KR20130118537A - Method of fabricating metal base carbon nano composite - Google Patents
Method of fabricating metal base carbon nano composite Download PDFInfo
- Publication number
- KR20130118537A KR20130118537A KR1020120041483A KR20120041483A KR20130118537A KR 20130118537 A KR20130118537 A KR 20130118537A KR 1020120041483 A KR1020120041483 A KR 1020120041483A KR 20120041483 A KR20120041483 A KR 20120041483A KR 20130118537 A KR20130118537 A KR 20130118537A
- Authority
- KR
- South Korea
- Prior art keywords
- nanofibers
- carbon
- metal particles
- metal
- pure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
- B82B3/0038—Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
- B22F2302/403—Carbon nanotube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/054—Particle size between 1 and 100 nm
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
본 발명은 금속기지 탄소나노 복합재의 제조방법에 관한 것으로, 특히, 강도와 함께 연신율을 개선할 수 있는 금속기지 탄소나노 복합재의 제조방법에 관한 것이다.The present invention relates to a method for producing a metal-based carbon nanocomposite, and more particularly, to a method for producing a metal-based carbon nanocomposite that can improve elongation with strength.
나노파이버가 소개된 이래로 나노파이버의 금속기지 내 분산에 관한 연구가 수년간에 걸쳐 진행되고 있다. 특히, 극대화된 지름 대 길이의 비(aspect ratio)와, 탄소 사이의 강한 공유 결합으로 인해 우수한 특성을 나타내는 탄소나노튜브의 경우 기지 내 균일 분산은 연구의 핵심 화두라 할 수 있다. 이와 관련하여, 최근 금속기지 탄소나노튜브 복합재의 제조방법으로 casting법(Noguchi T, Magario A, Fukazawa S, Mater Trans 2004:45:602, Yanagi H, Kawai Y, Kita K, Japanese Journal of Applied Physics 2006:45:L650-3)과, 분말법(Zhong R, Cong H, Hou P. Carbon 2003:41:848, George R, Kashyap KT, Rahul R, Yamdgni S. Scripta Mater 2005:53:1159)이 제시되고 있다.Since the introduction of nanofibers, research into the dispersion of nanofibers in metal bases has been going on for many years. Particularly, in the case of carbon nanotubes, which exhibit excellent characteristics due to the maximized diameter-to-length aspect ratio and strong covalent bond between carbons, uniform dispersion within a matrix is a key topic of research. In this regard, as a method of manufacturing a metal-based carbon nanotube composite in recent years (casting method Noguchi T, Magario A, Fukazawa S, Mater Trans 2004: 45: 602, Yanagi H, Kawai Y, Kita K, Japanese Journal of Applied Physics 2006) : 45: L650-3) and powder method (Zhong R, Cong H, Hou P. Carbon 2003: 41: 848, George R, Kashyap KT, Rahul R, Yamdgni S. Scripta Mater 2005: 53: 1159). It is becoming.
먼저, Casting법은 분발법에 비해 제조공정이 쉽고 단순하여 산업적 응용 가능성이 우수한 것으로 평가되고 있으나, 금속에 비해 상대적으로 비중이 매우 낮은 나노파이버가 주조 시 용탕 표면으로 부상하여 용해 과정에서 금속과 혼합되지 않기 때문에 복합재 제조가 어려운 단점이 있다. 뿐만 아니라, 높은 공정 온도로 인해 탄소나노튜브가 금속기지와 반응하여 카바이드를 형성함으로써 최종 성형체의 특성이 저하되는 문제점도 있다.First of all, the casting process is considered to be easier and simpler than the powdering process, and thus has excellent industrial applications.However, nanofibers, which have a relatively low specific gravity compared to metals, emerge as molten surfaces during casting and are mixed with metals during melting. It is difficult to manufacture the composite material because it is not. In addition, the carbon nanotubes react with the metal base to form carbides due to the high process temperature, thereby degrading the properties of the final molded product.
한편, 분말법과 관련하여서는 탄소나노튜브를 금속분말에 분산시키기 위한 다양한 방법이 제시되어 있으나, 대부분 분산 후 복합분말의 탄소 성분이 분말의 일체화를 방해하여 양질의 벌크재를 제조하거나 최종 형상을 대형화한 연구 사례는 전무한 실정이며, 이로 인해 산업적 응용 가능성이 매우 낮은 것으로 평가되고 있다. 이와 관련하여 현재까지 제시된 금속/탄소나노튜브 복합분말의 일체화 방법으로는 분말에 바로 열과 압력을 가하여 일체화하는 방법과, 분말을 다른 금속 용기에 장입한 후 용기에 열과 압력을 가해 일체화하는 방법이 있다.On the other hand, in relation to the powder method, various methods for dispersing carbon nanotubes in metal powders have been proposed.However, after dispersing, the carbon components of the composite powders hinder the integration of powders to produce high quality bulk materials or to enlarge the final shape. There are only a few cases of research, which is considered to have very low industrial applicability. In this regard, the methods of integrating metal / carbon nanotube composite powders proposed to date include a method of integrating a powder by directly applying heat and pressure, and a method of incorporating the powder into another metal container and then integrating the container by applying heat and pressure to the container. .
그러나 상술한 바와 같은 분말법으로 제조된 복합재의 경우 강도 향상 효과는 크지만 복합재의 특성상 연신율이 악화되는 것은 피할 수 없는 것으로 알려져 있다. 따라서 강도가 요구되는 재료로서는 우수한 장점이 있으나, 연신율이 낮기 때문에 그 외의 용도로는 사용 가능성이 제한되는 단점이 있다.However, in the case of the composite material prepared by the powder method as described above, the strength improvement effect is great, but it is known that the deterioration of the elongation is inevitable due to the characteristics of the composite material. Therefore, there is an excellent advantage as a material that requires strength, but because of the low elongation, there is a disadvantage that the use possibility is limited to other uses.
또한, 탄소나노재료를 분산한 금속분말의 제조는 통상 고에너지 밀을 사용하기 때문에 에너지의 소모가 많아 원가 상승의 요인으로 작용하는 단점도 있다.In addition, the production of metal powder in which carbon nanomaterials are dispersed has a disadvantage in that a high energy mill is usually used, which causes a large amount of energy and acts as a factor of cost increase.
이에, 본 발명자는 상술한 종래기술의 문제점을 예의, 주시하여 탄소나노파이버의 분산에 의해 성형재료의 강도를 향상시키는 동시에 연신율도 개선할 수 있는 금속기지 탄소나노 복합재의 제조방법을 연구한 끝에 본 발명에 이르게 된 것이다.Accordingly, the present inventors have made a keen attention to the above-described problems of the prior art, and have studied the method of manufacturing a metal-based carbon nanocomposite which can improve the strength of the molding material and improve the elongation by dispersing the carbon nanofibers. It led to the invention.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 안출된 것으로, 탄소나노파이버의 분산에 의해 성형재료의 강도를 향상시키면서 연신율의 저하를 방지할 수 있는 금속기지 탄소나노 복합재의 제조방법을 제공하는 데 목적이 있다.The present invention has been made to solve the above problems of the prior art, to provide a method for producing a metal-based carbon nanocomposite that can prevent the reduction of elongation while improving the strength of the molding material by the dispersion of carbon nanofibers There is a purpose.
전술한 기술적 과제를 해결하기 위한 수단으로서,As means for solving the above-mentioned technical problem,
본 발명은, (a) 나노파이버를 분리하는 단계와, (b) 분리된 나노파이버를 입도가 제어된 금속입자의 내부에 기계적 밀링 법을 통해 삽입 분산시키는 단계와, (c) 나노파이버가 삽입 분산된 금속입자와 순수금속입자를 기계적으로 혼합하는 단계 및 (d) 상기 (c) 단계에서 얻어진 복합분말을 성형하는 단계를 포함하는 금속기지 탄소나노 복합재의 제조방법을 제공한다.The present invention comprises the steps of (a) separating the nanofibers, (b) inserting and dispersing the separated nanofibers inside the particle size controlled metal particles by mechanical milling, and (c) inserting the nanofibers It provides a method for producing a metal-based carbon nanocomposite comprising the step of mechanically mixing the dispersed metal particles and the pure metal particles and (d) molding the composite powder obtained in the step (c).
이 경우, 상기 (d) 단계는 열간가압 성형, 압연, 압출 중에서 선택되는 어느 하나의 가공법을 통해 이루어질 수 있다.In this case, the step (d) may be made through any one of the processing method selected from hot pressing molding, rolling, extrusion.
