KR101503031B1 - Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same - Google Patents

Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same Download PDF

Info

Publication number
KR101503031B1
KR101503031B1 KR1020130046343A KR20130046343A KR101503031B1 KR 101503031 B1 KR101503031 B1 KR 101503031B1 KR 1020130046343 A KR1020130046343 A KR 1020130046343A KR 20130046343 A KR20130046343 A KR 20130046343A KR 101503031 B1 KR101503031 B1 KR 101503031B1
Authority
KR
South Korea
Prior art keywords
lead
precursor
independently
linear
thin film
Prior art date
Application number
KR1020130046343A
Other languages
Korean (ko)
Other versions
KR20140127679A (en
Inventor
박보근
김창균
정택모
전동주
여소정
정윤장
공기정
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020130046343A priority Critical patent/KR101503031B1/en
Priority to PCT/KR2013/003879 priority patent/WO2013165221A1/en
Publication of KR20140127679A publication Critical patent/KR20140127679A/en
Application granted granted Critical
Publication of KR101503031B1 publication Critical patent/KR101503031B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Abstract

본 발명은 하기 화학식 1로 표시되는 납 전구체에 관한 것으로, 상기 납 전구체는 황을 포함하고 있는 전구체로서 열적 안정성과 휘발성이 개선되고 박막 제조 중에 별도의 황을 첨가시키지 않아도 되는 장점을 가지기 때문에 이를 이용하여 쉽게 양질의 황화납 박막을 제조할 수 있다.
[화학식 1]

Figure 112013036754418-pat00008

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형의 알킬기 또는 C1-C10의 선형 또는 분지형의 플루오로알킬기이고, n은 1 내지 3 범위의 정수에서 선택된다.) The present invention relates to a lead precursor represented by the following general formula (1), wherein the lead precursor is a precursor containing sulfur, has improved thermal stability and volatility, and has the advantage of not requiring addition of sulfur during the production of a thin film, A high quality lead sulfide thin film can be easily produced.
[Chemical Formula 1]
Figure 112013036754418-pat00008

Wherein R 1 and R 2 are each independently a C 1 -C 10 linear or branched alkyl group and R 3 and R 4 are each independently a C 1 -C 10 linear or branched alkyl group or a C 1 -C 10 linear or branched Branched fluoroalkyl group, and n is selected from integers ranging from 1 to 3.)

Description

아미노싸이올레이트를 이용한 납 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법{LEAD PRECURSORS WITH AMINOTHIOLATE, PREPARATION METHOD THEREOF AND PROCESS FOR THE FORMATION OF THIN FILMS USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a lead precursor using aminothiolate, a method for producing the lead precursor, and a method for forming a thin film using the same. BACKGROUND OF THE INVENTION [0002]

본 발명은 신규의 납 전구체에 관한 것으로서, 보다 구체적으로 열적 안정성과 휘발성이 개선되고 낮은 온도에서 쉽게 황화납 박막의 제조가 가능한 납 전구체 및 이의 제조방법, 그리고 이를 이용하여 황화납 박막을 제조하는 방법에 관한 것이다.More particularly, the present invention relates to a lead precursor having improved thermal stability and volatility and capable of easily producing a thin film of lead sulfide at a low temperature, a method for producing the lead precursor, and a method for producing a lead sulfide thin film using the lead precursor .

