KR20130125630A - 신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체 - Google Patents

신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체 Download PDF

Info

Publication number
KR20130125630A
KR20130125630A KR1020120049299A KR20120049299A KR20130125630A KR 20130125630 A KR20130125630 A KR 20130125630A KR 1020120049299 A KR1020120049299 A KR 1020120049299A KR 20120049299 A KR20120049299 A KR 20120049299A KR 20130125630 A KR20130125630 A KR 20130125630A
Authority
KR
South Korea
Prior art keywords
composition
seq
oxoaldehyde
alpha
cdjr
Prior art date
Application number
KR1020120049299A
Other languages
English (en)
Other versions
KR101441544B1 (ko
Inventor
박찬규
이주영
권규
김정호
백광희
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020120049299A priority Critical patent/KR101441544B1/ko
Publication of KR20130125630A publication Critical patent/KR20130125630A/ko
Application granted granted Critical
Publication of KR101441544B1 publication Critical patent/KR101441544B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/326Foods, ingredients or supplements having a functional effect on health having effect on cardiovascular health

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychiatry (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Hospice & Palliative Care (AREA)
  • Plant Pathology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)

Abstract

본 발명은 인간 DJ-1 단백질 또는 이의 유사체의 신규한 글리옥살라아제(glyoxalase) 활성에 관한 것이다. 본 발명의 DJ-1 단백질은 반응성 알데히드를 제거하는 글리옥살라아제 활성을 가짐으로써, 반응성 알데히드에 의한 산화적 손상으로부터 세포를 보호하는 항산화 용도로 응용될 수 있으며, 반응성 알데히드에 의해 유발되는 노화, 당뇨, 동맥경화증 및 신경퇴행성 질환의 치료, 예방 또는 개선 용도로 사용될 수 있다. 또한, 본 발명의 약물 후보물질의 스크리닝 방법에 의하면, 반응성 알데히드에 의한 신경퇴화를 억제 또는 방지하는 후보물질을 효과적으로 스크리닝할 수 있다.

Description

신규 글리옥살라아제 활성을 갖는 인간 DJ-1 단백질 또는 이의 유사체{Human DJ-1 Protein or Its Homologs Having Novel Glyoxalase Activity}
본 발명은 인간 DJ-1 단백질 또는 이의 유사체의 신규 글리옥살라아제(glyoxalase) 활성에 관한 것이다.
DJ-1은 파킨슨병(Parkinson's disease, PD)의 초기 발병 원인 유전자로 알려져 있다(1). 이 유전자는 최초에 종양유전자로서 발견되었고(2), 이 단백질은 산화적 스트레스로부터 세포를 보호하는 작용(3, 4)과, MPP+, 6-OHDA 및 로테논(rotenone)과 같은 PD-유발자에 대한 신경보호작용(5-7)을 포함한 다양한 작용을 한다는 것이 보고되었다. DJ-1 및 이의 유사체들이 주로 산화적 스트레스에 관련되어 있다는 것이 암시되어 왔으나, 이의 정확한 생화학적 메카니즘은 아직 규명되어 있지 않다. 산화적 스트레스에 대한 DJ-1의 보호적 효과는 예컨대, 포유동물 세포(3), 초파리(D. melanogaster)(5), 선충(C. elegans)(8, 9)와 같은 다양한 종(species)에서 입증되었다. 선충의 경우에는, DJ-1이 없을 시 로테논(rotenone)에 대한 취약성이 증가되며, 항산화제에 의해 이러한 취약성이 복제된다는 것을 증명하는 녹다운(knockdown) 연구가 수행되었다(8).
글리옥살(glyoxal, GO) 및 메틸글리옥살(methylglyoxal, MGO)과 같은 α-옥소알데히드(oxoaldehyde)는 포도당산화, 지질과산화 및 DNA 산화(10)에 의해 생성된다. 이들은 단백질의 아미노기와 비효소적으로 반응하여, AGEs(advanced glycation end products)을 형성하고, 이는 노화, 당뇨 및 파킨슨병 및 알츠하이머병과 같은 신경퇴행성 질환과 뉴런과 같은 세포의 세포사(apoptosis)에도 관련되는 것으로 알려져 있다(11-14). 이들 반응성 친전자성물질(electrophiles)는 글루타티온-의존성 글리옥살라아제(GLO I 및 Ⅱ)(15) 및 NAD[P]H-의존성 알도-케토 환원제(NAD[P]H-dependent aldo-keto reductase, AKR)(16)에 의해 제거되는 것으로 알려져 있다. 이전에 조효소(co-factor)가 전혀 존재하지 않는 조건에서도 메틸글리옥살을 젖산으로 변환시키는 글리옥살라아제(glyoxalase)의 새로운 타입인 GloⅢ가 대장균(Escherichia coli)에서 보고된 바 있으나 정확한 유전자의 이름은 밝혀지지 않았다(17). 본 발명자들은 이 유전자가 DJ-1 수퍼패밀리(superfamily)에 속하는 글리옥살라아제 Ⅲ로서의 E. coli hchA 라는 것을 확인하여 보고하였다(18).
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 인간, 생쥐, 선충(C. elegans)의 DJ-1 단백질이 반응성 알파-옥소알데히드(reactive α-oxoaldehyde)를 소거할 수 있는 글리옥살라아제(glyoxalase) 활성을 갖는다는 것을 최초로 규명하였고, DJ-1 단백질이 메틸글리옥살 및 글리옥살에 의한 산화 스트레스로부터 세포를 효과적으로 보호한다는 것을 실험적으로 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 DJ-1 단백질 또는 이의 발현 컨스트럭트를 유효성분으로 포함하는 알파-옥소알데히드 소거 활성을 갖는 항산화용 조성물을 제공하는 것에 있다.
본 발명의 다른 목적은 DJ-1 단백질 또는 이의 발현 컨스트럭트를 유효성분으로 포함하는 알파-옥소알데히드에 의해 유발되는 산화적 손상 질환의 치료, 예방 또는 개선용 조성물을 제공하는 것에 있다.
본 발명의 다른 목적은 알파-옥소알데히드에 의한 신경퇴화를 억제 또는 방지하는 활성을 갖는 후보물질을 스크리닝하는 방법을 제공하는 것에 있다.
본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 (i) 서열번호 1, 서열번호 2, 서열번호 3, 또는 서열번호 4의 아미노산 서열을 포함하는 분리된 폴리펩타이드; 또는 (ⅱ) 이 폴리펩타이드를 코딩하는 핵산 분자를 포함하는 발현 컨스트럭트(expression construct)를 유효성분으로 포함하는 반응성 알파-옥소알데히드(reactive α-oxoaldehyde) 소거 활성을 갖는 항산화용 조성물에 관한 것이다.
본 발명은 인간, 생쥐, 선충(C. elegans)의 DJ-1 단백질이 반응성 알파-옥소알데히드를 소거할 수 있는 글리옥살라아제(glyoxalase) 활성을 갖는다는 것을 규명한 것에 기초한다.
본 명세서에서 용어 “글리옥살라아제”는 정상적인 대사 작용의 부산물인 글리옥살 또는 메틸글리옥살과 같은 반응성 옥소-알데히드를 젖산, 글리콜산 등으로 전환하여 무독화(detoxification) 시키는 효소계(enzyme system)을 구성하는 일 효소를 의미한다. 이러한 무독화는 적어도 두 종류의 티올-의존성(thio-dependent) 효소인 글리옥살라아제 I과 글리옥살라아제 Ⅱ의 작용에 의해 이루어진다.
본 발명의 인간, 생쥐, 선충(C. elegans)의 DJ-1 단백질인 글리옥살라아제는 글루타티온과 같은 조효소 성분(co-factor)을 요구하지 않는 조효소-독립적(cofactor-independent)인 글리옥살라아제 Ⅲ 효소이다.
본 명세서에서 사용되는 용어 “반응성 알파-옥소알데히드”는 포도당 산화, 지질 과산화 및 DNA 산화와 같은 정상적인 대사 작용 과정에서 생성되는 반응성 알데히드 물질을 의미하며, 예컨대 글리옥살(glyoxal) 또는 메틸글리옥살(methylglyoxal)을 포함한다.
상기 반응성 알파-옥소알데히드는 단백질의 아미노기와 비효소적으로 반응하여 AGEs(advanced glycation end products)을 형성하며, 노화(aging), 당뇨(diabetes), 심혈관질환(cardiovascular disease), 동맥경화증(atherosclerosis), 및 신경퇴행성 질환(neurodegenerative disorders), 예컨대 파킨슨병(Parkinson's disease), 알츠하이머병(Alzheimer's disease), 다발성경화증(Multiple sclerosis), 근위축성 측색 경화증(amyotrophic lateral sclerosis)을 유발하는 것으로 알려져 있으며, 뉴런과 같은 신경세포의 세포사(apoptosis)에도 관련되어 있다(11-14; Koji Uchida, Free Radical Biology and Medicine Vol 28, Issue 12, 15 June 2000, 16851696; Paul L. Woodet al, Brain Research 1095, 2006, 190-199; Vaishnav RA et al, Journal of Neurotrauma. 2010 Jul;27(7):1311-20).
본 발명의 글리옥살라아제 활성을 갖는 DJ-1 단백질은 글리옥살 또는 메틸글리옥살과 같은 반응성 알파-옥소알데히드를 소거함으로써 반응성 알데히드에 의한 산화적 손상으로부터 세포를 보호한다.
본 발명에서 인간 DJ-1 단백질은 서열번호 1의 아미노산 서열을 포함하고, 생쥐 DJ-1 단백질은 서열번호 2의 아미노산 서열을 포함하며, 선충 DJ-1 단백질은 서열번호 3 또는 서열번호 4의 아미노산 서열을 포함한다.
본 명세서에서 용어 "발현 컨스트럭트"는 발현 목적의 뉴클레오타이드 서열 및 이 서열의 발현을 유도하는 발현서열(예컨대, 프로모터)을 포함하는 발현을 위한 최소한의 엘리먼트(elements)를 의미한다.
본 발명에서 DJ-1 단백질의 발현을 위한 발현 컨스트럭트는 DJ-1 단백질을 코딩하는 뉴클레오타이드 서열과 이 뉴클레오타이드 서열에 작동가능하게 연결되며 진핵세포에서 작용하여 RNA 분자를 형성시키는 프로모터를 포함한다. 이러한 발현 컨스트럭트는 바람직하게는, 전사조절 서열 - 발현 목적의 뉴클레오타이드 서열 - 폴리아데닐화 서열을 포함한다. 상기 발현 컨스트럭트는 예컨대 진핵세포에서 작동 가능한 프로모터 - DJ-1 단백질 코딩 뉴클레오타이드 서열 - 폴리 아데닐화 서열을 포함한다.
본 명세서에서 사용되는 용어 “프로모터”는 코딩 서열 또는 기능적 RNA의 발현을 조절하는 DNA 서열을 의미한다.
본 발명의 DJ-1 단백질 코딩 뉴클레오타이드 서열에 결합되는 프로모터는, 바람직하게는 동물세포, 보다 바람직하게는 포유동물 세포에서 작동하여 서브유니트 서열의 전사를 조절할 수 있는 것으로서, 포유동물 바이러스로부터 유래된 프로모터 및 포유동물 세포의 지놈으로부터 유래된 프로모터를 포함하며, 예컨대, CMV(cytomegalo virus) 프로모터, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV의 tk 프로모터, RSV 프로모터, EF1 알파 프로모터, 메탈로티오닌 프로모터, 베타-액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포톡신 유전자의 프로모터 및 인간 GM-CSF 유전자의 프로모터를 포함하나, 이에 한정되는 것은 아니다.
본 명세서에서 용어 “작동가능하게 연결된(operatively linked)”은 핵산 발현 조절 서열(예컨대 프로모터 서열, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 번역을 조절하게 된다.
본 발명의 발현벡터는 전사 종결서열로서 폴리 아데닐화 서열을 포함할 수 있으며, 예를 들어 소성장 호르몬 터미네이터(Gimmi, E. R., et al., Nucleic Acids Res. 17:6983-6998(1989)), SV40 유래 폴리 아데닐화 서열(Schek, N, et al., Mol. Cell Biol. 12:5386-5393(1992)), HIV-1 polyA(Klasens, B. I. F., et al., Nucleic Acids Res. 26:1870-1876(1998)), β-글로빈 polyA(Gil, A., et al, Cell 49:399-406(1987)), HSV TK polyA(Cole, C. N. and T. P. Stacy, Mol. Cell. Biol. 5:2104-2113(1985)) 또는 폴리오마바이러스 polyA(Batt, D. B and G. G. Carmichael, Mol. Cell. Biol. 15:4783-4790(1995))를 포함하나, 이에 한정되는 것은 아니다.
본 발명의 다른 일 양태에 따르면, 본 발명은 (i) 서열번호 1, 서열번호 2, 서열번호 3, 또는 서열번호 4의 아미노산 서열을 포함하는 분리된 폴리펩타이드; 또는 (ⅱ) 이 폴리펩타이드를 코딩하는 핵산분자를 포함하는 발현 컨스트럭트를 유효성분으로 포함하는 반응성 알파-옥소알데히드에 의해 유발되는 산화적 손상 질환의 치료 또는 예방용 약제학적 조성물에 관한 것이다.
본 발명의 DJ-1 단백질은 반응성 알파-옥소알데히드를 소거하는 활성을 가지므로, 알파-옥소알데히드에 의해 유발되는 산화적 손상 질환의 치료, 예방 또는 개선 용도로 사용될 수 있다.
본 발명의 바람직한 구현예 의하면, 반응성 알파-옥소알데히드에 의해 유발되는 산화적 손상 질환은 노화, 당뇨, 심혈관질환, 동맥경화증 또는 신경퇴행성 질환이다.
본 발명의 다른 바람직한 구현예에 의하면, 상기 신경퇴행성 질환은 파킨슨병(Parkinson's disease), 알츠하이머병(Alzheimer's disease), 다발성경화증(Multiple sclerosis), 또는 근위축성 측색 경화증(amyotrophic lateral sclerosis)이다.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 알파-옥소알데히드에 의한 신경퇴화(neurodegeneration)를 억제 또는 방지하는 활성을 갖는 후보물질을 스크리닝하는 방법을 제공한다: (a) cDJR 유전자가 결손된 선충(C. elegans)에 신경세포에서 특이적으로 발현되는 형광단백질 발현 DNA 컨스트럭트를 도입하여 형질전환된 선충을 제조하는 단계; (b) 상기 단계 (a)에서 제조된 형질전환 선충에 알파-옥소알데히드를 먼저 처리하고 난 후 후보물질을 처리하거나, 또는 후보물질을 먼저 처리하고 난 후 알파-옥소알데히드를 처리하는 단계; 및 (c) 선충의 신경퇴화 여부를 관찰하는 단계로서, 후보물질을 처리하지 않은 경우에 비해, 후보물질을 처리한 경우가 선충의 신경퇴화가 감소되는 경우 상기 후보물질을 알파-옥소알데히드에 의해 유도되는 신경퇴화를 억제 또는 방지하는 활성을 갖는 물질로 판정하는 단계.
본 발명의 바람직한 구현예에 의하면, 상기 cDJR 유전자는 서열번호 3 또는 서열번호 4의 아미노산 서열을 포함하는 선충(C. elegans) 유래의 글리옥살라아제를 코딩하는 유전자이다.
본 발명의 다른 바람직한 구현예에 의하면, 상기 cDJR 유전자는 서열번호 7 또는 서열번호 8의 뉴클레오타이드 서열을 포함한다.
본 발명의 또 다른 바람직한 구현예에 의하면, 상기 알파-옥소알데히드는 글리옥살 또는 메틸글리옥살이다.
본 발명의 상기 스크리닝 방법에서 선충의 신경퇴화의 판단은 신경세포의 형태적 변화를 관찰하여 행할 수 있으며, 예컨데, 신경세포의 수포화(blebbing), 세포체 원형화(cell body rounding) 또는 종국적으로 세포체 소실(cell body loss)와 같은 형태적 변화를 현미경하에서 관찰함으로써 행할 수 있다.
상기 신경세포에서 특이적으로 발현되는 형광단백질 발현 DNA 컨스트럭트는 선충의 신경세포 특이적 프로모터에 형광단백질을 코딩하는 핵산분자가 융합된 형태의 DNA 컨스트럭를 사용할 수 있으며, 이 DNA 컨스트럭트의 구체적인 예는 하기 본 명세서 실시예에 기재되어 있다.
상기 스크리닝 방법에서 후보물질은 예컨대 화학물질, 뉴클레오타이드, 안티센스-RNA, siRNA(small interferenceRNA), 단백질 및 천연물 추출물을 포함하나, 이에 한정되는 것은 아니다.
본 발명의 DJ-1 단백질은 반응성 알파-옥소알데히드를 제거하는 글리옥살라아제 활성을 가짐으로써, 알파-옥소알데히드에 의한 산화적 손상으로부터 세포를 보호하는 항산화제로 사용될 수 있으며, 알파-옥소알데히드에 의해 유발되는 노화, 당뇨, 심혈관질환, 동맥경화증 및 신경퇴행성 질환의 치료, 예방 또는 개선 용도로 사용될 수 있다. 또한, 본 발명의 약물 후보물질의 스크리닝 방법에 의하면, 반응성 알파-옥소알데히드에 의한 신경퇴화를 억제 또는 방지하는 후보물질을 효과적으로 스크리닝할 수 있다.
도 1a - 도 1d는 DJ-1 유사체들의 글리옥살라아제로서의 특성을 측정한 결과를 보여준다.
도 1a는 정제된 인간 DJ-1 (50 μg) 단백질을 GO (5 mM) 또는 MGO (3 mM)와 30분간 혼합하고, 이들의 반응 생성물인 글리콜산(glycolic acid) 및 젖산(lactic acid)(두개의 피크) 각각을 NMR로 분석한 것을 보여준다. 2 ppm 근처에서 나타나는 피크는 Sigma에서의 시약에 포함된 아세테이트이고, (*)은 에틸렌글리콜을 나타낸다.
도 1b는 인간 DJ-1의 글리옥살라아제 반응을 DNPH 분석으로 분석한 결과이며, 초기 속도는 Michaelis-Menten 및 Lineweaver-Burk (inset) 방정식에 따라 플로팅한 것이다. 에러막대(error bars)는 3회 반복실험의 표준편차를 보여준다.
도 1c는 선충(C. elegans)으로부터 분리한 DJ-1 (cDJ-1.1 또는 cDJ-1.2)을 GO (10 mM) 또는 MGO (10 mM)와 혼합한 것이며, 글리콜산과 젖산을 HPLC에 의해 검출하였다. 생성물들은 시간에 비례하여 생성되었다.
도 1d는 cDJR-1.1(100 μg) 및 cDJR-1.2(100 μg)의 효소 반응을 모니터링하고 도 1b에서와 같이 플로팅한 것이다.
도 2a - 도 2e는 cDJR-1.1 및 cDJR-1.2의 조직 특이적 국재화(localization)을 보여주는 자료이다.
도 2a는 cDJR-1.1::GFP은 성체 선충의 전체 장(intestine)에서 검출되었다. 반면, GFP::cDJR-1.2 발현은 PHA 및 PHB 뉴런을 포함하여 복신경색(ventral nerve cord), 인두근(pharyngeal muscles), 두부 뉴런(head neurons), 인두-장 밸브(pharynx-intestinal valve), 정낭(spermatheca), 직장샘(rectal glands), 및 꼬리 뉴런(tail neuron)에서 발견되었음을 보여준다.
도 2b는 5일령의 성체 선충은 HMC(head-mesodermal cells), 체강소체(coelomocytes) 및 배설관 세포(excretory canals)에서 추가적인 cDJR-1.2 발현을 보였음을 나타낸다. 50 mM 칼슘 아세테이트과 함께 추가적인 DiI 염색에 의해 cDJR-1.2이 IL2 (머리) 및 PHA/PHB 뉴런(꼬리)에서 발현된다는 것을 확인하였다.
도 2c 내지 도 2e는 GFP-태깅된 cDJR-1.1 및 cDJR-1.2을 발현시켜서 cDJR-1.1 및 cDJR-1.2의 세포내 국재화를 조사한 결과를 보여준다.
도 2c는 cDJR-1.1은 장 세포 전체를 통해 모든 부분에서 균일하게 발현되었으며, 특히 핵내에서 높은 발현 강도를 나타내는 것을 보여준다(화살표 표시). 반면에 cDJR-1.2은 두부 뉴런(head neuron)의 세포질에서 발현되었다(화살표 표시). 스케일 막대 = 40 μm.
도 2d는 flag-태깅된 djr-1.1 또는 djr-1.2을 발현하는 COS7 세포는 면역염색하고, 공초점 현미경으로 관찰하여 유사한 결과를 얻은 것을 보여준다. 스케일 막대 = 0.05 μm.
도 2e는 세포내 cDJR의 발현 수준을 웨스턴 블로팅에 의해 확인한 결과를 보여준다. 세포 분획의 20 ㎍의 단백질을 로딩하였다.
도 3은 EGFP-태깅된 cDJ-1의 세포내 국재화를 보여준다. COS7 세포를 EGFP-태깅된 cDJRs으로 트랜스펙션시키고, 공초점 현미경으로 관찰하였다. 스케일 막대 = 0.05 μm.
도 4a 내지 도 4c는 글리옥살에 의해 유도되는 세포사에 대한 DJ-1에 의한 보호효과를 보여 주는 결과이다.
도 4a는 hDJ-1 및 이의 촉매 부위 변이체를 함유하는 MSCV (murine stem cell virus)으로 감염된 mDJ-1 KO 마우스로부터의 MEF 세포를 2 mM 글리옥살로 16 시간 동안 처리한 후 검사하였다. DJ-1을 발현하는 세포들의 생존능은 대조군과 비교하여 63% 증가하였다. 반면 DJ-1의 촉매 활성 변이체들을 발현하는 세포들의 생존능은 증가하지 않거나 증가량이 경미하였다. SH-SY5Y 세포들을 2 mM의 글리옥살로 16시간 동안 처리하고 생존능을 측정한 결과, DJ-1의 추가 발현이 대조군에 비해 세포생존능을 약 45% 증가시켰다: n=3; p<0.001 (*) by student’s t-test.
도 4b는 2 mM의 글리옥살로 16 시간 동안 처리한 SH-SY5Y 세포의 웨스턴 블로팅 결과를 보여준다. DJ-1에 의해 글리옥살-유도 PARP 절단과, p38의 인산화가 감소하였고 카르복실메틸라이신(CML)이 증가하였다.
도 4c는 200 mM GO 또는 100 mM MGO을 처리한 후 야생형 및 djr-1 변이체의 선충 생존능을 측정한 결과로서, 상이한 생존율을 보여준다. 상세한 유전자형은 실험방법에 기술하였다. cDJR-1.1의 결실의 경우가 cDJR-1.2의 것과 비교하여 선충 생존능이 더 효과적이었다. djr-1.1로 인젝션된 선충은 복구효과(rescuing effect)를 보였다 : n=4, 35의 샘플 크기; p<0.05 (#) and p<0.0001 (*) by log-rank test.
도 5는 선충(C. elegans) 및 이의 도파민성 뉴런에서 글리옥살의 용량의존적 독성효과를 보여준다. 야생형 N2(P dat -1 ::mCherry) 선충을 다양한 농도의 글리옥살로 처리한 경우, 선충에서 손상된 CEP 뉴런이 용량 의존적으로 증가하였다. 막대는 손상된 CEP 뉴런을 갖는 선충을 지시하고, 실선은 선충 생존능을 지시한다. 에러 막대 = s.d.
도 6a 내지 도 6c는 선충(C. elegans)에서 글리옥살-유도 신경퇴화에 대한 DJ-1의 보호작용을 보여주는 결과이다.
도 6a: 50 mM GO를 2일간 또는 20 mM MGO를 1일간 노출시킨 경우 도파민성 (CEP, ADE) 및 센서 (ASH, ADL) 뉴런의 퇴화가 나타났는데, P dat -1 ::mCherry 및 P srb -6 ::mCherry으로 인젝션된 선충에서 각각 시각화하여 관찰한 결과, 세포들이 수포화(blebbing)(화살촉 지시), 원형화(rounding) 및 세포체 소실(cell body loss, 화살표 지시)를 보여주었다.
도 6b는 도 6a에서와 동일한 조건하에서, ASH 및 ADL 센서 뉴런의 생존능을 야생형 또는 djr-1.2 선충에서의 정상 뉴런(4개의 ASHL, ASHR, ADLL, 및 ADLR 뉴런)을 갖는 선충을 계수함으로써 정량한 결과를 보여준다. 야생형과 변이형의 선충규주는 모두 비-처리 대조군에 비해, 글리옥살의 처리에 의해 뉴런의 소실이 현저하게 나타났다.
도 6c는 CEP의 뉴런 생존능은 동일한 조건하에서 처리한 후 정상 CEP (CEPDL, CEPDR, CEPVL, 및 CEPVR)를 갖는 선충을 계수함으로써 정량한 결과를 보여준다. cDJR-1.2가 소실된 경우 CEP 손상이 매우 크게 나타났고, 반면 cDJR-1.1은 야생형의 경우와 비교하여 거의 영향을 미치지 않았다: n=4, 샘플 크기 50; p<0.05 (*), p<0.01 (**), 및 p<0.001 (#) by student’s t-test.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험방법
1. 단백질 정제
djr -1.1/ djr -1.2, mDJ-1, hDJ-1, 및 이들의 변이체들의 cDNA는, djr -1.1의 경우 N-말단에 6xHis 태깅된 형태로, djr -1.2, mDJ-1, 및 hDJ-1의 경우는 C-말단에 6xHis 태깅된 형태로, pET21a/pET15b 벡터안으로 클로닝하였다. 클로닝된 벡터를 E. coli BL21(DE3)안으로 형질전환시키고, 0.1mg/ml의 암피실린을 포함하는 LB 배지를 사용하여 37℃에서 OD값 0.4에 이를 때까지 배양하였다. IPTG(0.25 mM)를 첨가하여 단백질을 과발현시킨 후 37℃에서 4시간 동안 더 배양하였다. 세포들을 원심분리한 후, 14.3 mM β-머르캅토에탄올 및 0.5 mM PMSF를 포함하는 세포용해 완충액(50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0)로 재현탁시키고, 초음파 처리하고 및 4℃에서 30분간 원심분리(16000 x g)하였다. 상등액을 Ni2+-NTA 컬럼상에 로딩하고, 10-250 mM 이미다졸 농도구배를 사용하여 단백질을 용출시켰다. 정제한 단백질을 100 mM Na3PO4(pH 6.0)의 완충액을 사용하여 투석을 행하였다.
2. 1 H-NMR 및 HPLC 분석
효소반응을 측정하기 위해 정제한 인간 DJ-1 단백질을 100 mM 포타슘 포스페이트 완충액(pH 6.8)내에서 3 mM MGO 또는 5 mM GO와 30분간 반응시키고, NMR 분석을 행하였다. 측정은 잠금 물질(locking substance)로서 10% D2O를 포함시킨 600 ㎕ 용액내에서 진행하였다. 정량 분석을 위해 short pulse width (3μsec) 및 long relaxation delay (5 sec)을 사용하여 양성자 NMR을 수행하였다. cDJR-1.1/1.2의 반응 생성물을 검출하기 위해, 90 ㎕의 반응 혼합물에 10 ㎕의 5 M PCA을 첨가하고, 원심분리(16000xg)한 후, PVDF 막(세공크기 0.2μm)을 통해 여과하였다. 여과 샘플 20 ㎕를 LC-20AB 펌프, SPD-20A UV 모니터, 및 SIL-20A 오토샘플러가 장착된 HPLC(Shimadzu)을 사용하여 크로마토그래피 분석을 행하였다. 250 mm X 4.6 mm의 스테인레스 스틸 Prevail C18 컬럼(Alltech, U.S.A.)을 이용하고, 이동상으로서는 아세토니트릴/10 mM H3PO4 완충액(pH 2.5)을 사용하여 1 ml/min의 유속으로 분석하였다.
3. 효소활성
100 mM Na3PO4 완충액(cDJR-1.1, cDJR-1.2에 대해서는 pH 6.0, 다른 단백질에 대해서는 pH 6.8)내의 정제한 DJ-1 단백질 100 ㎍(hDJ-1의 경우 50㎍)을, 500 ㎕의 총 반응액내의 다양한 농도로 존재하는 글리옥살(glyoxal)에 첨가하여 반응시켰다. 반응은 45℃에서 정해진 시간 동안 수행한 후, 210 ㎕ H2O내의 0.1% DNPH 용액 90 ㎕를 첨가하여 반응을 중지시켰다. 용액은 상온에서 15분간 인큐베이션하고, 420 ㎕의 10% NaOH를 첨가하였다. 15분간 더 인큐베이션한 후에, 흡광도(GO의 경우 570 nm, MGO의 경우 540 nm)를 측정하고, 초기 속도를 사용하여 동역학 값을 얻었다. DJ-1에 His-태깅은 효소활성에 영향을 미치지 않았다. 선충(C. elegans) 또는 생쥐 추출물의 비활성(specific activity)은 동일한 프로토콜을 통해 각 샘플 2 mg을 10/8 mM GO와 22/37℃에서 각각 반응시켜 측정하였다. 비활성 1 유닛은 1분동안 1 μmol의 기질을 변환시키는데 사용되는 효소의 양으로 정의하였다. 글리옥살라아제 I 활성 측정은 10 mM GO, 10 mM GSH, 및 100 mM Na3PO4 완충액(pH 7.4)내의 1 mg의 조직 추출물에 대해 상온에서 10분간 인큐베이션하여 S-2-히드록시에틸글루타티온을 형성하도록 하여 240 nm에서 이를 측정하여 행하였다.
4. 세포배양 및 생존능 분석
생쥐배아섬유아세포(MEFs, mouse embryonic fibroblast cells)는 DJ-1 녹아웃 마우스의 E13.5 배아로부터 제조하였다. DJ-1-/- MEFs는 야생형 및 변이체 DJ-1들(E18D, E18A, 및 C106A)을 발현시키기 위해서 레트로바이러스로 감염시켰다. pMSCV (murine stem cell virus)에 포함된 Flag-태깅 야생형 및 변이형 DJ-1들을 폴리에틸렌이민(PEI, sigma)을 사용하여 HEK-293T 세포에 트랜스펙션시켰다. 2일 후에, 레트로바이러스가 포함된 배양 상등액을 회수하고 3 μg/ml 폴리브렌과 함께 DJ-1-/- MEFs에 감염시키는데 사용하였다. 감염된 MEFs는 2 μg/ml의 푸로마이신으로 선별하고 추가 사용을 위해 유지시켰다. 인간 SH-SY5Y 세포는 lipofectamine 2000을 사용하여 Flag-태깅된 야생형 DJ-1으로 트랜스펙션시키고, 500 μg/ml의 G418으로 선별하였다. 안정한 클론을 선별하여 성장키고, 37℃의 5% CO2의 습화된 분위기하에서 배양하였다. 세포는 10% FBS(fetal bovine serum), 100 유닛/ml의 페니실린, 및 100 μg/ml의 스트렙토마이신(Hyclone)이 첨가된 DMEM(Dulbecco's modified Eagle's medium)에서 배양하였다. 감염된 MEFs는 96-웰 플레이트에서 배양하고, 24 시간동안 부착시키고, 2 mM GO in DMEM에서 2 mM GO으로 16시간 동안 처리하고, PBS로 세정한 후, 제조자의 프로토콜에 따라 웰당 90 μl DMEM (without phenol red, due to fluorescence interference) 및 10 μl Prestoblue (Invitrogen)의 혼합물을 추가하였다. 형광은 여기 560 nm 및 방출 590 nm으로 Infinite M200 (Tecan)을 사용하여 측정하였다. SH-SY5Y 안정한 세포주는 2 mM GO 또는 300 μM H2O2으로 2 mM 아미노구아니딘(sigma)의 존재 또는 부존재하에서 DMEM내에서 16 시간동안 처리하였다. 세포 생존능은 상술한 바와 같이 Prestoblue을 사용하여 측정하였다.
5. 면역블로팅
면역블로팅을 위해서, SH-SY5Y 세포들을 회수한 후 RIPA 완충액(20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA, 2 mM EGTA, 1 mM Na3VO4, 50 mM β-glycerophosphate, 50 mM NaF, 1% Triton X-100, 및 단백질 억제자 포함 칵테일)내에서 용해시켰다. 용해물을 SDS-PAGE에 의해 분리하고, 니트로셀룰로오스막으로 이동시켰다. 막을 상온에서 TBS-Tween-20내의 5% 탈지유내에서 2시간 동안 블로킹하고, DJ-1, Flag(Wako), Actin(Sigma), PARP, phospho-p38, p38, 또는 Cleaved caspase-3(Cell signaling)에 대한 항혈청과 함께 하룻밤 인큐베이션하였다. 3회 세정한 후, 막을 TBS-Tween-20 내의 양고추냉이 퍼옥시다아제-컨쥬게이트된 2차 항체와 함께 인큐베이션하였다. 단백질들을 전개하고 LAS-4000 (Fujifilm)을 사용하여 시각화하였다.
6. 선충 ( C. elegans ) 균주 및 이의 유지
선충(C. elegans) 균주는 표준 방법(38)에 따라 배양하고, 글리옥살라아제 Ⅲ(glyoxalase Ⅲ), 알도-케토 환원효소(aldo-keto reductase) 및 알데히드 환원효소(aldehyde reductase)가 각각 결실되어 글리옥살을 무독화시킬 수 없는 변이형 박테리아 MG1655(ΔhchA ΔyafB ΔyqhD)을 먹이로 주었다. N2 Bristol을 야생형으로 사용하였고, 이 균주로부터 djr -1.1(tm918), djr -1.2(tm1346), HO1087 (djr -1.1(tm918)II; djr -1.2(tm1346)V)을 얻었다. 생존능 분석에 사용된 형질전환세포주는 GFP에 융합된 djr 유전자에 특이적인 프로모터들 P djr -1.1 ::djr -1.1::gfp 및 P djr -1.2 ::gfp::djr -1.2)을 포함하고, 이들의 PCR 산물을 어린 성체(HO1087)의 생식선에 마이크로인젝션하였다. 유전자형의 약어는 다음과 같다: △1, djr -1.1(tm918); △2, djr -1.2(tm1346); △△, HO1087; △△+1, djr -1.1; djr -1.2 plus P djr -1.1 ::djr-1.1::gfp; △△+2, djr -1.1;djr -1.2 plus P djr -1.2 ::gfp::djr -1.2; △△+1(C106S), djr -1.1;djr -1.2 plus P djr -1.1 ::djr -1.1(C106S)::gfp. 신경퇴화 분석에 사용하는 균주는, 상술한 야생형 균주와 cDJR 녹아웃 균주내로 P dat -1 ::mCherry를 마이크로인젝션하여 제조하였다.
7. 형질전환 선충의 제조