본 발명에서 상기 나노파이버로는 탄소나노튜브, 탄소나노파이버, 탄소나노혼, 플러렌, 나노카본블랙 또는 탄소섬유 중에서 선택되는 어느 하나 이상을 적의 선택하여 사용할 수 있다.In the present invention, as the nanofibers, any one or more selected from carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, nanocarbon black or carbon fibers may be appropriately selected.
또한, 상기 금속입자로는 알루미늄(Al), 구리(Cu), 철(Fe), 티타늄(Ti) 또는 마그네슘(Mg) 중에서 선택되는 어느 하나 이상의 순금속 또는 상기 순금속을 기저로 하는 합금을 사용할 수 있다.In addition, as the metal particles, any one or more pure metals selected from aluminum (Al), copper (Cu), iron (Fe), titanium (Ti), or magnesium (Mg) or an alloy based on the pure metal may be used. .
본 발명에 따르면, 탄소나노튜브 등 우수한 기계적 특성을 나타내는 나노파이버가 내부에 균일하게 삽입 분산된 금속입자와, 연신율이 우수한 순수금속입자를 혼합하여 양질의 벌크재로 일체화함으로써 나노파이버와 금속입자의 장점을 동시에 구현할 수 있다.According to the present invention, the nanofibers exhibiting excellent mechanical properties such as carbon nanotubes are uniformly inserted and dispersed therein, and pure metal particles having excellent elongation are mixed and integrated into a high quality bulk material. Benefits can be realized at the same time.
또한, 자동화가 용이하고, 공정비용이 저렴하여 산업적 응용 가능성이 매우 우수하다.In addition, it is easy to automate and the process cost is low, the industrial application possibility is very excellent.
도 1은 본 발명에 따른 금속기지 탄소나노 복합재의 제조방법을 나타낸 공정도,
도 2는 일반적인 금속기지 복합재와 본 발명에 따라 제조된 금속기지 복합재를 비교 도시한 내부 모사도,
도 3은 본 발명의 바람직한 실시예에 따라 알루미늄 입자 내부에 탄소나노튜브가 삽입된 상태를 나타낸 주사전자현미경 사진,
도 4는 본 발명의 바람직한 실시예에 따라 제조된 금속기지 탄소나노 복합재의 인장시험 결과를 나타낸 그래프.1 is a process chart showing a method of manufacturing a metal-based carbon nanocomposite according to the present invention;
Figure 2 is an internal schematic view showing a comparison between the general metal base composite and the metal base composite prepared according to the present invention,
3 is a scanning electron micrograph showing a state where the carbon nanotubes are inserted into the aluminum particles according to a preferred embodiment of the present invention,
Figure 4 is a graph showing the tensile test results of the metal-based carbon nano composites prepared according to the preferred embodiment of the present invention.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail so that those skilled in the art can easily carry out the present invention.
도 1은 본 발명에 따른 금속기지 탄소나노 복합재의 제조방법을 나타낸 공정도이다.1 is a process diagram showing a method for producing a metal-based carbon nanocomposite according to the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 금속기지 탄소나노 복합재의 제조방법은 나노파이버를 분리하는 단계와, 분리된 나노파이버를 입도가 제어된 금속입자의 내부에 기계적 밀링 법을 통해 삽입 분산시키는 단계와, 나노파이버가 삽입 분산된 금속입자와 순수금속입자를 기계적으로 혼합하는 단계 및 혼합된 복합분말을 성형하는 단계를 포함하여 구성된다. 이하, 각 공정에 대해 구체적으로 설명한다.As shown in FIG. 1, the method for manufacturing a metal-based carbon nanocomposite according to the present invention comprises the steps of separating nanofibers and inserting and dispersing the separated nanofibers through mechanical milling into the particle size controlled metal particles. And mechanically mixing the metal particles and the pure metal particles in which the nanofibers are inserted and dispersed, and forming the mixed composite powder. Hereinafter, each step will be described in detail.
먼저, 기계적 밀링을 통해 나노파이버를 분리한다. 이 경우, 기계적 밀링으로는 볼밀링(Ball Milling), 제트밀링(Zet Milling), 어트리션밀링(Attrition Milling), 유성밀링(Planetary Milling) 등을 모두 사용할 수 있으며, 볼의 회전력을 이용하여 기계적 에너지를 인가하는 밀링 방법이라면 특별히 제한되지 않는다. 또한, 본 발명에서 상기 나노파이버로는 탄소나노튜브, 탄소나노파이버, 탄소나노혼, 플러렌, 나노카본블랙 또는 탄소섬유 중에서 하나 또는 두 개 이상을 적의 선택하여 사용할 수 있으며 특별히 제한되지 않는다.First, the nanofibers are separated by mechanical milling. In this case, as mechanical milling, ball milling, jet milling, attrition milling, planetary milling, and the like can be used. The milling method of applying energy is not particularly limited. In addition, the nanofibers in the present invention may be selected from one or two or more of carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, nanocarbon blacks, or carbon fibers, and are not particularly limited.
다음 공정으로, 상술한 바와 같이 분리된 나노파이버를 입도가 제어된 기지금속입자와 함께 고에너지밀(High Energy Mill)에 장입하여 고속의 회전에너지와 이에 따른 금속입자의 탄소성 변형을 통해 나노파이버를 금속입자의 내부에 삽입 분산시킨다.In the next process, the nanofibers separated as described above are charged to a high energy mill with particle size controlled base metal particles, and the nanofibers are formed through high-speed rotational energy and thus carbonaceous deformation of the metal particles. Is dispersed in the interior of the metal particles.
본 발명에서 상기 기지금속입자로는 나노파이버의 원활한 삽입 분산을 위해 탄성 및 소성 변형이 가능한 재료를 사용하는 것이 바람직하며, 예컨대, 알루미늄(Al), 구리(Cu), 철(Fe), 티타늄(Ti), 마그네슘(Mg) 등의 순금속 또는 이 중에서 선택되는 하나 이상을 기지로 하는 합금을 사용할 수 있다.In the present invention, it is preferable to use a material capable of elastic and plastic deformation for smooth insertion and dispersion of nanofibers, for example, aluminum (Al), copper (Cu), iron (Fe), titanium ( Pure metals, such as Ti) and magnesium (Mg), or an alloy based on at least one selected from these can be used.
계속하여, 본 발명의 특징적인 공정으로 상술한 바와 같은 공정을 통해 제조된 나노파이버 분산 금속입자와 순수금속입자를 볼밀(Ball Mill)을 이용하여 혼합한다. 이와 같이 순수금속입자를 첨가하면 나노파이버의 우수한 기계적 특성 뿐 아니라 금속의 고유한 특성인 연성을 동시에 구현할 수 있어 바람직하다.Subsequently, the nanofiber dispersed metal particles and the pure metal particles produced through the process as described above in the characteristic process of the present invention are mixed using a ball mill. In this way, the addition of pure metal particles is preferred because it is possible to realize not only the excellent mechanical properties of the nanofiber but also the ductility which is a unique property of the metal at the same time.
마지막으로, 상술한 바와 같이 제조된 복합분말을 성형하면 금속기지 탄소나노 복합재가 완성된다. 본 발명에서 성형 공정은 열간 가압 성형, 압연, 압출 등의 방법을 통해 이루어질 수 있다.Finally, molding the composite powder prepared as described above completes the metal-based carbon nanocomposite. In the present invention, the molding process may be performed by hot pressing, rolling, extrusion, or the like.
이상으로 본 발명에 따른 금속기지 탄소나노 복합재의 제조방법에 대해 설명하였다. 이하에서는 본 발명에 따라 제조된 금속기지 탄소나노 복합재의 내부 구조에 대해 도면을 참고하여 설명하도록 한다.As described above, the method of manufacturing the metal-based carbon nanocomposite according to the present invention has been described. Hereinafter, the internal structure of the metal-based carbon nanocomposite prepared according to the present invention will be described with reference to the drawings.
도 2는 일반적인 금속기지 복합재와 본 발명에 따라 제조된 금속기지 복합재를 비교 도시한 내부 모사도이다.Figure 2 is an internal schematic view showing a comparison between a conventional metal base composite and a metal base composite prepared according to the present invention.
먼저, 도 2의 (a)에 도시된 바와 같이 일반적인 금속기지 복합재의 경우 탄소나노파이버가 균일하게 분산되어 금속기지를 강화하는 효과가 크지만 분산된 탄소나노파이버로 인해 금속 고유의 연신율은 저하될 수 밖에 없다.First, as shown in (a) of FIG. 2, in the case of a general metal base composite, carbon nanofibers are uniformly dispersed to have a large effect of strengthening the metal base, but the inherent elongation of the metal may decrease due to the dispersed carbon nanofibers. There is no choice but to.
반면, 도 2의 (b)에 도시된 바와 같이 본 발명에 따라 제조된 금속기지 복합재의 경우에는 강도가 우수한 탄소나노파이버가 삽입 분산된 금속입자와 연성이 우수한 순수금속입자가 혼합되어 강도와 연성을 동시에 발현할 수 있는 구조라고 할 수 있다.On the other hand, as shown in (b) of FIG. 2, in the case of the metal-based composite prepared according to the present invention, the carbon nanofibers having excellent strength are inserted and dispersed, and the pure metal particles having excellent ductility are mixed with strength and ductility. Can be said to be a structure that can be expressed at the same time.
이하, 본 발명의 바람직한 실시예에 대해 설명하도록 한다.
Hereinafter, exemplary embodiments of the present invention will be described.
실시예Example
먼저, 알루미늄과 탄소나노튜브를 각각 금속기지 및 나노파이버로 선정한 후 탄소나노튜브를 알루미늄에 고르게 분산하기 위해 실타래처럼 엉킨 탄소나노튜브를 기계적으로 분산하였다. 구체적으로, 용적 1l의 고에너지밀에 지름 5mm 크기의 스테인리스 볼(약 1.5kg)과, 시판 탄소나노튜브 20g을 함께 장입한 후 1시간 동안 300rpm의 속도로 용기를 회전시켜 물리적 에너지, 즉, 운동 에너지를 인가하였다.First, aluminum and carbon nanotubes were selected as metal bases and nanofibers, respectively, and mechanically dispersed tangled carbon nanotubes in order to evenly disperse the carbon nanotubes in aluminum. Specifically, a stainless steel ball having a diameter of 5 mm (about 1.5 kg) and 20 g of commercial carbon nanotubes are charged together in a high-energy mill having a volume of 1 l, and then the container is rotated at a speed of 300 rpm for 1 hour to physical energy, that is, movement. Energy was applied.
다음, 상술한 방법에 따라 분산된 탄소나노튜브가 들어있는 고에너지밀에 금속 알루미늄 분말 1kg을 첨가하고 400rpm의 속도로 5시간 동안 회전시켰으며, 그 결과 알루미늄 입자 내부에 탄소나노튜브가 삽입된 상태를 주사전자현미경(SEM)으로 촬영하여 도 3에 나타내었다. 도 3에 나타난 바와 같이 흰색의 탄소나노튜브가 알루미늄 입자 내부에 존재함을 알 수 있다.Next, 1 kg of metal aluminum powder was added to the high energy mill containing the dispersed carbon nanotubes according to the above-described method, and rotated at 400 rpm for 5 hours. As a result, the carbon nanotubes were inserted into the aluminum particles. 3 was photographed with a scanning electron microscope (SEM). As shown in FIG. 3, white carbon nanotubes are present in the aluminum particles.
계속하여, 탄소나노튜브가 분산된 알루미늄 입자와 평균입도 100㎛의 알루미늄 입자를 1:1의 비율로 일반적인 볼밀에서 혼합하였다. 이 경우, 볼의 내용적은 2l였으며, 탄소나노튜브 분산 알루미늄 입자와 순수 알루미늄 입자는 각각 500g씩 장입하였다.Subsequently, aluminum particles in which carbon nanotubes were dispersed and aluminum particles having an average particle size of 100 µm were mixed in a general ball mill in a ratio of 1: 1. In this case, the volume of the ball was 2l, and 500g of carbon nanotube dispersed aluminum particles and pure aluminum particles were charged.
마지막으로, 제조된 복합분말을 열간 압축 성형기(hot press)에 장입하여 400℃의 온도에서 cm2 당 2ton의 압력으로 성형하여 직경 2.6cm, 높이 1cm의 성형체를 제조하였다.Finally, the prepared composite powder was charged to a hot press, and molded at a pressure of 2 ton per cm 2 at a temperature of 400 ° C. to prepare a molded body having a diameter of 2.6 cm and a height of 1 cm.
이후, 상술한 방법으로 제조된 성형체의 인장시험을 실시하였으며, 그 결과를 도 4에 나타내었다. 도 4로부터 순수 알루미늄의 경우 강도가 110MPa 정도로 25% 정도의 연신율을 나타내고, 3%의 탄소나노튜브를 첨가한 알루미늄의 경우에는 500MPa의 강도를 나타내지만 연신율은 3% 정도로 매우 낮은 것을 확인할 수 있다. 반면, 본 발명에 따라 제조된 복합재의 경우에는 강도가 350MPa로 탄소나노튜브만 첨가한 경우보다 약화되나, 연신율은 17% 정도를 나타내 강도와 연신율이 모두 우수한 것을 확인할 수 있다.Thereafter, a tensile test of the molded article manufactured by the above-described method was carried out, and the results are shown in FIG. 4. 4, the pure aluminum exhibits an elongation of about 25% at about 110 MPa, and the aluminum added at 3% of carbon nanotubes has a strength of about 500 MPa, but the elongation is very low at about 3%. On the other hand, the composite prepared according to the present invention has a strength of 350 MPa, which is weaker than when only carbon nanotubes are added, but the elongation is about 17%, indicating that both the strength and the elongation are excellent.
따라서 본 발명에 따르면 탄소나노튜브가 삽입 분산된 알루미늄과 순수한 알루미늄의 장점을 취합하여 우수한 기계적 특성을 구현할 수 있으며, 그 제조방법 또한 비교적 단순하기 때문에 다양한 산업분야에 응용 가능할 것으로 기대된다.Therefore, according to the present invention, it is possible to realize the excellent mechanical properties by combining the advantages of aluminum and pure aluminum in which the carbon nanotubes are inserted and dispersed, and the manufacturing method is also relatively simple, and thus it is expected to be applicable to various industrial fields.
이상으로 본 발명의 바람직한 실시예에 대해 상세히 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The preferred embodiments of the present invention have been described in detail above. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
따라서 본 발명의 범위는 상술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위, 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the scope of the present invention is defined by the appended claims rather than the foregoing detailed description, and all changes or modifications derived from the meaning, range, and equivalence of the claims are included in the scope of the present invention. .
Claims (4)
(b) 분리된 나노파이버를 입도가 제어된 금속입자의 내부에 기계적 밀링 법을 통해 삽입 분산시키는 단계와;
(c) 나노파이버가 삽입 분산된 금속입자와 순수금속입자를 기계적으로 혼합하는 단계; 및
(d) 상기 (c) 단계에서 얻어진 복합분말을 성형하는 단계;
를 포함하는 금속기지 탄소나노 복합재의 제조방법.(a) separating the nanofibers;
(b) inserting and dispersing the separated nanofibers inside the particle size controlled metal particles by mechanical milling;
(c) mechanically mixing the metal particles and the pure metal particles in which the nanofibers are inserted and dispersed; And
(d) molding the composite powder obtained in step (c);
Wherein the carbon nanocomposite material is a carbon nanocomposite material.
상기 (d) 단계는 열간가압 성형, 압연, 압출 중에서 선택되는 어느 하나의 가공법을 통해 이루어지는 것을 특징으로 하는 금속기지 탄소나노 복합재의 제조방법.The method of claim 1,
The step (d) is a method for producing a metal-based carbon nanocomposite, characterized in that made through any one of the method selected from hot pressing, rolling, extrusion.
상기 나노파이버는 탄소나노튜브, 탄소나노파이버, 탄소나노혼, 플러렌, 나노카본블랙 또는 탄소섬유 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 금속기지 탄소나노 복합재의 제조방법.3. The method according to claim 1 or 2,
The nanofiber is a method for producing a metal-based carbon nanocomposite, characterized in that any one or more selected from carbon nanotubes, carbon nanofibers, carbon nanohorn, fullerene, nanocarbon black or carbon fiber.
상기 금속입자는 알루미늄(Al), 구리(Cu), 철(Fe), 티타늄(Ti) 또는 마그네슘(Mg) 중에서 선택되는 어느 하나 이상의 순금속 또는 상기 순금속을 기저로 하는 합금인 것을 특징으로 하는 금속기지 탄소나노 복합재의 제조방법.3. The method according to claim 1 or 2,
The metal particles may be any one or more pure metals selected from aluminum (Al), copper (Cu), iron (Fe), titanium (Ti), or magnesium (Mg) or an alloy based on the pure metal. Method for producing carbon nanocomposites.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120041483A KR101351666B1 (en) | 2012-04-20 | 2012-04-20 | Method of fabricating metal base carbon nano composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120041483A KR101351666B1 (en) | 2012-04-20 | 2012-04-20 | Method of fabricating metal base carbon nano composite |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130118537A true KR20130118537A (en) | 2013-10-30 |
KR101351666B1 KR101351666B1 (en) | 2014-01-15 |
Family
ID=49636795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120041483A KR101351666B1 (en) | 2012-04-20 | 2012-04-20 | Method of fabricating metal base carbon nano composite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101351666B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101657693B1 (en) * | 2015-12-11 | 2016-09-22 | 임홍재 | Manufacturing method of the heat dissipation material for metal PCB including carbon nano-material |
WO2020213753A1 (en) * | 2019-04-16 | 2020-10-22 | 부경대학교 산학협력단 | Method for manufacturing aluminum-based clad heat sink, and aluminum-based clad heat sink manufactured thereby |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101264186B1 (en) * | 2010-06-30 | 2013-05-15 | 연세대학교 산학협력단 | Method of manufacturing metal matrix composite containing networked carbon nanotubes/carbon fibers and the method therefor |
-
2012
- 2012-04-20 KR KR1020120041483A patent/KR101351666B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101657693B1 (en) * | 2015-12-11 | 2016-09-22 | 임홍재 | Manufacturing method of the heat dissipation material for metal PCB including carbon nano-material |
WO2017099493A1 (en) * | 2015-12-11 | 2017-06-15 | 임홍재 | Method of manufacturing heat radiating material for metal pcb in which carbon nanomaterial is mixed |
WO2020213753A1 (en) * | 2019-04-16 | 2020-10-22 | 부경대학교 산학협력단 | Method for manufacturing aluminum-based clad heat sink, and aluminum-based clad heat sink manufactured thereby |
Also Published As
Publication number | Publication date |
---|---|
KR101351666B1 (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101337994B1 (en) | Graphene/metal nanocomposite powder and method of manufacturing thereof | |
KR100778094B1 (en) | Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal | |
US11075020B2 (en) | Aluminum based composite material, electric wire using the same, and manufacturing method of aluminum based composite material | |
KR101264186B1 (en) | Method of manufacturing metal matrix composite containing networked carbon nanotubes/carbon fibers and the method therefor | |
Li et al. | Alumina powder assisted carbon nanotubes reinforced Mg matrix composites | |
Li et al. | Fabrication and properties of magnesium matrix composite reinforced by urchin-like carbon nanotube-alumina in situ composite structure | |
JP2008545882A (en) | Method for uniformly dispersing nanofibers in metal, polymer and ceramic matrices | |
JP2007224359A (en) | Metal matrix composite powder, metal matrix composite material and method for producing the same | |
CN101089208A (en) | Method for making composite metal material and method for making composite metal product | |
CN100362046C (en) | Carbon black composite material and method of producing the same, and composite elastomer | |
JP5711835B2 (en) | Method for producing metal-based carbon nanotube composites | |
WO2015186423A1 (en) | Aluminum-based composite material and manufacturing method therefor | |
Sethuram et al. | Characterization of graphene reinforced Al-Sn nanocomposite produced by mechanical alloying and vacuum hot pressing | |
CN112680636A (en) | Micro-nano composite configuration aluminum matrix composite material and preparation method thereof | |
JP5709239B2 (en) | Method for producing titanium matrix composite material and titanium matrix composite material produced by the method | |
Li et al. | In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites | |
Dhamodharan et al. | Water dispersible magnetite graphene oxide anchored sulfonic acid hybrid for mechanical enhancement of waterborne epoxy nanocomposites | |
Huang et al. | Reinforced copper matrix composites with highly dispersed nano size TiC in-situ generated from the Carbon Polymer Dots | |
KR101351666B1 (en) | Method of fabricating metal base carbon nano composite | |
KR101469317B1 (en) | Method of fabricating metal base carbon nano composite | |
KR100998553B1 (en) | Metal matrix composite with atom-infiltrated porous-materials/nano-fibers and the casting method thereof | |
CN104711496B (en) | Carbon Nanotubes/Magnesiuum Matrix Composite and preparation method thereof | |
KR101351744B1 (en) | Method of fabricating metal base carbon nano composite | |
KR20130091820A (en) | Fabrication methods of metal/polymer/ceramic matrix composites containing randomly distributed or directionally aligned graphenes by mechanical process | |
KR101351757B1 (en) | Metal matrix composite with dispersed nanofiber and manufacturing method the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170106 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180108 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190108 Year of fee payment: 6 |