 간격으로 형성될 수 있다.
복수의 제 1 가스 분사 부재(219) 각각은 접지 플레이트(211)를 관통하도록 형성되어 상기 제 1 가스 버퍼 공간(142)과 상기 제 1 가스 분사 공간(GSS)에 연통된다. 이러한 복수의 제 1 가스 분사 부재(219) 각각은 상기 제 1 가스 버퍼 공간(142)으로부터 유입되는 제 1 가스(G1)를 상기 제 1 가스 분사 공간(GSS)에 소정 압력으로 분사한다. 이를 위해, 상기 복수의 제 1 가스 분사 부재(219) 각각은, 도 5에 도시된 바와 같이, 제 1 가스 유입 홀(219a), 및 제 1 가스 분사 홀(219b)을 포함하여 구성된다.
제 1 가스 유입 홀(219a)은 상기 제 1 가스 버퍼 공간(142)에 연통되도록 접지 플레이트(211)의 상면으로부터 제 1 직경을 가지도록 형성된다.
제 1 가스 분사 홀(219b)은 상기 제 1 가스 공급 홀(219a)에 연통되면서 가스 분사 공간(GSS)에 연통되도록 제 1 가스 분사 홀(219b)의 하부로부터 접지 플레이트(211)를 관통하여 형성된다. 이때, 제 1 가스 분사 홀(219b)은 제 1 가스(G1)를 소정 압력으로 분사하기 위해 제 1 가스 유입 홀(219a)의 제 1 직경보다 작은 제 2 직경을 가지도록 형성된다. 그리고, 제 1 가스 유입 홀(219a)의 높이는 상기 제 1 가스(G1)의 원활한 유입을 위해 제 1 가스 분사 홀(219b)의 높이보다 높을 수 있다.
상기 제 1 가스 분사 홀(219b)은 상기 가스 분사 공간(GSS) 각각의 길이 방향을 따라 일정한 간격을 가지도록 2열로 형성된다.
도 5에서는 상기 제 1 가스 분사 홀(219b)의 직경이 수직하게 형성되는 것으로 도시하였지만, 이에 한정되지 않고, 상기 제 1 가스 분사 홀(219b)의 직경은 제 1 가스 유입 홀(219a)로부터 가스 분사 공간(GSS) 쪽으로 갈수록 증가할 수 있다. 즉, 제 1 가스 분사 홀(219b)은 제 1 가스 유입 홀(219a)에 연통되면서 상기 제 2 직경을 가지는 입구, 가스 분사 공간(GSS)에 연통되면 상기 제 1 또는 제 2 직경보다 큰 제 3 직경을 가지는 출구, 및 입구와 출구 사이에 경사면을 가질 수 있다.
지지 프레임(220)은, 도 2 및 도 5에 도시된 바와 같이, 공정 챔버(110)의 챔버 벽에 안착되어 챔버 리드(130)의 모듈 결합 홈의 하측 내벽을 지지하면서 하부 프레임(210)의 하면 가장자리 부분을 지지한다. 이러한 지지 프레임(240)은 금속 재질로 이루어져 하부 프레임(210)과 챔버 리드(130)를 전기적으로 연결시킴으로써 하부 프레임(210)을 전기적으로 접지시킨다.
상부 프레임(230)은 상부 플레이트(231), 상부 측벽(233), 복수의 전원 공급 봉(235), 제 1 관 결합 홀(237), 및 복수의 관 삽입 홀(239)을 포함하여 구성된다.
상부 플레이트(231)는 평판 형태로 형성되어 하부 프레임(210)의 상면에 결합된다. 이에 따라, 상부 플레이트(231)의 하면과 하부 프레임(210)의 상면 사이에는 상기 제 1 가스 버퍼 공간(142)이 마련된다.
상부 측벽(233)은 상부 플레이트(231)의 가장자리 부분을 따라 소정 높이를 가지도록 돌출된다. 이러한, 상부 측벽(233)은 챔버 리드(130)의 하면 가장자리 부분에 결합됨으로써 상부 플레이트(233)의 상면과 챔버 리드(130)의 하면을 소정의 높이 차로 이격시킨다. 이에 따라, 상기 상부 프레임(230)의 상면과 챔버 리드(130)의 하면 사이에는 제 2 가스 버퍼 공간(144)이 마련된다.
복수의 전원 공급 봉(235)은 절연체에 둘러싸이도록 형성되어 상부 플레이트(231)를 관통하도록 설치됨으로써 플라즈마 전원 분배 부재(240)에 전기적으로 접속된다. 또한, 상기 복수의 전원 공급 봉(235)은 챔버 리드(130)에 형성된 봉 관통 홀(131)에 삽입되어 전술한 플라즈마 전원 공급부(170)에 전기적으로 접속된다. 이러한 복수의 전원 공급 봉(235)은 플라즈마 전원 공급부(170)로부터 공급되는 플라즈마 전원을 플라즈마 전원 분배 부재(240)에 전달한다.
관 결합 홀(237)은 제 1 가스 버퍼 공간(142)에 연통되도록 상부 플레이트(132)를 관통하여 형성된다. 이러한 관 결합 홀(237)에는 제 1 가스 공급부(150)에 연결되어 챔버 리드(130)를 관통하는 제 1 가스 공급관(238)이 결합된다. 이에 따라, 관 결합 홀(237)에는 제 1 가스 공급부(150)로부터 제 1 가스 공급관(238)을 통해 제 1 가스(G1)가 공급된다.
상기 관 결합 홀(237)에 공급되는 제 1 가스(G1)는 상기 제 1 가스 버퍼 공간(142)에 공급되어 상기 제 1 가스 버퍼 공간(142)의 내부에서 확산됨으로써 전술한 하부 프레임(210)에 형성된 복수의 제 1 가스 분사 부재(219)를 통해 가스 분사 공간(GSS)에 분사된다.
한편, 가스 분사 모듈(140)은 상기 제 1 가스 버퍼 공간(142)에 공급되는 제 1 가스(G1)를 제 1 가스 버퍼 공간(142)의 내부 전영역으로 확산시키기 위한 가스 확산 부재(250)를 더 포함하여 구성될 수도 있다.
상기 가스 확산 부재(250)는, 도 5에 도시된 바와 같이, 상기 관 결합 홀(237)의 하부에 중첩되도록 상부 프레임(230)의 하면에 설치되어 관 결합 홀(237)을 통해 공급되는 제 1 가스(G1)를 제 1 가스 버퍼 공간(142)의 내부 전영역으로 확산시킨다. 상기 가스 확산 부재(250)에 중첩되는 상부 프레임(230)의 하면은 오목하게 형성될 수 있다.
복수의 관 삽입 홀(239) 각각은 상부 플레이트(231)를 관통하도록 일정한 간격으로 형성되어 상기 제 2 가스 버퍼 공간(144)에 연통된다. 이러한 복수의 관 결합 홀(237) 각각은 하부 프레임(210)에 형성된 복수의 관 관통 홀(217) 각각에 중첩된다.
상기 제 2 가스 버퍼 공간(144)에는 챔버 리드(130)에 형성된 복수의 제 2 가스 공급 라인(133)을 통해 제 2 가스 공급부(160)로부터 제 2 가스(G2)가 공급된다.
플라즈마 전원 분배 부재(240)는 상부 프레임(230)의 하면에 삽입 설치되어 상기 복수의 전원 공급 봉(235)에 전기적으로 접속되어 복수의 전원 공급 봉(235)으로부터 전달되는 플라즈마 전원을 복수의 플라즈마 전극(PE)에 공급한다. 이를 위해, 플라즈마 전원 분배 부재(240)는 라인 절연 부재(242), 및 전원 공급 라인(244)을 포함하여 구성된다.
라인 절연 부재(242)는 절연 물질로 이루어져 전원 공급 라인(244)을 전기적으로 절연시킨다. 즉, 라인 절연 부재(242)는 하부 프레임(210)과 전원 공급 라인(244) 사이를 전기적으로 절연시킨다.
전원 공급 라인(244)은 라인 절연 부재(242) 상에 설치되어 복수의 전원 공급 봉(235) 각각에 전기적으로 접속된다. 그리고, 상기 전원 공급 라인(244)은 상기 라인 절연 부재(242)를 관통하는 복수의 전극 접속 부재(215) 각각에 전기적으로 접속된다. 이러한 전원 공급 라인(244)은 복수의 전원 공급 봉(235) 각각으로부터 공급되는 플라즈마 전원을 복수의 전극 접속 부재(215) 각각에 전달한다.
상기 전원 공급 라인(244)은 복수의 플라즈마 전극(PE)의 배치 위치에 상관 없이 각 플라즈마 전극(PE)에 균일한 플라즈마 전원이 공급되도록 한다. 이를 위해, 전원 공급 라인(244)은 복수의 전원 공급 봉(235) 각각과 각 플라즈마 전극(PE)의 거리에 따른 라인 저항이 보상되도록 단층 또는 복층 구조로 이루어질 수 있다.
복수의 플라즈마 전극(PE) 각각은 하부 프레임(210)의 접지 전극(GE)과 소정 간격으로 나란하도록 가스 분사 공간(GSS)의 내부에 삽입 설치된다. 이러한 복수의 플라즈마 전극(PE) 각각은 플라즈마 전원 공급부(170)로부터 공급되는 플라즈마 전원에 따라 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고 제 2 가스 버퍼 공간(144)으로부터 공급되는 제 2 가스(G2)를 플라즈마 방전 공간(PDS)에 분사하여 제 2 가스(G2)를 활성화시킨다. 이를 위해, 복수의 플라즈마 전극(PE) 각각은, 도 2 내지 도 5에 도시된 바와 같이, 전극 프레임(251), 복수의 제 2 가스 공급 관(253), 제 2 가스 분사 부재(255), 및 복수의 전원 접속부(257)를 포함하여 구성된다.
전극 프레임(251)은 소정 길이를 가지는 직사각 형태의 단면을 가지도록 형성되어 접지 전극(GE)에 의해 마련되는 가스 분사 공간(GSS)의 내부에 삽입 배치된다. 상기 전극 프레임(251)의 양 측면은 접지 전극(GE)에 대향되고, 상기 전극 프레임(251)의 하면은 반원 형태의 단면을 가지도록 형성되고, 기판 지지부(120)의 상면으로부터 소정 거리로 이격되어 대향된다. 이러한 상기 전극 프레임(251)은 금속 재질로 이루어져 플라즈마 전원 공급부(170)로부터 공급되는 플라즈마 전원에 따라 플라즈마 방전 공간(PDS)에 플라즈마(P)를 발생시키는 역할을 한다.
본 발명에 따른 상기 플라즈마 방전 공간(PDS)은, 종래와 같이 플라즈마 전극과 기판 사이의 영역에 형성되는 것이 아니라, 서로 마주하는 플라즈마 전극(PE)과 접지 전극(GE) 사이에서 형성된다. 따라서, 본 발명에 따르면, 플라즈마 방전 공간(PDS)이 상기 기판 지지부(120)에 의해 지지되는 기판(S) 및/또는 기판(S)에 형성되는 박막과 중첩되지 않기 때문에, 플라즈마 방전에 의해서 기판(S)이 손상되고 기판(S) 상에 증착되는 막질이 떨어지는 문제가 해소될 수 있다.
특히, 도 2의 확대도에서 알 수 있듯이, 본 발명의 실시 예에 따르면, 플라즈마 전극(PE)과 접지 전극(GE) 사이의 거리보다 플라즈마 전극(EP)과 기판(S) 사이의 거리(d)가 더 크도록 함으로써 상기 플라즈마 방전에 의한 문제를 해결할 수 있다. 만약, 플라즈마 전극(PE)과 접지 전극(GE) 사이의 거리보다 플라즈마 전극(PE)과 기판(S) 사이의 거리(d)를 작게 할 경우, 플라즈마 전극(PE)과 기판(S)을 지지하는 기판 지지부(120) 사이에도 플라즈마 방전이 생길 수 있어 플라즈마 방전에 의해서 기판(S)에 악영향을 미칠 수 있다.
또한, 본 발명의 일 실시예에 따르면, 플라즈마 전극(PE)과 접지 전극(GE)이 기판(S)의 상면에 대해 수직 방향으로 돌출되어 있기 때문에, 플라즈마 방전에 의해서 생성되는 양이온 또는 전자가 기판(S) 면으로 이동하지 않고, 기판(S)의 상면에 평행한 방향인 플라즈마 전극(PE) 또는 접지 전극(GE) 방향으로 이동하고, 따라서 플라즈마 방전에 의한 기판(S) 영향을 최소화할 수 있다.
플라즈마 전극(PE), 즉 전극 프레임(251)의 하면과 접지 전극(GE)은 소정의 높이 차(h)를 가지도록 단차지게 배치된다. 즉, 전극 프레임(251)의 하면은 접지 전극(GE)의 하면보다 소정 높이(h)를 가지도록 기판(S) 쪽으로 돌출된다. 이렇게, 전극 프레임(251)의 하면과 접지 전극(GE)을 단차지도록 형성함으로써 서로 마주보는 전극 프레임(251)과 접지 전극(GE) 각각의 내측면 사이에 플라즈마 방전 공간(PDS)을 형성하지 않고, 단차진 전극 프레임(251)과 접지 전극(GE) 각각의 종단부 사이에 플라즈마 방전 공간(PDS)을 형성할 수 있다. 이에 따라, 전극 프레임(251)과 접지 전극(GE) 각각의 내측면 사이에 형성되는 플라즈마로 인해 이상 박막이 전극 프레임(251)과 접지 전극(GE) 각각의 내측면에 증착되는 것을 방지할 수 있다.
