KR20130142329A - Reverse osmosis membrane with high flux and manufacturing method thereof - Google Patents

Reverse osmosis membrane with high flux and manufacturing method thereof Download PDF

Info

Publication number
KR20130142329A
KR20130142329A KR1020120065460A KR20120065460A KR20130142329A KR 20130142329 A KR20130142329 A KR 20130142329A KR 1020120065460 A KR1020120065460 A KR 1020120065460A KR 20120065460 A KR20120065460 A KR 20120065460A KR 20130142329 A KR20130142329 A KR 20130142329A
Authority
KR
South Korea
Prior art keywords
group
reverse osmosis
osmosis membrane
tri
formula
Prior art date
Application number
KR1020120065460A
Other languages
Korean (ko)
Other versions
KR101520150B1 (en
Inventor
권혜진
신정규
정승표
이필
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020120065460A priority Critical patent/KR101520150B1/en
Publication of KR20130142329A publication Critical patent/KR20130142329A/en
Application granted granted Critical
Publication of KR101520150B1 publication Critical patent/KR101520150B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention is a reverse osmosis membrane comprising porous supporter and a polyamide based active layer formed in the upper part of the porous supporter. The polyamide based active layer comprises the compound indicated as [Chemical formula 1]. In the chemical formula 1, R is C1-C2 alkyl group, benzoyl group, acryl group, penyl group, ether group, ester group, keton group, sulfide group, sulfon group, fulfoxide group, or phosphor diester.

Description

고유량 역삼투 분리막 및 그 제조 방법{REVERSE OSMOSIS MEMBRANE WITH HIGH FLUX AND MANUFACTURING METHOD THEREOF}High flow rate reverse osmosis membrane and its manufacturing method {REVERSE OSMOSIS MEMBRANE WITH HIGH FLUX AND MANUFACTURING METHOD THEREOF}

본 발명은 역삼투 분리막 및 그 제조 방법에 관한 것으로, 보다 구체적으로는, 폴리아미드계 활성층 제조시 다관능성 아민 화합물을 포함하는 역삼투 분리막 및 그 제조 방법에 관한 것이다.
The present invention relates to a reverse osmosis membrane and a method for producing the same, and more particularly, to a reverse osmosis membrane comprising a polyfunctional amine compound in the production of a polyamide-based active layer and a method for producing the same.

반투과성막으로 격리된 두 용액 사이의 농도 구배에 따라 용매가 농도가 낮은 용액에서 높은 용액 쪽으로 막을 통과하여 이동하면서 두 용액의 농도가 균일해지는 현상을 삼투 현상이라 하며, 이때 용매가 이동하면서 농도가 높은 용액 측에 작용하는 압력을 삼투압이라고 한다. 그러나, 삼투압보다 높은 외부 압력을 걸어주면 용매는 농도가 낮은 용액 쪽으로 역으로 이동하게 되는데, 이런 현상을 역삼투라고 한다. 역삼투 원리를 이용하여 압력 구배를 구동력으로 하여 반투과성 막을 사용하여 각종 염이나 유기 물질을 분리해낼 수 있으며, 이는 물을 정화시키거나, 또는 용질을 농축시키는데 이용되고 있다.
The osmotic phenomenon is called the osmotic phenomenon, in which the concentration of the two solutions becomes uniform as the solvent moves through the membrane from the low concentration solution to the high solution according to the concentration gradient between the two solutions separated by the semipermeable membrane. The pressure acting on the solution side is called osmotic pressure. However, applying an external pressure higher than the osmotic pressure causes the solvent to reverse to the lower concentration solution. This phenomenon is called reverse osmosis. The reverse osmosis principle uses a pressure gradient as a driving force to separate various salts or organic substances using a semipermeable membrane, which is used to purify water or to concentrate solutes.

이러한 역삼투 분리막은 염배제층과 다공성 지지체가 동일물질로 이루어져 있는 일체형의 비대칭막과 서로 다른 물질로 이루어진 복합막으로 구분할 수 있다. 비대칭막은 동일 물질을 사용하여 제조가 쉽고 가격이 저렴한 장점이 있으나, 염배제율이나 투과유량이 낮은 단점이 있는 반면, 복합막은 활성층의 소재를 용도에 따라 자유롭게 선택가능하고, 지지체와의 결합을 가교를 통해 견고히 할 수 있어 보다 우수한 내구성을 갖는다는 장점이 있다.
Such a reverse osmosis membrane can be classified into a monolithic asymmetric membrane composed of the same material as the salt exclusion layer and the porous support and a composite membrane composed of different materials. The asymmetric membrane has the advantage of being easy to manufacture and inexpensive using the same material, but has a disadvantage of low salt excretion rate and low permeation flow rate, whereas the composite membrane can freely select the material of the active layer according to the use and crosslink the bond with the support. Can be solidified through has the advantage of having more excellent durability.