PCR을 이용하여 djr -1.1gfp의 트랜스레이션 융합(P djr -1.1 ::djr -1.1::gfp)을 제작하였다. djr -1.1의 3번째 엑손의 말단에 대한 개시코돈의 4kb 업스트림 영역을 선충(C. elegans) 지놈 DNA로부터 증폭시키고, 이를 pPD95.79로부터 증폭된 gfp와 융합시켰다. P djr -1.2 :: gfp::djr -1.2는 개시코돈의 2 kb 업스트림 영역을 포함하는 것을 제외하고는, 상기 기술된 방법과 동일한 방법을 사용하여 제작하였다. P dat -1 ::mCherry 및 P srb -6 ::mCherry는 dat -1srb -6 개시 코돈의 1 kb 업스트림 영역을 pKA384으로부터 증폭된 mCherry와 각각 연결하여 제조하였다. PCR 컨스트럭트는 야생형 및 변이형 자웅동체(hermaphrodite)에 마이크로 인젝션하였으며, 형질전환된 세포주는 djr -1.1djr -1.2 서열을 인식하는 프라이머를 사용한 단일-선충 PCR에 의해 확인하였다.
8. 선충에 대한 수명 및 생존능 분석
선충(C. elegans)의 수명을 측정하기 위해, 1일령의 성체 선충 35마리를 한천 플레이트상에 옮기고, 각각의 선충의 생존 여부를 매일 확인하였다. 글리옥살/메틸글리옥살 처리에 대한 생존능을 분석하기 위해, 1일령 성체 선충 35마리를 200 mM 글리옥살/100 mM 메틸글리옥살을 포함하는 NGM 플레이트로 옮기고, 선충의 생존능을 매 2시간 마다 확인하였다. 선충을 백금선으로 건드려도 반응하지 않으면 사멸한 것으로 간주하였다. 10 mg/ml 팔미트산(에탄올에 용해)을 플레이트의 테두리에 두고 건조시켜 선충이 NGM 플레이트로부터 빠져 나가지 못하게 하는 물리적 장벽으로 사용하였다.
9. 생쥐조직 및 선충으로부터의 추출물의 제조
효소활성을 측정하기 위해, 생쥐로부터 간 및 뇌를 추출하고 5 mM DTT를 포함하는 100 mM Na3PO4 완충액(pH 6.8)을 첨가하였다. 이어서, 샘플을 균질화시키고, 초음파처리한 후 4℃에서 원심분리(222,592 x g)하였다. 상등액은 5 mM DTT를 포함하는 100 mM Na3PO4 완충액(pH 6.8)으로 투석하였다. 선충은 액체 S 배지 [1 L 먹이로서 박테리아를 포함하는 1L의 S-기초액 (5.85 g NaCl, 1 g K2HPO4, 6 g KH2PO4, 1ml 콜레스테롤(5 mg/ml in 에탄올), 및 H2O로 1L 까지 채움) + 10 ml의 1 M KCO3, pH 6.0, 10 ml의 미량 금속 용액, 3 ml의 1 M CaCl2, 및 3 ml의 1 M MgSO4]에서 성장시키고, 세척한 후, 1 mM DTT 및 단백질 억제자 칵테일을 포함하는 100 mM Na3PO4 완충액(pH 6.0)내에서 초음파 처리하였다. 초음파 처리한 샘플을 4℃에서 원심분리(16000 x g)하고, 글리옥살 무독화 활성에 개입할 수 있는 추출액내의 다른 보조인자들을 제거하기 위해, 상등액은 1 mM DTT가 포함된 100 mM Na3PO4 완충액(pH 6.0)으로 투석을 행하였다. 생쥐 및 선충 추출물내의 단백질 농도는 Bradford 분석을 사용하여 정량하였다. 1 μl의 샘플 추출물을 99 μl의 H2O + 1 ml의 Bradford 용액(BioRad)에 첨가하여 혼합하하고, 흡광도를 595 nm에서 측정하였다. 단백질 표준물질은 BSA를 연속 희석하여 얻고, A595 = (샘플 농도-0.0052)/0.0818를 계산에 사용하였다.
10. 면역염색 및 현미경 분석
COS7 세포는 10% FBS가 첨가된 고농도 글루코오스의 DMEM을 사용하여 12-웰 플레이트의 내부에 접종하여 커버 글라스상에서 배양하였다. pDK-FLAG1에 클로닝된 Flag-태깅 djr -1.1djr -1.2를 PEI 용액을 사용하여 세포안으로 트랜스펙션시키고, 24 시간 후에 면역염색을 실시하였다. 면역염색을 행하기 위해, 세포들은 Mitotracker로 30분간 처리하고, 얼음 냉각된 1x PBS로 세정하였다. 세포들을 2% 파라포름알데히드로 상온에서 15분간 처리하고, 0.1% PBS-Triton X-100 (PBST)으로 세정한 후, 0.5% PBST으로 상온에서 5분간 처리하였다. 0.1% PBST으로 세정한 후, 세포들은 블로킹 용액(0.1% PBST, 3% BSA, 및 1:100의 염소 정상 혈청)과 함께 37℃에서 1시간 동안 인큐베이션하고, 블로킹 용액내(1:200)의 항-Flag M2 항체(Sigma)으로 상온에서 1시간 동안 처리하였다. 0.1% PBST으로 3회 세정한 후, 세포들을 항-생쥐-FITC 항체(Sigma)와 함께 암조건 및 상온에서 1시간 인큐베이션하고, 0.1% PBST으로 3회 세정하였다. 세정한 세포들은 DAPI-함유 vectashield (Vector Laboratories)를 사용하여 슬라이드 글라스상에 올리고, 면역염색된 세포들의 이미지를 Zeiss 510 공초점 현미경으로 캡쳐하였다. GFP-발현 및 DiI-염색된 선충의 이미지화를 위해서, 생물체들을 12.5% 소디엄 아지드내 2% 한천 패드상에 두어 마비시킨 후, 형광 현미경하에서 관찰하였다.
11. 항체 제조
djr -1.1 djr -1.2의 전장 cDNA를 pET21a 벡터안으로 클로닝하고, E. coli BL21(DE3)내에서 발현시켰다. Ni-NTA 레진을 사용하여 단백질을 정제하고 60 ㎍의 단백질을 기니아 피그(guinea pig)로 매주 주입하하고, 10회 주입 후에 기니아 피그의 혈액을 채취하여 37℃에서 1시간 동안 둔 후 4℃에서 원심분리(16000xg)하여 상등액을 취하여 폴리클로날 항혈청을 얻었다.
12. 신경 퇴화의 관찰
연령을 동일화시킨 L3 선충을 박테리아 먹이를 포함하는 1x PBS내의 50 mM GO (2일간) 또는 20 mM MGO(1일간)으로 인큐베이션하였다. 선충 용액은 최종 부피가 1ml이 되도록 마이크로테스트 튜브안에 두고, 20℃에서 인큐베이션하였다. 6-OHDA 실험을 위해서 L3 선충을 2 mM 6-OHDA + 5 mM 아스코르브산으로 2일 동안 처리하였다. 선충이 익사하는 것을 방지하기 위해, 선충과 화합물이 들어 있는 마이크로 테스트 튜브를 Rotamix RM1을 사용하여 계속 회전시켰다. 이어서, 선충을 NGM 플레이트에 붓고 회복을 위해 12시간 더 인큐베이션하였다. 살아있는 선충을 12.5% 소디엄아지드내의 2% 한천 패드상에 두어 마비시키고, 형광현미경하에서 정상 CEP 신경을 갖는 선충을 계수하였다. ‘수지상체 수포화(dendrite blebbing)’, ‘세포체 원형화(cell body rounding)’, 또는 ‘세포체 소실(cell body loss)’의 뉴런을 갖는 것으로 관찰된 선충은 영향을 받은 선충으로 간주하였다.
13. 통계 분석
모든 통계 분석은 Prism software을 사용하여 행하였다. Two-tailed student’s t-test를 사용하여 대조군과 다른 실험군 사이의 차이를 평가하였고, long-rank test를 사용하여 생존 분석을 행하였다.
실험결과
1. 인간 DJ -1 및 이의 유사체들은 글리옥살라아제이다.
His-태깅된 hDJ-1, mDJ-1, cDJR-1.1, 및 cDJR-1.2은 Ni-친화성 컬럼을 사용하여 정제하고, 투석을 행하였다. 이어서, 정제한 단백질은 효소활성과 촉매반응을 위한 조건을 측정하는데 사용하였다. 실험결과 테스트한 모든 효소는 전형적인 Michaelis-Menten 동역학을 보여주었다(도 1b, 도 1d, 표 1). 메틸글리옥살 및 글리옥살로부터 글리옥살라아제 효소활성을 통해 각각 생성되는 젖산 및 글리콜산(glycolic acid)의 반응 생성물들은 1H-NMR 및 HPLC를 통해 확인하였다(도 1a 및 도 1c). DJ-1 유사체들은 글리옥살에 비해 메틸글리옥살에 대해 약간 더 높은 친화도를 보였고, 반면 활성도(specific activity)는 메틸글리옥살 보다는 글리옥살에 대해서 더 높았다(표 2). DJ-1 단백질이 페닐글리옥살과 반응은 하지만, 합성기질인 3-디옥시글루코손(3-deoxyglucosone)은 기질로서 사용하지 않았다.
야생형 N2 선충에서 djr -1.1 및/또는 djr -1.2 유전자를 제거한 경우 글리옥살라아제 활성이 소멸되었으며, djr -1.1 또는 djr -1.2 형질전환 선충에서는 글리옥살라아제 활성이 다시 복구되었다: cDJR -1.1 결실에 의해 GO에 대한 효소활성의 약 71%가 감소되었으며, cDJR -1.2의 결실에 의해 약 30%의 활성이 감소되었다. 따라서, 본 발명에서 최초로 규명한 글리옥살라아제 활성을 갖는 DJ-1 단백질들은 동물에서 유일한 조효소-독립적(cofactor-independent) 글리옥살라아제 효소임을 확인할 수 있었다(표 3). 생쥐에서도 동일한 결과를 얻었는데, 녹-아웃 생쥐의 뇌조추출물은 글리옥살을 글리콜산으로 전환시키는 활성을 보여주지 않았다(표 3).
Figure pat00001
Figure pat00002
Figure pat00003
2. DJ-1 단백질들의 발현 패턴
포유동물은 단일의 DJ-1 유사체를 갖지만, 선충(C. elegans)의 경우 2 가지의 이소형태를 갖는다. 종전의 연구결과에 의하면 DJ-1 단백질은 모든 종류의 조직에서 어디에나 분포하는 것으로 알려져 있다. 선충(C. elegans)에서 DJ-1 유사체의 기능을 확인하기 위해, djr-1.1 또는 djr-1.2의 프로모터 부위에 연결된 GFP 융합 컨스트럭트(Pdjr-1.1::djr-1.1::gfp 및 Pdjr-1.2::gfp::djr-1.2)를 갖는 형질전환 선충에서 발현 국재화(localization)를 조사하였다. cDJR-1.1::GFP의 발현은 오직 장(intestine)에서만 검출된 반면, GFP::cDJR-1.2은 인두근(pharyngeal muscles), 인두-장 밸브(pharynx-intestinal valve), 복신경색(ventral nerve cord), 정낭(spermatheca), 직장샘(rectal gland), 두부 뉴런의 내부순(inner labial, IL) 세포, 꼬리부 뉴런의 PHA/PHB 화학센서 뉴런 및 선충의 전체 단계를 통해 지지 쉬스/소켓 세포을 포함하는 다양한 세포에서 발현되었다(도 2a). 5 일령의 성체기에서는 HMC(head-mesodermal cells), 배설관(excretory canals) 및 체강소체(coelomocytes)에서 cDJR-1.2이 추가적으로 발현되었다(도 2b). cDJR-1.1 및 cDJR-1.2의 주요 발현 위치는 서로 중복되지 않았으며, 이러한 현상은 유충기 전체 및 선충의 성체기를 통해 매우 일정하게 유지되었다. cDJR의 세포내 위치를 조사하였을 때, cDJR-1.1는 장 세포(intestinal cells)의 핵과 세포질 모두에서 발견되었으나, cDJR-1.2는 두부 뉴런의 세포질에서만 검출되었다(도 2c). 이러한 cDJRs의 발현 국재화 패턴은 Flag-태깅된 cDJRs으로 형질전환된 COS-7 세포들의 것과 일치하였으며, FITC와 컨쥬게이트된 항-Flag 항혈청으로 행한 면역염색과 세포 분획에 의해서도 확인하였다(도 2d - 도 2e). cDJR-1.1은 전체 세포를 통해 모든 부분에서 발현되고 특히 핵에서 발현이 높게 나타난 반면, cDJR-1.2은 세포질에서만 발현되었는데, 이러한 사실은 EGFP-cDJR에 의해 추가적으로 확인되었다(도 3).
3. DJ-1의 글리옥살-유도된 사멸로부터 세포 및 선충의 보호작용
생쥐배아섬유아세포(MEF)에서의 mDJ-1의 발현이 매우 낮기 때문에, DJ-1 녹-아웃 생쥐로부터 생쥐배아섬유아세포(MEF)을 제조하고, 바이러스 프로모터하에서 양생형 또는 변이형 hDJ-1을 안정적으로 발현하는 세포주를 제조하였다. hDJ-1의 야생형과 촉매부위 변이형을 갖는 mDJ-1 녹아웃 MEF에 글리옥살(glyoxal, GO)을 처리한 경우, 야생형 DJ-1을 함유하는 세포는 녹-아웃 및 촉매 부위 변이형을 갖는 세포와 비교하여, 글리옥살로부터 보호되어 세포 생존능이 크게 향상(63%)되는 것을 관찰하였다(도 4a). 이와 같은 글리옥살(GO)에 대한 세포보호 작용은 인간 도파민성 뉴런 세포(SH-SY5Y)에서, 벡터 대조군과 비교하여 안정적으로 발현되는 인간 DJ-1에서도 관찰되었다. SH-SY5Y 세포에서 추가적인 DJ-1이 존재하는 경우 글리옥살(GO)에 대한 보호작용이 증가하였으며, 세포 생존율이 45% 이상으로 증가하였다.
알파-옥소알데히드(α-oxoaldehyde)는 뉴런세포에서 세포사(apoptosis)를 유도하는 것으로 알려져 있으므로(14), DJ-1이 글리옥살(GO)에 의해 유도되는 세포사로부터 세포를 보호하는지에 대해 조사하였다. 도 4b에서 보여지는 바와 같이, DJ-1이 많은 세포와 비교하여, DJ-1이 적은 세포에서, PARP-1의 절단이 증가하고, p38의 인산화가 증가되는 것이 관찰되었다. 이러한 결과들은 글리옥살(GO)로부터의 DJ-1에 의한 세포보호 작용은 아마도 글리옥살(GO)의 세포내 수준을 낮추어 세포사 유도 신호를 감소시킨 것에 의한 것으로 추정된다. 또한 글리옥살(GO)에 의한 세포사는 당화된(glycated) 단백질인 카르복실메틸라이신 (CML) 의 축적으로 이어지는데, 이는 글리옥살(GO)과 반응하는 화합물인 아미노구아니딘(AG)의 첨가로 사라진다. 반면에, 과산화수소 (hydrogen peroxide)에 의한 인간 도파민성 뉴런 세포(SH-SY5Y)의 세포사는 아미노구아니딘(AG)에 의해 보호되지 않았으며, 카르복실메틸라이신(CML)의 축적과도 연관되지 않았는데, 이는 글리옥살(GO)에 의한 죽음이 활성산소증(ROS) 와는 관련이 적다는 것을 의미한다.
DJ-1이 글리옥살(GO)로부터 세포를 보호하는 작용에 대해서는 선충(C. elegans)에서 글리옥살(GO) 또는 메틸글리옥살(MGO)로 선충을 처리한 후에 생존능을 분석하여 평가하였다(도 4c). djr-1.1 변이체는 야생형의 것에 비해 생존능이 크게 감소된 반면, djr-1.2 변이체에서 글리옥살(GO)의 영향은 약간 적었는데, 이러한 결과는 cDJR-1.1이 알데히드 화합물로부터 선충을 보호하는데 있어서 주요한 작용자임을 암시하는 것이다. cDJR-1.1의 중요성은 djr-1.1 djr-1.2 중복 변이체에서 cDJR-1.1 만이 효소활성을 복구하여 야생형 수준과 근접한 수준으로 글리옥살(GO)에 대한 보호작용을 할 수 있다는 사실에 의해서도 확인할 수 있었다. DJR-1.1의 촉매활성 부위 변이체(C106S)는 글리옥살(GO)에 의해 유도되는 사멸의 관점에서 중복 변이체의 표현형을 복구시키지 못하였는데, 이는 선충(C. elegans)에서 글리옥살라아제 자체 활성이 또한 중요하다는 것을 암시하는 것이다. 반면에, GFP::cDJR-1.2의 형질전환 발현은 세포 보호 작용을 크게 증가시키지 못하였는데, 이는 cDJR-1.2와 비교하여 cDJR-1.1의 존재 위치와 양으로 볼때 cDJR-1.1이 글리옥살 무독화에서 주요한 역할을 한다는 것을 암시한다. 야생형으로부터 djr-1.1 및/또는 djr-1.2 유전자를 제거한 경우 이들의 수명에 영향이 없었는데(17 내지 18 일), 글리옥살라아제 I을 제거하면 수명이 감소한다고 보고되었기 때문에(Morcos et al, 2008)), 이와 같은 사실은 cDJRs이 제1의 글리옥살의 제거자로서 작용하지 않을 수도 있다는 것을 암시한다. 오히려, cDJRs은 글리옥살의 세포내 변화에 반응하여 다른 조절자 역할을 할 수 있다.
4. 글리옥살은 선충( C. elegans )에서 뉴런 퇴화를 유도하였고, 이러한 뉴런 퇴화는 cDJRs에 의해 완화되었다.
선충(C. elegans)에서 4개의 두부 뉴런(cephalic neurons, CEPs), 2개의 앞쪽 목돌기 뉴런(anterior deirid neurons, ADEs) 및 2개의 뒤쪽 목돌기 뉴런(posterior deirid neurons, PDEs)을 포함하여 8개의 도파민성 뉴런이 존재한다. 도파민성 뉴런에 작용하는 신경독소물질 6-OHDA(6-hydroxydopamine)은 CEP 뉴런에 대해 높은 민감도를 가지면서 이들 뉴런의 퇴화를 일으키는 것으로 잘 알려져 있다(25). 뉴런은 수포화(blebbing), 세포체 원형화(cell body rounding) 및 종국적으로 세포체 소실(cell body loss)와 같은 형태적 변화를 나타낸다. 선충을 글리옥살(GO) 또는 메틸글리옥살(MGO)로 처리하였을 때, CEP 뉴런이 유사하게 용량 의존적 방식으로 퇴화되는 것을 관찰하였다(도 5).
도파민성 뉴런의 특징적인 소실은 수포화(blebbing) 및 세포체 소실(cell body loss)의 점진적인 변화를 보여주는 P dat -1 ::mCherry 형질전환 선충에서 모니터링하였다(도 6a). 50 mM 글리옥살(GO) 또는 20 mM 메틸글리옥살(MGO)으로 야생형 및 변이체로부터의 유충 단계의 선충을 처리한 경우, 야생형과 비교하여 djr -1.2djr -1.1; djr -1.2 균주에서 온전한 CEP가 현저하게 소실(20% 이상)되는 것을 관찰하였다(도 6c). GFP::cDJR-1.2 형질전환 선충은 뉴런의 생존을 야생형 수준으로 복구시켰다. CEP 도파민성 뉴런을 보호하는 작용에 있어서 cDJR-1.1의 역할이 무시할만한 수준이었기 때문에, djr-1.1;djr-1.2 변이형 선충에서의 djr-1.1 복구 컨스트럭트에 대한 글리옥살 효과는 테스트하지 않았다. 글리옥살이 없는 동일한 조건하에서, cDJR-1.1/1.2이 결실된 변이체는 야생형의 것과 비교하여 CEP 생존능에서 어떠한 차이도 보여주지 않았다. 아치사량 농도의 글리옥살에 대해서 관찰되는 CEP 뉴런의 소실은 이 화합물에 대해 뉴런이 민감하다는 것을 암시하는데, 이는 무독화 활성을 보이는 cDJR-1.2에 의해 보호될 수 있다.
Djr-1.2이 다른 뉴런을 보호하는지 여부를 테스트하기 위해, 먼저, 인두의 앞부분에서 위치하는 12개의 화학센서 뉴런중의 2개 뉴런인 ASH 및 ADL 뉴런을 시각화하는데 사용되는 P srb-6 ::mCherry 포함 형질전환 균주를 제조하였다. 이러한 뉴런에 글리옥살을 처리하면 수지상체 수포화(dendrite blebbing) 및 세포체 소실(cell body loss)의 점진적 변화가 생기는데(도 6a), 이는 글리옥살의 신경독성이 도파민성 뉴런에만 특이적이지 않다는 것을 암시한다. 그러나, cDJR-1.2는 글리옥살 처리에 대해 이들 뉴런을 보호하지 못하였는데(도 6b), 이는 cDJR-1.2의 뉴런 보호 활성이 모든 타입의 뉴런에 대해 효과를 나타내는 것이 아니고, 오히려 도파민성 뉴런에서 특이적이라는 것을 암시한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참고문헌
1. Bonifati, V., Rizzu, P., van Baren, M.J., Schaap, O., Breedveld, G.J., Krieger, E., Dekker, M.C., Squitieri, F., Ibanez, P., Joosse, M. et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256-259.
2. Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S.M. and Ariga, H. (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun., 231, 509-513.
3. Canet-Aviles, R.M., Wilson, M.A., Miller, D.W., Ahmad, R., McLendon, C., Bandyopadhyay, S., Baptista, M.J., Ringe, D., Petsko, G.A. and Cookson, M.R. (2004) The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. U. S. A., 101, 9103-9108.
4. Guzman, J.N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P.T. and Surmeier, D.J. (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 468, 696-700.
5. Meulener, M., Whitworth, A.J., Armstrong-Gold, C.E., Rizzu, P., Heutink, P., Wes, P.D., Pallanck, L.J. and Bonini, N.M. (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr. Biol., 15, 1572-1577.
6. Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S.M., Takahashi, K. and Ariga, H. (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep, 5, 213-218.
7. Martinat, C., Shendelman, S., Jonason, A., Leete, T., Beal, M.F., Yang, L., Floss, T. and Abeliovich, A. (2004) Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism. PLoS Biol., 2, e327.
8. Ved, R., Saha, S., Westlund, B., Perier, C., Burnam, L., Sluder, A., Hoener, M., Rodrigues, C.M., Alfonso, A., Steer, C. et al. (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J. Biol. Chem., 280, 42655-42668.
9. Harrington, A.J., Hamamichi, S., Caldwell, G.A. and Caldwell, K.A. (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev. Dyn., 239, 1282-1295.
10. Thornalley, P.J., Langborg, A. and Minhas, H.S. (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 344 Pt 1, 109-116.
11. Munch, G., Luth, H.J., Wong, A., Arendt, T., Hirsch, E., Ravid, R. and Riederer, P. (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts--an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat., 20, 253-257.
12. Brownlee, M. (1995) Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med., 46, 223-234.
13. Luth, H.J., Ogunlade, V., Kuhla, B., Kientsch-Engel, R., Stahl, P., Webster, J., Arendt, T. and Munch, G. (2005) Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer's disease brains. Cereb. Cortex, 15, 211-220.
14. Kikuchi, S., Shinpo, K., Moriwaka, F., Makita, Z., Miyata, T. and Tashiro, K. (1999) Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res., 57, 280-289.
15. Thornalley, P.J. (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J., 269, 1-11.
16. Vander Jagt, D.L., Robinson, B., Taylor, K.K. and Hunsaker, L.A. (1992) Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem., 267, 4364-4369.
17. Misra, K., Banerjee, A.B., Ray, S. and Ray, M. (1995) Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem. J., 305 ( Pt 3), 999-1003.
18. Subedi, K.P., Choi, D., Kim, I., Min, B. and Park, C. (2011) Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol. Microbiol., 81, 926-936.
19. Cha, S.S., Jung, H.I., Jeon, H., An, Y.J., Kim, I.K., Yun, S., Ahn, H.J., Chung, K.C., Lee, S.H., Suh, P.G. et al. (2008) Crystal structure of filamentous aggregates of human DJ-1 formed in an inorganic phosphate-dependent manner. J. Biol. Chem., 283, 34069-34075.
20. Odani, H., Shinzato, T., Matsumoto, Y., Usami, J. and Maeda, K. (1999) Increase in three alpha,beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun., 256, 89-93.
21. Kurz, A., Rabbani, N., Walter, M., Bonin, M., Thornalley, P., Auburger, G. and Gispert, S. (2011) Alpha-synuclein deficiency leads to increased glyoxalase I expression and glycation stress. Cell. Mol. Life Sci., 68, 721-733.
22. Xue, M., Rabbani, N., Momiji, H., Imbasi, P., Anwar, M.M., Kitteringham, N., Park, B.K., Souma, T., Moriguchi, T., Yamamoto, M. et al. (2012) Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem. J., 443, 213-222.
23. Clements, C.M., McNally, R.S., Conti, B.J., Mak, T.W. and Ting, J.P. (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. U. S. A., 103, 15091-15096.
24. Niki, T., Takahashi-Niki, K., Taira, T., Iguchi-Ariga, S.M. and Ariga, H. (2003) DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Mol. Cancer. Res., 1, 247-261.
25. Bandopadhyay, R., Kingsbury, A.E., Cookson, M.R., Reid, A.R., Evans, I.M., Hope, A.D., Pittman, A.M., Lashley, T., Canet-Aviles, R., Miller, D.W. et al. (2004) The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 127, 420-430.
26. Zhang, L., Shimoji, M., Thomas, B., Moore, D.J., Yu, S.W., Marupudi, N.I., Torp, R., Torgner, I.A., Ottersen, O.P., Dawson, T.M. et al. (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum. Mol. Genet., 14, 2063-2073.
27. Morcos, M., Du, X., Pfisterer, F., Hutter, H., Sayed, A.A., Thornalley, P., Ahmed, N., Baynes, J., Thorpe, S., Kukudov, G. et al. (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell, 7, 260-269.
28. Nass, R., Hall, D.H., Miller, D.M., 3rd and Blakely, R.D. (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A., 99, 3264-3269.
29. Shangari, N. and O'Brien, P.J. (2004) The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol., 68, 1433-1442.
30. Inden, M., Taira, T., Kitamura, Y., Yanagida, T., Tsuchiya, D., Takata, K., Yanagisawa, D., Nishimura, K., Taniguchi, T., Kiso, Y. et al. (2006) PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson's disease rat model. Neurobiol. Dis., 24, 144-158.
31. Zhou, W. and Freed, C.R. (2005) DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J. Biol. Chem., 280, 43150-43158.
32. Wilson, M.A., Ringe, D. and Petsko, G.A. (2005) The atomic resolution crystal structure of the YajL (ThiJ) protein from Escherichia coli: a close prokaryotic homologue of the Parkinsonism-associated protein DJ-1. J. Mol. Biol., 353, 678-691.
33. Yanagida, T., Tsushima, J., Kitamura, Y., Yanagisawa, D., Takata, K., Shibaike, T., Yamamoto, A., Taniguchi, T., Yasui, H., Taira, T. et al. (2009) Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury. Oxid. Med. Cell. Longev., 2, 36-42.
34. Pham, T.T., Giesert, F., Rothig, A., Floss, T., Kallnik, M., Weindl, K., Holter, S.M., Ahting, U., Prokisch, H., Becker, L. et al. (2010) DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. Genes. Brain Behav., 9, 305-317.
35. Kahle, P.J., Waak, J. and Gasser, T. (2009) DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. Free Radic. Biol. Med., 47, 1354-1361.
36. Shendelman, S., Jonason, A., Martinat, C., Leete, T. and Abeliovich, A. (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol., 2, e362.
