KR20130127025A - Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same - Google Patents

Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same Download PDF

Info

Publication number
KR20130127025A
KR20130127025A KR1020120048239A KR20120048239A KR20130127025A KR 20130127025 A KR20130127025 A KR 20130127025A KR 1020120048239 A KR1020120048239 A KR 1020120048239A KR 20120048239 A KR20120048239 A KR 20120048239A KR 20130127025 A KR20130127025 A KR 20130127025A
Authority
KR
South Korea
Prior art keywords
formula
alkyl group
linear
copper
independently
Prior art date
Application number
KR1020120048239A
Other languages
Korean (ko)
Other versions
KR101331972B1 (en
Inventor
박보근
김창균
정택모
전동주
박주현
송정인
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020120048239A priority Critical patent/KR101331972B1/en
Priority to PCT/KR2013/003879 priority patent/WO2013165221A1/en
Publication of KR20130127025A publication Critical patent/KR20130127025A/en
Application granted granted Critical
Publication of KR101331972B1 publication Critical patent/KR101331972B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a copper precursor represented by chemical formula 1, wherein the copper precursor includes sulfur, has no need of adding separate sulfur during manufacturing thin films, and improves thermal stability and volatility, thereby allowing high quality copper sulfide thin films. In chemical formula 1, R1 and R2 are linear or branched alkyl of C1-C10, respectively, R3 and R4 are linear or branched alkyl of C1-C10 or fluorinated alkyl of C1-C10, respectively, and n is selected from numbers 1 to 3.

Description

아미노싸이올레이트 리간드를 이용한 구리 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법{COPPER PRECURSORS WITH AMINOTHIOLATE, PREPARATION METHOD THEREOF AND PROCESS FOR THE FORMATION OF THIN FILMS USING THE SAME}Copper precursor using aminothiolate ligand, method for preparing same, and method for forming thin film using same

본 발명은 신규의 구리 전구체에 관한 것으로서, 보다 구체적으로 열적 안정성과 휘발성이 개선되고 낮은 온도에서 쉽게 양질의 황화구리 박막의 제조가 가능한 구리 전구체 및 이의 제조 방법, 그리고 이를 이용하여 황화구리 박막을 제조하는 방법에 관한 것이다.The present invention relates to a novel copper precursor, and more particularly, a copper precursor and a method for preparing the copper sulfide thin film, and a method for producing the copper sulfide thin film, which can be easily manufactured at a low temperature and have improved thermal stability and volatility. It is about how to.

CuInxGa1 - xSe2(CIGS) 박막을 사용하는 박막형 태양전지는 기존의 실리콘 결정을 사용하는 태양전지에 비하여 얇은 두께로 제작이 가능하고 장시간 사용시에도 안정적인 특성을 갖고 있으며, 높은 에너지 변환 효율을 보임에 따라 실리콘 결정질 태양 전지를 대체할 수 있는 고효율 박막형 태양전지로 상업화 가능성이 아주 높은 것을 알려져 있다.Thin-film solar cells using CuIn x Ga 1 - x Se 2 (CIGS) thin films are thinner than conventional solar cells that use silicon crystals and have stable characteristics over long periods of time. As a result, it is known that there is a high possibility of commercialization as a highly efficient thin film solar cell that can replace the silicon crystalline solar cell.

그러나, CIGS를 광 흡수층으로 사용하는 화합물계 태양전지는 독성물질의 사용과 비싼 희귀 원소들을 사용하기 때문에 상용화에 큰 어려움이 있다. 따라서 CIGS의 구성원소를 지구상에 풍부하고 값이 싼 아연(Zn)과 주석(Sn)으로 치환시켜 사용하는 Cu2ZnSnS4(CZTS) 광 흡수층을 기반으로 한 태양전지의 개발이 오늘날 주목을 받고 있다.However, compound-based solar cells using CIGS as a light absorbing layer have a great difficulty in commercialization because they use toxic substances and expensive rare elements. Therefore, the development of solar cells based on the Cu 2 ZnSnS 4 (CZTS) light absorbing layer, which replaces CIGS with earth-rich and inexpensive zinc (Zn) and tin (Sn), is drawing attention. .

p-type의 광 흡수층으로 사용되는 CZTS가 고효율을 갖는 태양전지로 제작되기 위해서는 CZTS의 띠간격(band gap) 에너지가 1.4 ~ 1.5 eV 범위의 값을 가져야 하고 흡광계수(absorption coefficient)는 104 cm?1 이상의 광학적 특성을 지녀야 한다. 이를 위하여 현재 국내외에서 동시증발법(co-evaporation), 스퍼터링(sputtering), 졸-겔(sol-gel)법 등 다양한 방법을 통한 CZTS 제조 연구가 활발히 진행되고 있다. In order for CZTS, which is used as a p-type light absorbing layer, to be manufactured as a solar cell having high efficiency, the band gap energy of CZTS should have a value in the range of 1.4 to 1.5 eV and the absorption coefficient is 10 4 cm. It must have an optical characteristic of ? 1 or more. To this end, CZTS manufacturing research is being actively conducted at home and abroad through various methods such as co-evaporation, sputtering, and sol-gel methods.

상기 CZTS 박막을 형성하기 위한 공정으로는 화학기상증착(CVD) 또는 원자층증착(ALD)이 금속이 포함된 층을 증착하기 위해 사용되어 왔다. As a process for forming the CZTS thin film, chemical vapor deposition (CVD) or atomic layer deposition (ALD) has been used to deposit a layer containing a metal.

그러나 상기와 같은 CVD 또는 ALD 공정에 의하여 CZTS 박막을 제조하는 경우, 금속전구체의 특성에 따라서 증착 정도 및 증착 제어 특성이 결정되기 때문에, 우수한 특성을 갖는 금속 전구체의 개발이 필요하다. 이를 위하여 한국 공개공보 제10-2011-0085721호 또는, 한국 공개공보 제10-2011-0112977호 등에서 CZTS 전구체의 제조방법에 대하여 연구하고 있다.However, when manufacturing the CZTS thin film by the CVD or ALD process as described above, since the deposition degree and the deposition control characteristics are determined according to the characteristics of the metal precursor, it is necessary to develop a metal precursor having excellent characteristics. To this end, Korean Patent Publication No. 10-2011-0085721 or Korean Patent Publication No. 10-2011-0112977 et al.

그러나, 상기 문헌들에서는 각 원소들의 전구체에 대해서는 연구되지 않았으며, CZTS 박막의 제조에 필요한 구리, 아연, 주석의 전구체의 합성에 관한 연구가 미비한 실정이다. 특히 구리 전구체의 경우, 열적 안정성, 화학적 반응성, 휘발성 및 구리 금속의 증착 속도가 개선된 전구체의 개발이 절실히 요구되고 있다.However, in the above documents, the precursors of the elements are not studied, and studies on the synthesis of precursors of copper, zinc, and tin required for the production of CZTS thin films are insufficient. Especially in the case of copper precursors, there is an urgent need for the development of precursors with improved thermal stability, chemical reactivity, volatility and deposition rate of copper metal.

KRKR 10-2011-008572110-2011-0085721 AA KRKR 10-2011-011297710-2011-0112977 AA

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 열적 안정성과 휘발성이 개선되고 낮은 온도에서 쉽게 양질의 황화구리 박막의 제조가 가능한 신규의 구리 전구체를 제공하기 위한 것이다.SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, and to provide a new copper precursor capable of producing a good quality copper sulfide thin film at low temperature with improved thermal stability and volatility.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식1로 표시되는 구리 전구체를 제공한다.In order to achieve the above object, the present invention provides a copper precursor represented by the following formula (1).

[화학식 1] [Formula 1]

Figure pat00001
Figure pat00001

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기, 또는 C1-C10의 플루오르화 알킬기이며, n은 1 내지 3이다.)
(Wherein R 1 and R 2 are each independently a linear or branched alkyl group of C 1 -C 10, R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl group, or a C 1 -C 10 fluorinated alkyl group, n Is 1 to 3.)

또한 본 발명은 하기 화학식 2로 표시되는 화합물과 화학식 3내지 4로 표시되는 화합물을 반응시키는 것을 포함하는, 상기 화학식 1로 표시되는 구리 전구체의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a copper precursor represented by the formula (1) comprising reacting a compound represented by the formula (2) and a compound represented by the formula (3).

[화학식 2](2)

Figure pat00002
Figure pat00002

(상기 식에서, M은 Li, Na, K 중 어느 하나이고, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기, 또는 C1-C10의 플루오르화 알킬기이며, n은 1 내지 3이다.)Wherein M is any one of Li, Na, and K, R1 and R2 are each independently a linear or branched alkyl group of C1-C10, and R3 and R4 are each independently a linear or branched alkyl group of C1-C10. Or a C1-C10 fluorinated alkyl group, n is 1 to 3.)

[화학식 3] (3)

CuXCuX

(상기식에서, X는 Cl, Br 또는 I이다.)Wherein X is Cl, Br or I.

[화학식 4][Formula 4]

CuX2 CuX 2

(상기식에서, X는 Cl, Br 또는 I이다.)
Wherein X is Cl, Br or I.

또한 본 발명은 상기 화학식 1의 구리 전구체를 이용하여 황화구리 박막을 성장시키는 방법을 제공한다.In another aspect, the present invention provides a method for growing a copper sulfide thin film using the copper precursor of the formula (1).

본 발명의 화학식 1로 표시되는 구리 전구체는 황을 포함하고 있는 전구체로서 열적 안정성과 휘발성이 개선되고 박막 제조 중에 별도의 황을 첨가시키지 않아도 되는 장점을 가지기 때문에 이를 이용하여 쉽게 양질의 황화구리 박막을 제조할 수 있다.Copper precursor represented by the formula (1) of the present invention is a precursor containing sulfur because it has the advantage of improving the thermal stability and volatility, and does not need to add a separate sulfur during thin film manufacturing, it is easy to use a high quality copper sulfide thin film It can manufacture.

도 1은 [Cu(dmampS)]4에 대한 1H NMR 스펙트럼이다.
도 2는 [Cu(dmampS)]4에 대한 결정구조 이다.
도 3은 [Cu(dmampS)]4에 대한 TG data이다.
도 4는 [Cu(dmampS)]4의 열분해 후에 얻어진 나노물질에 대한 XRD data이다.
도 5는 [Cu(dmampS)]4의 열분해 후에 얻어진 나노물질에 대한 EDS data 및 SEM 촬영 사진이다.
도 6은 [Cu(dmampS)]4의 열분해 후에 얻어진 나노물질에 대한 분산도 사진이다.
1 is a 1 H NMR spectrum for [Cu (dmampS)] 4 .
2 is a crystal structure for [Cu (dmampS)] 4 .
3 is TG data for [Cu (dmampS)] 4 .
4 is XRD data for nanomaterials obtained after pyrolysis of [Cu (dmampS)] 4 .
5 is EDS data and SEM photographs of nanomaterials obtained after pyrolysis of [Cu (dmampS)] 4 .
FIG. 6 is a photograph showing dispersion of nanomaterials obtained after pyrolysis of [Cu (dmampS)] 4 .

본 발명은, 하기 화학식 1로 표시되는 구리 전구체에 관한 것이다:The present invention relates to a copper precursor represented by the following general formula (1):

[화학식 1][Formula 1]

Figure pat00003
Figure pat00003

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기, 또는 C1-C10의 플루오르화 알킬기이며, n은 1 내지 3이다.)(Wherein R 1 and R 2 are each independently a linear or branched alkyl group of C 1 -C 10, R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl group, or a C 1 -C 10 fluorinated alkyl group, n Is 1 to 3.)

상기 화학식 1에 있어서, C1-C10의 선형 또는 분지형 알킬기로부터 선택되는 R1 내지 R4 중, R1, R2는 서로 독립적으로 CH3, C2H5, CH(CH3)2 및C(CH3)3로부터 선택되고, R3, R4는 서로 독립적으로 CH3, CF3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되는 것을 사용하는 것이 바람직하다.
In Formula 1, of R 1 to R 4 selected from C 1 to C 10 linear or branched alkyl groups, R 1 and R 2 are each independently CH 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ). is selected from 3, R3, R4, it is preferable to use the mutually independently selected from CH 3, CF 3, C 2 H 5, CH (CH 3) 2 and C (CH 3) 3.