역삼투 분리막의 대표적인 예로는, 폴리아미드계 역삼투 분리막을 들 수 있으며, 폴리아미드계 역삼투 분리막은 다공성 지지체 상에 폴리아미드 활성층을 형성하는 방법으로 제조되고 있으며, 보다 구체적으로는, 부직포 위에 폴리설폰층을 형성하여 다공성 지지체를 형성하고, 이 다공성 지지체를 m-페닐렌 디아민(m-Phenylene Diamine, mPD) 수용액에 침지시켜 mPD층을 형성하고, 이를 다시 트리메조일클로라이드(TriMesoyl Chloride, TMC) 유기 용매에 침지시켜 mPD층을 TMC와 접촉시켜 계면 중합시킴으로써 폴리아미드층을 형성하는 방법으로 제조되고 있다.
Representative examples of reverse osmosis membranes include polyamide reverse osmosis membranes, and polyamide reverse osmosis membranes are manufactured by forming a polyamide active layer on a porous support, and more specifically, on a nonwoven fabric A sulfone layer is formed to form a porous support, and the porous support is immersed in an aqueous solution of m-phenylene diamine (mPD) to form an mPD layer, which in turn is trimesoyl chloride (TMC). It is manufactured by the method of forming a polyamide layer by immersing in an organic solvent and making an mPD layer contact with TMC and interfacially polymerizing.

이러한 역삼투 분리막이 상업적으로 이용되기 위해서는 염제거율이 높아야 하며, 비교적 낮은 압력에서도 상대적으로 많은 양의 물을 통과시킬 수 있는 투과유량이 우수해야 한다. 따라서, 염배제율이 우수하면서도 높은 투과유량을 갖는 역삼투 분리막을 제조하기 위한 보다 경제적인 공법의 개발이 요구되고 있다.
In order for the reverse osmosis membrane to be used commercially, the salt removal rate must be high and the permeate flow rate that can pass a relatively large amount of water even at a relatively low pressure must be excellent. Therefore, there is a demand for the development of a more economical method for producing a reverse osmosis membrane having excellent salt rejection rate and high permeation flux.

본 발명은 염배제율이 우수하면서도 높은 투과유량을 갖는 역삼투 분리막 및 제조 방법을 제공하고자 한다.
The present invention is to provide a reverse osmosis membrane and a manufacturing method having a high salt excretion rate and a high permeate flow rate.

일 측면에서, 본 발명은 다공성 지지체; 및 상기 다공성 지지체의 상부에 형성되는 폴리아미드계 활성층을 포함하는 역삼투 분리막으로, 상기 폴리아미드계 활성층은 하기 [화학식1]로 표시되는 화합물을 포함하는 역삼투 분리막을 제공한다. In one aspect, the present invention is a porous support; And a reverse osmosis membrane comprising a polyamide-based active layer formed on the porous support, wherein the polyamide-based active layer provides a reverse osmosis membrane comprising a compound represented by the following [Formula 1].

[화학식1][Chemical Formula 1]

Figure pat00001
Figure pat00001

이때, 상기 R은 C1 ∼ C12 알킬기, 벤조일기, 아크릴기, 페닐기, 에테르기, 에스터기, 케톤기, 설파이드기, 술폰기, 설폭사이드기 또는 포스포 다이에스터 인 것이 바람직하다.
In this case, R is preferably a C1-C12 alkyl group, benzoyl group, acryl group, phenyl group, ether group, ester group, ketone group, sulfide group, sulfone group, sulfoxide group or phosphodiester.

이때, 상기 [화학식1]로 표시되는 화합물은 1,3,5-트리-4-아미노벤조익벤젠, 1,3,5-트리-4-아미노이써벤젠 및 1,3,5-트리-4-아미노에틸벤젠으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.
At this time, the compound represented by [Formula 1] is 1,3,5-tri-4-aminobenzoic benzene, 1,3,5-tri-4-aminotherbenzene and 1,3,5-tri-4 It is preferable that it is at least 1 type selected from the group which consists of -aminoethylbenzene.

다른 측면에서 본 발명은 다공성 지지체 상에 상기 [화학식1]로 표시되는 화합물을 포함하는 아민 수용액을 코팅하는 단계 및 상기 아민 수용액 코팅층 상에 아실할라이드를 포함하는 지방족 탄화 수소계 유기 용액에 접촉시키는 단계를 포함하는 역삼투 분리막의 제조 방법을 제공한다.
In another aspect, the present invention is a step of coating an amine aqueous solution containing the compound represented by the formula [1] on a porous support and contacting an aliphatic hydrocarbon-based organic solution containing an acyl halide on the amine aqueous solution coating layer It provides a method for producing a reverse osmosis membrane comprising a.

이때, 상기 아민 수용액은 [화학식1]로 표시되는 화합물을 0.2 내지 10 중량%의 함량으로 포함하는 것이 바람직하다.
At this time, the amine aqueous solution preferably comprises a compound represented by [Formula 1] in an amount of 0.2 to 10% by weight.

본 발명의 역삼투 분리막은 종래의 역삼투 분리막과 동등 혹은 그 이상의 염배제율을 지니면서도, 종래에 비해 높은 투과유량의 특성을 나타낸다.
The reverse osmosis membrane of the present invention has the same or higher salt rejection rate as the conventional reverse osmosis membrane, but exhibits a higher permeate flow rate than the conventional reverse osmosis membrane.

이하, 본 발명을 보다 구체적으로 설명한다.
Hereinafter, the present invention will be described more specifically.

본 발명의 역삼투 분리막은 (1) 다공성 지지체; 및 상기 다공성 지지체의 상부에 형성되는 (2) 폴리아미드계 활성층을 포함하는 역삼투 분리막으로, 상기 폴리아미드계 활성층은 하기 [화학식1]로 표시되는 화합물을 포함하는 것이 바람직하다.Reverse osmosis membrane of the present invention (1) a porous support; And (2) a polyamide-based active layer formed on the porous support, wherein the polyamide-based active layer preferably includes a compound represented by the following [Formula 1].

[화학식1][Chemical Formula 1]

Figure pat00002
Figure pat00002

이때, 상기 R은 C1 ∼ C12 알킬기, 벤조일기, 아크릴기, 페닐기, 에테르기, 에스터기, 케톤기, 설파이드기, 술폰기, 설폭사이드기 또는 포스포 다이에스터 인 것이 바람직하다.
In this case, R is preferably a C1-C12 alkyl group, benzoyl group, acryl group, phenyl group, ether group, ester group, ketone group, sulfide group, sulfone group, sulfoxide group or phosphodiester.

상기 (1) 다공성 지지체로는, 부직포와 같은 다공성 기재 상에 고분자 재료의 코팅층이 형성된 것을 사용할 수 있다. 상기 다공성 기재는 폴리아미드계 활성층이 잘 형성될 수 있도록 기공의 분포가 균일한 것이 바람직하다. 또한, 상기 고분자 재료로는, 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드 및 폴리비닐리젠플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 이 중에서도 특히 폴리설폰이 바람직하다.
As said (1) porous support body, what formed the coating layer of a polymeric material on the porous base material like a nonwoven fabric can be used. The porous substrate is preferably a uniform distribution of pores so that the polyamide-based active layer can be formed well. In addition, as the polymer material, for example, polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyetheretherketone, polypropylene, polymethylpentene, polymethyl chloride and polyvinyl Regenfluoride or the like may be used, but is not necessarily limited thereto. Of these, polysulfone is particularly preferable.

한편, 상기 (2) 폴리아미드계 활성층은 다관능성 아민 화합물과 아실 할라이드 화합물의 계면 중합체 의해 형성될 수 있으며, 이때 상기 다관능성 아민 화합물로 상기 [화학식1]로 표시되는 화합물을 사용하는 것이 바람직하다.
Meanwhile, the polyamide-based active layer (2) may be formed by an interfacial polymer of a polyfunctional amine compound and an acyl halide compound, and in this case, it is preferable to use a compound represented by the above [Formula 1] as the polyfunctional amine compound. .

상기 [화학식1]로 표시되는 화합물은 트리메조일 클로라이드 및 1-니트로벤젠을 이용하여 1,3,5-트리(4-나이트로벤조익)벤젠을 합성한 후 니트로젠 디옥사이드기를 아민기로 치환시켜 제조할 수 있다. 또한, 상기 니트로겐 디옥사이드기를 아민기로 치환하는 방법을 이용하여 다양한 R의 작용기를 갖는 상기 [화학식1]로 표시되는 화합물을 제조할 수 있다.
The compound represented by [Formula 1] is prepared by synthesizing 1,3,5-tri (4-nitrobenzoic) benzene using trimesoyl chloride and 1-nitrobenzene and then replacing the nitrogen dioxide group with an amine group can do. In addition, the compound represented by the above [Formula 1] having a functional group of various R can be prepared using a method of replacing the nitrogen dioxide group with an amine group.

이때, 상기 [화학식1]로 표시되는 화합물은 이로써 제한되는 것은 아니나, 예를 들면, 1,3,5-트리-4-아미노벤조익벤젠, 1,3,5-트리-4-아미노이써벤젠 및 1,3,5-트리-4-아미노에틸벤젠 또는 이들의 혼합물인 것이 바람직하다. 특히, 1,3,5-트리-4-아미노벤조익벤젠이 바람직하다.
At this time, the compound represented by the above [Formula 1] is not limited to this, for example, 1,3,5-tri-4-aminobenzoic benzene, 1,3,5-tri-4-aminotherbenzene And 1,3,5-tri-4-aminoethylbenzene or mixtures thereof. In particular, 1,3,5-tri-4-aminobenzoic benzene is preferable.

이때, 폴리아미드계 활성층 형성시 [화학식1]로 표시되는 화합물을 사용하면, 아민과 벤젠고리 사이의 R 작용기로 인하여 긴 사슬을 포함하는 표면을 형성할 수 있어, 종래 디아민계 화합물을 사용하여 형성한 중합면보다 상대적으로 큰 기공을 갖는 폴리아미드계 활성층이 형성될 수 있다. 또한, 상기 화합물은 반응기로 작용하는 아민기가 3개 포함하고 있어, 종래 디아민계 화합물을 사용하여 형성된 중합면보다 복잡한 3차원적 구조를 형성하여 표면적을 증가시키므로, 본 발명의 역삼투 분리막은 우수한 염배제율을 유지하면서 동시에 투수량이 향상되는 효과를 갖는다.
In this case, when the compound represented by [Formula 1] is used to form the polyamide-based active layer, the surface containing the long chain may be formed due to the R functional group between the amine and the benzene ring, and thus, the conventional diamine-based compound is formed. A polyamide-based active layer having pores relatively larger than one polymerized surface can be formed. In addition, since the compound contains three amine groups acting as a reactor, and forms a more complex three-dimensional structure than the polymerization surface formed using a conventional diamine-based compound to increase the surface area, the reverse osmosis membrane of the present invention is an excellent salt It has the effect of improving the water permeability while maintaining the rate.

본 발명자의 실험에 따르면, 상기와 같이 폴리아미드계 활성층의 제조시에 상기 [화학식1]로 표시되는 화합물을 사용하는 경우, 25℃, 800psi 에서, 초기 염배제율이 97 % 이상으로 종래 역삼투 분리막과 동등하거나 우수한 염배제율을 가지면서, 초기 투과 유량은 25 내지 36 gallon/ft2·day으로 종래 역삼투 분리막에 비해 보다 높은 투과유량을 갖는 것으로 나타났다.
According to the experiments of the present inventors, when using the compound represented by the above [Formula 1] in the preparation of the polyamide-based active layer as described above, at 25 ℃, 800psi, the initial salt excretion rate is 97% or more conventional reverse osmosis While having the same or superior salt rejection rate as the separator, the initial permeate flow rate was 25 to 36 gallon / ft 2 · day and was shown to have a higher permeate flow rate than the conventional reverse osmosis membrane.

보다 구체적으로 본 발명은 25℃, 800psi 에서, 초기 염배제율이 97% 이상이면서 초기 투과 유량은 26 내지 33gallon/ft2·day인 역삼투 분리막, 특히 초기 염배제율이 97% 이상이면서 초기 투과 유량은 28 내지 35gallon/ft2·day의 역삼투 분리막을 구현할 수 있다.
More specifically, the present invention is a reverse osmosis membrane having an initial salt rejection ratio of 97% or more and an initial permeation rate of 26 to 33 gallon / ft 2 · day, particularly at an initial salt rejection ratio of 97% or more, at 25 ° C. and 800 psi. The flow rate may implement a reverse osmosis membrane of 28 to 35 gallon / ft 2 · day.

다음으로 본 발명의 역삼투 분리막의 제조 방법에 대해 설명한다.
Next, the manufacturing method of the reverse osmosis membrane of this invention is demonstrated.

본 발명의 역삼투 분리막은 다공성 지지체 상에 상기 [화합물1]로 표시되는 화합물을 포함하는 아민 수용액을 코팅하는 단계 및 상기 아민 수용액 코팅층 상에 아실 할라이드를 포함하는 지방족 탄화 수소계 유기 용액에 접촉시키는 단계를 포함하여 제조될 수 있다.
The reverse osmosis membrane of the present invention comprises the steps of coating an aqueous amine solution containing the compound represented by the above [Compound 1] on a porous support and contacting an aliphatic hydrocarbon-based organic solution containing an acyl halide on the aqueous amine coating layer It can be prepared including the step.

이때, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 방법은 특별히 제한되지 않으며, 당해 기술 분야에 잘 알려진 역삼투막 제조 방법에 의해 수행될 수 있다.
At this time, the method of forming the polyamide active layer on the porous support is not particularly limited, and may be performed by a method for preparing a reverse osmosis membrane well known in the art.

상기 제조 방법에 있어서, 다공성 지지체에 상기 아민 수용액을 코팅하는 방법으로는 당해 기술 분야에서 잘 알려진 아민 수용액에 침지하는 딥 코팅, 스핀 코팅, 스프레이 코팅 등을 이용할 수 있다.
In the above production method, a dip coating, spin coating, spray coating, etc., immersed in an aqueous amine solution well known in the art may be used as a method of coating the aqueous amine solution on a porous support.

상기 아민 수용액은 상기 [화학식1]로 표시되는 화합물을 포함하는 것이 바람직하며, 이로써 제한되는 것은 아니나, 예를 들면, 1,3,5-트리-4-아미노벤조익벤젠, 1,3,5-트리-4-아미노이써벤젠 및 1,3,5-트리-4-아미노에틸벤젠 또는 이들의 혼합물 등을 포함할 수 있다. 특히, 1,3,5-트리-4-아미노벤조익벤젠이 바람직하다.
The aqueous amine solution preferably includes a compound represented by the above [Formula 1], but is not limited thereto, for example, 1,3,5-tri-4-aminobenzoic benzene, 1,3,5 -Tri-4-aminotherbenzene and 1,3,5-tri-4-aminoethylbenzene or mixtures thereof and the like. In particular, 1,3,5-tri-4-aminobenzoic benzene is preferable.

한편, 상기 아민 수용액은 상기 [화학식1]로 표시되는 화합물을 0.2 내지 10 중량%, 바람직하게는 0.5 내지 8 중량%, 특히 바람직하게는 0.8 내지 9 중량%의 함량으로 포함할 수 있다. 이때, 0.2 중량% 미만으로 첨가될 경우, 다공성 지지체 위에 흡착되는 아민의 농도가 낮아 폴리이미드계 활성층이 얇게 형성되어 염제거율의 효과가 미미하고, 10 중량%를 초과하여 첨가되는 경우, 과량의 아민이 다공성 지지체 위에 흡착되어 폴리이미드계 활성층이 두껍게 형성되어 투과유량이 낮아질 수 있다.
On the other hand, the amine aqueous solution may contain the compound represented by the above [Formula 1] in an amount of 0.2 to 10% by weight, preferably 0.5 to 8% by weight, particularly preferably 0.8 to 9% by weight. At this time, when added in less than 0.2% by weight, the concentration of the amine adsorbed on the porous support is low, the polyimide active layer is thinly formed, the effect of the salt removal rate is insignificant, when added in excess of 10% by weight, excess amine Adsorbed on the porous support, the polyimide-based active layer is formed thick, and thus the permeation flow rate may be lowered.

다음으로, 상기 아민 수용액으로 코팅된 다공성 지지체의 일측면에 폴리아미드계 활성층을 형성하는 단계는 상기 코팅층이 형성된 다공성 지지체와 아실할라이드를 포함하는 지방족 탄화수소계 유기용액을 접촉함으로써 수행될 수 있다. 이때, 상기 접촉은, 당해 기술 분야에 잘 알려진 방법들, 예를 들면 침지(dipping) 또는 스프레이 방법에 의해 수행될 수 있으나, 반드시 이들로 제한되는 것은 아니다.
Next, forming the polyamide-based active layer on one side of the porous support coated with the amine aqueous solution may be performed by contacting an aliphatic hydrocarbon-based organic solution including an acyl halide with the porous support having the coating layer formed thereon. In this case, the contact may be performed by methods well known in the art, for example, dipping or spraying, but is not necessarily limited thereto.

한편, 상기 지방족 탄화수소계 유기용액은 이로써 제한 되는 것은 아니나, 예를 들면, 트리메조일클로라이드, 이소프탈로일클로라이드, 테레프탈로일클로라이드 또는 이들의 혼합물인 것이 바람직하다. 이때 사용되는 지방족 탄화수소 용매는 상기 계면 중합반응에 참여하지 않아야 하고 아실할라이드와 반응하지 않아야 하며 초기 다공성 지지체에 영향을 주지 않아야 한다.
On the other hand, the aliphatic hydrocarbon-based organic solution is not limited to this, for example, it is preferable that the trimezoyl chloride, isophthaloyl chloride, terephthaloyl chloride or a mixture thereof. The aliphatic hydrocarbon solvent used should not participate in the interfacial polymerization, not with acyl halides and should not affect the initial porous support.

이후 상기 폴리아미드계 활성층이 형성된 다공성 지지체는 건조와 세척의 후처리 공정이 부가될 수 있다. 이때, 건조와 세척단계는 특별히 제한되지 아니하고, 당해 기술 분야에서 통상적으로 사용하는 공정을 적용할 수 있다.
After the porous support on which the polyamide-based active layer is formed, a post-treatment process of drying and washing may be added. At this time, the drying and washing step is not particularly limited, it is possible to apply a process commonly used in the art.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.

실시예Example 1 One

DMF(N,N-디메틸포름아미드) 용액에 18중량%의 폴리술폰 고형분을 넣고 80 ~ 85℃에서 12시간 이상 녹여 균일한 액상이 얻었다. 이 용액을 폴리에스테르 재질의 95 ~ 100㎛ 두께의 부직포 위에 45 ~ 50㎛ 두께로 캐스팅 한 후 다공성 폴리술폰 지지체를 형성하였다.18 wt% of polysulfone solids were added to a DMF (N, N-dimethylformamide) solution and dissolved at 80 to 85 ° C. for at least 12 hours to obtain a uniform liquid phase. The solution was cast to a thickness of 45 to 50 μm on a polyester nonwoven fabric having a thickness of 95 to 100 μm, and then a porous polysulfone support was formed.

상기 방법으로 제조된 다공성 폴리술폰 지지체를 1,3,5-트리-4-아미노벤조익벤젠(1,3,5-tri(4-aminobenzoic)benzene, TAB) 1중량%를 포함하는 아민 수용액에 2분 동안 담갔다 꺼낸 후, 지지체 상의 과잉의 수용액을 압착롤러를 이용하여 제거하고, 상온에서 1분간 건조하였다.The porous polysulfone support prepared by the above method was prepared in an amine aqueous solution containing 1% by weight of 1,3,5-tri-4-aminobenzoic benzene (1,3,5-tri (4-aminobenzoic) benzene, TAB). After soaking for 2 minutes, the excess aqueous solution on the support was removed using a compression roller, and dried at room temperature for 1 minute.

그런 다음, 상기 지지체를 ISOL-C(SK Chem.)용매를 사용한 0.1중량%의 트리메조일클로라이드 유기 용액에 1분간 담갔다가 꺼내고, 60℃ 오븐에서 10분간 건조하였다. 그런 다음, 0.2중량% 탄산나트륨 수용액에서 상온에서 2시간 이상 수세한 후, 증류수로 수세하여 역삼투 분리막을 제조하였다.
Then, the support was immersed for 1 minute in an organic solution of 0.1% by weight of trimezoyl chloride using ISOL-C (SK Chem.) Solvent, then taken out, and dried in an oven at 60 ℃. Then, after washing with 0.2% by weight aqueous sodium carbonate solution at room temperature for 2 hours or more, washed with distilled water to prepare a reverse osmosis membrane.

실시예Example 2  2

아민 수용액에 TAB를 2중량% 포함한 점 외에는 실시예 1과 동일한 방법으로 역삼투 분리막을 제조하였다.
Reverse osmosis membrane was prepared in the same manner as in Example 1 except that the aqueous amine solution contained 2% by weight of TAB.

실시예Example 3 3

아민 수용액에 TAB를 3중량% 포함한 점 외에는 실시예 1과 동일한 방법으로 역삼투 분리막을 제조하였다.
Reverse osmosis membranes were prepared in the same manner as in Example 1, except that 3 wt% TAB was included in the amine aqueous solution.

실시예Example 4  4

아민 수용액에 TAB를 4중량% 포함한 점 외에는 실시예 1과 동일한 방법으로 역삼투 분리막을 제조하였다.
A reverse osmosis membrane was prepared in the same manner as in Example 1 except that 4 wt% of TAB was included in the aqueous amine solution.

실시예Example 5 5

아민 수용액에 TAB를 5중량% 포함한 점 외에는 실시예 1과 동일한 방법으로 역삼투 분리막을 제조하였다.
Reverse osmosis membranes were prepared in the same manner as in Example 1, except that 5 wt% of TAB was included in the amine aqueous solution.

비교예Comparative Example 1  One

아민 수용액에 TAB 대신 메타페닐렌디아민(m-phenylenediamine, mPD) 2중량%를 포함한 점 외에는 실시예 1과 동일한 방법으로 역삼투 분리막을 제조하였다.
Reverse osmosis membrane was prepared in the same manner as in Example 1 except that the aqueous solution of amine contained 2 wt% of metaphenylenediamine (mPD) instead of TAB.

실험예Experimental Example 1 - 정수 성능 평가 1-integer performance evaluation

상기 실시예 1 ~ 5 및 비교예 1에 의해 제조된 역삼투 분리막의 초기 염 배제율 및 초기 투과 유량을 측정하였다. 초기 염배제율과 초기 투과 유량은 25℃에서 32,000ppm의 염화나트륨 수용액을 4500mL/min의 유량으로 공급하면서 측정하였다. 막 평가에 사용한 역삼투 분리막 셀 장치는 GE Osmoisis의 Sepa CF II 셀로서 평판형 투과셀과 고압펌프, 저장조 및 냉각 장치를 구비하였으며, 평판형 투과 셀의 구조는 크로스-플로우(cross-flow) 방식으로 유효 투과면적은 140cm2이다. 세척한 역삼투 분리막을 투과셀에 설치한 다음, 평가 장비의 안정화를 위하여 3차 증류수를 이용하여 1시간 정도 충분히 예비 운전을 실시하였다. 그런 다음, 32,000ppm의 염화나트륨 수용액으로 교체하여 압력과 투과 유량이 정상 상태에 이를 때까지 1시간 정도 장비 운전을 실시한 후, 10분간 투과되는 물의 양을 측정하여 유량을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염배제율을 계산하였다. 측정 결과는 하기 [표 1]에 나타내었다.
The initial salt rejection rate and initial permeation flux of the reverse osmosis membranes prepared by Examples 1 to 5 and Comparative Example 1 were measured. The initial salt rejection rate and the initial permeate flow rate were measured while supplying 32,000 ppm aqueous sodium chloride solution at 25 ° C at a flow rate of 4500 mL / min. The reverse osmosis membrane cell device used for the membrane evaluation was a Sepa CF II cell of GE Osmoisis, which was equipped with a flat plate permeation cell, a high pressure pump, a storage tank, and a cooling device. The structure of the flat plate permeation cell was cross-flow type. The effective transmission area is 140 cm 2 . After the washed reverse osmosis membrane was installed in the permeation cell, preliminary operation was sufficiently performed for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Then, the apparatus was operated for about 1 hour until the pressure and permeate flow rate reached a steady state by replacing with 32,000 ppm sodium chloride aqueous solution. Then, the flow rate was calculated by measuring the amount of water permeated for 10 minutes, and the conductivity was measured with a Conductivity Meter ) Was used to calculate the salt rejection rate by analyzing the salt concentration before and after permeation. The measurement results are shown in Table 1 below.

초기 염배제율(%)Initial salt exclusion rate (%) 초기 투과유량(gallon/ft2·day)Initial permeate flow (gallon / ft 2 · day) 실시예 1Example 1 97.097.0 25.525.5 실시예 2Example 2 98.198.1 31.231.2 실시예 3Example 3 98.198.1 35.835.8 실시예 4Example 4 97.997.9 32.432.4 실시예 5Example 5 97.997.9 28.528.5 비교예 1Comparative Example 1 96.896.8 20.620.6

Claims (6)

다공성 지지체; 및
상기 다공성 지지체의 상부에 형성되는 폴리아미드계 활성층을 포함하는 역삼투 분리막으로,
상기 폴리아미드계 활성층은 하기 [화학식1]로 표시되는 화합물을 포함하는 역삼투 분리막.
[화학식1]
Figure pat00003

이때, 상기 R은 C1 ∼ C12 알킬기, 벤조일기, 아크릴기, 페닐기, 에테르기, 에스터기, 케톤기, 설파이드기, 술폰기, 설폭사이드기 또는 포스포 다이에스터임.
A porous support; And
Reverse osmosis membrane comprising a polyamide-based active layer formed on the porous support,
The polyamide-based active layer is a reverse osmosis membrane comprising a compound represented by the following [Formula 1].
[Chemical Formula 1]
Figure pat00003

In this case, R is a C1-C12 alkyl group, benzoyl group, acryl group, phenyl group, ether group, ester group, ketone group, sulfide group, sulfone group, sulfoxide group or phosphodiester.
제1항에 있어서,
상기 [화학식1]로 표시되는 화합물은 1,3,5-트리-4-아미노벤조익벤젠, 1,3,5-트리-4-아미노이써벤젠 및 1,3,5-트리-4-아미노에틸벤젠으로 이루어진 군에서 선택되는 1종 이상인 역삼투 분리막.
The method of claim 1,
The compound represented by [Formula 1] is 1,3,5-tri-4-aminobenzoic benzene, 1,3,5-tri-4-aminotherbenzene and 1,3,5-tri-4-amino Reverse osmosis membrane is one or more selected from the group consisting of ethylbenzene.
제 1 항 내지 제 2 항 중 어느 한 항에 있어서,
상기 역삼투 분리막은, 25℃, 800psi에서, 초기 염배제율이 97 % 이상, 초기 투과 유량이 25 내지 36 gallon/ft2·day인 역삼투 분리막.
3. The method according to any one of claims 1 to 2,
The reverse osmosis membrane, the reverse osmosis membrane at 25 ℃, 800psi, the initial salt rejection rate is 97% or more, the initial permeation flow rate is 25 to 36 gallon / ft 2 · day.
다공성 지지체 상에 하기 [화학식1]로 표시되는 화합물을 포함하는 아민 수용액을 코팅하는 단계; 및
상기 아민 수용액 코팅층 상에 아실할라이드를 포함하는 지방족 탄화 수소계 유기 용액에 접촉시키는 단계를 포함하는 역삼투 분리막의 제조 방법.
[화학식1]
Figure pat00004

이때, 상기 R은 C1 ∼ C12 알킬기, 벤조일기, 아크릴기, 페닐기, 에테르기, 에스터기, 케톤기, 설파이드기, 술폰기, 설폭사이드기 또는 포스포 다이에스터임.
Coating an aqueous amine solution containing a compound represented by the following [Formula 1] on the porous support; And
Method for producing a reverse osmosis membrane comprising the step of contacting an aliphatic hydrocarbon-based organic solution containing an acyl halide on the aqueous amine coating layer.
[Chemical Formula 1]
Figure pat00004

In this case, R is a C1-C12 alkyl group, benzoyl group, acryl group, phenyl group, ether group, ester group, ketone group, sulfide group, sulfone group, sulfoxide group or phosphodiester.
제 4항에 있어서,
상기 [화학식1]로 표시되는 화합물은 1,3,5-트리-4-아미노벤조익벤젠, 1,3,5-트리-4-아미노이써벤젠 및 1,3,5-트리-4-아미노에틸벤젠으로 이루어진 군에서 선택되는 1종 이상인 역삼투 분리막의 제조 방법.
5. The method of claim 4,
The compound represented by [Formula 1] is 1,3,5-tri-4-aminobenzoic benzene, 1,3,5-tri-4-aminotherbenzene and 1,3,5-tri-4-amino Method for producing a reverse osmosis membrane is one or more selected from the group consisting of ethylbenzene.
제 4항에 있어서,
상기 아민 수용액은 [화학식1]로 표시되는 화합물을 0.2 내지 10 중량%의 함량으로 포함하는 역삼투 분리막의 제조 방법.
5. The method of claim 4,
The amine aqueous solution is a method for producing a reverse osmosis membrane comprising the compound represented by the formula [1] in an amount of 0.2 to 10% by weight.
KR1020120065460A 2012-06-19 2012-06-19 Reverse osmosis membrane with high flux and manufacturing method thereof KR101520150B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120065460A KR101520150B1 (en) 2012-06-19 2012-06-19 Reverse osmosis membrane with high flux and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120065460A KR101520150B1 (en) 2012-06-19 2012-06-19 Reverse osmosis membrane with high flux and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20130142329A true KR20130142329A (en) 2013-12-30
KR101520150B1 KR101520150B1 (en) 2015-05-13

Family

ID=49985935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120065460A KR101520150B1 (en) 2012-06-19 2012-06-19 Reverse osmosis membrane with high flux and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101520150B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2477427A1 (en) 2002-03-01 2003-09-12 Ge Osmonics, Inc. A process for preparing semipermeable membranes having improved permeability
KR100680111B1 (en) * 2005-12-05 2007-02-07 웅진코웨이주식회사 Polyamide reverse osmosis composite membrane and preparation method thereof

Also Published As

Publication number Publication date
KR101520150B1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
KR101432218B1 (en) Reveres osmosis membrane having properties of high salt rejection and high flux and manufacturing method thereof
KR101517686B1 (en) Polyamide-based water-treatment membrane having an excellent antifouling property and manufacturing method thereof
KR101546244B1 (en) Water treatment membrane having a high chlorine resistance and a high permeability and method of manufacturing the same
KR101394317B1 (en) High flux reverse osmosis membrane comprising carbodiimide compound and manufacturing method thereof
US20150068963A1 (en) Reverse osmosis membrane having high initial permeate flux and method of manufacturing the same
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR102097849B1 (en) Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
KR20100078822A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
KR20150016019A (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
KR101520150B1 (en) Reverse osmosis membrane with high flux and manufacturing method thereof
KR20170064425A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR102212132B1 (en) Separation membrane, composition for active layer of separation membrane, and method for separation membrane
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
KR101946983B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20190065655A (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR101569964B1 (en) Reverse osmosis membrane and method for manufacturing the same
KR20220011999A (en) Composition for forming active layer of reverse osmosis membrane, preparation method for reverse osmosis membrane, reverse osmosis membrane, and water treatment module
KR20170021579A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20180040962A (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR101474062B1 (en) Reverse osmosis membrane and method of manufacturing the same
US20140034569A1 (en) Reverse osmosis membrane having high initial permeate flux
KR101847689B1 (en) Water-treatment membrane, method for manufacturing for the same, and water treatment module comprising the same
KR20220013744A (en) Method for manufacturing water treatment membrane, water treatment membrane, and water treatment module

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 5