복수의 제 2 가스 공급 관(253)은 전극 프레임(251)의 상면에 수직하게 형성되어 하부 프레임(210)에 형성된 관 관통 홀(217)에 삽입됨으로써 전극 프레임(251)이 하부 프레임(210)의 하면에 수직하게 설치되도록 한다. 이때, 전극 프레임(251)의 상면에는 일정한 간격을 가지는 3개의 제 2 가스 공급 관(253)이 형성될 수 있다.
상기 복수의 제 2 가스 공급 관(253) 각각은 전극 프레임(251)에 형성되기 때문에 전극 프레임(251)과 전기적으로 접속되게 된다. 이에 따라, 접지 상태인 하부 프레임(210)과 상기 제 2 가스 공급 관(253)을 전기적으로 절연시키기 위해, 상기 복수의 제 2 가스 공급 관(253) 각각은 하부 프레임(210)의 하면에 설치되는 전극 절연 부재(260)를 관통하여 상기 관 관통 홀(217)에 삽입됨으로써 상기 전극 절연 부재(260)에 의해 하부 프레임(210)과 전기적으로 절연된다.
상기 복수의 제 2 가스 공급 관(253) 각각은 상기 관 관통 홀(217)에 삽입 결합되는 제 2 가스 전달 관(270)을 통해 제 2 가스 버퍼 공간(144)에 연통된다.
상기 제 2 가스 전달 관(270)은 절연체에 의해 둘러싸이도록 형성되어 상기 관 관통 홀(217)에 수직하게 삽입되어 제 2 가스 공급 관(253)에 결합되고, 제 1 가스 버퍼 공간(142)을 관통하여 상부 프레임(230)에 형성된 관 삽입 홀(239)에 삽입되어 제 2 가스 버퍼 공간(144)에 연통된다. 이에 따라, 상기 제 2 가스 공급 관(253)은 상기 제 2 가스 전달 관(270)을 통해 제 2 가스 버퍼 공간(144)에 연통됨으로써 제 2 가스 공급부(160)로부터 제 2 가스 버퍼 공간(144)에 공급되는 제 2 가스(G2)는 상기 제 2 가스 전달 관(270)과 제 2 가스 공급 관(253)을 통해 전극 프레임(251)의 내부로 공급된다.
제 2 가스 공급 관(253)과 상기 제 2 가스 전달 관(270) 사이는 오-링(O-Ring) 등과 같은 밀봉 부재에 의해 밀봉될 수 있으며, 상기 제 2 가스 전달 관(270)과 관 삽입 홀(239) 사이는 상기 밀봉 부재에 의해 밀봉될 수 있다.
제 2 가스 분사 부재(255)는 전극 프레임(251)에 형성되어 상기 제 2 가스 공급 관(253)을 통해 공급되는 제 2 가스(G2)를 플라즈마 방전 공간(PDS)에 분사한다. 이를 위해, 제 2 가스 분사 부재(255)는 복수의 제 2 가스 공급 홀(255a), 제 2 가스 분배 홀(255b), 및 복수의 제 2 가스 분사 홀(255c)을 포함하여 구성된다.
복수의 제 2 가스 공급 홀(255a) 각각은 복수의 제 2 가스 공급 관(253) 각각에 연통되도록 전극 프레임(251)의 내부에 수직하게 형성된다. 이에 따라, 복수의 제 2 가스 공급 홀(255a) 각각은 제 2 가스 공급 관(253)과 상기 제 2 가스 전달 관(270)을 통해 제 2 가스 버퍼 공간(144)에 연통됨으로써 제 2 가스 버퍼 공간(144)으로부터 제 2 가스(G2)를 공급 받는다.
제 2 가스 분배 홀(255b)은 전극 프레임(251)의 길이 방향을 따라 전극 프레임(251)의 하면 내부에 형성되어 상기 복수의 제 2 가스 공급 홀(255a) 각각에 연통된다. 이러한 제 2 가스 분배 홀(255b)에는 제 2 가스 공급 홀(255a)을 통해 공급되는 제 2 가스(G2)가 공급된다.
복수의 제 2 가스 분사 홀(255c) 각각은 상기 제 2 가스 분배 홀(255b)에 연통되도록 전극 프레임(251)의 하면을 관통하여 일정한 간격으로 형성된다. 이러한 복수의 제 2 가스 분사 홀(255c)은 제 2 가스 분배 홀(255b)에 의해 분배되는 제 2 가스(G2)를 하부 및 양측부 방향으로 분사한다. 이를 위해, 상기 제 2 가스 분사 홀(255c)는 중앙 홀(CH), 및 한 쌍의 측면 홀(SH1, SH2)을 포함하여 구성된다.
중앙 홀(CH)은 전극 프레임(251)의 하면 중앙부를 관통하여 상기 제 2 가스 분배 홀(255b)에 연통됨으로써 상기 제 2 가스 분배 홀(255b)을 통해 공급되는 제 2 가스(G2)를 기판 지지부(120)에 수직한 하부 방향으로 분사한다. 상기 중앙 홀(CH)을 통해 분사되는 제 2 가스(G2)는 전술한 전극 프레임(251)의 하부에 형성되는 플라즈마 방전 공간(PDS)의 일부 영역에 분사됨으로써 플라즈마 방전 공간(PDS)에 형성되는 플라즈마(P)에 의해 활성화되어 기판(S) 상에 분사된다.
한 쌍의 측면 홀(SH1, SH2) 각각은 중앙 홀(CH)을 기준으로 전극 프레임(251)의 하부 양측면 각각을 관통하여 상기 제 2 가스 분배 홀(255b)에 연통됨으로써 상기 제 2 가스 분배 홀(255b)을 통해 공급되는 제 2 가스(G2)를 인접한 접지 전극(GE)의 종단부 쪽으로 분사한다. 이때, 한 쌍의 측면 홀(SH1, SH2) 각각은 접지 전극(GE)의 하면에 마주보도록 형성된다.
상기 한 쌍의 측면 홀(SH1, SH2) 각각을 통해 분사되는 제 2 가스(G2)는 접지 전극(GE)의 하면 쪽으로 분사됨으로써 전술한 전극 프레임(251)과 접지 전극(GE) 각각의 종단부 사이에 형성되는 플라즈마 방전 공간(PDS)에 형성되는 플라즈마(P)에 의해 활성화되어 기판(S) 상에 분사된다. 이에 따라, 접지 전극(GE)과 플라즈마 전극(PE) 사이의 가스 분사 공간에 분사되는 제 1 가스(G1)가 접지 전극(GE)의 하면과 하측면에서 정체 또는 와류되는 것을 방지함으로써 접지 전극(GE)의 하부 영역에 이상 박막이 증착되는 것을 방지할 수 있다.
복수의 전원 접속부(257) 각각은 전극 프레임(251)의 상면에 수직하게 형성되어 하부 프레임(210)에 형성된 전극 접속 부재(215)에 삽입 결합되어 전기적으로 접속된다. 이러한 복수의 전원 접속부(257) 각각은 전극 프레임(251)을 지지함과 아울러 전극 프레임(251)에 플라즈마 전원을 공급하는 역할을 한다. 즉, 복수의 전원 접속부(257) 각각은, 도 6에 도시된 바와 같이, 하부 프레임(210)에 형성된 전극 접속 부재(215)에 삽입 결합되어 상기 전극 접속 부재(215)를 통해 플라즈마 전원 분배 부재(240)에 전기적으로 접속됨으로써 플라즈마 전원 분배 부재(240)로부터 분배되어 공급되는 플라즈마 전원을 전극 프레임(251)에 인가되도록 한다.
상기 복수의 전원 접속부(257) 각각과 전극 접속 부재(215) 사이는 오-링(O-Ring) 등과 같은 밀봉 부재에 의해 밀봉될 수 있으며, 상기 전극 접속 부재(215)와 하부 프레임(210) 사이는 상기 밀봉 부재에 의해 밀봉될 수 있다.
전술한 바와 같은 가스 분사 모듈(140)은 접지 전극(GE)과 플라즈마 전극(PE) 사이에 마련되는 가스 분사 공간에 제 1 가스(G1)를 분사하면서 플라즈마 전극(PE)에 플라즈마 전원을 인가하여 접지 전극(GE)과 플라즈마 전극(PE) 각각의 종단부 사이의 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고, 상기 플라즈마 전극(PE)의 제 2 가스 분사 홀(255)을 통해 플라즈마 방전 공간(PDS)에 제 2 가스(G2)를 분사함으로써 플라즈마 방전 공간(PDS)의 플라즈마(P)에 의해 활성화되는 제 2 가스(G2)를 기판(S) 상에 분사한다. 이에 따라, 기판(S) 상에는 활성화된 제 2 가스(G2)에 의해 소정의 박막이 증착되게 된다. 이때, 기판(S) 위에는, 도 7에 도시된 바와 같이, 접지 전극(GE)과 플라즈마 전극(PE)들이 교대로 나란하게 배치되기 때문에 활성화된 제 2 가스(G2)는 기판(S)의 상면 전영역에 걸쳐 분사되고 이로 인해 기판(S)의 상면 전영역에 걸쳐 균일한 두께의 박막이 형성되게 된다.
전술한 본 발명의 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(S) 또는 하나의 대면적 기판(S)을 기판 지지부(120)에 로딩하여 안착시킨다.
그런 다음, 제 1 가스 공급부(150)를 통해 제 1 가스(G1)를 가스 분사 모듈(140)의 제 1 가스 버퍼 공간(142)에 공급함으로써 제 1 가스 버퍼 공간(142)에 공급되는 제 1 가스(G1)를 하부 프레임(210)의 제 1 가스 분사 홀(219)을 통해 접지 전극(GE)과 플라즈마 전극(PE) 사이의 가스 분사 공간에 분사한다. 이와 같이 제 1 가스(G1)의 분사하면서, 플라즈마 전원 공급부(170)를 통해 플라즈마 전원을 플라즈마 전극(PE)에 공급한다. 이에 따라, 접지 상태인 접지 전극(GE)과 플라즈마 전원이 공급되는 플라즈마 전극(PE)에 의해 접지 전극(GE)과 플라즈마 전극(PE) 각각의 종단부 사이의 플라즈마 방전 공간(PDS)에 전기장이 형성되어 상기 플라즈마 방전 공간(PDS)에 플라즈마(P)가 형성된다.
상기 플라즈마(P)의 형성과 동시에 제 2 가스 공급부(160)를 통해 제 2 가스 버퍼 공간(144)에 제 2 가스(G2)를 공급하고, 제 2 가스 버퍼 공간(144)을 통해 플라즈마 전극(PE)의 제 2 가스 분사 홀(255)에 제 2 가스(G2)를 공급함으로써 제 2 가스 분사 홀(255)을 통해 플라즈마 방전 공간(PDS)에 제 2 가스(G2)를 분사한다. 이에 따라, 상기 제 2 가스(G2)는 플라즈마 방전 공간(PDS)에 형성되는 플라즈마(P)에 의해 활성화되어 기판(S) 상에 분사됨으로써 기판(S)의 상면에 증착되어 소정의 박막을 형성한다.
이상과 같은, 본 발명의 실시 예에 따른 기판 처리 장치 및 이용한 기판 처리 방법은 가스 분사 모듈(140)에 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 마련하고, 제 1 가스 버퍼 공간에 공급되는 제 1 가스(G1)를 이용하여 기판(S)의 상면으로부터 이격된 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고, 제 2 가스 버퍼 공간에 공급되는 제 2 가스(G)를 플라즈마 방전 공간(PDS)에 분사하여 플라즈마(P)에 따라 제 2 가스(G2)를 활성화시켜 기판(S)에 분사함으로써 기판(S)의 상면 전영역에 걸쳐 균일한 두께의 박막을 형성할 수 있다. 이에 따라, 본 발명은 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있으며, 제 1 및 제 2 가스(G1, G2)의 분리를 통해 접지 전극과 플라즈마 전극의 내벽에 이상 박막이 증착되는 것을 최소화할 수 있다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
110: 공정 챔버 120: 기판 지지부
130: 챔버 리드 140: 가스 분사 모듈
150: 제 1 가스 공급부 160: 제 2 가스 공급부
170: 플라즈마 전원 공급부 210: 하부 프레임
220: 지지 프레임 230: 상부 프레임
GE: 접지 전극 PE: 플라즈마 전극

Claims (15)

  1. 반응 공간을 제공하는 공정 챔버;
    상기 공정 챔버의 내부에 배치되어 기판을 지지하는 기판 지지부;
    상기 기판 지지부와 마주보도록 상기 공정 챔버의 상부에 설치된 챔버 리드; 및
    상기 챔버 리드의 하면에 설치되며, 제 1 및 제 2 가스가 분리되어 공급되도록 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 포함하여 이루어져 상기 제 2 가스를 활성화시켜 상기 기판에 분사하는 가스 분사 모듈을 포함하여 구성되고,
    상기 가스 분사 모듈은 상기 제 1 가스 버퍼 공간으로부터 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하고, 상기 제 2 가스 버퍼 공간으로부터 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 활성화시키는 것을 특징으로 하는 기판 처리 장치.
  2. 제 1 항에 있어서,
    상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 포함하여 구성되고,
    상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 하는 기판 처리 장치.
  3. 제 2 항에 있어서,
    상기 플라즈마 전극과 상기 접지 전극은 소정의 높이 차를 가지도록 단차진 것을 특징으로 하는 기판 처리 장치.
  4. 제 2 항에 있어서,
    상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스는 제 1 가스 분사 부재를 통해 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고,
    상기 제 2 가스 버퍼 공간에 공급되는 상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 부재를 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 하는 기판 처리 장치.
  5. 제 4 항에 있어서,
    상기 제 1 가스 분사 부재는,
    제 1 직경을 가지도록 형성되어 상기 제 1 가스 버퍼 공간에 연통된 제 1 가스 공급 홀; 및
    상기 제 1 직경보다 작은 제 2 직경을 가지도록 형성되어 상기 제 1 가스 공급 홀에 연통되면서 상기 가스 분사 공간에 연통된 제 1 가스 분사 홀을 포함하여 이루어지는 것을 특징으로 하는 기판 처리 장치.
  6. 제 4 항에 있어서,
    상기 가스 분사 부재는,
    상기 제 2 가스 버퍼 공간에 연통되도록 상기 플라즈마 전극의 내부에 수직하게 형성된 제 2 가스 공급 홀;
    상기 제 2 가스 공급 홀에 연통되도록 상기 플라즈마 전극의 길이 방향을 따라 상기 플라즈마 전극의 하부 내부에 형성된 제 2 가스 분배 홀; 및
    상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하부에 형성되어 상기 제 2 가스를 하부 및 양측부 방향으로 분사하는 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  7. 제 6 항에 있어서,
    상기 제 2 가스 분사 홀은,
    상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하면 중앙부에 형성되어 상기 제 2 가스를 하부 방향으로 분사하는 중앙 홀; 및
    상기 제 2 가스 분배 홀에 연통되도록 상기 중앙 홀을 기준으로 상기 플라즈마 전극의 하면 양측면 각각에 형성되어 상기 제 2 가스를 양측부 방향으로 분사하는 한 쌍의 측면 홀을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  8. 제 1 항에 있어서,
    상기 가스 분사 모듈은,
    상기 기판의 상면으로부터 이격되면서 일정한 간격을 가지도록 나란하게 돌출된 복수의 접지 전극을 가지는 하부 프레임;
    상기 제 1 가스 버퍼 공간이 마련되도록 상기 하부 프레임의 상면에 결합되고, 상기 제 2 가스 버퍼 공간이 마련되도록 상기 챔버 리드의 하면에 결합된 상부 프레임;
    상기 제 1 가스 버퍼 공간에 연통되도록 상기 하부 프레임에 형성되어 상기 접지 전극과 상기 플라즈마 전극 사이의 가스 분사 공간에 상기 제 1 가스를 분사하는 복수의 제 1 가스 분사 홀;
    상기 기판의 상면으로부터 이격되면서 상기 접지 전극들 사이에 배치되도록 상기 하부 프레임의 하면에 수직하게 설치된 복수의 플라즈마 전극;
    상기 하부 프레임의 하면에 설치되어 플라즈마 전원을 분배하여 상기 플라즈마 전극에 공급하는 플라즈마 전원 분배 부재; 및
    상기 제 2 가스 버퍼 공간에 연통되도록 상기 복수의 플라즈마 전극 각각의 내부에 형성되어 상기 제 2 가스를 상기 플라즈마 방전 공간에 분사하는 복수의 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  9. 제 8 항에 있어서,
    상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 하는 기판 처리 장치.
  10. 제 8 항에 있어서,
    상기 가스 분사 모듈은 상기 상부 프레임의 하면에 설치되어 상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스를 상기 제 1 가스 버퍼 공간의 내부로 확산시키는 가스 확산 부재를 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  11. 공정 챔버의 내부에 설치된 기판 지지부 상에 적어도 하나의 기판을 안착시키는 단계;
    상기 기판 지지부 상에 설치된 가스 분사 모듈의 제 1 가스 버퍼 공간에 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하는 단계; 및
    상기 제 1 가스 버퍼 공간과 공간적으로 분리된 상기 가스 분사 모듈의 제 2 가스 버퍼 공간에 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 상기 플라즈마를 통해 상기 제 2 가스를 활성화시켜 상기 기판의 상면에 증착시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 기판 처리 방법.
  12. 제 11 항에 있어서,
    상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 더 포함하여 이루어지고,
    상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 하는 기판 처리 방법.
  13. 제 11 항에 있어서,
    상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 더 포함하여 이루어지고,
    상기 플라즈마 방전 공간은 소정의 높이 차를 가지도록 단차진 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 하는 기판 처리 방법.
  14. 제 12 항에 있어서,
    상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스는 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고,
    상기 제 2 가스 버퍼 공간에 공급되는 상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 홀을 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 하는 기판 처리 방법.
  15. 제 14 항에 있어서,
    상기 제 2 가스는 제 2 가스 분사 홀에 의해 상기 플라즈마 전극의 하부 및 양측부 방향으로 분사되는 것을 특징으로 하는 기판 처리 방법.
KR1020120065731A 2012-06-19 2012-06-19 기판 처리 장치 및 기판 처리 방법 KR101351399B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120065731A KR101351399B1 (ko) 2012-06-19 2012-06-19 기판 처리 장치 및 기판 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120065731A KR101351399B1 (ko) 2012-06-19 2012-06-19 기판 처리 장치 및 기판 처리 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130087988A Division KR101844325B1 (ko) 2013-07-25 2013-07-25 기판 처리 장치 및 기판 처리 방법

Publications (2)

Publication Number Publication Date
KR20130142480A true KR20130142480A (ko) 2013-12-30
KR101351399B1 KR101351399B1 (ko) 2014-01-15

Family

ID=49986062

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120065731A KR101351399B1 (ko) 2012-06-19 2012-06-19 기판 처리 장치 및 기판 처리 방법

Country Status (1)

Country Link
KR (1) KR101351399B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004408A (ko) * 2014-06-30 2016-01-13 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
KR102126948B1 (ko) * 2019-05-16 2020-06-25 주식회사 메디플 플라즈마 발생기판 및 발생장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102408386B1 (ko) * 2018-04-06 2022-06-14 주식회사 원익아이피에스 기판처리장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423954B1 (ko) * 2001-03-19 2004-03-24 디지웨이브 테크놀러지스 주식회사 화학기상증착방법
KR20110008537A (ko) * 2009-07-20 2011-01-27 세메스 주식회사 원격 플라즈마 소스를 구비한 유기금속 화학 기상 증착 장치
KR20120053003A (ko) * 2009-07-22 2012-05-24 어플라이드 머티어리얼스, 인코포레이티드 할로우 캐소드 샤워헤드

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004408A (ko) * 2014-06-30 2016-01-13 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
KR102126948B1 (ko) * 2019-05-16 2020-06-25 주식회사 메디플 플라즈마 발생기판 및 발생장치
WO2020231136A1 (ko) * 2019-05-16 2020-11-19 주식회사 메디플 플라즈마 발생기판 및 발생장치

Also Published As

Publication number Publication date
KR101351399B1 (ko) 2014-01-15

Similar Documents

Publication Publication Date Title
KR102061749B1 (ko) 기판 처리 장치
KR102002042B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101503512B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101844325B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102180119B1 (ko) 기판처리장치
KR20140026824A (ko) 기판 처리 장치 및 기판 처리 방법
US20160153086A1 (en) Substrate processing apparatus
KR101887072B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20130133925A (ko) 기판 처리 장치 및 기판 처리 방법
KR101351399B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101954758B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101587053B1 (ko) 기판처리장치
KR101929481B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20140134246A (ko) 기판 처리 장치 및 기판 처리 방법
KR102046391B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101995717B1 (ko) 기판 처리 장치
KR20130080370A (ko) 기판 처리 장치 및 기판 처리 방법
KR101895838B1 (ko) 기판 처리 장치
KR102254808B1 (ko) 기판 처리 장치
KR20130141409A (ko) 기판 처리 장치 및 기판 처리 방법
KR102143146B1 (ko) 기판 처리 장치
KR102361069B1 (ko) 기판 처리 장치
KR102029952B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102362305B1 (ko) 기판 처리 장치
CN220317951U (zh) 一种腔室清洗装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161122

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 5