37. de Arriba, S.G., Stuchbury, G., Yarin, J., Burnell, J., Loske, C. and Munch, G. (2007) Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiol. Aging, 28, 1044-1050.
38. Rabbani, N. and Thornalley, P.J. (2008) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem. Soc. Trans., 36, 1045-1050.
39. Irrcher, I., Aleyasin, H., Seifert, E.L., Hewitt, S.J., Chhabra, S., Phillips, M., Lutz, A.K., Rousseaux, M.W., Bevilacqua, L., Jahani-Asl, A. et al. (2010) Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet., 19, 3734-3746.
40. Thomas, K.J., McCoy, M.K., Blackinton, J., Beilina, A., van der Brug, M., Sandebring, A., Miller, D., Maric, D., Cedazo-Minguez, A. and Cookson, M.R. (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet., 20, 40-50.
41. Hao, L.Y., Giasson, B.I. and Bonini, N.M. (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc. Natl. Acad. Sci. U. S. A., 107, 9747-9752.
42. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics, 77, 71-94.
<110> Korea Advanced Institute of Science and Technology <120> Human DJ-1 Protein or Its Homologs Having Novel Glyoalase Activity <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 189 <212> PRT <213> Homo sapiens <400> 1 Met Ala Ser Lys Arg Ala Leu Val Ile Leu Ala Lys Gly Ala Glu Glu 1 5 10 15 Met Glu Thr Val Ile Pro Val Asp Val Met Arg Arg Ala Gly Ile Lys 20 25 30 Val Thr Val Ala Gly Leu Ala Gly Lys Asp Pro Val Gln Cys Ser Arg 35 40 45 Asp Val Val Ile Cys Pro Asp Ala Ser Leu Glu Asp Ala Lys Lys Glu 50 55 60 Gly Pro Tyr Asp Val Val Val Leu Pro Gly Gly Asn Leu Gly Ala Gln 65 70 75 80 Asn Leu Ser Glu Ser Ala Ala Val Lys Glu Ile Leu Lys Glu Gln Glu 85 90 95 Asn Arg Lys Gly Leu Ile Ala Ala Ile Cys Ala Gly Pro Thr Ala Leu 100 105 110 Leu Ala His Glu Ile Gly Cys Gly Ser Lys Val Thr Thr His Pro Leu 115 120 125 Ala Lys Asp Lys Met Met Asn Gly Gly His Tyr Thr Tyr Ser Glu Asn 130 135 140 Arg Val Glu Lys Asp Gly Leu Ile Leu Thr Ser Arg Gly Pro Gly Thr 145 150 155 160 Ser Phe Glu Phe Ala Leu Ala Ile Val Glu Ala Leu Asn Gly Lys Glu 165 170 175 Val Ala Ala Gln Val Lys Ala Pro Leu Val Leu Lys Asp 180 185 <210> 2 <211> 189 <212> PRT <213> Mus musculus <400> 2 Met Ala Ser Lys Arg Ala Leu Val Ile Leu Ala Lys Gly Ala Glu Glu 1 5 10 15 Met Glu Thr Val Ile Pro Val Asp Val Met Arg Arg Ala Gly Ile Lys 20 25 30 Val Thr Val Ala Gly Leu Ala Gly Lys Asp Pro Val Gln Cys Ser Arg 35 40 45 Asp Val Met Ile Cys Pro Asp Thr Ser Leu Glu Asp Ala Lys Thr Gln 50 55 60 Gly Pro Tyr Asp Val Val Val Leu Pro Gly Gly Asn Leu Gly Ala Gln 65 70 75 80 Asn Leu Ser Glu Ser Pro Met Val Lys Glu Ile Leu Lys Glu Gln Glu 85 90 95 Ser Arg Lys Gly Leu Ile Ala Ala Ile Cys Ala Gly Pro Thr Ala Leu 100 105 110 Leu Ala His Glu Val Gly Phe Gly Cys Lys Val Thr Thr His Pro Leu 115 120 125 Ala Lys Asp Lys Met Met Asn Gly Ser His Tyr Ser Tyr Ser Glu Ser 130 135 140 Arg Val Glu Lys Asp Gly Leu Ile Leu Thr Ser Arg Gly Pro Gly Thr 145 150 155 160 Ser Phe Glu Phe Ala Leu Ala Ile Val Glu Ala Leu Val Gly Lys Asp 165 170 175 Met Ala Asn Gln Val Lys Ala Pro Leu Val Leu Lys Asp 180 185 <210> 3 <211> 187 <212> PRT <213> Caenorhabditis elegans <400> 3 Met Ala Gln Lys Ser Ala Leu Ile Ile Leu Ala Ala Glu Gly Ala Glu 1 5 10 15 Glu Met Glu Val Ile Ile Thr Gly Asp Val Leu Ala Arg Gly Glu Ile 20 25 30 Arg Val Val Tyr Ala Gly Leu Asp Gly Ala Glu Pro Val Lys Cys Ala 35 40 45 Arg Gly Ala His Ile Val Pro Asp Val Lys Leu Glu Asp Val Glu Thr 50 55 60 Glu Lys Phe Asp Ile Val Ile Leu Pro Gly Gly Gln Pro Gly Ser Asn 65 70 75 80 Thr Leu Ala Glu Ser Leu Leu Val Arg Asp Val Leu Lys Ser Gln Val 85 90 95 Glu Ser Gly Gly Leu Ile Gly Ala Ile Cys Ala Ala Pro Ile Ala Leu 100 105 110 Leu Ser His Gly Val Lys Ala Glu Leu Val Thr Ser His Pro Ser Val 115 120 125 Lys Glu Lys Leu Glu Lys Gly Gly Tyr Lys Tyr Ser Glu Asp Arg Val 130 135 140 Val Val Ser Gly Lys Ile Ile Thr Ser Arg Gly Pro Gly Thr Ala Phe 145 150 155 160 Glu Phe Ala Leu Lys Ile Val Glu Leu Leu Glu Gly Lys Asp Lys Ala 165 170 175 Thr Ser Leu Ile Ala Pro Met Leu Leu Lys Leu 180 185 <210> 4 <211> 186 <212> PRT <213> Caenorhabditis elegans <400> 4 Met Ala Ala Gln Lys Ser Ala Leu Ile Leu Leu Pro Pro Glu Asp Ala 1 5 10 15 Glu Glu Ile Glu Val Ile Val Thr Gly Asp Val Leu Val Arg Gly Gly 20 25 30 Leu Gln Val Leu Tyr Ala Gly Ser Ser Thr Glu Pro Val Lys Cys Ala 35 40 45 Lys Gly Ala Arg Ile Val Pro Asp Val Ala Leu Lys Asp Val Lys Asn 50 55 60 Lys Thr Phe Asp Ile Ile Ile Ile Pro Gly Gly Pro Gly Cys Ser Lys 65 70 75 80 Leu Ala Glu Cys Pro Val Ile Gly Glu Leu Leu Lys Thr Gln Val Lys 85 90 95 Ser Gly Gly Leu Ile Gly Ala Ile Cys Ala Gly Pro Thr Val Leu Leu 100 105 110 Ala His Gly Ile Val Ala Glu Arg Val Thr Cys His Tyr Thr Val Lys 115 120 125 Asp Lys Met Thr Glu Gly Gly Tyr Lys Tyr Leu Asp Asp Asn Val Val 130 135 140 Ile Ser Asp Arg Val Ile Thr Ser Lys Gly Pro Gly Thr Ala Phe Glu 145 150 155 160 Phe Ala Leu Lys Ile Val Glu Thr Leu Glu Gly Pro Glu Lys Thr Asn 165 170 175 Ser Leu Leu Lys Pro Leu Cys Leu Ala Lys 180 185 <210> 5 <211> 570 <212> DNA <213> Homo sapiens <400> 5 atggcttcca aaagagctct ggtcatcctg gctaaaggag cagaggaaat ggagacggtc 60 atccctgtag atgtcatgag gcgagctggg attaaggtca ccgttgcagg cctggctgga 120 aaagacccag tacagtgtag ccgtgatgtg gtcatttgtc ctgatgccag ccttgaagat 180 gcaaaaaaag agggaccata tgatgtggtg gttctaccag gaggtaatct gggcgcacag 240 aatttatctg agtctgctgc tgtgaaggag atactgaagg agcaggaaaa ccggaagggc 300 ctgatagccg ccatctgtgc aggtcctact gctctgttgg ctcatgaaat aggctgtgga 360 agtaaagtta caacacaccc tcttgctaaa gacaaaatga tgaatggagg tcattacacc 420 tactctgaga atcgtgtgga aaaagacggc ctgattctta caagccgggg gcctgggacc 480 agcttcgagt ttgcgcttgc aattgttgaa gccctgaatg gcaaggaggt ggcggctcaa 540 gtgaaggctc cacttgttct taaagactag 570 <210> 6 <211> 570 <212> DNA <213> Mus musculus <400> 6 atggcttcca aaagagctct ggtcatcctg gccaaaggag cagaggagat ggagacagtg 60 attcctgtgg atgtcatgcg gcgagccggg atcaaagtca ctgttgcagg cttggctggg 120 aaggaccccg tgcagtgtag ccgtgatgta atgatttgtc cagataccag tctggaagat 180 gcaaaaacgc agggaccata cgatgtggtg gttcttccag gaggaaatct gggtgcacag 240 aatttatctg agtcgcctat ggtgaaggag atcctcaagg agcaggagag caggaagggc 300 ctcatagctg ccatctgtgc aggtcctacg gctctgttgg ctcacgaagt aggttttgga 360 tgcaaggtca caacacaccc actggctaag gacaaaatga tgaatggcag tcactacagc 420 tactcagaga gccgcgtgga gaaggacggc ctgatcctca ccagccgcgg gccggggacc 480 agctttgagt ttgcactagc cattgtggag gcactcgtgg ggaaagacat ggccaaccaa 540 gtgaaggcac cgcttgttct caaagactag 570 <210> 7 <211> 564 <212> DNA <213> Caenorhabditis elegans <400> 7 atggctcaaa aatcggcttt aatcatattg gcggccgaag gagctgagga aatggaggtc 60 attatcactg gagatgtact tgctcgtggt gaaattcgtg tggtttatgc cggattagat 120 ggagccgaac cggtaaaatg tgctcgcgga gcccacatcg tgccagacgt caaactcgaa 180 gacgtggaaa ccgaaaaatt cgatattgtg attcttccag gcggccaacc gggcagcaac 240 acgttggctg aaagcctact tgtccgcgat gttctcaaga gccaagtaga gtctggtggg 300 ctgattggag caatttgtgc agctccaatt gcactcttga gccatggagt caaggcagaa 360 cttgtgacaa gtcatccaag tgttaaggag aaactcgaga aaggaggcta caagtactcg 420 gaggatcgtg ttgttgtcag tggcaaaatc atcacctctc gtggacccgg aactgccttc 480 gaatttgcgc tgaaaattgt ggagctgctt gagggaaagg acaaggccac cagccttatt 540 gctccgatgc tcctgaagct ctaa 564 <210> 8 <211> 561 <212> DNA <213> Caenorhabditis elegans <400> 8 atggctgccc aaaagagtgc tttgatcctt ttgccaccag aagacgccga agaaatcgag 60 gttattgtga ccggagatgt gttggtccgt ggaggtttac aagttctata tgctggaagt 120 agtactgaac ctgtcaaatg tgccaaagga gctcgtattg ttccggacgt agctctcaag 180 gatgtgaaga acaagacatt cgacatcata attatcccag gtggacccgg atgtagcaaa 240 ctggcagagt gcccagttat cggtgaattg ctgaagaccc aagtcaaatc tggaggtcta 300 attggtgcaa tttgcgccgg tccaacagtt cttcttgcgc atggaattgt ggcagagcgt 360 gtcacttgtc actatactgt caaggataaa atgacagaag gaggctacaa atatttggat 420 gacaacgttg ttatcagcga cagagttatc acttctaaag gacctggaac tgctttcgag 480 tttgctttga aaatcgtcga aacactggag ggaccggaaa aaaccaatag tcttttgaag 540 ccactgtgtt tggcaaagta g 561

Claims (14)

  1. (i) 서열번호 1, 서열번호 2, 서열번호 3, 또는 서열번호 4의 아미노산 서열을 포함하는 분리된 폴리펩타이드; 또는 (ⅱ) 이 폴리펩타이드를 코딩하는 핵산분자를 포함하는 발현 컨스트럭트(expression construct)를 유효성분으로 포함하는 반응성 알파-옥소알데히드(reactive α-oxoaldehyde) 소거 활성을 갖는 항산화용 조성물.
  2. 제 1 항에 있어서, 상기 반응성 알파-옥소알데히드는 글리옥살(glyoxal) 또는 메틸글리옥살(methylglyoxal)인 것을 특징으로 하는 조성물.
  3. 제 1 항에 있어서, 상기 조성물은 약제학적 조성물인 것을 특징으로 하는 조성물.
  4. 제 1 항에 있어서, 상기 조성물은 기능성 식품 조성물인 것을 특징으로 하는 조성물.
  5. (i) 서열번호 1, 서열번호 2, 서열번호 3, 또는 서열번호 4의 아미노산 서열을 포함하는 분리된 폴리펩타이드; 또는 (ⅱ) 이 폴리펩타이드를 코딩하는 핵산분자를 포함하는 발현 컨스트럭트를 유효성분으로 포함하는 반응성 알파-옥소알데히드에 의해 유발되는 산화적 손상 질환의 치료, 예방 또는 개선용 조성물.
  6. 제 5 항에 있어서, 상기 반응성 알파-옥소알데히드는 글리옥살 또는 메틸글리옥살인 것을 특징으로 하는 조성물.
  7. 제 5 항에 있어서, 상기 반응성 알파-옥소알데히드에 의해 유발되는 산화적 손상 질환은 노화, 당뇨, 심혈관질환, 동맥경화증 또는 신경퇴행성 질환인 것을 특징으로 하는 조성물.
  8. 제 7 항에 있어서, 상기 신경퇴행성 질환은 파킨슨병(Parkinson's disease), 알츠하이머병(Alzheimer's disease), 다발성경화증(Multiple sclerosis) 또는 근위축성 측색 경화증(amyotrophic lateral sclerosis)인 것을 특징으로 하는 조성물.
  9. 제 5 항에 있어서, 상기 조성물은 약제학적 조성물인 것을 특징으로 하는 조성물.
  10. 제 5 항에 있어서, 상기 조성물은 기능성 식품 조성물인 것을 특징으로 하는 조성물.
  11. 본 발명은 다음의 단계를 포함하는 알파-옥소알데히드에 의한 신경퇴화(neurodegeneration)를 억제 또는 방지하는 활성을 갖는 후보물질을 스크리닝하는 방법:
    (a) cDJR 유전자가 결손된 선충(C. elegans)에 신경세포에서 특이적으로 발현되는 형광단백질 발현 DNA 컨스트럭트를 도입하여 형질전환된 선충을 제조하는 단계;
    (b) 상기 단계 (a)에서 제조된 형질전환 선충에 알파-옥소알데히드를 먼저 처리하고 난 후 후보물질을 처리하거나, 또는 후보물질을 먼저 처리하고 난 후 알파-옥소알데히드를 처리하는 단계; 및
    (c) 선충의 신경퇴화 여부를 관찰하는 단계로서, 후보물질을 처리하지 않은 경우에 비해, 후보물질을 처리한 경우가 선충의 신경퇴화가 감소되는 경우 상기 후보물질을 알파-옥소알데히드에 의해 유도되는 신경퇴화를 억제 또는 방지하는 활성을 갖는 물질로 판정하는 단계.
  12. 제 11 항에 있어서, 상기 cDJR 유전자는 서열번호 3 또는 서열번호 4의 아미노산 서열을 포함하는 선충(C. elegans) 유래의 글리옥살라아제를 코딩하는 유전자인 것을 특징으로 하는 방법.
  13. 제 11 항에 있어서, 상기 cDJR 유전자는 서열번호 7 또는 서열번호 8의 뉴클레오타이드 서열을 포함하는 것을 특징으로 하는 방법.
  14. 제 11 항에 있어서, 상기 알파-옥소알데히드는 글리옥살 또는 메틸글리옥살인 것을 특징으로 방법.
KR1020120049299A 2012-05-09 2012-05-09 신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체 KR101441544B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120049299A KR101441544B1 (ko) 2012-05-09 2012-05-09 신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120049299A KR101441544B1 (ko) 2012-05-09 2012-05-09 신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체

Publications (2)

Publication Number Publication Date
KR20130125630A true KR20130125630A (ko) 2013-11-19
KR101441544B1 KR101441544B1 (ko) 2014-11-04

Family

ID=49853986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120049299A KR101441544B1 (ko) 2012-05-09 2012-05-09 신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체

Country Status (1)

Country Link
KR (1) KR101441544B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140348A3 (en) * 2014-03-21 2016-01-07 Centre National De La Recherche Scientifique (Cnrs) Use of dj-1 deglycase activity
EP2951306A4 (en) * 2013-01-30 2016-07-27 Univ Nebraska COMPOSITIONS AND METHOD FOR TREATING COMPLICATIONS RELATED TO DIABETES
EP3219326A1 (en) * 2016-03-14 2017-09-20 Institut Catalá De Ciencies Cardiovasculars (ICCC) Prevention and/or treatment of ischemia or ischemia/reperfusion injury
WO2021142019A1 (en) * 2020-01-06 2021-07-15 Solugen, Inc. Compositions, systems and methods for production of value-added chemicals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033511A1 (en) * 2009-09-17 2011-03-24 Ramot At Tel-Aviv University Ltd. Peptides for the treatment of oxidative stress related disorders
KR101218067B1 (ko) * 2009-10-07 2013-01-03 한림대학교 산학협력단 세포 침투성 글리옥살레이즈 융합단백질 및 이를 함유하는 약제학적 조성물

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2951306A4 (en) * 2013-01-30 2016-07-27 Univ Nebraska COMPOSITIONS AND METHOD FOR TREATING COMPLICATIONS RELATED TO DIABETES
WO2015140348A3 (en) * 2014-03-21 2016-01-07 Centre National De La Recherche Scientifique (Cnrs) Use of dj-1 deglycase activity
EP3219326A1 (en) * 2016-03-14 2017-09-20 Institut Catalá De Ciencies Cardiovasculars (ICCC) Prevention and/or treatment of ischemia or ischemia/reperfusion injury
WO2017157958A1 (en) * 2016-03-14 2017-09-21 Institut Català De Ciències Cardiovasculars (Iccc) Prevention and/or treatment of ischemia or ischemia/reperfusion injury
WO2021142019A1 (en) * 2020-01-06 2021-07-15 Solugen, Inc. Compositions, systems and methods for production of value-added chemicals

Also Published As

Publication number Publication date
KR101441544B1 (ko) 2014-11-04

Similar Documents

Publication Publication Date Title
Lee et al. Human DJ-1 and its homologs are novel glyoxalases
Mor et al. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration
Stroo et al. Cellular regulation of amyloid formation in aging and disease
S Hernandes et al. NADPH oxidase and neurodegeneration
Sharma et al. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease
Tsao et al. Rodent models of TDP-43: recent advances
Yan et al. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women
Gupta et al. Post-translational modifications: regulators of neurodegenerative proteinopathies
Kaltschmidt et al. Potential involvement of the transcription factor NF-κB in neurological disorders
Swarup et al. ALS pathogenesis: recent insights from genetics and mouse models
Deng et al. RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13
Bennett The role of α-synuclein in neurodegenerative diseases
Sabens Liedhegner et al. Mechanisms of altered redox regulation in neurodegenerative diseases—focus on S-glutathionylation
Berger et al. Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release
Trinh et al. The multi‐faceted role of mitochondria in the pathology of Parkinson’s disease
Oliveira et al. Exploring the power of yeast to model aging and age-related neurodegenerative disorders
KR101441544B1 (ko) 신규 글리옥살라아제 활성을 갖는 인간 dj-1 단백질 또는 이의 유사체
Cardinale et al. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response
Masaldan et al. Therapeutic targeting of mitophagy in Parkinson's disease
Jeong et al. Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model
Oh et al. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP+-induced neurotoxicity via JNK pathway
Correddu et al. Targeting mRNA translation in Parkinson’s disease
Ugbode et al. JNK signalling regulates antioxidant responses in neurons
US20210283082A1 (en) Pharmaceutical composition for prevention or treatment of kidney damage
O'Farrell et al. Mutant torsinA interacts with tyrosine hydroxylase in cultured cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170825

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee