KR20130136131A - Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery - Google Patents

Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery Download PDF

Info

Publication number
KR20130136131A
KR20130136131A KR1020120059726A KR20120059726A KR20130136131A KR 20130136131 A KR20130136131 A KR 20130136131A KR 1020120059726 A KR1020120059726 A KR 1020120059726A KR 20120059726 A KR20120059726 A KR 20120059726A KR 20130136131 A KR20130136131 A KR 20130136131A
Authority
KR
South Korea
Prior art keywords
active material
carbon
electrode
secondary battery
lithium secondary
Prior art date
Application number
KR1020120059726A
Other languages
Korean (ko)
Inventor
윤우영
이준규
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020120059726A priority Critical patent/KR20130136131A/en
Priority to PCT/KR2013/000793 priority patent/WO2013183848A1/en
Publication of KR20130136131A publication Critical patent/KR20130136131A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

An electrode for a lithium secondary battery comprises an active material body and a diamond-like carbon(DLC) layer covering the active material body, in which the active material body includes silicon nanopowder, a carbon-based conductive material, and a binder. The DLC layer can suppress the volume expansion of the active material body. The DLC layer can suppress a reaction between the active material body and an electrolyte. Thus, when the electrode including the DLC layer is applied to the lithium secondary battery, the lithium secondary battery can have stable cycle properties.

Description

리튬 이차 전지용 전극, 이의 형성 방법 및 리튬 이차 전지{ELECTRODE FOR A LITHIUM SECONDARY BATTERY, METHOD OF FORMING THE SAME AND LITHIUM SECONDARY BATTERY}ELECTRODE FOR A LITHIUM SECONDARY BATTERY, METHOD OF FORMING THE SAME AND LITHIUM SECONDARY BATTERY}

본 발명은 리튬 이차 전지용 전극, 상기 리튬 이차 전지용 전극의 형성 방법 및 리튬 이차 전지에 관한 것으로, 더욱 상세하게는 충전 및 방전이 가능한 이차 전지를 이루는 리튬 이차 전지용 전극, 상기 전극의 형성 방법 및 리튬 이차 전지에 관한 것이다.The present invention relates to an electrode for a lithium secondary battery, a method for forming the electrode for a lithium secondary battery, and a lithium secondary battery, and more particularly, a lithium secondary battery electrode for forming a secondary battery capable of charging and discharging, a method for forming the electrode, and a lithium secondary battery. It relates to a battery.

리튬 이차 전지(Lithium secondary battery)는 전지 내에서 리튬 이온의 삽입 및 탈리에 의하여 충전과 방전이 이루어지는 이차 전지의 일종으로, 충전 시에는 양극(cathode)에서 음극(anode) 쪽으로 리튬 이온이 이동하여 음극의 활물질에 삽입되며, 반대로 방전 시에는 음극에 삽입된 리튬 이온이 양극 쪽으로 이동하여 양극의 활물질에 삽입된다. 이러한 리튬 이차 전지는 에너지 밀도가 높고, 기전력이 크며, 고용량을 발휘할 수 있는 장점을 가지고 있어, 휴대전화, 노트북 등의 전원으로 많이 이용된다.Lithium secondary batteries are a type of secondary battery in which charging and discharging are performed by inserting and separating lithium ions in a battery. During charging, lithium ions move from the cathode to the anode, In contrast, during discharging, the lithium ions inserted into the negative electrode move toward the positive electrode and are inserted into the active material of the positive electrode. Such a lithium secondary battery has advantages of high energy density, large electromotive force, and high capacity, and is widely used as a power source for mobile phones and notebook computers.

상기 리튬 이차 전지는 통상 음극, 양극, 분리판 및 전해질로 구성된다. 음극과 양극은 상기와 같이 리튬 이온의 삽입 및 탈리가 가능한 음극 활물질 및 양극 활물질을 포함한다. 분리판(separator)은 양극과 음극 사이에서 물리적인 전지 접촉을 방지한다. 대신 분리판을 통한 이온의 이동은 자유롭다. 전해액은 양극과 음극 사이에서 이온이 자유롭게 이동할 수 있는 통로 역할을 한다.The lithium secondary battery is generally composed of a negative electrode, a positive electrode, a separator, and an electrolyte. The negative electrode and the positive electrode include a negative electrode active material and a positive electrode active material capable of inserting and desorbing lithium ions as described above. The separator prevents physical cell contact between the anode and cathode. Instead, the movement of the ions through the separator is free. The electrolyte serves as a passage through which ions can move freely between the anode and the cathode.

한편, 상기 음극을 구성하기 위한 탄소가 이용될 수 있다. 상기 탄소재료는 리튬의 층간 삽입/탈리 시에 부피 변화가 적고, 가역성이 뛰어나며, 가격이 상대적으로 저렴하여 리튬이온전지의 음극재료로 널리 사용되고 있다. 이러한 음극재료로 사용되는 탄소 재료는 그라파이트(graphite), 코크(coke), 파이버(fiber), 피치(pitch), 및 메조(meso) 탄소 등이 있다. 그러나, 상기 그라파이트는 단위질량당 충전용량에 이론적 한계(372 mAh g-1)가 있다. 따라서, 리튬이온전지의 에너지 밀도, 가역 용량 및 초기 충전효율과 같은 동작 특성을 크게 향상시킬 수 있는 새로운 음극 재료의 개발이 요구되고 있었다.Meanwhile, carbon for constituting the negative electrode may be used. The carbon material is widely used as a negative electrode material of a lithium ion battery due to its small volume change, excellent reversibility, and relatively low price when intercalating / deintercalating lithium. Carbon materials used as such anode materials include graphite, coke, fiber, pitch, and meso carbon. However, the graphite has a theoretical limit (372 mAh g −1 ) in the charge capacity per unit mass. Therefore, there has been a demand for the development of a new negative electrode material capable of greatly improving operating characteristics such as energy density, reversible capacity, and initial charging efficiency of a lithium ion battery.

최근 상기한 문제점을 해결하기 위한 시도로 실리콘을 이용한 전극개발이 주목을 받고 있다. 실리콘은 그라파이트 전극 또는 다른 다양한 산화물, 질화물 재료 전극의 충전용량(charge capacity)보다 10배 이상 높은 이론적 단위질량당 충전용량(약 4,200 mAh g-1)을 가지기 때문에 리튬이온전지 분야에서 많은 관심을 가지고 있는 소재이다.Recently, the development of electrodes using silicon has been attracting attention in an attempt to solve the above problems. Silicon has a lot of interest in the field of lithium ion batteries because it has a theoretical capacity per unit mass (approximately 4,200 mAh g -1 ) which is more than 10 times higher than the charge capacity of graphite electrodes or other various oxide and nitride material electrodes. It is a material.

그러나, 실리콘은 리튬이온전지 전극에 적용 시 리튬의 삽입/탈리로 인해 400% 이상의 큰 부피 변화가 발생하여 실제 음극재료로의 적용에는 많은 제약이 따른다. 이는 부피변화로 인해 실리콘 결정격자 내에 생성되는 기계적 스트레스가 실리콘 전극의 파괴와 분쇄를 발생시켜 리튬이온전지의 안정성 및 용량을 저하시키기 때문이다.However, when applied to a lithium ion battery electrode, silicon has a large volume change of 400% or more due to the insertion / removal of lithium, and thus there are many restrictions on the application to practical cathode materials. This is because mechanical stress generated in the silicon crystal lattice due to the volume change causes breakage and crushing of the silicon electrode, thereby lowering the stability and capacity of the lithium ion battery.

본 발명의 일 목적은 개선된 용량 및 수명을 갖는 리튬 이차 전지용 전극을 제공하는 것이다. One object of the present invention is to provide an electrode for a lithium secondary battery having an improved capacity and lifetime.

본 발명의 다른 목적은 상기 리튬 이차 전지용 전극의 형성 방법을 제공하는 것이다.Another object of the present invention is to provide a method for forming the electrode for a lithium secondary battery.

본 발명의 또 다른 목적은 용량 및 수명을 갖는 리튬 이차 전지용 전극을 포함하는 리튬 이차 전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery including an electrode for a lithium secondary battery having a capacity and a lifetime.

본 발명의 일 실시예에 따른 리튬 이차 전지용 전극은 실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진 활물질체 및 상기 활물질체의 표면을 커버하는 디엘시(diamond like carbon; DLC)층을 포함한다. 여기서, 상기 탄소계 도전 물질은 카본 블랙, 케트젠 블랙, 아세틸렌 블랙 및 카본 슈퍼 P중 적어도 하나를 포함할 수 있다. 또한, 상기 바인더는 CMC(carboxy methyl cellulose)를 포함할 수 있다. An electrode for a rechargeable lithium battery according to an embodiment of the present invention includes an active material body made of silicon nano powder, a carbon-based conductive material and a binder, and a diamond like carbon (DLC) layer covering a surface of the active material. The carbon-based conductive material may include at least one of carbon black, ketjen black, acetylene black, and carbon super P. In addition, the binder may include carboxy methyl cellulose (CMC).

본 발명의 일 실시예에 따른 리튬 이차 전지용 전극의 형성 방법에 있어서, 실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진 활물질체를 형성한 후, 상기 활물질체의 표면에 디엘시(diamond like carbon; DLC)층을 코팅한다. 여기서, 상기 디엘시(diamond like carbon; DLC)층은 플라즈마증대 화학기상증착(Plasma enhanced chemical vapor deposition;PECVD) 공정을 통하여 형성될 수 있다. In the method of forming an electrode for a lithium secondary battery according to an embodiment of the present invention, after forming an active material body made of silicon nano powder, a carbon-based conductive material and a binder, a diamond like carbon; DLC) layer is coated. The diamond like carbon (DLC) layer may be formed through a plasma enhanced chemical vapor deposition (PECVD) process.

본 발명의 일 실시예에 따른 리튬 이차 전지는, 양극 활물질을 포함하는 양극, 상기 양극과 마주보도록 배치되며, 실리콘 나노 분말, 탄소계 도전 물질와 바인더로 이루어진 음극 활물질체 및 상기 활물질체의 표면을 커버하는 디엘시(diamond like carbon; DLC)층을 포함하는 음극 및 상기 양극 및 음극 사이에 개재되며 전해질층을 포함한다.Lithium secondary battery according to an embodiment of the present invention, a positive electrode including a positive electrode active material, disposed to face the positive electrode, and covers the surface of the negative electrode active material body and the surface of the active material made of silicon nano powder, a carbon-based conductive material and a binder A cathode including a diamond like carbon (DLC) layer and interposed between the anode and the cathode and includes an electrolyte layer.

본 발명에 따른 리튬 이차전지용 전극은 활물질체의 표면을 커버링하는 디엘시층(diamond like carbon; DLC)을 구비한다. 여기서, 상기 디엘시층은 상대적으로 우수한 화학적 안정성을 갖는다. 또한, 상기 디엘시층은 상대적으로 높은 영스 모듈러스(Young's Modulus)값을 갖는다. 따라서, 상기 디엘시층은 상기 활물질체의 부피 팽창을 억제할 수 있다. 또한, 상기 디엘시층을 포함하는 전극을 포함하는 이차 전지에 적용할 경우 상기 전극이 전해액과의 반응이 억제될 수 있다. 따라서, 상기 디엘시층을 포함하는 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 안정적인 사이클 특성을 가질 수 있다.The electrode for a lithium secondary battery according to the present invention includes a diamond like carbon (DLC) covering the surface of the active material. Here, the dielecy layer has a relatively good chemical stability. In addition, the Dielsi layer has a relatively high Young's Modulus value. Therefore, the diffusion layer can suppress the volume expansion of the active material. In addition, when the present invention is applied to a secondary battery including an electrode including the dielecyl layer, the reaction of the electrode with the electrolyte can be suppressed. Therefore, when the electrode including the die layer is applied to a lithium secondary battery, the lithium secondary battery may have a stable cycle characteristics.

도 1은 디엘시층을 이용하여 활물질체를 코팅하기 전(a) 및 코팅한 후(b)를 비교한 전자현미경 사진이다.
도 2는 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극 및 코팅한 후의 전극에 대한 충전 및 방전 사이클에 따른 충전용량을 나타내는 그래프이다.
도 3은 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극(a) 및 코팅한 후의 전극(b)에 대한 15 사이클 후 표면을 나타내는 전자 현미경 사진이다.
도 4a 및 도 4b는 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극 및 코팅한 후의 전극에 대한 15 사이클 후 표면을 X선 광전자분광법을 이용하여 분석한 그래프들이다.
FIG. 1 is an electron micrograph comparing before (a) and after coating (b) of an active material body by using a DL layer.
Figure 2 is a graph showing the charge capacity according to the charge and discharge cycle for the electrode before coating the active material body and the electrode after the coating using the die layer.
3 is an electron micrograph showing the surface after 15 cycles of the electrode (a) before coating the active material body and the electrode (b) after coating using the DLC layer.
4A and 4B are graphs obtained by analyzing X-ray photoelectron spectroscopy on a surface after 15 cycles of an electrode before coating an active material body and a electrode after coating using a DLC layer.

이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 대상물들의 크기와 양은 본 발명의 명확성을 기하기 위하여 실제보다 확대 또는 축소하여 도시한 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. In the accompanying drawings, the sizes and the quantities of objects are shown enlarged or reduced from the actual size for the sake of clarity of the present invention.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, the terms "comprise", "comprising", and the like are intended to specify that there is a feature, step, function, element, or combination of features disclosed in the specification, Quot; or " an " or < / RTI > combinations thereof.

한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.

리튬 이차 전지용 전극Electrode for Lithium Secondary Battery

본 발명의 일실시예에 따른 리튬 이차 전지용 전극은 활물질체 및 디엘시층을 포함한다.An electrode for a lithium secondary battery according to an embodiment of the present invention includes an active material and a dielectric layer.

상기 활물질체는 실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진다. 상기 실리콘 나노 분말은 나노 사이즈를 갖는 분말 형태를 갖는다. 상기 탄소계 도전 물질은 카본 블랙(carbon black), 케트젠 블랙(ketjen black), 아세틸렌 블랙(acetylene black) 및 카본 슈퍼 P(MMM 사 제품) 중 적어도 하나를 포함할 수 있다. 상기 탄소계 도전 물질이 상기 활물질체에 포함됨에 따라 상기 활물질체의 전기전도도를 개선할 수 있다. 상기 바인더는 상기 실리콘 나노 분말 및 탄소계 도전 물질을 상호 연결한다. 상기 바인더의 예로는 카르복실 메틸 셀룰로스(carboxy methyl cellulose)를 들 수 있다. The active material body is composed of silicon nano powder, a carbon-based conductive material and a binder. The silicon nano powder has a powder form having a nano size. The carbon-based conductive material may include at least one of carbon black, ketjen black, acetylene black, and carbon super P (manufactured by MMM). As the carbon-based conductive material is included in the active material, electrical conductivity of the active material may be improved. The binder interconnects the silicon nano powder and the carbon-based conductive material. An example of such a binder is carboxy methyl cellulose.

상기 실리콘 나노 분말을 포함하는 활물질체를 구비한 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 이론적으로 단위질량당 약 4,200mAh g-1의 충전용량을 가질 수 있다. When an electrode having an active material body including the silicon nano powder is applied to a lithium secondary battery, the lithium secondary battery may theoretically have a charging capacity of about 4,200 mAh g −1 per unit mass.

상기 디엘시층(diamond like carbon; DLC)은 상기 활물질체의 표면을 커버링한다. 상기 디엘시층은 상대적으로 우수한 화학적 안정성을 갖는다. 또한, 상기 디엘시층은 상대적으로 높은 영스 모듈러스(Young's Modulus)값을 갖는다. The diamond like carbon (DLC) covers the surface of the active material. The Dielsi layer has relatively good chemical stability. In addition, the Dielsi layer has a relatively high Young's Modulus value.

따라서, 상기 디엘시층은 상기 활물질체의 부피 팽창을 억제할 수 있다. 또한, 상기 디엘시층을 포함하는 전극을 포함하는 이차 전지에 적용할 경우 상기 전극이 전해액과의 반응이 억제될 수 있다. 따라서, 상기 디엘시층을 포함하는 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 안정적인 사이클 특성을 가질 수 있다.
Therefore, the diffusion layer can suppress the volume expansion of the active material. In addition, when the present invention is applied to a secondary battery including an electrode including the dielecyl layer, the reaction of the electrode with the electrolyte can be suppressed. Therefore, when the electrode including the dielecy layer is applied to a lithium secondary battery, the lithium secondary battery may have stable cycle characteristics.

리튬 이차 전지용 전극의 형성 방법Formation Method of Electrode for Lithium Secondary Battery

본 발명의 실시예에 따른 리튬 이차 전지용 전극의 형성 방법에 있어서, 실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진 활물질체를 형성한다. 상기 실리콘 나노 분말, 탄소계 도전 물질 및 바인더는 예를 들면 4:4:2의 중량비로 조절될 수 있다. 여기서, 상기 바인더를 순수(De-ionized water) 또는 NMP(N-methylpyrrolidone; NMP)와 혼합한다. 이어서, 상기 실리콘 나노 분말 및 탄소계 도전물질을 추가적으로 혼합하여 상기 활물질체가 형성될 수 있다.In the method for forming an electrode for a lithium secondary battery according to an embodiment of the present invention, an active material body formed of silicon nano powder, a carbon-based conductive material and a binder is formed. The silicon nano powder, the carbon-based conductive material and the binder may be controlled by a weight ratio of 4: 4: 2, for example. Here, the binder is mixed with de-ionized water or N-methylpyrrolidone (NMP). Subsequently, the active material body may be formed by further mixing the silicon nano powder and the carbon-based conductive material.

이어서, 상기 활물질체의 표면에 디엘시(diamond like carbon; DLC)층을 코팅한다. 여기서, 상기 디엘시층은 플라즈마증대 화학기상증착(Plasma enhanced chemical vapor deposition; PECVD) 공정을 통하여 형성될 수 있다. Next, a diamond-like carbon (DLC) layer is coated on the surface of the active material. Here, the dielectric layer may be formed by a plasma enhanced chemical vapor deposition (PECVD) process.

상기 플라즈마증대 화학기상증착공정에 있어서, 챔버 내에 상기 활물질체를 위치시킨 후, 상기 챔버 내에 반응가스가 챔버 내에 공급되어 플라즈마 상태로 이온화되어 반응성 라디칼 및 이온이 생성된다. 상기 반응가스는 1 내지 100Pa 압력으로 공급될 수 있다. 상기 플라즈마를 형성하기 위하여, 라디오 주파수(radio frequency) 전원이 사용될 수 있다. 상기 라디오 주파수 전원은 13.56MHz의 주파수를 사용할 수 있다. 또한, 상기 라디오 주파수 파워는 10 내지 1,000 watt의 범위를 가질 수 있다. 한편, 반응가스의 예로는 메탄(CH4), 아세틸렌(C2H2)을 들 수 있다.
In the plasma enhanced chemical vapor deposition process, after placing the active material body in the chamber, a reaction gas is supplied into the chamber and ionized in a plasma state to generate reactive radicals and ions. The reaction gas may be supplied at a pressure of 1 to 100 Pa. In order to form the plasma, a radio frequency power source can be used. The radio frequency power source may use a frequency of 13.56 MHz. In addition, the radio frequency power may range from 10 to 1,000 watts. Examples of the reaction gas include methane (CH 4 ) and acetylene (C 2 H 2 ).

리튬 이차 전지Lithium secondary battery

본 발명의 일 실시예에 따른 리튬 이차 전지는 양극, 음극 및 전해질층을 포함한다. A lithium secondary battery according to an embodiment of the present invention includes a cathode, a cathode, and an electrolyte layer.

상기 양극은 리튬 이온을 삽입 및 탈리할 수 있는 양극 활물질을 포함한다. 이러한 양극 활물질은 LiCoO2, LiMnO2, LiNiO2, LiCrO2, LiMn2O4 등과 같은 전지반응에 사용되는 리튬을 함유하고 있는 전이금속 산화물(lithiated cathode)이 될 수 있다. 또한 양극부(120)에 포함되는 양극 활물질은 환경 친화적이고, 코발트(Co)와 같은 희귀 금속을 사용하지 않고, 대신에 매장량이 풍부한 철을 함유하여 원료의 가격도 매우 저렴하고, 전지 용량에도 크게 기여하는 장점이 있는 리튬 철인산화물(Lithium Iron Phosphate, LiFePO4)이 될 수 있다. The positive electrode includes a positive electrode active material capable of inserting and detaching lithium ions. Such a cathode active material may be a lithiated cathode containing lithium used for a cell reaction such as LiCoO2, LiMnO2, LiNiO2, LiCrO2, LiMn2O4 and the like. In addition, the positive electrode active material included in the positive electrode part 120 is environmentally friendly, does not use a rare metal such as cobalt (Co), and instead contains iron having abundant reserves, thus the raw material is very inexpensive, and also has a large battery capacity. It can be Lithium Iron Phosphate (LiFePO4) with contributing advantages.

상기 음극은 상기 양극과 마주보도록 배치된다. 상기 음극은 실리콘 나노 분말, 탄소계 도전 물질와 바인더로 이루어진 음극 활물질체 및 상기 활물질체의 표면을 커버하는 디엘시(diamond like carbon; DLC)층을 포함한다. The negative electrode is disposed to face the positive electrode. The negative electrode includes a negative electrode active material composed of silicon nano powder, a carbon-based conductive material and a binder, and a diamond like carbon (DLC) layer covering a surface of the active material.

상기 활물질체는 실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진다. 상기 실리콘 나노 분말은 나노 사이즈를 갖는 분말 형태를 갖는다. 상기 탄소계 도전 물질은 카본 블랙(carbon black), 케트젠 블랙(ketjen black), 아세틸렌 블랙(acetylene black) 및 카본 슈퍼 P(MMM 사 제품) 중 적어도 하나를 포함할 수 있다. 상기 탄소계 도전 물질이 상기 활물질체에 포함됨에 따라 상기 활물질체의 전기전도도를 개선할 수 있다. 상기 바인더는 상기 실리콘 나노 분말 및 탄소계 도전 물질을 상호 연결한다. 상기 바인더의 예로는 PVDF 카르복실 메틸 셀룰로스(carboxy methyl cellulose)를 들 수 있다. The active material body is composed of silicon nano powder, a carbon-based conductive material and a binder. The silicon nano powder has a powder form having a nano size. The carbon-based conductive material may include at least one of carbon black, ketjen black, acetylene black, and carbon super P (manufactured by MMM). As the carbon-based conductive material is included in the active material, electrical conductivity of the active material may be improved. The binder interconnects the silicon nano powder and the carbon-based conductive material. Examples of the binder include PVDF carboxy methyl cellulose.

상기 실리콘 나노 분말을 포함하는 활물질체를 구비한 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 이론적으로 단위질량당 약 4,200mAh g-1의 충전용량을 가질 수 있다. When an electrode having an active material body including the silicon nano powder is applied to a lithium secondary battery, the lithium secondary battery may theoretically have a charging capacity of about 4,200 mAh g −1 per unit mass.

상기 디엘시층(diamond like carbon; DLC)은 상기 활물질체의 표면을 커버링한다. 상기 디엘시층은 상대적으로 우수한 화학적 안정성을 갖는다. 또한, 상기 디엘시층은 상대적으로 높은 영스 모듈러스(Young's Modulus)값을 갖는다. The diamond like carbon (DLC) covers the surface of the active material. The Dielsi layer has relatively good chemical stability. In addition, the Dielsi layer has a relatively high Young's Modulus value.

따라서, 상기 디엘시층은 상기 활물질체의 부피 팽창을 억제할 수 있다. 또한, 상기 디엘시층을 포함하는 전극을 포함하는 이차 전지에 적용할 경우 상기 전극이 전해액과의 반응이 억제될 수 있다. 따라서, 상기 디엘시층을 포함하는 전극이 리튬 이차 전지에 적용될 경우, 상기 리튬 이차 전지는 안정적인 사이클 특성을 가질 수 있다.Therefore, the diffusion layer can suppress the volume expansion of the active material. In addition, when the present invention is applied to a secondary battery including an electrode including the dielecyl layer, the reaction of the electrode with the electrolyte can be suppressed. Therefore, when the electrode including the die layer is applied to a lithium secondary battery, the lithium secondary battery may have a stable cycle characteristics.

상기 전해질층은 상기 양극 및 음극 사이에 개재된다. 상기 전해질층은 전해액을 포함한다. 상기 전해액의 예로는 비수성 유기 용매가 될 수 있으며, 여기에 리튬염이 포함될 수 있다. 상기 비수성 유기 용매는 환상 또는 비환상 카보네이트, 지방족 카르복실산 에스테르 등이 단독 또는 2종 이상이 혼합되어 있는 것을 이용할 수 있다.
The electrolyte layer is interposed between the positive electrode and the negative electrode. The electrolyte layer includes an electrolytic solution. Examples of the electrolytic solution may be a non-aqueous organic solvent, and a lithium salt may be included therein. As the non-aqueous organic solvent, a cyclic or acyclic carbonate, an aliphatic carboxylic acid ester or the like may be used, or a mixture of two or more thereof may be used.

리튬 이차전지용 전극의 평가Evaluation of the electrode for lithium secondary batteries

실리콘 나노 파우더와 카본 계열인 전도체인 덴카 블랙과 CMC(carboxy methyl cellulose) 바인더를 질량비로 2대2대1로 하여 활물질체를 제조하였다. 상기 활물질체 상에 PECVD(plasma enhanced chemical vapor deposition)공정을 통하여, 아세틸렌(C2H2) 가스를 100℃ 에서 5분간 공급하여 디엘시층을 형성하였다. An active material was prepared by using silicon nano powder and carbon-based conductors such as denka black and CMC (carboxy methyl cellulose) binder in a mass ratio of 2: 2 to 1. Through the plasma enhanced chemical vapor deposition (PECVD) process on the active material body, acetylene (C2H2) gas was supplied at 100 ° C. for 5 minutes to form a DL layer.

도 1은 디엘시층을 이용하여 활물질체를 코팅하기 전(a) 및 코팅한 후(b)를 비교한 전자현미경 사진이다.FIG. 1 is an electron micrograph comparing before (a) and after coating (b) of an active material body by using a DL layer.

도 1을 참조하면, 상기 활물질체 상부 표면에 디엘시층이 형성됨을 확인할 수 있다.Referring to FIG. 1, it can be seen that a dielectric layer is formed on the upper surface of the active material body.

도 2는 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극 및 코팅한 후의 전극에 대한 충전 및 방전 사이클에 따른 충전용량을 나타내는 그래프이다.Figure 2 is a graph showing the charge capacity according to the charge and discharge cycle for the electrode before coating the active material body and the electrode after the coating using the die layer.

도 2를 참조하면, 디엘시층을 이용하여 활물질체를 코팅되지 않은 전극의 경우 10 사이클 후 충전용량이 급격하게 감소하는 것을 확인할 수 있다. 반면에, 디엘시층을 이용하여 활물질체를 코팅한 전극의 경우 100 사이클 후에도 충전용량이 안정적으로 유지됨을 확인할 수 있다.Referring to FIG. 2, in the case of the electrode not coated with the active material body using the DLC layer, it can be seen that the charge capacity rapidly decreases after 10 cycles. On the other hand, in the case of the electrode coated with the active material body using the DLC layer it can be seen that the charge capacity is maintained stably after 100 cycles.

도 3은 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극(a) 및 디엘시층이 코팅된 전극(b)에 대한 15 사이클 후 표면을 나타내는 전자 현미경 사진이다.FIG. 3 is an electron micrograph showing a surface after 15 cycles of the electrode (a) and the electrode (b) coated with the DLC layer before coating the active material body using the DLC layer.

도 3을 참조하면, 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극(a)에는 활물질체가 부피 팽창함에 따라 그 표면에 크랙이 발생한 반면에, 디엘시층이 코팅된 전극(b)에는 크랙이 발생하지 않음을 확인할 수 있다. 따라서, 상기 디엘시층이 상기 활물질체의 부피 팽창을 억제하는 것을 확인할 수 있다.Referring to FIG. 3, a crack occurs on the surface of the electrode (a) before the active material body is coated using the dielc layer as the active material body is expanded in volume, whereas the electrode (b) coated with the dielc layer is cracked. You can see that this does not occur. Therefore, it can be seen that the DLC layer suppresses the volume expansion of the active material body.

도 4a 및 도 4b는 디엘시층을 이용하여 활물질체를 코팅하기 전의 전극 및 코팅한 후의 전극에 대한 15 사이클 후 표면을 X선 광전자분광법을 이용하여 분석한 그래프이다.4A and 4B are graphs obtained by analyzing X-ray photoelectron spectroscopy on a surface after 15 cycles of an electrode before coating an active material body and a electrode after coating using a DLC layer.

도 4a 및 도 4b를 참조하면, 15 사이클의 충방전을 시킨 후 전극 표면에 반응 생성물을 확인한 결과 코팅되지 않은 전극(도 4a 참조)의 경우 전해액의 플루오르 성분이 디엘시층이 코팅되어진 전극(도 4b 참조)에 비해서 다량으로 포함되어있는 것을 확인할 수 있었다. 따라서, 상기 디엘시층이 상기 활물질체의 화학적 안정성을 개선할 수 있다.Referring to FIGS. 4A and 4B, after 15 cycles of charge and discharge, the reaction product was confirmed on the surface of the electrode, and in the case of the uncoated electrode (see FIG. 4A), the fluorine component of the electrolyte was coated with a dielc layer (FIG. 4A). It was confirmed that it is included in a large amount compared to (see 4b). Therefore, the DLC layer may improve the chemical stability of the active material.

Claims (6)

실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진 활물질체; 및
상기 활물질체의 표면을 커버하는 디엘시(diamond like carbon; DLC)층을 포함하는 리튬 이차 전지용 전극.
An active material body made of silicon nano powder, a carbon-based conductive material, and a binder; And
And a diamond like carbon (DLC) layer covering the surface of the active material.
제1항에 있어서, 상기 탄소계 도전 물질은 카본 블랙, 케트젠 블랙, 아세틸렌 블랙 및 카본 슈퍼 P가 이루는 군으로부터 선택된 하나를 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.The electrode of claim 1, wherein the carbon-based conductive material comprises one selected from the group consisting of carbon black, ketjen black, acetylene black, and carbon super P. 제1항에 있어서, 상기 바인더는 CMC(carboxy methyl cellulose)를 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.The electrode of claim 1, wherein the binder comprises carboxy methyl cellulose (CMC). 실리콘 나노 분말, 탄소계 도전 물질 및 바인더로 이루어진 활물질체를 형성하는 단계; 및
상기 활물질체의 표면에 디엘시(diamond like carbon; DLC)층을 코팅하는 단계를 포함하는 리튬 이차 전지용 전극의 제조 방법.
Forming an active material body made of silicon nano powder, a carbon-based conductive material, and a binder; And
And coating a surface of the active material with a diamond-like carbon (DLC) layer on the surface of the active material.
제4항에 있어서, 상기 디엘시(diamond like carbon; DLC)층을 코팅하는 단계는 플라즈마증대화학기상증착(Plasma enhanced chemical vapor deposition;PECVD) 공정을 통하여 수행되는 것을 특징으로 하는 리튬 이차 전지용 전극의 제조 방법.The method of claim 4, wherein the coating of the diamond like carbon (DLC) layer is performed through a plasma enhanced chemical vapor deposition (PECVD) process. Manufacturing method. 양극 활물질을 포함하는 양극;
상기 양극과 마주보도록 배치되며, 실리콘 나노 분말, 탄소계 도전 물질와 바인더로 이루어진 음극 활물질체 및 상기 활물질체의 표면을 커버하는 디엘시(diamond like carbon; DLC)층을 포함하는 음극; 및
상기 양극 및 음극 사이에 개재되며 전해질층을 포함하는 것을 특징으로 하는 리튬 이차 전지.
A cathode comprising a cathode active material;
A negative electrode disposed to face the positive electrode and including a negative electrode active material body including silicon nano powder, a carbon-based conductive material and a binder, and a diamond like carbon (DLC) layer covering a surface of the active material; And
A lithium secondary battery interposed between the positive electrode and the negative electrode and comprising an electrolyte layer.
KR1020120059726A 2012-06-04 2012-06-04 Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery KR20130136131A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120059726A KR20130136131A (en) 2012-06-04 2012-06-04 Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
PCT/KR2013/000793 WO2013183848A1 (en) 2012-06-04 2013-01-31 Electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120059726A KR20130136131A (en) 2012-06-04 2012-06-04 Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery

Publications (1)

Publication Number Publication Date
KR20130136131A true KR20130136131A (en) 2013-12-12

Family

ID=49712210

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120059726A KR20130136131A (en) 2012-06-04 2012-06-04 Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery

Country Status (2)

Country Link
KR (1) KR20130136131A (en)
WO (1) WO2013183848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296325B2 (en) 2016-11-24 2022-04-05 Lg Energy Solution, Ltd. Electrode for secondary battery including electrode protecting layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114009A1 (en) * 2018-06-12 2019-12-12 Volkswagen Aktiengesellschaft Active material body for a rechargeable battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071989A1 (en) * 2000-12-08 2002-06-13 Verma Surrenda K. Packaging systems and methods for thin film solid state batteries
JP4997674B2 (en) * 2001-09-03 2012-08-08 日本電気株式会社 Negative electrode for secondary battery and secondary battery
US7763387B2 (en) * 2002-05-24 2010-07-27 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
DE102004016766A1 (en) * 2004-04-01 2005-10-20 Degussa Nanoscale silicon particles in negative electrode materials for lithium-ion batteries
KR20100063194A (en) * 2008-12-03 2010-06-11 현대자동차주식회사 Cathode for lithium-ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296325B2 (en) 2016-11-24 2022-04-05 Lg Energy Solution, Ltd. Electrode for secondary battery including electrode protecting layer

Also Published As

Publication number Publication date
WO2013183848A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
Zhang et al. Constructing advanced electrode materials for low-temperature lithium-ion batteries: A review
RU2412506C1 (en) Active anode material for lithium batteries, having core and cladding, method of producing material and lithium battery containing said material
US10411253B2 (en) Composite electrode material and method for manufacturing the same
Tao et al. Dramatic improvement enabled by incorporating thermal conductive TiN into Si-based anodes for lithium ion batteries
CN111146427A (en) Method for preparing hollow core-shell structure nano silicon-carbon composite material by using polyaniline as carbon source and secondary battery using material
KR101031920B1 (en) Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
WO2020125560A1 (en) Pre-embedded potassium negative electrode, preparation method and use, and potassium-based double ion battery, preparation method therefor and electric device
KR20100072160A (en) Anode active material for lithium secondary battery and lithium secondary battery containing the same for anode
Liu et al. Hierarchical sulfide‐rich modification layer on SiO/C anode for low‐temperature Li‐ion batteries
JP2010522969A (en) Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
Zhuang et al. LiCoO 2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy
Kim et al. Electrochemical properties of lithium sulfur battery with silicon anodes lithiated by direct contact method
KR20180082902A (en) Deposition of LiF on Li metal surface and Li secondary battery using thereof
CN101789524B (en) 1.5V rechargeable lithium ion battery
KR20130136131A (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
Yin et al. Synthesis and electrochemical performance of Li3–2xMgxV2 (PO4) 3/C composite cathode materials for lithium-ion batteries
KR101497824B1 (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
KR102615856B1 (en) Lithium secondary battery anode material
CN106876669B (en) A kind of crystallite LiVOPO4-LiMPO4-TiO2Complex lithium electric material and preparation method
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
KR20110078307A (en) Metal based zn negative active material and lithium secondary battery comprising thereof
KR101337528B1 (en) Manufacturing method of Tin-filled Carbon nanotubes as anode materials for improving the charge/discharge system
CN115275166A (en) Long-life graphite composite material and preparation method thereof
KR102374369B1 (en) Negative active material for electrochemical device
CN109987607B (en) Mesoporous silicon/cobalt disilicide composite microsphere material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application