반도체 재료의 나노 입자는 생물 라벨 및 진단, 발광 다이오드, 전기 기기, 태양 광 발전 장치, 레이저, 및 단일 전자 트랜지스터 등의 다양한 분야에 적용이 가능한 재료로 확인되었다. 특히, 양이온 선택성 센서, 사진, IR 탐지기, 그리고 태양 흡수층 등에 다양하게 사용되는 황화납(PbS)은 좁은 띠간격(band gap) 에너지 (0.41 eV at 300 K)와 큰 보어 반경(18nm)으로 인해 매우 중요한 직접 밴드 갭 반도체(direct band gap semiconductor)이다. 그 중 3 차 비선형 광학 응답이 갈륨 비소(GaAs)에 비하여 30배, 카드뮴 셀레늄(CdSe) 재료 보다 1,000배 클 것으로 예상되기 때문에, 황화납(PbS)의 나노격자는 높은 광자 및 광학 스위칭 장치 등에 요구되고 있다.Nanoparticles of semiconductor materials have been identified as materials that can be applied to a variety of fields, such as biological labels and diagnostics, light emitting diodes, electrical devices, photovoltaic devices, lasers, and single electron transistors. In particular, lead sulfide (PbS), which is widely used in cation selective sensors, photography, IR detectors, and solar absorbers, has a very narrow band gap energy (0.41 eV at 300 K) and a large bore radius Is an important direct band gap semiconductor. Since the third-order nonlinear optical response is expected to be 30 times higher than that of gallium arsenide (GaAs) and 1,000 times higher than that of cadmium selenium (CdSe), the nano lattice of lead sulfide (PbS) requires high photon and optical switching devices .

상기 황화납(PbS)을 이용하여 박막을 형성하기 위한 공정으로는 화학기상증착(CVD) 또는 원자층증착(ALD)이 사용되고 있는데, 상기와 같은 CVD 또는 ALD 공정에 의하여 황화납 박막을 제조하는 경우, 금속 전구체의 특성에 따라서 증착 정도 및 증착 제어 특성이 결정되기 때문에, 우수한 특성을 갖는 금속 전구체의 개발이 필요하다. 이를 위하여 미국공개공보 제2008-0102313호 등에서 술폰산 등을 사용하는 황화납 전구체를 개시하고 있으나, 구체적인 전구체의 합성에 관한 연구가 미비한 실정이다. 따라서, 열적 안정성, 화학적 반응성, 휘발성 및 금속의 증착 속도가 개선된 황화납(PbS) 전구체의 개발이 절실히 요구되고 있다.Chemical vapor deposition (CVD) or atomic layer deposition (ALD) is used for forming the thin film using the lead sulfide (PbS). When the thin film of lead sulfide is manufactured by the CVD or ALD process as described above , The degree of deposition and the deposition control characteristics are determined according to the characteristics of the metal precursor, and therefore it is necessary to develop a metal precursor having excellent characteristics. For this purpose, USP Publication No. 2008-0102313 discloses a lead sulfide precursor using a sulfonic acid or the like, but there have been few studies on the synthesis of specific precursors. Accordingly, there is a desperate need to develop a lead sulfide (PbS) precursor with improved thermal stability, chemical reactivity, volatility, and deposition rate of metals.

미국공개공보 제2008-0102313 AU.S. Publication No. 2008-0102313 A

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 열적 안정성과 휘발성이 개선되고 낮은 온도에서 쉽게 황화납 박막의 제조가 가능한 신규의 납 전구체를 제공하기 위한 것이다.It is an object of the present invention to provide a novel lead precursor which is improved in thermal stability and volatility and which is capable of easily producing a lead sulfide thin film at a low temperature.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 금속 전구체를 제공한다.In order to achieve the above object, the present invention provides a metal precursor represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112013036754418-pat00001
Figure 112013036754418-pat00001

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형의 알킬기 또는 C1-C10의 선형 또는 분지형의 플루오로알킬기이고, n은 1 내지 3 범위의 정수에서 선택된다.) Wherein R 1 and R 2 are each independently a C 1 -C 10 linear or branched alkyl group and R 3 and R 4 are each independently a C 1 -C 10 linear or branched alkyl group or a C 1 -C 10 linear or branched Branched fluoroalkyl group, and n is selected from integers ranging from 1 to 3.)

또한 본 발명은 하기 화학식 2로 표시되는 화합물과 하기 화학식 3으로 표시되는 화합물을 반응시키는 것을 포함하는, 상기 화학식 1로 표시되는 납 전구체의 제조방법을 제공한다.The present invention also provides a process for preparing a lead precursor represented by the above formula (1), which comprises reacting a compound represented by the following formula (2) and a compound represented by the following formula (3).

[화학식 2](2)

Figure 112013036754418-pat00002
Figure 112013036754418-pat00002

(상기 식에서, M은 Li, Na, K 또는 NH4이고, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형의 알킬기 또는 C1-C10의 선형 또는 분지형의 플루오로알킬기이고, n은 1 내지 3 범위의 정수에서 선택된다.)(Wherein, M is Li, Na, and K, or NH 4, R 1, R 2 are each independently a C1-C10 linear or branched alkyl group, R 3, R 4 is a linear C1-C10, each independently Or branched C1-C10 linear or branched fluoroalkyl group, and n is selected from integers ranging from 1 to 3.)

[화학식 3](3)

PbX2 PbX 2

(상기 식에서, X는 Cl, Br 또는 I이다.)
(Wherein X is Cl, Br or I).

또한 본 발명은 상기 화학식 1의 납 전구체를 이용하여 황화납 박막을 성장시키는 방법을 제공한다.The present invention also provides a method of growing a lead sulfide thin film using the lead precursor of Formula 1 above.

본 발명의 화학식 1로 표시되는 납 전구체는 황을 포함하고 있는 전구체로서 열적 안정성과 휘발성이 개선되고 박막 제조 중에 별도의 황을 첨가시키지 않아도 되는 장점을 가지기 때문에 이를 이용하여 쉽게 양질의 황화납 박막을 제조할 수 있다.
The lead precursor represented by Formula 1 of the present invention is a precursor containing sulfur and has improved thermal stability and volatility and has an advantage that no additional sulfur is added during the production of the thin film, Can be manufactured.

도 1은 Pb(dmampS)2에 대한 1H NMR 스펙트럼이다.
도 2는 Pb(dmampS)2에 대한 TG data이다.
도 3은 Pb(dmampS)2에 대한 결정구조이다.
Figure 1 is a 1 H NMR spectrum for Pb (dmampS) 2 .
2 is TG data for Pb (dmampS) 2 .
3 is a crystal structure for Pb (dmampS) 2 .

본 발명은, 하기 화학식 1로 표시되는 납 전구체에 관한 것이다:The present invention relates to a lead precursor represented by the following general formula (1)

[화학식 1][Chemical Formula 1]

Figure 112013036754418-pat00003
Figure 112013036754418-pat00003

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형의 알킬기 또는 C1-C10의 선형 또는 분지형의 플루오로알킬기이고, n은 1 내지 3 범위의 정수에서 선택된다.)Wherein R 1 and R 2 are each independently a C 1 -C 10 linear or branched alkyl group and R 3 and R 4 are each independently a C 1 -C 10 linear or branched alkyl group or a C 1 -C 10 linear or branched Branched fluoroalkyl group, and n is selected from integers ranging from 1 to 3.)

상기 화학식 1에 있어서, 상기 R1, R2는 서로 독립적으로 CH3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되고, 상기 R3, R4는 서로 독립적으로 CH3, CF3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되는 것을 사용하는 것이 바람직하다.
Wherein R 1 and R 2 are independently selected from CH 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3 , and R 3 and R 4 are independently a CH 3, CF 3, C 2 H 5, CH (CH 3) is preferably used selected from 2 and C (CH 3) 3.

본 발명에 따른 상기 화학식 1로 표시되는 납 전구체는 보다 구체적으로 일반식 Pb(daat)2 (daat = dialkylaminoalkylthiolate)로 표시될 수 있으며, 상기 화학식 1로 표시되는 납 전구체는 출발물질로서 하기 화학식 2로 표시되는 화합물(M(daat))과 화학식 3으로 표시되는 화합물(PbX2)을 유기 용매에서 반응시켜 치환 반응을 유도하여 제조될 수 있다. 상기 daat의 보다 구체적인 예로 1-(dimethylamino)-2-methylpropane-2-thiolate, 즉 dmampS를 사용할 수 있다.The lead precursor represented by the formula (1) according to the present invention may be represented by a general formula Pb (daat) 2 (daat = dialkylaminoalkylthiolate), and the lead precursor represented by the formula (1) Can be produced by reacting a displayed compound (M (daat)) with a compound (PbX 2 ) represented by the general formula ( 3 ) in an organic solvent to induce a substitution reaction. More specific examples of the daat include 1- (dimethylamino) -2-methylpropane-2-thiolate, that is, dmampS.

[화학식 2](2)

Figure 112013036754418-pat00004
Figure 112013036754418-pat00004

(상기 식에서, M은 Li, Na, K 또는 NH4이고, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형의 알킬기 또는 C1-C10의 선형 또는 분지형의 플루오로알킬기이고, n은 1 내지 3 범위의 정수에서 선택된다.)(Wherein, M is Li, Na, and K, or NH 4, R 1, R 2 are each independently a C1-C10 linear or branched alkyl group, R 3, R 4 is a linear C1-C10, each independently Or branched C1-C10 linear or branched fluoroalkyl group, and n is selected from integers ranging from 1 to 3.)

[화학식 3](3)

PbX2 PbX 2

(상기 식에서, X는 Cl, Br 또는 I이다.)
(Wherein X is Cl, Br or I).

상기 반응 용매로는 헥산, 톨루엔, 테트라하이드로퓨란, 디에틸에테르 등을 사용할 수 있으며, 바람직하게는 디에틸에테르를 사용할 수 있다.As the reaction solvent, hexane, toluene, tetrahydrofuran, diethyl ether and the like can be used, and diethyl ether can be preferably used.

본 발명의 납 전구체를 제조하기 위한 구체적인 반응 공정은 하기 반응식 1로 나타낼 수 있다.A specific reaction process for preparing the lead precursor of the present invention can be represented by the following reaction formula (1).

[반응식 1][Reaction Scheme 1]

Figure 112013036754418-pat00005
Figure 112013036754418-pat00005

(상기 식에서, R1, R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, R3, R4는 각각 독립적으로 C1-C10의 선형 또는 분지형의 알킬기 또는 C1-C10의 선형 또는 분지형의 플루오로알킬기이고, n은 1 내지 3 범위의 정수에서 선택되며, M은 Li, Na, K 또는 NH4 이고, X는 Cl, Br 또는 I이다.)
Wherein R 1 and R 2 are each independently a C 1 -C 10 linear or branched alkyl group and R 3 and R 4 are each independently a C 1 -C 10 linear or branched alkyl group or a C 1 -C 10 linear or branched N is an integer ranging from 1 to 3; M is Li, Na, K, or NH 4 ; and X is Cl, Br, or I.

상기 반응식 1에 따르면, 헥산, 톨루엔, 테트라하이드로퓨란, 디에틸에테르와 같은 용매에서 실온에서 15시간 내지 24시간 동안 치환 반응을 진행한 뒤 감압 하에서 용매를 제거하고, 얻어진 고체화합물을 헥산으로 생성물을 녹여 여과한 후 여액을 감압 하에서 제거하여 연한 노란색의 고체 화합물을 수득한다. 또한, 상기 반응식 1의 반응 중에 부산물이 생성될 수 있으며, 이들을 승화 또는 재결정법을 이용하여 제거함에 따라 고순도의 신규의 납 전구체를 얻을 수 있다.
According to Scheme 1, the substitution reaction is carried out in a solvent such as hexane, toluene, tetrahydrofuran, diethyl ether at room temperature for 15 hours to 24 hours, the solvent is removed under reduced pressure, and the obtained solid compound is purified by using hexane After melting and filtration, the filtrate is removed under reduced pressure to give a pale yellow solid compound. In addition, by-products may be formed in the reaction of Scheme 1, and they may be removed by sublimation or recrystallization to obtain a new lead precursor of high purity.

상기 반응에서 반응물은 화학양론적 당량비로 사용된다.The reactants in this reaction are used in stoichiometric equivalents.

상기 화학식 1로 표시되는 신규의 납 전구체는 상온에서 안정한 연한 노란색 고체로서, 열적으로 안정하고 좋은 휘발성을 가진다.The novel lead precursor represented by Formula 1 is a pale yellow solid which is stable at room temperature and is thermally stable and has good volatility.

상기 납 전구체를 이용하여 황화납 박막을 성장시키는 경우, 박막 제조 공정 중에 별도의 황을 첨가시키지 않아도 되는 장점이 있다.When the lead sulfide thin film is grown using the lead precursor, there is an advantage that no additional sulfur is added during the thin film manufacturing process.

본 발명의 신규의 납 전구체는 황화납 박막 제조용 전구체로서, 일반적인 박막제조 공정에 널리 사용되고 있는 화학기상증착법(CVD) 또는 원자층증착법(ALD)을 사용하는 공정에 바람직하게 적용될 수 있다.The lead precursor of the present invention is preferably used as a precursor for the production of a thin film of lead sulfide, which uses chemical vapor deposition (CVD) or atomic layer deposition (ALD), which is widely used in general thin film manufacturing processes.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
The present invention may be better understood by the following examples, which are for the purpose of illustrating the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

납 전구체 물질의 합성Synthesis of lead precursor materials

실시예 1: Pb(dmampS)2의 제조Example 1: Preparation of Pb (dmampS) 2

100 mL 슐렝크 플라스크에 PbCl2 (2.0 g, 7.2 mmol, 1 eq)와 lithium 1-(dimethylamino)-2-methylpropane-2-thiolate (2.0 g, 14.4 mmol, 2 eq)를 넣은 후디에틸에테르(50 mL)를 첨가한 후 24시간 교반하였다. 얻어진 용액을 여과한 후 감압 하에서 용매를 제거하여 노란색 고체 화합물을 얻고 불순물을 제거하기 위해 감압 하에서 80 ℃에서 승화하였다. 얻어진 화합물은 2.7 g이고, 수율은 80%였다.To a 100 mL Schlenk flask was added PbCl 2 (2.0 g, 7.2 mmol, 1 eq) and lithium 1- (dimethylamino) -2-methylpropane-2-thiolate (2.0 g, 14.4 mmol, 2 eq) mL) was added thereto, followed by stirring for 24 hours. The resulting solution was filtered, and the solvent was removed under reduced pressure to obtain a yellow solid compound, which was then sublimed under reduced pressure at 80 DEG C to remove impurities. The obtained compound was 2.7 g, and the yield was 80%.

상기 얻어진 화합물 Pb(dmampS)2에 대한 1H-NMR(C6D6)를 도 1에 나타내었다.
1 H-NMR (C 6 D 6 ) of the obtained compound Pb (dmampS) 2 is shown in FIG.

1H NMR (C6D6, 300 MHz): δ 2.74 (s, 2H), 2.21 (s, 6H), 1.70 (s, 6H). 1 H NMR (C 6 D 6 , 300 MHz): δ 2.74 (s, 2H), 2.21 (s, 6H), 1.70 (s, 6H).

EA: calcd.(found) PbC12H28N2S2: C, 30.56(30.93); H, 5.98(6.09); . EA: calcd (found) PbC 12 H 28 N 2 S 2: C, 30.56 (30.93); H, 5.98 (6.09);

N, 5.94(6.26); S, 13.60(13.98)
N, 5.94 (6.26); S, 13.60 (13.98)

납 전구체 물질의 분석Analysis of lead precursor materials

상기 실시예 1에서 합성한 전구체 화합물의 구체적인 구조를 확인하기 위하여 Bruker SMART APEX II X-ray Diffractometer를 이용하여 결정구조(X-ray structure)를 확인하여 도 3에 나타내었다. 이를 통하여 Pb(dmampS)2의 구조를 확인할 수 있었다.In order to confirm the specific structure of the precursor compound synthesized in Example 1, a crystal structure (X-ray structure) was confirmed using a Bruker SMART APEX II X-ray Diffractometer and is shown in FIG. The structure of Pb (dmampS) 2 was confirmed through this.

또한, 상기 실시예 1의 전구체 화합물의 열적 안정성 및 휘발성과 분해 온도를 측정하기 위해, 열무게 분석(thermogravimetric analysis, TGA)법을 이용하였다. 상기 TGA 방법은 생성물을 10 ℃/분의 속도로 900 ℃까지 가온 시키면서, 1.5 bar/분의 압력으로 아르곤 기체를 주입하였다. Thermogravimetric analysis (TGA) was also used to measure the thermal stability, volatility and decomposition temperature of the precursor compound of Example 1 above. In the TGA method, argon gas was introduced at a pressure of 1.5 bar / min while warming the product to 900 ° C at a rate of 10 ° C / minute.

도 2에서와 같이, 실시예 1에서 수득된 납 전구체 화합물은 201 ℃ 부근에서 질량 감소가 일어났으며 261 ℃에서 57% 이상의 질량 감소가 관찰되었다. 이를 통하여 TG 그래프에서 T1 /2가 253 ℃임을 확인하였다.As shown in FIG. 2, the lead precursor compound obtained in Example 1 showed a mass reduction at around 201 DEG C and a mass decrease of more than 57% at 261 DEG C. Through this, it was confirmed that the TG graph T 1/2 is 253 ℃.

Claims (5)

하기 화학식 1로 표시되는 납 전구체:
[화학식 1]
Figure 112014126845959-pat00006

(상기 식에서, R1, R2는 서로 독립적으로 CH3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되고, 상기 R3, R4는 서로 독립적으로 CH3, CF3, C2H5, CH(CH3)2 및 C(CH3)3 로부터 선택되고, n은 1 내지 3 범위의 정수에서 선택된다.)
A lead precursor represented by the following formula (1)
[Chemical Formula 1]
Figure 112014126845959-pat00006

Wherein R 1 and R 2 are independently selected from CH 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3 , and R 3 and R 4 independently of one another are CH 3 , CF 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3 , and n is selected from integers ranging from 1 to 3.)
삭제delete 하기 화학식 2로 표시되는 화합물과 하기 화학식 3으로 표시되는 화합물을 반응시키는 것을 포함하는, 청구항 1의 화학식 1로 표시되는 납 전구체의 제조방법:
[화학식 2]
Figure 112014126845959-pat00007

(상기 식에서, M은 Li, Na, K 또는 NH4 이고, R1, R2는 서로 독립적으로 CH3, C2H5, CH(CH3)2 및 C(CH3)3로부터 선택되고, 상기 R3, R4는 서로 독립적으로 CH3, CF3, C2H5, CH(CH3)2 및 C(CH3)3 로부터 선택되고, n은 1 내지 3 범위의 정수에서 선택된다.)
[화학식 3]
PbX2
(상기 식에서, X는 Cl, Br 또는 I이다.)
A process for producing a lead precursor represented by the general formula (1), comprising reacting a compound represented by the following general formula (2) and a compound represented by the following general formula (3)
(2)
Figure 112014126845959-pat00007

(Wherein, M is selected from Li, Na, K or NH 4 and, R 1, R 2 are each independently CH 3, C 2 H 5, CH (CH 3) 2 and C (CH 3) 3, Wherein R 3 and R 4 are independently selected from CH 3 , CF 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3 and n is an integer ranging from 1 to 3. )
(3)
PbX 2
(Wherein X is Cl, Br or I).
청구항 1의 납 전구체를 이용하여 황화납 박막을 성장시키는 방법.A method of growing a lead sulfide thin film using the lead precursor of claim 1. 청구항 4에 있어서,
박막 성장 공정이 화학기상증착법(CVD) 또는 원자층증착법(ALD)에 의하여 수행되는 것을 특징으로 하는 방법.
The method of claim 4,
Wherein the thin film growth process is performed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
KR1020130046343A 2012-05-04 2013-04-25 Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same KR101503031B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130046343A KR101503031B1 (en) 2013-04-25 2013-04-25 Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
PCT/KR2013/003879 WO2013165221A1 (en) 2012-05-04 2013-05-03 Metal precursor using aminothiolate ligand, method for preparing same, and method for manufacturing thin film by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130046343A KR101503031B1 (en) 2013-04-25 2013-04-25 Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same

Publications (2)

Publication Number Publication Date
KR20140127679A KR20140127679A (en) 2014-11-04
KR101503031B1 true KR101503031B1 (en) 2015-03-18

Family

ID=52451862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130046343A KR101503031B1 (en) 2012-05-04 2013-04-25 Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same

Country Status (1)

Country Link
KR (1) KR101503031B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080109002A (en) * 2006-03-29 2008-12-16 이스트맨 코닥 캄파니 Process for atomic layer deposition
KR100994599B1 (en) 2005-04-29 2010-11-15 리나트 뉴로사이언스 코퍼레이션 Antibodies directed against amyloid-beta peptide and methods using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994599B1 (en) 2005-04-29 2010-11-15 리나트 뉴로사이언스 코퍼레이션 Antibodies directed against amyloid-beta peptide and methods using same
KR20080109002A (en) * 2006-03-29 2008-12-16 이스트맨 코닥 캄파니 Process for atomic layer deposition

Also Published As

Publication number Publication date
KR20140127679A (en) 2014-11-04

Similar Documents

Publication Publication Date Title
KR101120065B1 (en) Novel germanium complexes with amidine derivative ligand and process for preparing the same
KR101485522B1 (en) Molybdenum precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101331970B1 (en) Indium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101742391B1 (en) Indium precursors, preparation method thereof and process for the formation of thin film using the same
KR101629696B1 (en) Novel indium derivatives, its preparation method and the thin film using the same
KR101485520B1 (en) Tungsten precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101306811B1 (en) Novel tungsten aminoamide halide compounds, preparation method thereof and process for the formation of thin films using the same
KR101503031B1 (en) Lead precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101485521B1 (en) Molybdenum precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101306810B1 (en) Novel tungsten aminoalkoxide compounds, preparation method thereof and process for the formation of thin films using the same
KR101530042B1 (en) Indium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101530043B1 (en) Indium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101530045B1 (en) Gallium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101331971B1 (en) Tin precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101331972B1 (en) Copper precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101530044B1 (en) Gallium precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR100965270B1 (en) Gallium complexes with donor-functionalized ligands and process for preparing thereof
KR101485519B1 (en) Tungsten precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR101505126B1 (en) Noble Tungsten Compounds, Preparation Method Thereof and Process for the Thin Film Using the Same
KR101306812B1 (en) Novel tungsten silylamide compounds, preparation method thereof and process for the formation of thin films using the same
KR101636490B1 (en) Lanthanide metal precursors, preparation method thereof and process for the formation of thin films using the same
KR101503032B1 (en) Tin precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
KR102548034B1 (en) Novel Organo-Bismuth Compounds, Preparation method thereof, and Method for deposition of thin film using the same
KR101505125B1 (en) Noble Molybdenum Compounds, Preparation Method Thereof and Process for the Thin Film Using the Same
KR20230158682A (en) Novel Organo-Tin Compounds and Method for deposition of thin film using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 5