KR20130123559A - Hydraulic servo actuator for turbine control steam valve of nuclear and thermal power plants using hydrodynamic bearing - Google Patents
Hydraulic servo actuator for turbine control steam valve of nuclear and thermal power plants using hydrodynamic bearing Download PDFInfo
- Publication number
- KR20130123559A KR20130123559A KR1020120046770A KR20120046770A KR20130123559A KR 20130123559 A KR20130123559 A KR 20130123559A KR 1020120046770 A KR1020120046770 A KR 1020120046770A KR 20120046770 A KR20120046770 A KR 20120046770A KR 20130123559 A KR20130123559 A KR 20130123559A
- Authority
- KR
- South Korea
- Prior art keywords
- hydraulic
- dynamic bearing
- piston
- nuclear
- thermal power
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/14—Characterised by the construction of the motor unit of the straight-cylinder type
- F15B15/1423—Component parts; Constructional details
- F15B15/1471—Guiding means other than in the end cap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/14—Characterised by the construction of the motor unit of the straight-cylinder type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/141—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
- F01D17/145—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/14—Characterised by the construction of the motor unit of the straight-cylinder type
- F15B15/1423—Component parts; Constructional details
- F15B15/1447—Pistons; Piston to piston rod assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/122—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
- F16K31/1221—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being spring-loaded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/122—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
- F16K31/1226—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston the fluid circulating through the piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/56—Mechanical actuating means without stable intermediate position, e.g. with snap action
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K47/00—Means in valves for absorbing fluid energy
- F16K47/02—Means in valves for absorbing fluid energy for preventing water-hammer or noise
- F16K47/023—Means in valves for absorbing fluid energy for preventing water-hammer or noise for preventing water-hammer, e.g. damping of the valve movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/22—Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
- F15B15/222—Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having a piston with a piston extension or piston recess which throttles the main fluid outlet as the piston approaches its end position
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Actuator (AREA)
- Control Of Turbines (AREA)
Abstract
Description
본 발명은 원자력 및 화력발전소의 터빈회전을 제어하는 스팀밸브의 유압액추에이터에 있어서, 피스톤과 실린더의 마찰을 최소화하기 위한 유압 다이내믹 베어링(hydrodynamic bearing)의 채용기술과 유압작동유의 오염에 따른 고장을 방지하기 위하여 이물질을 흡입 할 수 있는 다공질 물질의 버퍼링의 내장과, 급작스런 압력 변화가 발생할 때 가이드 역할을 하는 웨어링이 내장된 터빈제어용 스팀밸브의 유압서보액추에이터에 관한 것이다.The present invention is the hydraulic actuator of the steam valve for controlling the turbine rotation of nuclear and thermal power plants, the technique of adopting a hydraulic dynamic bearing (minidynamic bearing) for minimizing the friction between the piston and the cylinder and to prevent failure due to contamination of the hydraulic fluid The present invention relates to a hydraulic servo actuator of a turbine control steam valve having a built-in buffer of porous material capable of inhaling foreign substances, and a wear ring serving as a guide when sudden pressure changes occur.
1) 유압 다이내믹 베어링(hydrodynamic bearing) : 피스톤을 테이퍼로 가공하여 압력차이나 피스톤의 이동에 의해 유체가 흐를 때 간극의 차이(편심)가 발생하면 간극이 작은 쪽에서 축 직각 방향으로 힘 발생하여 자동으로 동일한 간극(동심)을 유지해주는 기술로서 즉, 힘(F)은 유체의 질량(m)과 가속도(a)의 곱에 해당된다.1) Hydrodynamic bearing: When the piston is machined into taper and the gap (eccentricity) occurs when the fluid flows due to the pressure difference or the movement of the piston, the gap is small and the force is generated in the direction perpendicular to the axis. As a technique for maintaining the gap (concentricity), that is, the force (F) corresponds to the product of the mass (m) and the acceleration (a) of the fluid.
2) 정압베어링(hydrostatic bearing) : 유압포켓(recess)을 만들고 일정한 압력을 연속적으로 공급하는 것으로 유압포켓과 랜드 면적에 압력을 곱한 것에 비례한 힘으로 축을 띄우는 기술로서 즉, 힘(F)은 압력(P)과 면적(A)의 곱에 해당된다.2) Hydrostatic bearing: A hydrostatic bearing is a technique that creates a hydraulic pocket and supplies a constant pressure continuously. It is a technology that floats a shaft with a force proportional to the pressure pocket and the land area multiplied by the pressure. Corresponds to the product of (P) and area (A).
원자력 및 화력발전소 등의 대형 발전기를 구동하여 전기를 생산하기 위해서는 발전기에 연결된 고압 및 저압터빈에 최적량의 스팀을 공급하여야 하고, 고속으로 회전하는 터빈이나 스팀계통에 이상이 발생할 경우에는 터빈의 과속방지를 위하여, 즉시 터빈으로 공급되는 스팀을 차단하여 터빈을 보호해야 한다.In order to produce electricity by driving large generators such as nuclear and thermal power plants, it is necessary to supply the optimum amount of steam to the high and low pressure turbines connected to the generator. To prevent this, the turbine must be protected by immediately shutting off the steam to the turbine.
이를 위한 것이 도 1에 도시된 터빈출력제어장치(제어밸브, 300)이며, 상기 터빈출력제어장치(300)는 원자력 및 화력발전소에서 스팀터빈에 유체에너지인 스팀을 최적으로 공급하여 터빈을 회전시키고, 이 기계적 에너지가 발전기를 구동하여 전기를 생산할 수 있도록 하는 것으로, 터빈의 속도와 계통의 스팀량을 제어하는 것이다.For this purpose is a turbine output control device (control valve, 300) shown in Figure 1, the turbine
이러한 상기 터빈출력제어장치(300)는 도 1, 2에 도시된 바와 같이, 단동(single)형 유압서보 액추에이터(200)에 의해 작동되는데, 이러한 기존의 유압서보 액추에이터(200)는 유압서보 액추에이터(200) 내부에 형성된 실린더 튜브(10)와, 상기 실린더 튜브(10)의 내부에 일단부가 길이방향으로 내설되는 피스톤 로드(20)와, 상기와 같이 실린더 튜브(10)에 내설된 피스톤 로드(20)의 일단부에 형성되는 피스톤 헤드(31)로 이루어져, 상기 실린더 튜브(10)로 유입되는 유압유에 의해 상, 하로 유동되는 피스톤(30)과, 상승된 피스톤(30)에 의해 압축되었다가, 원상태로 복귀되면서 피스톤(30)을 하강시키는 스프링(40)과, 유압서보 액추에이터의 급속 복귀 시 유압유를 외부로 배출하는 급속배유밸브(덤프 밸브, 50)로 이루어지며, 도 3에 도시되어 있듯이, 1000 MW급 원자력발전소의 스팀터빈에는 20개의 스팀을 공급밸브가 장착되어 있고, 500 MW급 화력발전소에는 10개의 스팀밸브가 장착되어 있다.The turbine
상기 터빈출력제어장치(300)는 발전소별로 발전량제어에 따라서 일부는 100% 열림 상태로 제어되고 일부는 10~100%까지 작동을 하고, 액추에이터의 고착상태를 막기 위해서 상시 미세하게 움직임을 가지고 있으며, 3개월에 1회 이상 순차적으로 열림과 닫힘을 점검한다. The turbine
또한, 고열과 오염 입자 등으로 인하여 실린더 튜브와 피스톤 실(seal, S)부분이 고착되는 고장발생사례가 있기 때문에, 원자력 발전소의 경우, 핵연료 교체주기인 18개월에 1회씩 유압서보 액추에이터(200) 전체를 분해정비(overhaul)한다.In addition, since there is a failure case in which the cylinder tube and the piston seal (S) are fixed due to high heat and contaminated particles, in the case of a nuclear power plant, the
발전소의 단동 형 유압서보 액추에이터(200)는 긴 행정거리를 자주 선회(직선운동)를 하지 못하고, 압력에 의해서 실린더 튜브에 피스톤 실(S)이 강하게 밀착된 상태로 아주 미세하게 움직이게 됨으로서 마찰열이 발생하여 소착이 발생하게 되고, 이때 유압작동유 속에 혼입된 오염 입자들이 쐬기 형태로 낌이 발생함으로서 정상작동을 하지 못하는 등의 고장이 증가되는 원인이 되었다.The single-acting
또한 상용화는 이루어지지 않았지만 정압베어링(hydrostatic bearing)을 로드에 채용하는 기술이 특허로 출원되었지만, 이는 단동 실린더의 특성이 반영되지 못했다. 즉, 피스톤 로드(20) 부분은 저압의 누유량만 채워져 있는 상태로 압력이 존재하지 않기 때문에 거의 실 마찰이 존재하지 않고, 피스톤 로드(20)의 정압베어링에 압력을 가해야 함으로서, 이 높은 압력이 실 마찰을 증가시키는 악영향을 미칠 수 있다.In addition, although the commercialization has not been made, but the technology to apply the hydrostatic bearing (hydrostatic bearing) to the rod has been applied for a patent, this does not reflect the characteristics of the single-acting cylinder. That is, since there is no pressure in the state where only the low leakage oil is filled, the
상기 특허에 "복동 실린더(양 로드 실린더)와 각각의 로드에 정압베어링 채용기술"은 발전소 계통에 이상이 발생 할 경우 비상정지를 위해 액추에이터가 급속하게 후진하여 스팀을 차단하는데 이 경우는 액추에이터 하단에 설치된 큰 강철스프링에 의해서 급속하게 작동됨으로서 액추에이터 행정거리 끝단에 기계적 충격이 발생하여, 파손이 됨으로 유압 쿠션(완충)기능이 존재하는데 이를 설치 할 수 없는 기구학적 문제를 가지고 있다.In the patent, "double-acting cylinder (both rod cylinder) and the technology of applying static pressure bearing to each rod", in case of an abnormality in the power plant system, the actuator reverses rapidly and shuts off the steam for emergency stop. It is operated by a large steel spring installed so that a mechanical shock occurs at the end of the actuator stroke, and it is damaged, so there is a hydraulic cushion (buffer) function, which cannot be installed.
또한 정압베어링은 압력이 공급되지 않을 경우 즉시 베어링의 역할을 상실하는데 실제로 발전소에서는 정전 등의 이상이 발생했을 때 액추에이터가 스프링에 의해서 급속하게 차단되어야 할 경우에 베어링 역할을 하지 못하는 치명적인 문제점을 가지고 있다.In addition, hydrostatic bearings lose the role of bearings immediately when no pressure is applied. In fact, power plant bearings have a fatal problem in that the bearings cannot act as bearings when the actuator is to be shut off rapidly by a spring when an abnormality such as a power failure occurs. .
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 원자력 및 화력 발전기에 연결된 고압 및 저압 스팀터빈으로 적정량의 스팀을 공급하거나 또는 비상시 스팀의 공급을 차단하는 유압서보 액추에이터에 있어서, 유압서보 액추에이터의, 피스톤에 테이퍼 형 유압 다이내믹 베어링(hydrodynamic bearing)을 채용하여 마찰을 최소화하고, 유압작동유 내부에 혼입된 미세한 오염입자(contamination particle)들을 흡수할 수 있는 다공질 물질 버퍼링(buffer ring)을 설치하여 흡착하고, 갑작스런 압력변화에 따른 피스톤 흔들림을 방지하고 가이드 역할을 위하여 웨어링(wearing)을 설치한 원자력 및 화력발전소 터빈제어 액추에이터를 제공하는데 있다.The present invention has been made to solve the above problems, an object of the present invention is to supply a suitable amount of steam to the high pressure and low pressure steam turbine connected to the nuclear and thermal power generator or to the hydraulic servo actuator to cut off the supply of steam in the emergency In the hydraulic servo actuator, a piston taper-type hydrodynamic bearing is employed to minimize friction and absorb porous contamination particles incorporated into the hydraulic fluid. It is to provide turbine control actuator of nuclear power plant and thermal power plant with adsorption, and to prevent piston shake due to sudden pressure change and wearing ring for guide role.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시 예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the present invention will be described hereinafter and will be understood by the embodiments of the present invention. In addition, the objects and advantages of the present invention can be realized by means and combinations indicated in the claims.
본 발명은 상기와 같은 문제점을 해결하기 위한 수단으로서, 원자력 발전 및 화력 발전기용 스팀터빈에 연결되어, 스팀을 공급하여 스팀터빈을 회전시키고, 비상시에는 스팀공급을 차단하는 액추에이터에 있어서, 실린더 튜브(10) 내에서 상, 하 왕복되는 피스톤 로드(20)의 단부 외주연에 형성되어, 피스톤과 실린더 상호간의 마찰을 감소시키기 위한 유압 다이내믹 베어링(32); 상기 유압 다이내믹 베어링(32)의 외주연에 설치되어, 유압작동유의 이물질로 인한 고장을 방지하기 위한 버퍼링(33); 상기 유압 다이내믹 베어링(32)의 외주연에 설치되어, 상기 실린더 내 압력변화시 피스톤의 이동방향을 가이드하기 위한 웨어링(34); 으로 이루어지는 것을 특징으로 한다.The present invention is a means for solving the above problems, is connected to a steam turbine for nuclear power and thermal power generator, supplying steam to rotate the steam turbine, in the actuator for shutting off the steam supply in the emergency, the cylinder tube ( A hydraulic
이상에서 살펴본 바와 같이, 본 발명은 유압서보 액추에이터의 분해정비 후 조립을 할 때, 웨어링에 의해서 금속마찰이 발생하지 않고, 작동 중 실 마찰이 발생하지 않는 효과가 있다.As described above, the present invention has an effect that the metal friction does not occur by the wear ring, the actual friction does not occur when the assembly after disassembly and maintenance of the hydraulic servo actuator.
또한, 본 발명은 버퍼링에 의해 압력작동유가 함유하고 있는 이물질이 여과되도록 함으로써, 오염물질에 의한 고장을 방지함으로서 유압서보 액추에이터의 제어 안정성 발휘하는 효과가 있다.In addition, the present invention has the effect of exhibiting the control stability of the hydraulic servo actuator by preventing foreign matters contained in the pressure hydraulic fluid by the buffering, thereby preventing the failure caused by contaminants.
도 1은 터빈제어 액추에이터가 설치되어 있는 터빈출력제어장치를 나타낸 일실시예의 도면.
도 2는 종래 원자력 및 화력발전소 터빈제어 유압서보 액추에이터를 나타낸 일실시예의 정면 단면도.
도 3은 원자력 및 화력발전소의 터빈 제어밸브 및 스팀 계통도.
도 4는 종래 터빈제어용 유압서보 액추에이터를 나타낸 일실시예의 정면 단면도.
도 5는 본 발명에 따른 유압 다이내믹 베어링을 사용한 터빈제어용 유압서보 액추에이터를 나타낸 일실시예의 정면 단면도.
도 6은 본 발명에 따른 유압서보 액추에이터가 스프링에 의해 후진할 경우 최종 단에서 나타나는 쿠션작용도를 나타낸 정면 단면도.
도 7은 유압 다이내믹 베어링의 다이어그램
도 8은 유압 다이내믹 베어링의 유막 틈새(유막)변화에 따른 유량곡선
도 9는 기존 액추에이터의 구조도를 나타내는 단면도.
도 10은 유압 다이내믹 베어링이 장착된 액추에이터의 구조도를 나타내는 단면도.
도 11은 유압 다이내믹 베어링과 웨어링이 장착된 액추에이터의 구조도를 나타내는 단면도.
도 12는 유압 다이내믹 베어링과 웨어링 및 버퍼링이 장착된 액추에이터의 구조도를 나타내는 단면도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an embodiment of a turbine output control apparatus in which a turbine control actuator is installed.
Figure 2 is a front cross-sectional view of an embodiment showing a conventional turbine and hydraulic power plant turbine control hydraulic servo actuator.
3 is a turbine control valve and steam system diagram of nuclear and thermal power plants.
Figure 4 is a front sectional view of an embodiment showing a conventional hydraulic servo actuator for turbine control.
Figure 5 is a front sectional view of an embodiment showing a hydraulic servo actuator for turbine control using a hydraulic dynamic bearing according to the present invention.
Figure 6 is a front cross-sectional view showing the cushioning action appearing in the final stage when the hydraulic servo actuator in accordance with the present invention back.
7 is a diagram of a hydraulic dynamic bearing
8 is a flow curve according to oil film gap (oil film) change of the hydraulic dynamic bearing
9 is a cross-sectional view showing a structural diagram of an existing actuator.
10 is a cross-sectional view showing a structural diagram of an actuator equipped with a hydraulic dynamic bearing.
Fig. 11 is a sectional view showing the structural diagram of an actuator equipped with a hydraulic dynamic bearing and a wear ring.
12 is a sectional view showing a structural diagram of an actuator equipped with a hydraulic dynamic bearing and a wear ring and a buffering;
본 발명의 여러 실시 예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다.
Before describing in detail several embodiments of the invention, it will be appreciated that the application is not limited to the details of construction and arrangement of components set forth in the following detailed description or illustrated in the drawings. The invention may be embodied and carried out in other embodiments and carried out in various ways. It should also be noted that the device or element orientation (e.g., "front,""back,""up,""down,""top,""bottom, Expressions and predicates used herein for terms such as "left,"" right, "" lateral, " and the like are used merely to simplify the description of the present invention, Or that the element has to have a particular orientation.
본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.The present invention has the following features in order to achieve the above object.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
이러한 본 발명의 일실시예를 살펴보면,Looking at one embodiment of the present invention,
원자력 발전 및 화력 발전기용 스팀터빈에 연결되어, 스팀을 공급하여 스팀터빈을 회전시키고, 비상시에는 스팀공급을 차단하는 액추에이터에 있어서, 실린더 튜브(10) 내에서 상, 하 왕복되는 피스톤 로드(20)의 단부 외주연에 형성되어, 피스톤과 실린더 상호간의 마찰을 감소시키기 위한 유압 다이내믹 베어링(32); 상기 유압 다이내믹 베어링(32)의 외주연에 설치되어, 유압작동유의 이물질로 인한 고장을 방지하기 위한 버퍼링(33); 상기 유압 다이내믹 베어링(32)의 외주연에 설치되어, 상기 실린더 내 압력변화시 피스톤의 이동방향을 가이드하기 위한 웨어링(34); 으로 이루어지는 것을 특징으로 한다.In the actuator connected to the steam turbine for nuclear power generation and thermal power generator, supplying steam to rotate the steam turbine, and shuts off the steam supply in the event of an emergency, the
또한, 상기 유압 다이내믹 베어링(32)은 상기 피스톤 로드(20)의 일단부를 향해 직경이 점차 감소되는 테이퍼 진 형태를 가지도록 하며, 외주연측으로 유압작동유가 미세 유동되도록 하는 것을 특징으로 한다.In addition, the hydraulic
또한, 상기 버퍼링(33)은 상기 유압 다이내믹 베어링(32)의 양측 외주연 중, 직경이 작아지는 일측 외주연에 형성되는 제 1원주형 홈(G1)에 대응설치되어, 상기 유압 다이내믹 베어링(32)의 외주연으로 유동되는 유압작동유 내 오염입자를 흡착하기 하는 것으로, 다공성 형태를 가지는 것을 특징으로 한다.In addition, the
또한, 상기 웨어링(34)은 상기 유압 다이내믹 베어링(32)의 양측 외주연 중, 직경이 넓어지는 타측 외주연에 형성되는 제 2원주형 홈(G2)에 대응설치되어, 상기 실린더 튜브(10) 내 압력변화로 인한 피스톤의 유동을 방지하면서 피스톤의 이동방향을 가이드 하는 것을 특징으로 한다.
In addition, the
이하, 도 1 내지 도 12를 참조하여 본 발명의 바람직한 실시예에 따른 유압 다이내믹 베어링을 채용한 원자력 및 화력발전소의 터빈제어용 스팀밸브의 유압서보 액추에이터를 상세히 설명하도록 한다. Hereinafter, a hydraulic servo actuator of a steam valve for controlling a turbine of a nuclear power plant and a nuclear power plant employing a hydraulic dynamic bearing according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 12.
도시한 바와 같이, 본 발명에 따른 유압 다이내믹 베어링을 채용한 원자력 및 화력발전소의 터빈제어용 스팀밸브의 유압서보 액추에이터(100)는 유압 다이내믹 베어링(32), 버퍼링(33), 웨어링(34)을 포함한다.
As shown, the
상기 유압 다이내믹 베어링(32)은 원자력 및 화력발전소의 터빈회전을 제어하는 스팀밸브의 유압액추에이터의 구성 중 실린더 튜브(실린더, 10) 내에 길이방향으로 내설되는 피스톤 로드(20)의 일단부에 형성되는 것이다.(이러한 상기 피스톤 로드(20)는 실린더 튜브(10) 내부에 위치된 일단부 외주연에 테이퍼 진 쿠션 테이퍼(22)를 형성하여, 스프링(40)에 의해 피스톤 로드(20)가 하강될 시, 쿠션 테이퍼(22) 외주연측으로 유압작동유가 헤드블럭(74)으로 서서히 빠지면서 헤드블럭(74)을 닫을 수 있도록 하여, 유압 다이내믹 베어링(32)과 헤드블럭(74) 사이의 유압작동유에 의해 쿠션압력이 작용될 수 있도록 되어 있다.)The hydraulic
기존에는 상기 피스톤 로드(20)의 일단부에 형성되는 피스톤 헤드(31)의 경우, 외주연에 피스톤 실(S)을 형성하며 실린더 튜브(10)의 내주연과 접촉되면서, 피스톤 로드(20)가 상, 하로 유동되는 형태를 가졌다. 하지만, 이러한 경우 피스톤 헤드(31) 외주연에 마찰열이 발생하게 되어 장비의 수명단축과 함께, 실린더 튜브(10)와 피스톤(30)(더욱 자세히는 피스톤 헤드(31)) 상호간의 접촉부위에 이물질이 끼는 문제가 발생했다.Conventionally, in the case of the
이에, 본 발명에서는 길이방향 일측을 향해 직경이 점차 감소되거나 증가되는 테이퍼 진 형상의 유압 다이내믹 베어링(32)을 피스톤 로드(20)의 일단 외주연에 피스톤 로드로 형성하여 사용한 것이다. Thus, in the present invention, a tapered hydraulic dynamic bearing 32 having a diameter gradually decreasing or increasing toward one longitudinal direction is formed by using a piston rod at one end of the
이러한 상기 유압 다이내믹 베어링(32)은 실린더 튜브(10)에 내설되어 있는 피스톤 로드(20)의 단부측을 향할수록 직경이 점차 감소되는 형태를 가지도록 하며, 상기와 같은 테이퍼 진 형상의 유압 다이내믹 베어링(32)의 외주연은 실린더 튜브(10) 내주연과 접촉되지 않고 간극의 형태로 상호간 이격되어 있는 형태가 되도록 한다.The hydraulic
즉, 상기 유압 다이내믹 베어링(32)은 압력(P1)을 받는 헤드측에 위치한 일단의 직경(피스톤 지름, d0)을 타단보다 작게 하되, 상시 탱크로 연결되어 압력(P2)이 거의 없는 로드측에 위한 타단의 직경(피스톤 지름(d1))을 일단보다 상대적으로 크게 하여, 결국 일방향으로 향해 직경이 점차 감소되거나 또는 증가되는 테이퍼 진 형태를 가지도록 함으로써, 유압 다이내믹 베어링(32) 길이를 'L'이라 했을 때, 본 발명 액추에이터의 작동 시, 유압 다이내믹 베어링(32)의 양측의 편심량(e) 변화에 따라서, 유압 다이내믹 베어링(32)의 외주연과 실린더 튜브(10) 상호간의 간극이 작은 쪽에서 축 직각 방향으로 힘이 발생하여, 유압 다이내믹 베어링(32)의 외주연 전체에 걸쳐, 실린더 튜브(10) 내주연과의 간극이 자동으로 어느 방향에서도 동일한 간극을 유지(실린더 튜브(10) 내 유압 다이내믹 베어링(32)의 양측이 동심을 유지)됨으로써, 실린더 튜브(10) 내주연과 유압 다이내믹 베어링(32) 외주연(또는 피스톤 헤드 외주연) 상호간의 실(Seal) 마찰이 존재하지 않아, 마찰 마모고장을 근원적으로 해결하고, 급속한 작동에 스틱 슬립(stick slip)이 발생하지 않는 것을 특징으로 한다. (즉, 상기 유압 다이내믹 베어링(32)의 외주연과 실린더 튜브(10) 내주연 사이로 미세유량(유압작동유)이 유동되도록 함으로써, 유압 다이내믹 베어링(32)이 실린더 튜브(10) 내에서 실린더 튜브(10)의 폭방향으로 왔다갔다 이동되면서 자체적으로 중심을 잡게 되는 것으로, 상기 유압 다이내믹 베어링(32)과 실린더 튜브(10) 상호간은 접촉되지 않되, 상호간의 간극 사이로 유압작동유는 미세유동이 가능한 구조이다.)That is, the hydraulic
이는 유체동력학적 기술을 사용함으로써, 압력을 공급했을 때와 공급하지 않고 스프링(40)에 의해서 급속하게 피스톤이 움직일 때 발생하는 유체의 가속도에 의하여 발생하는 유체흐름으로 베어링 기능이 가능하며, 기존 액추에이터에 설치된 오리피스(60)에서 누유 되는 허용유량(0.2 ~ 0.4 GPM, 약 0.757 ~ 1.514 l/min)을 감안하여, 본 발명의 도 7에 도시된 다이아그램과 같은 구조를 가진 본 발명의 유압 다이내믹 베어링(32)을 하기의 제 1식으로 시뮬레이션 한 결과, 본 발명의 도 8에 도시된 바와 같은 유막 틈새(유막)변화에 따른 유량곡선을 특징으로 한다.By using the hydrodynamic technique, the bearing function is possible due to the fluid flow generated by the acceleration of the fluid generated when the piston is moved rapidly by the
(참고로, 상기 도 7에 도시된 부호의 경우, c: 틈새(clearance), t: 테이퍼 높이(taper height), L: 테이퍼 길이(taper length), e: 편심(eccentric), d: 실린더 튜브 내경을 의미한다.)
(For reference, in the case of the reference numeral shown in FIG. 7, c: clearance, t: taper height, L: taper length, e: eccentric, d: cylinder tube It means the inner diameter.)
(제 1식)(Formula 1)
상기 버퍼링(buffer ring, 33)은 전술된 유압 다이내믹 베어링(32)의 외주연에 형성되는 것으로서, 테이퍼 진 상기 유압 다이내믹 베어링(32)의 양측 외주연 중, 직경이 점차 작아지는 일측 외주연에 제 1원주형 홈(grove, G1)을 형성하고, 이러한 제 1원주형 홈(G1)에 대응설치된 것이다.The
이러한, 즉, 이러한 상기 버퍼링(33)은 전술된 유압 다이내믹 베어링(32)의 외주연 측으로 미세이동되는 유압작동유 내부에 혼입된 미세한 오염입자(contamination particle)들을 흡수 또는 흡착하여 이들로 인한 막힘이나 손상을 방지한 것으로, 유압작동유가 함유하고 있는 이물질은 여과하면서 유압작동유는 이동을 시키는 형태이다. 이를 위한 상기 버퍼링(33)은 망 형태 등과 같이 다공성 형태가 될 수 있음이다.
In other words, the
상기 웨어링(wearing, 34)은 전술된 버퍼링(33)과 마찬가지로 유압 다이내믹 베어링(32)의 외주연에 형성되는 것이되, 버퍼링(33)의 반대측에 형성되는 것으로, 테이퍼 진 상기 유압 다이내믹 베어링(32)의 양측 외주연 중, 직경이 점차 커지는 타측 외주연에 제 2원주형 홈(grove, G2)을 형성하고, 이러한 제 2원주형 홈(G2)에 대응설치된 것이다.The
이러한, 상기 웨어링(34)은 본 발명에 따른 액추에이터의 초기 조립 및 작동 중에 갑작스런 압력 변화가 있을 시, 상기 웨어링(34)이 실린더 튜브(10)의 내주연과 접촉되면서 액추에이터의 피스톤(30)(또는 유압 다이내믹 베어링(32))의 흔들림을 방지하고, 이러한 피스톤(30)의 원활한 이동이 가능하도록 이동방향을 가이드 역할을 하는 것이다.
The
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various changes and modifications may be made without departing from the scope of the appended claims.
10: 실린더 튜브 11: 장착 플레이트
20: 피스톤 로드 21: 로드 실
22: 쿠션 테이퍼 30: 피스톤
31: 피스톤 헤드 32: 유압 다이내믹 베어링
33: 버퍼링 34: 웨어링
50: 덤프 밸브 60: 오리피스
70: 밸브 매니폴드 71: 서보 밸브
72: 급속차단 밸브 73: 솔레노이드 작동 급속차단 밸브
74: 헤드블럭
L1: 탱크 귀환라인 L2: 탱크 귀환포트
R: 오링(O-Ring) S: 피스톤 실10: cylinder tube 11: mounting plate
20: piston rod 21: rod seal
22: cushion taper 30: piston
31: piston head 32: hydraulic dynamic bearing
33: buffering 34: wear ring
50: dump valve 60: orifice
70: valve manifold 71: servo valve
72: quick shutoff valve 73: solenoid operated quick shutoff valve
74: head block
L1: tank return line L2: tank return port
R: O-Ring S: Piston Seal
Claims (4)
실린더 튜브(10) 내에서 상, 하 왕복되는 피스톤 로드(20)의 단부 외주연에 형성되어, 피스톤과 실린더 상호간의 마찰을 감소시키기 위한 유압 다이내믹 베어링(32);
상기 유압 다이내믹 베어링(32)의 외주연에 설치되어, 유압작동유의 이물질로 인한 고장을 방지하기 위한 버퍼링(33);
상기 유압 다이내믹 베어링(32)의 외주연에 설치되어, 상기 실린더 내 압력변화시 피스톤의 이동방향을 가이드하기 위한 웨어링(34);
으로 이루어지는 것을 특징으로 하는 유압 다이내믹 베어링을 채용한 원자력 및 화력발전소의 터빈제어용 스팀밸브의 유압서보 액추에이터.
In the actuator which is connected to the steam turbine for nuclear power and thermal power generator, supplies steam to rotate the steam turbine, and shuts off the steam supply in case of emergency,
A hydraulic dynamic bearing 32 formed at the outer periphery of the end of the piston rod 20 reciprocating in the cylinder tube 10 to reduce friction between the piston and the cylinder;
A buffer ring 33 installed at an outer circumference of the hydraulic dynamic bearing 32 to prevent a failure due to a foreign substance of hydraulic oil;
A wear ring (34) installed at an outer circumference of the hydraulic dynamic bearing (32) to guide the direction of movement of the piston when the pressure in the cylinder changes;
Hydraulic servo actuator of the steam valve for turbine control of nuclear and thermal power plants employing a hydraulic dynamic bearing, characterized in that consisting of.
상기 유압 다이내믹 베어링(32)은
상기 피스톤 로드(20)의 일단부를 향해 직경이 점차 감소되는 테이퍼 진 형태를 가지도록 하며, 외주연측으로 유압작동유가 미세 유동되도록 하는 것을 특징으로 하는 유압 다이내믹 베어링을 채용한 원자력 및 화력발전소의 터빈제어용 스팀밸브의 유압서보 액추에이터.
The method of claim 1,
The hydraulic dynamic bearing 32
For the turbine control of nuclear and thermal power plants employing a hydraulic dynamic bearing, characterized in that it has a tapered form that the diameter gradually decreases toward one end of the piston rod 20, and the hydraulic fluid flows to the outer circumferential side. Hydraulic servo actuator of steam valve.
상기 버퍼링(33)은
상기 유압 다이내믹 베어링(32)의 양측 외주연 중, 직경이 작아지는 일측 외주연에 형성되는 제 1원주형 홈(G1)에 대응설치되어, 상기 유압 다이내믹 베어링(32)의 외주연으로 유동되는 유압작동유 내 오염입자를 흡착하기 하는 것으로, 다공성 형태를 가지는 것을 특징으로 하는 유압 다이내믹 베어링을 채용한 원자력 및 화력발전소의 터빈제어용 스팀밸브의 유압서보 액추에이터.
The method of claim 1,
The buffering 33
Among the outer periphery of both sides of the hydraulic dynamic bearing 32, corresponding to the first cylindrical groove (G1) formed on one side of the outer peripheral diameter is reduced, the hydraulic pressure flows to the outer periphery of the hydraulic dynamic bearing 32 A hydraulic servo actuator for a steam valve for turbine control of nuclear and thermal power plants employing a hydraulic dynamic bearing, which adsorbs contaminated particles in operating oil and has a porous form.
상기 웨어링(34)은
상기 유압 다이내믹 베어링(32)의 양측 외주연 중, 직경이 넓어지는 타측 외주연에 형성되는 제 2원주형 홈(G2)에 대응설치되어, 상기 실린더 튜브(10) 내 압력변화로 인한 피스톤의 유동을 방지하면서 피스톤의 이동방향을 가이드 하는 것을 특징으로 하는 유압 다이내믹 베어링을 채용한 원자력 및 화력발전소의 터빈제어용 스팀밸브의 유압서보 액추에이터.
The method of claim 1,
The wear ring 34
Among the outer circumferences of both sides of the hydraulic dynamic bearing 32, corresponding to the second cylindrical groove G2 formed on the other outer circumference of which diameter is widened, the piston flows due to the pressure change in the cylinder tube 10. A hydraulic servo actuator for a steam valve for turbine control of nuclear and thermal power plants employing a hydraulic dynamic bearing, characterized by guiding the piston's movement direction while preventing oil.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120046770A KR101343640B1 (en) | 2012-05-03 | 2012-05-03 | Hydraulic Servo Actuator for Turbine Control Steam Valve of Nuclear and Thermal Power Plants using Hydrodynamic Bearing |
JP2014518837A JP5728132B2 (en) | 2012-05-03 | 2013-05-02 | Hydraulic servo actuator of steam valve for turbine control using fluid dynamic pressure bearing |
PCT/KR2013/003801 WO2013165185A1 (en) | 2012-05-03 | 2013-05-02 | Hydraulic servo actuator of steam valve for turbine control employing hydraulic dynamic bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120046770A KR101343640B1 (en) | 2012-05-03 | 2012-05-03 | Hydraulic Servo Actuator for Turbine Control Steam Valve of Nuclear and Thermal Power Plants using Hydrodynamic Bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130123559A true KR20130123559A (en) | 2013-11-13 |
KR101343640B1 KR101343640B1 (en) | 2013-12-20 |
Family
ID=49514532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120046770A KR101343640B1 (en) | 2012-05-03 | 2012-05-03 | Hydraulic Servo Actuator for Turbine Control Steam Valve of Nuclear and Thermal Power Plants using Hydrodynamic Bearing |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5728132B2 (en) |
KR (1) | KR101343640B1 (en) |
WO (1) | WO2013165185A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160034137A (en) * | 2014-09-19 | 2016-03-29 | 주식회사 포스코건설 | Apparatus for shock absorbing of oscillator for continuous casting |
WO2021107311A1 (en) * | 2019-11-29 | 2021-06-03 | 한국철도기술연구원 | Bogie for rubber-tired light rail vehicle |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6204497B2 (en) * | 2013-12-11 | 2017-09-27 | 日産自動車株式会社 | Degassing hole forming process and degassing hole forming apparatus for secondary battery |
KR101663799B1 (en) | 2014-05-26 | 2016-10-07 | 주식회사 에네스지 | Electrohydrolic power cylinder actuator with air vent valve |
CN105090167B (en) * | 2015-08-24 | 2018-01-05 | 航天长征化学工程股份有限公司 | Quick exhaust buffer gear |
JP6581499B2 (en) * | 2015-12-25 | 2019-09-25 | 株式会社東芝 | Steam valve drive |
EP3282132B1 (en) * | 2016-08-08 | 2019-10-02 | Goodrich Actuation Systems Limited | Actuator with a coupling |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5270269U (en) * | 1975-11-19 | 1977-05-25 | ||
JPS6267322A (en) * | 1985-09-19 | 1987-03-27 | Yaskawa Electric Mfg Co Ltd | Bearing for reciprocating motion |
JPH02107803A (en) * | 1988-10-18 | 1990-04-19 | Mitsubishi Precision Co Ltd | Hydraulic cylinder |
JPH02127802U (en) * | 1989-03-29 | 1990-10-22 | ||
JP2853311B2 (en) * | 1989-12-12 | 1999-02-03 | 日本精工株式会社 | Bearing with dynamic pressure groove and method of manufacturing the same |
JPH04366005A (en) * | 1991-06-12 | 1992-12-17 | A T Shii Kk | Hydraulic pressure actuator and turning index device using it |
JPH06109006A (en) * | 1992-05-26 | 1994-04-19 | Fuji Electric Co Ltd | Hydraulic actuator |
JPH09177670A (en) * | 1995-12-27 | 1997-07-11 | Toyota Autom Loom Works Ltd | Piston type compressor |
JP2000337314A (en) * | 1999-05-27 | 2000-12-05 | Hitachi Constr Mach Co Ltd | Cushion device of hydraulic cylinder |
JP4002702B2 (en) * | 1999-09-21 | 2007-11-07 | シーケーディ株式会社 | Fluid pressure actuator |
KR20050100302A (en) * | 2004-04-13 | 2005-10-18 | 한국에스엠씨공압(주) | Cylinder type actuator |
KR101100910B1 (en) * | 2008-12-03 | 2012-01-02 | 이형훈 | Fluid pressure cylinder |
-
2012
- 2012-05-03 KR KR1020120046770A patent/KR101343640B1/en active IP Right Grant
-
2013
- 2013-05-02 WO PCT/KR2013/003801 patent/WO2013165185A1/en active Application Filing
- 2013-05-02 JP JP2014518837A patent/JP5728132B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160034137A (en) * | 2014-09-19 | 2016-03-29 | 주식회사 포스코건설 | Apparatus for shock absorbing of oscillator for continuous casting |
WO2021107311A1 (en) * | 2019-11-29 | 2021-06-03 | 한국철도기술연구원 | Bogie for rubber-tired light rail vehicle |
CN113195334A (en) * | 2019-11-29 | 2021-07-30 | 韩国铁道技术研究院 | Running device for rubber wheel type light rail electric vehicle |
CN113195334B (en) * | 2019-11-29 | 2023-12-01 | 韩国铁道技术研究院 | Rubber wheel type running device for light rail electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
WO2013165185A1 (en) | 2013-11-07 |
KR101343640B1 (en) | 2013-12-20 |
JP5728132B2 (en) | 2015-06-03 |
JP2014521026A (en) | 2014-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101343640B1 (en) | Hydraulic Servo Actuator for Turbine Control Steam Valve of Nuclear and Thermal Power Plants using Hydrodynamic Bearing | |
KR101166689B1 (en) | Turbine valve control actuator using internal check valve for nuclear and fossil power plants | |
CN204692633U (en) | A kind of valve and a kind of ring assembly | |
CN103003609A (en) | Multi-teeth engagement in an actuator piston | |
KR101478815B1 (en) | Apparatus for exhausting air for hydraulic actuator and hydraulic actuator for a power plant having the same | |
WO2014079653A1 (en) | Gas bearing, arrangement and turbomachine | |
CN107110015A (en) | For the compensation equipment for the running clearance for compensating engine | |
CN103671995A (en) | Two-piston type axial flow regulating valve | |
CN101614285B (en) | Ball valve | |
CN104482253A (en) | Combined valve | |
CN203082224U (en) | Axial flow sleeve regulating valve | |
CA2668482C (en) | Arrangement for sealing between two parts of a hydraulic turbomachine moveable relative to one another | |
JP5727647B1 (en) | Hydraulic actuator assembly for power plant | |
CN108386560B (en) | A kind of heat-resisting anti-sticking hydraulic efficiency slide valve | |
CN201382042Y (en) | Segmental-type piston double-action short-stroke hydraulic cylinder device | |
CN205013725U (en) | Modular multi -functional gate valve | |
JP5727648B1 (en) | Hydraulic actuator assembly for power plant | |
CN201568596U (en) | Ball valve | |
CN103090019A (en) | Regulating valve of axial flow sleeve | |
CN106438680A (en) | High-pressure gear pump bearing with sealing structure | |
CN203925910U (en) | Film drives frequency conversion measuring apparatus | |
KR101302581B1 (en) | Hydraulic shock absorbing tilting disc check valve | |
CN105659014A (en) | Actuating device and method for actuating a valve | |
KR101663799B1 (en) | Electrohydrolic power cylinder actuator with air vent valve | |
RU2683010C2 (en) | Pressure relief device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160907 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170907 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190909 Year of fee payment: 7 |