본 발명에 따른 상기 화학식 1로 표시되는 구리 전구체는 보다 구체적으로 일반식 [Cu(daat)]4 (daat = dialkylaminoalkylthiolate)로 표시될 수 있으며, 상기 화합물은 출발물질로서 하기 화학식 2로 표시되는 화합물(M(daat))과 화학식 3 내지 4로 표시되는 화합물을 유기 용매에서 반응시켜 치환 반응을 유도하여 제조될 수 있다. The copper precursor represented by Chemical Formula 1 according to the present invention may be more specifically represented by general formula [Cu (daat)] 4 (daat = dialkylaminoalkylthiolate), and the compound may be represented by the following Chemical Formula 2 as a starting material ( M (daat)) and the compound represented by the formula 3 to 4 may be prepared by inducing a substitution reaction by reacting in an organic solvent.

[화학식 2](2)

Figure pat00004
Figure pat00004

(상기 식에서, M은 Li, Na, K 중 어느 하나이고, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기, 또는 C1-C10의 플루오르화 알킬기이며, n은 1 내지 3이다.)Wherein M is any one of Li, Na, and K, R1 and R2 are each independently a linear or branched alkyl group of C1-C10, and R3 and R4 are each independently a linear or branched alkyl group of C1-C10. Or a C1-C10 fluorinated alkyl group, n is 1 to 3.)

[화학식 3](3)

CuXCuX

(상기식에서, X는 Cl, Br 또는 I이다.)Wherein X is Cl, Br or I.

[화학식 4][Formula 4]

CuX2 CuX 2

(상기식에서, X는 Cl, Br 또는 I이다.)
Wherein X is Cl, Br or I.

상기 화학식 2에 있어서, C1-C10의 선형 또는 분지형 알킬기로부터 선택되는 R1 내지 R4 중, R1, R2는 서로 독립적으로 CH3, C2H5, CH(CH3)2 및C(CH3)3로부터 선택되고, R3, R4는 서로 독립적으로 CH3, CF3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되는 것을 사용하는 것이 바람직하다.
In Formula 2, of R 1 to R 4 selected from a linear or branched alkyl group of C 1 -C 10, R 1 and R 2 are each independently CH 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ). is selected from 3, R3, R4, it is preferable to use the mutually independently selected from CH 3, CF 3, C 2 H 5, CH (CH 3) 2 and C (CH 3) 3.

상기 반응 용매로는 톨루엔, 테트라하이드로퓨란 등을 사용할 수 있으며, 바람직하게는 톨루엔을 사용할 수 있다. Toluene, tetrahydrofuran, or the like may be used as the reaction solvent, and toluene may be preferably used.

본 발명의 구리 전구체를 제조하기 위한 구체적인 반응 공정은 하기 반응식 1로 나타낼 수 있다.Specific reaction process for producing a copper precursor of the present invention can be represented by the following scheme 1.

[반응식 1][Reaction Scheme 1]

Figure pat00005
Figure pat00005

또한, 본 발명의 구리 전구체를 제조하기 위한 또 다른 반응 공정은 하기 반응식 2로 나타내어질 수 있다.In addition, another reaction process for preparing the copper precursor of the present invention can be represented by the following scheme 2.

[반응식 2][Reaction Scheme 2]

Figure pat00006
Figure pat00006

상기 반응식 1 및 2에 따르면, 톨루엔, 테트라하이드로퓨란과 같은 용매에서 실온에서 12시간 내지 24시간 동안 치환 반응을 진행한 뒤 여과한 후 여액을 감압 하에서 제거하여 노란색의 고체 화합물을 수득한다. 또한, 상기 반응식 1 또는 2의 반응 중에 부산물이 생성될 수 있으며, 이들을 승화 또는 재결정법을 이용하여 제거함에 따라 고순도의 신규의 구리 전구체를 얻을 수 있다.
According to Schemes 1 and 2, after performing a substitution reaction for 12 to 24 hours at room temperature in a solvent such as toluene and tetrahydrofuran, the filtrate was removed under reduced pressure to obtain a yellow solid compound. In addition, by-products may be generated during the reaction of Scheme 1 or 2, and new copper precursors of high purity may be obtained by removing them by sublimation or recrystallization.

상기 반응들에서 반응물들은 화학양론적 당량비로 사용된다.In these reactions, the reactants are used in stoichiometric equivalents.

상기 화학식 1로 표시되는 신규의 구리 전구체는 상온에서 안정한 노란색 고체로서, 열적으로 안정하고 좋은 휘발성을 가진다.The new copper precursor represented by Formula 1 is a yellow solid which is stable at room temperature, and is thermally stable and has good volatility.

상기 구리 전구체를 이용하여 황화구리 박막을 성장시키는 경우, 박막 제조 공정 중에 별도의 황을 첨가시키지 않아도 되는 장점이 있다.When the copper sulfide thin film is grown using the copper precursor, there is an advantage of not having to add additional sulfur during the thin film manufacturing process.

본 발명의 신규의 구리 전구체는 황화구리 박막 제조용 전구체로서, 특히 태양전지의 제조 공정에 널리 사용되고 있는 화학기상증착법(CVD) 또는 원자층증착법(ALD)을 사용하는 공정에 바람직하게 적용될 수 있다.The novel copper precursor of the present invention can be preferably applied to a process using a chemical vapor deposition method (CVD) or an atomic layer deposition method (ALD), which is widely used as a precursor for manufacturing a copper sulfide thin film.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
The present invention may be better understood by the following examples, which are for the purpose of illustrating the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

구리 전구체 물질의 합성Synthesis of Copper Precursor Materials

실시예 1: [Cu(dmampS)]4의 제조Example 1: Preparation of [Cu (dmampS)] 4

125 mL 슐렝크 플라스크에 CuCl (1.5g, 0.015 mol, 1eq)와 Li(dmampS) (2.1g, 0.015 mol, 1eq)을 넣은 후 톨루엔 (50 mL)을 첨가한 후 24시간 교반 하였다. 얻어진 용액을 여과한 후 여액을 감압 하에서 용매를 제거하여 노란색 고체 화합물을 수득하였다. 얻어진 수득물의 불순물을 제거하기 위해 헥산에서 재결정을 하여 노란색 결정의 화합물 2.55g을 얻었다(수율: 86%).CuCl (1.5g, 0.015 mol, 1eq) and Li (dmampS) (2.1g, 0.015 mol, 1eq) were added to a 125 mL Schlenk flask and toluene (50 mL) was added thereto, followed by stirring for 24 hours. After filtering the obtained solution, the filtrate was removed solvent under reduced pressure to give a yellow solid compound. To remove impurities, the obtained product was recrystallized in hexane to give 2.55 g of a yellow crystal compound (yield: 86%).

상기 얻어진 화합물에 대한 1H-NMR(C6D6)를 도 1에 나타내었다. 1 H-NMR (C 6 D 6 ) for the obtained compound is shown in FIG. 1.

1H NMR (C6D6, 300.13MHz): δ 2.4496 (s, 6H), 2.3219 (s, 2H), 1.5188 (s, 6H). 1 H NMR (C 6 D 6 , 300.13 MHz): δ 2.4496 (s, 6H), 2.3219 (s, 2H), 1.5188 (s, 6H).

FT-IR (KBr, cm-1): νM-S 586, 447. FT-IR (KBr, cm −1 ): ν MS 586, 447.

EA: calcd.(found) Cu4C24H56N4S4: C 36.81(37.23); H 7.21(7.28);EA: calcd. (Found) Cu 4 C 24 H 56 N 4 S 4 : C 36.81 (37.23); H 7.21 (7.28);

N 7.15(7.36); S 16.38(18.02)                                N 7.15 (7.36); S 16.38 (18.02)

EI-MS (m/z): 783 (M+)
EI-MS (m / z): 783 (M + )

실시예 2: [Cu(dmampS)]4의 제조Example 2: Preparation of [Cu (dmampS)] 4

125 mL 슐렝크 플라스크에 CuCl2 (0.135g, 0.001mol, 1eq)와 Li(dmampS) (0.280g, 0.002 mol, 2eq)을 넣은 후 톨루엔 (50 mL)을 첨가한 후 24시간 교반 하였다. 얻어진 용액을 여과한 후 여액을 감압 하에서 용매를 제거하여 노란색 고체 화합물을 수득하였다. 얻어진 수득물의 불순물을 제거하기 위해 헥산에서 재결정을 하여 노란색 결정의 화합물 0.15g을 얻었다(수율: 80%).CuCl 2 (0.135g, 0.001mol, 1eq) and Li (dmampS) (0.280g, 0.002mol, 2eq) were added to a 125 mL Schlenk flask, and toluene (50 mL) was added thereto, followed by stirring for 24 hours. After filtering the obtained solution, the filtrate was removed solvent under reduced pressure to give a yellow solid compound. To remove impurities, the obtained product was recrystallized in hexane to obtain 0.15 g of a yellow crystal compound (yield: 80%).

상기 얻어진 화합물에 대한 1H-NMR(C6D6)를 도 2에 나타내었다. 1 H-NMR (C 6 D 6 ) for the obtained compound is shown in FIG. 2.

1H NMR (C6D6, 300.13MHz): δ 2.4496 (s, 6H), 2.3219 (s, 2H), 1.5188 (s, 6H). 1 H NMR (C 6 D 6 , 300.13 MHz): δ 2.4496 (s, 6H), 2.3219 (s, 2H), 1.5188 (s, 6H).

FT-IR (KBr, cm-1): νM-S 586, 447. FT-IR (KBr, cm −1 ): ν MS 586, 447.

EA: calcd.(found) Cu4C24H56N4S4: C 36.81(37.23); H 7.21(7.28);EA: calcd. (Found) Cu 4 C 24 H 56 N 4 S 4 : C 36.81 (37.23); H 7.21 (7.28);

N 7.15(7.36); S 16.38(18.02)                                N 7.15 (7.36); S 16.38 (18.02)

EI-MS (m/z): 783 (M+)
EI-MS (m / z): 783 (M + )

상기 실시예 1,2에서 합성한 구리 전구체 화합물의 구체적인 구조를 확인하기 위하여 Bruker SMART APEX II X-ray Diffractometer 를 이용하여 결정구조(X-ray structure)를 확인하여 도 2에 나타내었다. 이를 통하여 [Cu(dmampS)]4의 구조를 확인할 수 있었다.In order to confirm the specific structure of the copper precursor compound synthesized in Examples 1 and 2, the crystal structure (X-ray structure) was confirmed using a Bruker SMART APEX II X-ray Diffractometer, and is shown in FIG. 2. Through this, the structure of [Cu (dmampS)] 4 could be confirmed.

또한, 상기 [Cu(dmampS)]4의 열적 안정성 및 휘발성과 분해 온도를 측정하기 위해, 열무게 분석(thermogravimetric analysis, TGA)법을 이용하였다. 상기 TGA 방법은 생성물을 10℃/분의 속도로 900℃까지 가온시키면서, 1.5bar/분의 압력으로 아르곤 가스를 주입하였다. 실시예 1에서 합성한 구리 전구체 화합물의 TGA 그래프를 도 3에 도시하였다. 실시예 1에서 수득된 구리 전구체 화합물은 174℃ 부근에서 질량 감소가 일어났으며 243℃에서 50% 이상의 질량 감소가 관찰되었다. 이를 통하여 TG 그래프에서 T1 /2가 208℃임을 확인하였다.
In addition, thermogravimetric analysis (TGA) was used to measure the thermal stability, volatility, and decomposition temperature of [Cu (dmampS)] 4 . The TGA method injected argon gas at a pressure of 1.5 bar / min while warming the product to 900 ° C. at a rate of 10 ° C./min. A TGA graph of the copper precursor compound synthesized in Example 1 is shown in FIG. 3. The copper precursor compound obtained in Example 1 had a mass loss around 174 ° C and a mass loss of 50% or more was observed at 243 ° C. Through this, it was confirmed that the TG graph T 1/2 is 208 ℃.

구리 전구체 물질의 열분해Pyrolysis of Copper Precursor Materials

Oleylamine을 270℃까지 가온시킨 후, 실시예 1,2에서 합성한 구리 전구체 화합물을 톨루엔과 함께 투입한 후, 30분간 열분해 하였다. 상온으로 식힌 후 메탄올 및 톨루엔으로 2차례 세척한 후 얻은 물질을 XRD(X선 회절 분석)와 EDS(energy dispersive spectroscopy)로 분석하였다. XRD(X선 회절 분석)을 도 4에, EDS(energy dispersive spectroscopy)법에 의한 분석 결과와 SEM 촬영사진을 도 5에 각각 도시하였다. XRD(X선 회절 분석)결과 기존의 알려진 데이터 값인 JCPDS 056-0256 Cu1 .8S과 일치함을 알 수 있고, EDS(energy dispersive spectroscopy)결과 로는 Cu2S임을 알 수 있었다. 또 분산도를 측정하기 위하여, 열분해로 얻은 나노물질을 10분간 초음파 처리한 후, 하루 뒤에 이들의 분산도를 살펴보았다. 그 결과, 도 6에서와 같이 우수한 분산도를 갖는다.
After heating Oleylamine to 270 ° C, the copper precursor compound synthesized in Examples 1 and 2 was added together with toluene, and pyrolyzed for 30 minutes. After cooling to room temperature and washing twice with methanol and toluene, the obtained material was analyzed by XRD (X-ray diffraction analysis) and energy dispersive spectroscopy (EDS). XRD (X-ray diffraction analysis) is shown in FIG. 4, and an analysis result and an SEM photograph by EDS (energy dispersive spectroscopy) method are shown in FIG. 5, respectively. XRD (X-ray diffraction analysis) results and found to be consistent with existing known data value JCPDS 056-0256 Cu 1 .8 S, EDS (energy dispersive spectroscopy) results roneun was found that Cu 2 S. In addition, in order to measure the dispersion degree, the nanomaterials obtained by pyrolysis were sonicated for 10 minutes, and then, their dispersion degree was examined one day later. As a result, it has an excellent dispersion degree as shown in FIG.

Claims (5)

하기 화학식 1로 표시되는 구리 전구체:
[화학식 1]
Figure pat00007

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기, 또는 C1-C10의 플루오르화 알킬기이며, n은 1 내지 3이다.)
Copper precursor represented by the following formula (1):
[Formula 1]
Figure pat00007

(Wherein R 1 and R 2 are each independently a linear or branched alkyl group of C 1 -C 10, R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl group, or a C 1 -C 10 fluorinated alkyl group, n Is 1 to 3.)
청구항 1에 있어서,
상기 R1, R2는 서로 독립적으로 CH3, C2H5, CH(CH3)2 및C(CH3)3로부터 선택되고, 상기 R3, R4는 서로 독립적으로 CH3, CF3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되는 것을 특징으로 하는 구리 전구체.
The method according to claim 1,
R 1 and R 2 are independently selected from CH 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3 , and R 3 and R 4 are independently of each other CH 3 , CF 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3 .
하기 화학식 2로 표시되는 화합물과 화학식 3 내지 4로 표시되는 화합물을 반응시키는 것을 포함하는, 청구항 1의 화학식 1로 표시되는 구리 전구체의 제조방법:
[화학식 2]
Figure pat00008

(상기 식에서, M은 Li, Na, K 중 어느 하나이고, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기, 또는 C1-C10의 플루오르화 알킬기이며, n은 1 내지 3이다.)
[화학식 3]
CuX
(상기 식에서, X는 Cl, Br 또는 I이다.)
[화학식 4]
CuX2
(상기 식에서, X는 Cl, Br 또는 I이다.)
Method for producing a copper precursor represented by the formula (1) of claim 1 comprising reacting a compound represented by the formula (2) and a compound represented by the formula (3-4):
(2)
Figure pat00008

Wherein M is any one of Li, Na, and K, R1 and R2 are each independently a linear or branched alkyl group of C1-C10, and R3 and R4 are each independently a linear or branched alkyl group of C1-C10. Or a C1-C10 fluorinated alkyl group, n is 1 to 3.)
(3)
CuX
(Wherein X is Cl, Br or I).
[Chemical Formula 4]
CuX 2
(Wherein X is Cl, Br or I).
청구항 1의 구리 전구체를 이용하여 황화구리 박막을 성장시키는 방법.A method of growing a copper sulfide thin film using the copper precursor of claim 1. 청구항 4에 있어서,
박막 성장 공정이 화학기상증착법(CVD) 또는 원자층증착법(ALD)에 의하여 수행되는 것을 특징으로 하는 방법.

The method of claim 4,
Wherein the thin film growth process is performed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).

KR1020120048239A 2012-05-04 2012-05-07 Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same KR101331972B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120048239A KR101331972B1 (en) 2012-05-07 2012-05-07 Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
PCT/KR2013/003879 WO2013165221A1 (en) 2012-05-04 2013-05-03 Metal precursor using aminothiolate ligand, method for preparing same, and method for manufacturing thin film by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120048239A KR101331972B1 (en) 2012-05-07 2012-05-07 Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same

Publications (2)

Publication Number Publication Date
KR20130127025A true KR20130127025A (en) 2013-11-22
KR101331972B1 KR101331972B1 (en) 2013-11-25

Family

ID=49854696

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120048239A KR101331972B1 (en) 2012-05-04 2012-05-07 Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same

Country Status (1)

Country Link
KR (1) KR101331972B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220082419A (en) * 2020-12-10 2022-06-17 성균관대학교산학협력단 Precursor compound for deposition of thin copper sulfide film and fabrication method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954541B1 (en) * 2008-03-20 2010-04-23 한국화학연구원 Novel tin amino-alkoxide complexes and process for preparing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220082419A (en) * 2020-12-10 2022-06-17 성균관대학교산학협력단 Precursor compound for deposition of thin copper sulfide film and fabrication method thereof

Also Published As

Publication number Publication date
KR101331972B1 (en) 2013-11-25

Similar Documents

Publication Publication Date Title
KR101331970B1 (en) Indium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101485522B1 (en) Molybdenum precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101120065B1 (en) Novel germanium complexes with amidine derivative ligand and process for preparing the same
KR101485520B1 (en) Tungsten precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
Bhide et al. Synthesis, solution dynamics and chemical vapour deposition of heteroleptic zinc complexes via ethyl and amide zinc thioureides
KR101629696B1 (en) Novel indium derivatives, its preparation method and the thin film using the same
KR101331971B1 (en) Tin precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101331972B1 (en) Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101485521B1 (en) Molybdenum precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101306811B1 (en) Novel tungsten aminoamide halide compounds, preparation method thereof and process for the formation of thin films using the same
WO2015056944A1 (en) Molybdenum compound or tungsten compound, method for preparing same and method for forming thin film using same
KR101530045B1 (en) Gallium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101530042B1 (en) Indium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101530043B1 (en) Indium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR100982972B1 (en) Precursor for producing a thin film and a method for manufacturing the thin film by chemical vapor deposition using the same
KR101505126B1 (en) Noble Tungsten Compounds, Preparation Method Thereof and Process for the Thin Film Using the Same
KR100965270B1 (en) Gallium complexes with donor-functionalized ligands and process for preparing thereof
KR101503032B1 (en) Tin precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101485519B1 (en) Tungsten precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101505125B1 (en) Noble Molybdenum Compounds, Preparation Method Thereof and Process for the Thin Film Using the Same
KR101530044B1 (en) Gallium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR20130127024A (en) Zinc precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101567936B1 (en) Antimony-tellurium single precursors, preparation method thereof and process for the formation of thin films using the same
KR101503031B1 (en) Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
CN110128373B (en) Piperazinyl tin complex, preparation method thereof, thin film and solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161006

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 7