KR20130137437A - Azodicarbonamide composition and method for preparing the same - Google Patents

Azodicarbonamide composition and method for preparing the same Download PDF

Info

Publication number
KR20130137437A
KR20130137437A KR1020120061055A KR20120061055A KR20130137437A KR 20130137437 A KR20130137437 A KR 20130137437A KR 1020120061055 A KR1020120061055 A KR 1020120061055A KR 20120061055 A KR20120061055 A KR 20120061055A KR 20130137437 A KR20130137437 A KR 20130137437A
Authority
KR
South Korea
Prior art keywords
azodicarbonamide
oxide
adca
chlorine
weight
Prior art date
Application number
KR1020120061055A
Other languages
Korean (ko)
Other versions
KR101966951B1 (en
Inventor
한상진
조용연
김용태
김영기
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020120061055A priority Critical patent/KR101966951B1/en
Priority to CN201310226608.1A priority patent/CN103483227B/en
Publication of KR20130137437A publication Critical patent/KR20130137437A/en
Application granted granted Critical
Publication of KR101966951B1 publication Critical patent/KR101966951B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/06Compounds containing any of the groups, e.g. semicarbazides
    • C07C281/08Compounds containing any of the groups, e.g. semicarbazides the other nitrogen atom being further doubly-bound to a carbon atom, e.g. semicarbazones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/02Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides
    • C07C245/04Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Disclosed is a method for manufacturing an azodicarbonamide composition useful as a blowing agent by using an oxide catalyst. The method for manufacturing an azodicarbonamide composition is to manufacture azodicarbonamide (ADCA) by making hydrazodicarbonamide (HDCA) react with chlorine (Cl2) in the presence of oxide particles. Also the azodicarbonamide composition comprises 10 to 99.9 wt% of azodicarbonamide crystal particles; and 0.1 to 90 wt% of oxide particles dispersed evenly throughout the azodicarbonamide crystal particles wherein it is desired that the oxide is the oxide of an element selected from the group consisting of Si, Al, Zn, Ti, Na, K, Mg, Ca and C.

Description

아조디카본아미드 조성물 및 그 제조 방법{Azodicarbonamide composition and method for preparing the same}Azodicarbonamide composition and method for preparing the same [0002]

본 발명은 아조디카본아미드 조성물 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는, 발포제로서 유용한 아조디카본아미드 조성물을 산화물 촉매를 이용하여 제조하는 방법에 관한 것이다.
The present invention relates to an azodicarbonamide composition and a process for producing the azodicarbonamide composition, and more particularly, to a process for producing an azodicarbonamide composition useful as a foaming agent using an oxide catalyst.

아조디카본아미드(Azodicarbonamide: ADCA)는 폴리에틸렌, 폴리프로필렌, 에틸렌-비닐아세테이트 공중합체(EVA), 폴리염화비닐, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무 등의 열가소성 수지, 고무 등에 대한 발포제로서 널리 사용되고 있다. 아조디카본아미드는 통상 하이드라조디카본아미드(Hydrazodicarbon amide, HDCA)를 염소(Chlorine, Cl2)로 산화시켜 제조한다. 아조디카본아미드를 염소로 산화시키는 기존의 공정에서는, 일부 염소가 기상(gas phase)으로 방출되므로, 과량의 염소가 사용되어야 하고, 반응에도 4시간 이상의 장시간이 소요된다. 또한, 아조디카본아미드와 함께 강산인 염산이 부산물로 생성되므로, 부산물(폐수)의 중화에도 다량의 알칼리 화합물이 필요한 단점이 있다.
Azodicarbonamide (ADCA) is a foaming agent for thermoplastic resins such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer (EVA), polyvinyl chloride, styrene-butadiene rubber and acrylonitrile- Widely used. The azodicarbonamide is usually prepared by oxidation of hydrazodicarbon amide (HDCA) with chlorine (Cl 2 ). In the conventional process of oxidizing azodicarbonamide to chlorine, since some chlorine is released into the gas phase, an excess amount of chlorine must be used, and a long time of 4 hours or more is required for the reaction. In addition, since hydrochloric acid, which is a strong acid with azodicarbonamide, is produced as a by-product, there is a disadvantage in that a large amount of an alkaline compound is required to neutralize by-products (wastewater).

따라서, 본 발명의 목적은, 염소의 사용량을 감소시킬 수 있을 뿐만 아니라, 반응 시간을 단축시킬 수 있는 아조디카본아미드 조성물의 제조 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a process for producing an azodicarbonamide composition which can reduce the amount of chlorine used and shorten the reaction time.

본 발명의 다른 목적은, 경제적 및 환경적으로 바람직한 아조디카본아미드 조성물의 제조 방법을 제공하는 것이다.It is another object of the present invention to provide a process for preparing an azodicarbonamide composition which is economically and environmentally preferable.

본 발명의 또 다른 목적은, 발포되는 수지 내에서의 흐름성이 우수하여, 별도의 흐름성 개선제를 첨가할 필요가 없는 아조디카본아미드 조성물을 제공하는 것이다.
It is still another object of the present invention to provide an azodicarbonamide composition which is excellent in flowability in a resin to be foamed and does not require the addition of a flow improver.

상기 목적을 달성하기 위하여, 본 발명은, 산화물 입자의 존재 하에서, 하이드라조디카본아미드(HDCA)와 염소(Cl2)를 반응시켜, 아조디카본아미드(ADCA)를 제조하는 것을 특징으로 하는 아조디카본아미드 조성물의 제조 방법을 제공한다.In order to attain the above object, the present invention provides an azo dicarboxylic acid compound (hereinafter, referred to as " azo compound ") which is prepared by reacting hydrazodicarbonamide (HDCA) with chlorine (Cl 2 ) A method for preparing a dicarbonamide composition is provided.

또한, 본 발명은, 아조디카본아미드 결정 입자 10 내지 99.9 중량%; 및 상기 아조디카본아미드 결정 입자에 균일하게 분산된 산화물 입자 0.1 내지 90 중량%를 포함하는 아조디카본아미드 조성물을 제공한다.
Further, the present invention relates to a process for producing an azodicarbonamide crystal comprising 10 to 99.9% by weight of azodicarbonamide crystal grains; And 0.1 to 90% by weight of oxide particles uniformly dispersed in the azodicarbonamide crystal grains.

본 발명에 따른 아조디카본아미드 조성물의 제조 방법은, 반응 속도가 매우 빠르고, 염소 사용량이 적기 때문에, 아조디카본아미드의 생산성이 우수할 뿐만 아니라, 생산된 아조디카본아미드는 발포되는 수지 내에서의 흐름성이 우수한 장점이 있다.
The process for producing an azodicarbonamide composition according to the present invention is not only excellent in the productivity of azodicarbonamide because the reaction rate is very fast and the amount of chlorine used is small and the produced azodicarbonamide is used in a resin to be foamed Which is advantageous in terms of flowability.

도 1은, 본 발명에 따른 아조디카본아미드 조성물에 있어서, 아조디카본아미드 결정 입자의 내부에, 산화물이 균일하게 내포되어 있는 상태를 보여주는 사진.
도 2는, 본 발명에 따른 아조디카본아미드 조성물에 있어서, 아조디카본아미드 결정 입자의 외부 표면에, 산화물이 균일하게 분산되어 있는 상태를 보여주는 사진.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a photograph showing a state in which an oxide is uniformly contained in an azodicarbonamide crystal grain in an azodicarbonamide composition according to the present invention. FIG.
2 is a photograph showing a state in which oxides are uniformly dispersed on the outer surface of the azodicarbonamide crystal grains in the azodicarbonamide composition according to the present invention.

이하, 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에 따른 아조디카본아미드 조성물의 제조 방법은, 하기 반응식 1에 나타낸 바와 같이, 산화물 입자의 존재 하에서, 하이드라조디카본아미드(HDCA)와 염소(Cl2)를 반응시켜, 아조디카본아미드(ADCA)를 제조하는 것을 특징으로 한다. The process for preparing an azodicarbonamide composition according to the present invention comprises reacting hydrazodicarbonamide (HDCA) with chlorine (Cl 2 ) in the presence of oxide particles to form azodicarbonamide (ADCA).

[반응식 1][Reaction Scheme 1]

Figure pat00001

Figure pat00001

여기서, 상기 산화물은, 그 표면 또는 공극에 반응물(산화제)인 염소를 흡착하여, 염소의 체류 시간을 증가시킴으로써, 하이드라조디카본아미드와 염소의 반응성을 향상시키는 촉매의 역할을 한다. 상기 산화물은, Si, Al, Zn, Ti, Na, K, Mg, Ca 및 C로 이루어진 군으로부터 선택되는 원소의 산화물인 것이 바람직하고, 예를 들면 퓸드 실리카(fumed silica), 겔 타입(Gel type) 실리카, 제올라이트(Zeolite), 등의 실리카(SiO2), 산화알루미늄, 산화아연, 산화티탄 등 일 수 있다. 또한, 상기 산화물은 다양한 형태를 가질 수 있고, 바람직하게는 비표면적(B. E. T.)이 50 m2/g 이상, 더욱 바람직하게는 비표면적이 50 내지 2,000 m2/g, 가장 바람직하게는 비표면적이 50 내지 1,000 m2/g 인 무기물인 것이 바람직하다. 여기서, 상기 산화물의 비표면적인 너무 작으면, 염소의 체류 시간 증가 효과가 불충분할 우려가 있고, 상기 산화물의 비표면적인 너무 크면, 특별한 이득이 없이, 산화물이 쉽게 파손될 우려가 있다. 상기 산화물의 크기는 특별히 한정하지 않으나, 통상 10 nm 내지 100 ㎛, 바람직하게는 0.1 내지 50 ㎛ 이다. 여기서, 상기 산화물의 크기가 너무 작으면, 생성 염산에 의해 표면적이 감소할 우려가 있고, 상기 산화물의 크기가 너무 크면, 생성되는 ADCA가 상기 산화물과 분리되어 형성될 우려가 있다. 상기 산화물의 사용량은, 생성되는 아조디카본아미드(ADCA) 조성물에 있어서, 상기 아조디카본아미드 결정 입자의 함량이 10 내지 99.9 중량%, 바람직하게는 40 내지 99.5 중량%, 더욱 바람직하게는 50 내지 99 중량%이고, 상기 산화물의 함량이 0.1 내지 90 중량%, 바람직하게는 0.5 내지 60 중량%, 더욱 바람직하게는 1 내지 50 중량%가 되도록 적절히 첨가될 수 있다. 일반적으로, 하이드라조디카본아미드(HDCA)로부터 아조디카본아미드(ADCA)로의 수율은 90% 정도이고, 반응에 사용된 산화물은 모두 아조디카본아미드에 분산되는 것으로 볼 수 있으므로, 아조디카본아미드(ADCA)에 최종적으로 분산되는 산화물 함량에 비하여, 약 10% 정도 소량의 산화물을 하이드라조디카본아미드(HDCA)와 염소의 반응에 투입할 수 있다. 여기서, 상기 산화물의 사용량이 너무 작으면, 염소의 체류 시간 증가 효과가 불충분할 우려가 있고, 너무 많으면 단위 가스 발생량이 감소될 우려가 있다.
Here, the oxide serves as a catalyst for improving the reactivity of hydrazodicarbonamide with chlorine by increasing the residence time of chlorine by adsorbing chlorine, which is a reactant (oxidizing agent), on the surface or pore thereof. The oxide is preferably an oxide of an element selected from the group consisting of Si, Al, Zn, Ti, Na, K, Mg, Ca and C, and examples thereof include fumed silica, (SiO 2 ) such as silica, zeolite, aluminum oxide, zinc oxide, titanium oxide, and the like. The oxide may have various shapes and preferably has a specific surface area (BET) of 50 m 2 / g or more, more preferably a specific surface area of 50 to 2,000 m 2 / g, and most preferably a specific surface area 50 to 1,000 m < 2 > / g. If the specific surface area of the oxide is too small, there is a fear that the effect of increasing the residence time of chlorine is insufficient. If the specific surface area of the oxide is too large, the oxide may be easily broken without any special gain. The size of the oxide is not particularly limited, but is usually 10 nm to 100 탆, preferably 0.1 to 50 탆. If the size of the oxide is too small, the surface area may decrease due to the produced hydrochloric acid. If the size of the oxide is too large, the resulting ADCA may be separated from the oxide. The amount of the oxide to be used is such that the content of the azodicarbonamide crystal grains in the resulting azodicarbonamide (ADCA) composition is 10 to 99.9% by weight, preferably 40 to 99.5% by weight, more preferably 50 to 100% 99% by weight, and the content of the oxide is 0.1 to 90% by weight, preferably 0.5 to 60% by weight, more preferably 1 to 50% by weight. In general, the yield from hydrazodicarbonamide (HDCA) to azodicarbonamide (ADCA) is about 90%, and all of the oxides used in the reaction can be considered to be dispersed in azodicarbonamide. Therefore, azodicarbonamide (HDCA) and chlorine can be put into the reaction with a small amount of about 10% of the oxide, compared with the oxide content finally dispersed in the hydrocarbons (ADCA). If the amount of the oxide used is too small, there is a fear that the effect of increasing the residence time of chlorine is insufficient, and if it is too much, the amount of unit gas generation may be reduced.

하이드라조디카본아미드(HDCA)와 염소(Cl2)의 반응은, 통상의 조건에 따라 진행될 수 있다. 예를 들면, 하이드라조디카본아미드(HDCA)와 반응하는 염소(Cl2)의 사용량은, 특별히 한정하는 것은 아니지만, 통상 HDCA 1몰에 대하여, 염소(Cl2) 1몰이 반응하도록, HDCA 용액 속으로 염소를 지속적으로 공급한다. 하이드라조디카본아미드(HDCA)와 염소(Cl2)의 반응 온도는 통상 20 내지 40 ℃이고, 반응시간은 통상 4시간 미만, 예를 들면 2 내지 3.5 시간이며, 필요에 따라, 물 등의 용매에 분산된 상태로 반응될 수 있고, NaBr 등의 반응 촉매 존재 하에서 수행될 수도 있다.
The reaction of hydrazodicarbonamide (HDCA) with chlorine (Cl 2 ) can be carried out according to usual conditions. For example, hydroxy rajo dicarboxylic amide (HDCA) and the amount of chlorine (Cl 2) the reaction is not particularly limited, but usually HDCA per 1 mol of chlorine (Cl 2) in, HDCA solution of one mole to react To supply chlorine continuously. The reaction temperature of the hydrazodicarbonamide (HDCA) and chlorine (Cl 2 ) is usually from 20 to 40 ° C, and the reaction time is usually less than 4 hours, for example, from 2 to 3.5 hours. If necessary, Or may be carried out in the presence of a reaction catalyst such as NaBr.

본 발명에 따른 아조디카본아미드 조성물은, 아조디카본아미드 결정 입자, 및 상기 아조디카본아미드 결정 입자에 균일하게 분산된 산화물을 포함한다. 여기서, 전체 아조디카본아미드 조성물에 대하여, 상기 산화물의 함량은, 0.1 내지 90_중량%, 바람직하게는 0.5 내지 60 중량%, 더욱 바람직하게는 1 내지 50 중량%이고, 상기 아조디카본아미드 결정 입자의 함량은 10 내지 99.9 중량%, 바람직하게는 40 내지 99.5 중량%, 더욱 바람직하게는 50 내지 99 중량%이다. 여기서, 상기 산화물의 함량이 너무 작으면, 발포되는 수지 내에서, 발포제(아조디카본아미드)의 흐름성이 충분히 향상되지 못할 우려가 있고, 상기 산화물의 함량이 너무 많으면, 발포제의 함량이 감소하여 발포성이 불충분하게 될 우려가 있다. 또한, 상기 아조디카본아미드 결정 입자의 크기는 특히 한정하는 것은 아니지만, 통상 5 내지 50 ㎛, 바람직하게는 10 내지 30 ㎛ 이며, 상기 산화물의 크기도 특히 한정하는 것은 아니지만, 통상 10 nm 내지 100 ㎛, 바람직하게는 0.1 내지 50 ㎛ 이다. 본 발명에 따른 아조디카본아미드 조성물에 포함되는 산화물은, 아조디카본아미드 생성 반응에서 촉매로 사용된 것이므로, 생성되는 아조디카본아미드 결정 입자의 내부 및 외부 표면에 균일하게 분산되어 있다. 만일, 상기 산화물의 함량이 아조디카본아미드의 함량 보다 많은 경우에는, 상기 산화물에 아조디카본아미드가 균일하게 분산된 것으로 볼 수도 있다. 도 1은 산화물이 아조디카본아미드 결정 입자의 내부에 균일하게 내포(즉, 포집 및 분산)되어 있는 상태를 보여주는 사진이고(도 1에서, 직육면체의 아조디카본아미드를 둘러 싸고 있는 작은 알갱이가 산화물이다), 도 2는 산화물이 아조디카본아미드 결정 입자의 외부 표면에 균일하게 분산되어 있는(구름처럼 둘러 싸고 있는) 상태를 보여주는 사진이다. 이와 같이, 아조디카본아미드 결정 입자에 균일하게 분산된 산화물은, 발포되는 수지 내에서, 발포제의 용융 흐름성을 개선하여, 발포제의 조기분해를 방지할 뿐 만 아니라, 별도의 흐름성 개선제를 첨가할 필요가 없도록 하는 효과가 있다.
The azodicarbonamide composition according to the present invention comprises azodicarbonamide crystal grains and an oxide uniformly dispersed in the azodicarbonamide crystal grains. The content of the oxide is 0.1 to 90% by weight, preferably 0.5 to 60% by weight, and more preferably 1 to 50% by weight based on the entire azodicarbonamide composition. The azodicarbonamide crystals The content of the particles is 10 to 99.9% by weight, preferably 40 to 99.5% by weight, more preferably 50 to 99% by weight. If the content of the oxide is too small, the flowability of the foaming agent (azodicarbonamide) may not be sufficiently improved in the resin to be foamed. If the content of the oxide is too large, the content of the foaming agent decreases The foamability may be insufficient. The size of the azodicarbonamide crystal grains is not particularly limited, but is usually from 5 to 50 mu m, preferably from 10 to 30 mu m, and the size of the oxide is not particularly limited, but is usually from 10 nm to 100 mu m , Preferably 0.1 to 50 탆. Since the oxides contained in the azodicarbonamide composition according to the present invention are used as catalysts in the azodicarbonamide formation reaction, they are uniformly dispersed on the inner and outer surfaces of the resulting azodicarbonamide crystal grains. If the content of the oxide is larger than the content of the azodicarbonamide, the azodicarbonamide may be uniformly dispersed in the oxide. 1 is a photograph showing a state where an oxide is uniformly contained (that is, trapped and dispersed) in azodicarbonamide crystal grains (in Fig. 1, small grains surrounding an azodicarbonamide in a rectangular parallelepiped are oxides And FIG. 2 is a photograph showing that the oxide is uniformly dispersed (surrounded by a cloud) on the outer surface of the azodicarbonamide crystal grain. As described above, the oxide uniformly dispersed in the azodicarbonamide crystal grains improves the melt flowability of the foaming agent in the resin to be foamed, thereby preventing early decomposition of the foaming agent, and additionally adding a flow improver There is an effect that it is unnecessary to perform the operation.

이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다. 하기 실시예 및 비교예에 있어서, 발포제의 성능 평가 방법 및 사용된 시료는 다음과 같다.
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The following examples are provided to illustrate the present invention, and the scope of the present invention is not limited by these examples. In the following examples and comparative examples, the performance evaluation method of the foaming agent and the samples used are as follows.

(1) 반응 시간: 일정한 속도로 염소를 주입하고, 주입 시작 시점으로부터, 아조디카본아미드(ADCA)로의 산화반응이 종료되는 시점까지의 시간을 반응 시간으로 하였다. (1) Reaction time: Chlorine was injected at a constant rate, and the time from the start of the injection to the completion of the oxidation reaction with azodicarbonamide (ADCA) was regarded as the reaction time.

(2) 염소 사용량: 하이드라조디카본아미드(HDCA)로부터 아조디카본아미드로의 산화반응이 종료되는 시점까지의 총 염소 소요량을 측정하였다.(2) Amount of chlorine used: The total amount of chlorine required until the oxidation reaction from hydrazodicarbonamide (HDCA) to azodicarbonamide was terminated was measured.

(3) 수율: 하기 식에 의하여 산출하였다.(3) Yield: Calculated by the following equation.

수율 = (생성된 반응물 - 부착된 촉매 산화물)/ADCA의 이론적 생산량 * 100Yield = (produced reactant - attached catalytic oxide) / theoretical yield of ADCA * 100

(4) ADCA에 부착된 산화물 함량: 700 ℃의 소성로에서 3시간 소성한 후, 하기 식에 따라, 회분을 측정하였다. (4) Content of oxide adhering to ADCA: The ash content was measured according to the following equation after calcination for 3 hours in a calcination furnace at 700 캜.

산화물(촉매) 함량 = (소성 후 무게 / 소성 전 무게) * 100
Content of oxide (catalyst) = (weight after firing / weight before firing) * 100

(5) 수지 내에서의 유동 특성 평가: 브라벤더사(Brabender社)의 플래스티코더(Plasticorder) PL2100 W50E를 사용하여 평가하였다. 적용 수지로서 LDPE(저밀도폴리에틸렌)를 사용하고, 수지 100 중량부에, 생성된 ADCA 조성물 10 중량부를 혼합하였다. 시험 온도는 120 ℃, 시험 시간은 10분, 회전수는 37 회/분으로 하고, 60 cc 체적에 30 g의 수지-ADCA 혼합물을 투입한 다음, 토크(Torque) 값을 측정하였다.
(5) Evaluation of flow characteristics in resin: Evaluation was conducted using Plasticorder PL2100 W50E of Brabender. LDPE (low density polyethylene) was used as an applied resin, and 10 parts by weight of the resulting ADCA composition was mixed with 100 parts by weight of the resin. The test was performed at a temperature of 120 캜, a test time of 10 minutes, and a rotation speed of 37 times / minute. A resin-ADCA mixture of 30 g was charged into a volume of 60 cc, and then the torque was measured.

NaBr: 소디움브로마이드NaBr: Sodium bromide

Cl2: 액화 염소Cl 2 : liquefied chlorine

제올라이트(Zeolite): 기공(pore)에 Na+ 이온을 함유한 실리카(silica)Zeolite: Silica containing Na + ions in pores.

에어로실(Aerosil): 비표면적 150 m2/g인 알루미늄(Aluminum) 실리카Aerosil: Aluminum silica having a specific surface area of 150 m 2 / g

퓸드 실리카(Fumed silica): 비표면적이 250 m2/g인 실리카Fumed silica: Silica having a specific surface area of 250 m 2 / g

겔 타입(Gel type) 실리카: 비표면적이 800 m2/g인 응집(aggregated) 실리카
Gel type silica: Aggregated silica having a specific surface area of 800 m 2 / g

[실시예 1] ADCA의 합성 [Example 1] Synthesis of ADCA

HDCA 100 g, NaBr 2 g 및 제올라이트(Zeolite) 1 g을 물 200 g에 분산시키고, 액화 염소를 17.5 g/hr의 속도로 주입하여, ADCA를 합성하였다. 반응 시작 시 온도는 20 ℃, 반응 중 온도는 38 ℃를 넘지 않도록 냉각장치를 이용하여 반응 온도를 유지하였다.
ADCA was synthesized by dispersing 100 g of HDCA, 2 g of NaBr and 1 g of zeolite in 200 g of water and injecting liquefied chlorine at a rate of 17.5 g / hr. The reaction temperature was maintained at a temperature of 20 ° C at the beginning of the reaction and at a temperature of 38 ° C during the reaction using a cooling device.

[실시예 2] ADCA의 합성 [Example 2] Synthesis of ADCA

제올라이트(Zeolite)를 5 g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 1, except that 5 g of zeolite (Zeolite) was used.

[실시예 3] ADCA의 합성 [Example 3] Synthesis of ADCA

제올라이트(Zeolite)를 10 g 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 1 except that 10 g of zeolite (Zeolite) was used.

[실시예 4] ADCA의 합성 [Example 4] Synthesis of ADCA

제올라이트(Zeolite) 1 g 대신 에어로실(Aerosil) 5 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 1, except that 5 g of Aerosil was used instead of 1 g of zeolite (Zeolite).

[실시예 5] ADCA의 합성 [Example 5] Synthesis of ADCA

에어로실(Aerosil)을 10 g 사용한 것을 제외하고는, 실시예 4와 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 4 except that 10 g of Aerosil was used.

[실시예 6] ADCA의 합성 [Example 6] Synthesis of ADCA

에어로실(Aerosil)을 20 g 사용한 것을 제외하고는, 실시예 4와 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 4 except that 20 g of Aerosil was used.

[실시예 7] ADCA의 합성 [Example 7] Synthesis of ADCA

제올라이트(Zeolite) 1 g 대신, 퓸드 실리카(Fumed silica) 10 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 1, except that 10 g of fumed silica was used instead of 1 g of zeolite (Zeolite).

[실시예 8] ADCA의 합성 [Example 8] Synthesis of ADCA

퓸드 실리카(Fumed silica)를 20 g 사용한 것을 제외하고는, 실시예 7과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 7 except that 20 g of fumed silica was used.

[실시예 9] ADCA의 합성 [Example 9] Synthesis of ADCA

퓸드 실리카(Fumed silica)를 30 g 사용한 것을 제외하고는, 실시예 7과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 7, except that 30 g of fumed silica was used.

[실시예 10] ADCA의 합성 [Example 10] Synthesis of ADCA

제올라이트(Zeolite) 1 g 대신, 겔 타입(Gel type) 실리카 5 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 1 except that 5 g of gel type silica was used instead of 1 g of zeolite.

[실시예 11] ADCA의 합성 [Example 11] Synthesis of ADCA

겔 타입 실리카를 10 g 사용한 것을 제외하고는, 실시예 10과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 10 except that 10 g of the gel-type silica was used.

[실시예 12] ADCA의 합성 [Example 12] Synthesis of ADCA

겔 타입 실리카를 20 g 사용한 것을 제외하고는, 실시예 10과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 10, except that 20 g of the gel-type silica was used.

[비교예 1] ADCA의 합성 [Comparative Example 1] Synthesis of ADCA

제올라이트(Zeolite)를 사용하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 ADCA를 합성하였다.
ADCA was synthesized in the same manner as in Example 1, except that zeolite was not used.

[비교예 2] ADCA 와 실리카의 혼합 [Comparative Example 2] A mixture of ADCA and silica

비교예 1에 따라 합성한 ADCA 100 중량부에 퓸드 실리카 10 중량부 혼합하여, 발포제 조성물을 제조하였다.
10 parts by weight of fumed silica was mixed with 100 parts by weight of ADCA synthesized according to Comparative Example 1 to prepare a foaming agent composition.

상기 실시예 및 비교예에 사용된 각 성분 및 함량을 정리하여, 표 1에 나타내었고, 반응 시간, 염소 사용량, 수율, ADCA에 부착된 산화물(촉매) 함량 및 수지 내에서의 유동 특성을 평가하여 표 2에 나타내었다.The components and contents used in the above Examples and Comparative Examples are summarized in Table 1, and the reaction time, chlorine consumption, yield, oxide (catalyst) content adhered to ADCA, and flow characteristics in resin are evaluated Table 2 shows the results.

반응 조건Reaction conditions 촉매catalyst 첨가량 (g)Addition amount (g) 실시예 1Example 1

HDCA: 100 g
NaBr : 2 g
물: 200 g
Cl2: 17.5 g/h

시작온도: 20 ℃


HDCA: 100 g
NaBr: 2 g
Water: 200 g
Cl 2 : 17.5 g / h

Starting temperature: 20 ° C
ZeoliteZeolite 1One
실시예 2Example 2 ZeoliteZeolite 55 실시예 3Example 3 ZeoliteZeolite 1010 실시예 4Example 4 AerosilAerosil 55 실시예 5Example 5 AerosilAerosil 1010 실시예 6Example 6 AerosilAerosil 2020 실시예 7Example 7 Fumed silicaFumed silica 1010 실시예 8Example 8 Fumed silicaFumed silica 2020 실시예 9Example 9 Fumed silicaFumed silica 3030 실시예 10Example 10 Gel type silicaGel type silica 55 실시예 11Example 11 Gel type silicaGel type silica 1010 실시예 12Example 12 Gel type silicaGel type silica 2020 비교예 1Comparative Example 1 -- -- 비교예 2Comparative Example 2 Fumed silica(첨가제)Fumed silica 1010

생성된 ADCA 내
산화물 잔량(%)
Within the generated ADCA
Residue of oxide (%)
수율
(%)
yield
(%)
반응시간 (hrs)Reaction time (hrs) 염소사용량
(g)
Chlorine usage
(g)
Torque
(m-g)
Torque
(mg)
실시예 1Example 1 0.980.98 90.290.2 3.23.2 56.056.0 15471547 실시예 2Example 2 4.864.86 92.592.5 3.03.0 52.552.5 15131513 실시예 3Example 3 9.949.94 91.391.3 2.82.8 49.049.0 15001500 실시예 4Example 4 4.584.58 91.691.6 2.92.9 50.850.8 15051505 실시예 5Example 5 9.859.85 92.392.3 2.52.5 43.843.8 14971497 실시예 6Example 6 19.3319.33 92.192.1 2.12.1 36.836.8 14861486 실시예 7Example 7 9.139.13 90.890.8 2.82.8 49.049.0 14861486 실시예 8Example 8 18.6418.64 92.092.0 2.22.2 38.538.5 14561456 실시예 9Example 9 27.3227.32 91.991.9 1.51.5 26.326.3 14321432 실시예 10Example 10 4.874.87 90.790.7 3.53.5 61.361.3 15351535 실시예 11Example 11 9.679.67 91.191.1 3.13.1 54.354.3 15021502 실시예 12Example 12 19.7819.78 91.791.7 2.52.5 43.843.8 14951495 비교예 1Comparative Example 1 0.000.00 91.791.7 44 70.070.0 16201620 비교예 2Comparative Example 2 -- -- -- -- 15201520

상기 표 2에 나타난 바와 같이, ADCA 합성 반응에 비표면적이 넓은 산화물을 촉매로서 첨가하면, 그 양에 따라 ADCA 합성 시간 및 염소 사용량이 감소하지만, 수율에는 큰 차이가 없음을 알 수 있다. 또한, ADCA 발포제의 합성 반응에 산화물을 사용하면, 수지 내에서 발포제의 용융 흐름성이 개선되어, 동일한 양의 흐름성 개선제를 넣은 경우보다, 흐름성이 향상되는 것을 알 수 있다. 이와 같이 발포제의 용융 흐름성이 개선되면, 용융된 수지의 토크(torque) 값을 낮추어, 별도의 흐름성 개선제를 첨가하지 않고도, 잠열에 의한 수지의 조기 분해 등을 방지할 수 있고, 원할한 압출 특성을 얻을 수 있다.
As shown in Table 2, when the oxide having a large specific surface area is added to the ADCA synthesis reaction as a catalyst, the ADCA synthesis time and chlorine consumption amount are decreased according to the amount, but the yield is not greatly different. When the oxide is used in the synthesis reaction of the ADCA foaming agent, the melt flowability of the foaming agent in the resin is improved, and the flowability is improved as compared with the case where the same amount of the flow improver is added. When the melt flowability of the foaming agent is improved as described above, the torque value of the molten resin is lowered, so that early decomposition of the resin due to latent heat can be prevented without addition of a flow improver, Characteristics can be obtained.

이상, 특정 실시 형태를 참조하여, 본 발명을 설명하였으나, 본 발명은 이에 한정되지 않고, 첨부된 특허청구범위의 기재에 따라, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 또는 대체물을 모두 포함하는 것으로 해석되어야 한다.While the present invention has been described with reference to particular embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Should be interpreted to include both.

Claims (6)

산화물 입자의 존재 하에서, 하기 반응식 1에 나타낸 바와 같이, 하이드라조디카본아미드(HDCA)와 염소(Cl2)를 반응시켜, 아조디카본아미드(ADCA)를 제조하는 것을 특징으로 하는 아조디카본아미드 조성물의 제조 방법.
[반응식 1]
Figure pat00002

Characterized in that an azodicarbonamide (ADCA) is produced by reacting hydrazodicarbonamide (HDCA) with chlorine (Cl 2 ) in the presence of oxide particles, as shown in the following reaction formula ( 1 ) ≪ / RTI >
[Reaction Scheme 1]
Figure pat00002

청구항 1에 있어서, 상기 산화물은 Si, Al, Zn, Ti, Na, K, Mg, Ca 및 C로 이루어진 군으로부터 선택되는 원소의 산화물인 것인, 아조디카본아미드 조성물의 제조 방법.The method of claim 1, wherein the oxide is an oxide of an element selected from the group consisting of Si, Al, Zn, Ti, Na, K, Mg, 청구항 1에 있어서, 상기 산화물의 크기는 10 nm 내지 100 ㎛인 것인, 아조디카본아미드 조성물의 제조 방법.The method of claim 1, wherein the size of the oxide is between 10 nm and 100 탆. 아조디카본아미드 결정 입자 10 내지 99.9 중량%; 및
상기 아조디카본아미드 결정 입자에 균일하게 분산된 산화물 입자 0.1 내지 90 중량%를 포함하는 아조디카본아미드 조성물.
10 to 99.9% by weight of azodicarbonamide crystal grains; And
And 0.1 to 90% by weight of oxide particles uniformly dispersed in the azodicarbonamide crystal grains.
청구항 4에 있어서, 상기 아조디카본아미드 결정 입자의 크기는 5 내지 50 ㎛이고, 상기 산화물 입자의 크기는 10 nm 내지 100 ㎛인 것인, 아조디카본아미드 조성물.5. The azodicarbonamide composition according to claim 4, wherein the azodicarbonamide crystal particles have a size of 5 to 50 mu m and the oxide particles have a size of 10 nm to 100 mu m. 청구항 1에 있어서, 상기 산화물은 퓸드 실리카, 겔 타입 실리카, 제올라이트, 산화알루미늄, 산화아연 및 산화티탄으로 이루어진 군으로부터 선택되는 것인, 아조디카본아미드 조성물.The azodicarbonamide composition of claim 1, wherein the oxide is selected from the group consisting of fumed silica, gel-type silica, zeolite, aluminum oxide, zinc oxide, and titanium oxide.
KR1020120061055A 2012-06-07 2012-06-07 Azodicarbonamide composition and method for preparing the same KR101966951B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120061055A KR101966951B1 (en) 2012-06-07 2012-06-07 Azodicarbonamide composition and method for preparing the same
CN201310226608.1A CN103483227B (en) 2012-06-07 2013-06-07 Azodicarbonamide composition and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120061055A KR101966951B1 (en) 2012-06-07 2012-06-07 Azodicarbonamide composition and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20130137437A true KR20130137437A (en) 2013-12-17
KR101966951B1 KR101966951B1 (en) 2019-04-08

Family

ID=49823882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120061055A KR101966951B1 (en) 2012-06-07 2012-06-07 Azodicarbonamide composition and method for preparing the same

Country Status (2)

Country Link
KR (1) KR101966951B1 (en)
CN (1) CN103483227B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160058578A (en) * 2014-11-17 2016-05-25 주식회사 동진쎄미켐 A azo-based foaming agent, method for preparing the same and method for foaming resin using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196241A (en) * 1982-04-28 1983-11-15 バイエル・アクチエンゲゼルシヤフト Foaming agent composition
CN102010516A (en) * 2009-09-04 2011-04-13 福建师范大学福清分校 Foaming agent ADC (azodicarbonamide) with low temperature property and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327439B1 (en) * 2006-10-17 2013-11-08 주식회사 제이앤드제이 캐미칼 Modified blowing agent surface-treated with metallic siloxylated compound and polymer resin composition including the same
CN101274999A (en) * 2007-03-30 2008-10-01 北京化工大学 Novel composite vesicant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196241A (en) * 1982-04-28 1983-11-15 バイエル・アクチエンゲゼルシヤフト Foaming agent composition
CN102010516A (en) * 2009-09-04 2011-04-13 福建师范大学福清分校 Foaming agent ADC (azodicarbonamide) with low temperature property and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
중국특허등록공보 102010516(2012.09.05.) 1부. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160058578A (en) * 2014-11-17 2016-05-25 주식회사 동진쎄미켐 A azo-based foaming agent, method for preparing the same and method for foaming resin using the same

Also Published As

Publication number Publication date
CN103483227B (en) 2017-08-25
KR101966951B1 (en) 2019-04-08
CN103483227A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
KR100592857B1 (en) Production of Unsaturated Acids or Esters Thereof and Catalysts Therefor
JP5673760B1 (en) Method for producing sulfide solid electrolyte
EP3141553B1 (en) Method for producing tetraalkoxysilane
KR20110074851A (en) Methanol dehydrogenation catalyst for producing methyl formate and method for producing methyl formate
KR101966951B1 (en) Azodicarbonamide composition and method for preparing the same
US20190031516A1 (en) Method for producing silicon
JP2004313984A (en) Dimethycarbonate synthetic catalyst
US20200283370A1 (en) Production method of asymmetric chain carbonate
CN107417753A (en) A kind of preparation method of Mestanlone
US4092372A (en) Catalyst for the production of isoprene
JP2000026362A (en) Production of alkaline-earth metal salt of beta-diketo compound
JP4880332B2 (en) Method for producing crystalline L-carnosine zinc complex
JP2013116947A (en) Powder mixture for coolant, and coolant
JP4421003B2 (en) Method for producing lithium silicate
CN1727376A (en) Process for producing flexible polyurethane foam using hydrated metal salt blowing agents
WO1990011320A1 (en) Expanded heat-insulating material
JP3026371B2 (en) Method for producing alkoxysilane
US20050067077A1 (en) Pyrotechnic gas-generating composition intended for motor vehicle safety and burning at combustion temperatures below 2200 degree K
JP2018168225A (en) Chemical thermal storage medium and method for producing the same
JP2018168223A (en) Chemical thermal storage medium and method for producing the same
CN104174341B (en) A kind of preparation method of solid phase Silica hydrogel
AU2008286327B2 (en) Process for preparing and purifying alkali metal and alkaline earth metal tricyanomethanides
JPS58103357A (en) Preparation of diisopropyl peroxydicarbonate
JP4328190B2 (en) Method for producing barium titanate
JPS6217593B2 (en)

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant