KR20130110316A - Method for manufacturing metal filter using titanate nanotube film - Google Patents

Method for manufacturing metal filter using titanate nanotube film Download PDF

Info

Publication number
KR20130110316A
KR20130110316A KR1020120032167A KR20120032167A KR20130110316A KR 20130110316 A KR20130110316 A KR 20130110316A KR 1020120032167 A KR1020120032167 A KR 1020120032167A KR 20120032167 A KR20120032167 A KR 20120032167A KR 20130110316 A KR20130110316 A KR 20130110316A
Authority
KR
South Korea
Prior art keywords
metal
aqueous solution
tint
metal mesh
filter
Prior art date
Application number
KR1020120032167A
Other languages
Korean (ko)
Other versions
KR101348353B1 (en
Inventor
김두근
기현철
김선훈
김회종
이동길
최영완
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020120032167A priority Critical patent/KR101348353B1/en
Publication of KR20130110316A publication Critical patent/KR20130110316A/en
Application granted granted Critical
Publication of KR101348353B1 publication Critical patent/KR101348353B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2041Metallic material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE: A manufacturing method of metal filter is provided to obtain a high performance filter having an excellent wear resistance by coating a titanate nanotube film on the metal filter and reducing pore size using repetitive self assembly method. CONSTITUTION: A manufacturing method of metal filter comprises the following steps: putting a metal mesh into PEI aqueous solution for a certain period of time in order the surface of the metal mesh to have positive potential and washing with distilled water (S110, S120); putting the metal mesh having positive potential to TiNT aqueous solution for a certain period of time for TiNT film coating and washing with distilled water (S130, S140); putting the metal mesh the TiNT film which is coated to PDDA aqueous solution for a certain period of time and washing with distilled water (S150, S160). [Reference numerals] (AA) Start; (BB) End; (S110) Putting a metal mesh into PEI aqueous solution; (S120,S140,S160) Washing in DI water; (S130) Putting in TiNT aqueous solution; (S150) Putting in PDDA aqueous solution; (S180) Ti or A1 depositing

Description

티타네이트 나노튜브 막을 이용한 금속 필터 제조방법{METHOD FOR MANUFACTURING METAL FILTER USING TITANATE NANOTUBE FILM}METHODS FOR MANUFACTURING METAL FILTER USING TITANATE NANOTUBE FILM}

본 발명은 티타네이트 나노튜브(titanate nanotube, TiNT) 막을 이용하여 금속 와이어(Metal wire)를 필터 미디어로 사용하는 고성능 금속 필터 제조 방법에 관한 것으로, 더욱 상세하게는 반복적 자기조립법(Layer-by-layer self-assembling)을 이용하여 티타네이트 나노튜브의 막을 금속 와이어에 코팅하여 금속 필터의 기공 크기를 줄여서 입자의 크기를 0.3 ㎛ 입자까지 포집할 수 있는 고성능 금속 필터의 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a high performance metal filter using a metal wire as a filter medium using a titanate nanotube (TiNT) membrane, and more particularly, to repeat self-assembly (Layer-by-layer). The present invention relates to a method of manufacturing a high performance metal filter capable of capturing particle size up to 0.3 μm particles by reducing the pore size of the metal filter by coating the membrane of the titanate nanotube on the metal wire using self-assembling.

대기 중에 부유하고 있는 입자들은 육안으로 볼 수 있는 것과 볼 수 없는 아주 작은 크기의 것이 있으며, 인체에 해로운 미생물, 방사능 입자, 담배연기, 중금속 및 작업 분진으로부터 자연현상인 안개, 아지랑이 및 이슬비 등의 약 0.001 ㎛크기에서 수백 ㎛ 크기로 구성된다. Particles suspended in the atmosphere can be seen with the naked eye and very small in size, and can be found in medicines such as fog, haze and drizzle, which are natural phenomena from microorganisms, radioactive particles, tobacco smoke, heavy metals and working dust, which are harmful to the human body. It is composed of 0.001 μm in size and several hundred μm in size.

그러나, 현재 환경 위생적으로나 과학기술적 목적으로 문제의 대상이 되고 있는 입자들의 크기는 직경이 약 0.01 ㎛ 에서 10 ㎛ 정도이며, 이러한 크기의 입자들을 가장 효과적으로 제거 할 수 있는 방법은 고성능 필터의 사용이다.However, the size of particles that are currently problematic for environmental and hygienic purposes is about 0.01 to 10 μm in diameter, and the most effective method of removing particles of this size is the use of high performance filters.

기존의 고성능 필터는 주로 유리섬유(Glass fiber)나 고분자 등을 필터 미디어로 사용하고 있으나, 고온/고압에 매우 약하며 입자 상호간의 응결작용에 의해 한번 사용한 필터는 재사용이 어렵다는 단점을 가지고 있다. Conventional high-performance filters mainly use glass fibers or polymers as filter media, but they are very weak at high temperature / high pressure and have a disadvantage in that once used filters are difficult to reuse due to coagulation between particles.

또한, 유리 섬유 입자로 구성된 필터의 경우, 강도가 약하여 고압 송풍 시, 유리섬유 분진이 2차 오염을 발생하거나 손상의 우려가 있고, 대안으로 사용되는 고분자 소재 필터는 고온에 사용이 어려우며 산이나 알칼리 등의 화학 약품에 쉽게 부식되는 단점이 있다.In addition, in the case of the filter composed of glass fiber particles, the strength of the glass fiber is a secondary pollution or damage may occur during high pressure blowing, alternatively, the polymer filter used alternatively is difficult to use at high temperatures, acid or alkali There is a disadvantage that it is easily corroded to chemicals such as.

금속 와이어를 필터 미디어로 사용하는 고성능 필터는 1,000℃, 5bar 이상의 고온, 고압에서 필터로서의 기능 수행이 가능하며, 금속의 강한 살균성 때문에 기존 필터에 비해 대기 중 유해미생물의 제거가 효율적이고, 사용 후 필터 폐기 시, 전량 회수가 가능하여 재사용할 수 있는 장점을 보유하고 있는 친환경 기술이다.High-performance filter using metal wire as filter media can perform the function as a filter at high temperature and high pressure of 1,000 ℃, 5bar or higher, and it is more efficient to remove harmful microorganisms in the air than the existing filter due to strong sterilization of metal, and filter after use It is an eco-friendly technology that has the advantage of being reusable as it can be recovered in its entirety when discarded.

금속 소재의 필터는 일부 시중에 유통되고 있으나 극히 단순한 프리필터(Pre filter) 수준이고, 금속 분말을 압착 소결하여 필터를 제작하려는 시도가 있으나, 금속 와이어를 사용할 경우, 두께로 인한 나노 기공층 확보가 어려워 금속 소재가 이용된 고성능 필터 개발이 어려운 실정이다. Although metal filters are commercially available in some markets, they are extremely simple pre-filters, and there are attempts to fabricate filters by compressing and sintering metal powder. However, when using metal wires, it is difficult to secure nano-pore layers due to thickness. It is difficult to develop high performance filters using metal materials.

한편, 티타네이트 나노튜브 제조에 관한 기술과 관련해서는, 한국공개특허 10-2005-0087021호(이하, '선행문헌')외 다수 출원 및 공개되어 있다.On the other hand, with respect to the technology for the production of titanate nanotubes, Korean Patent Application Publication No. 10-2005-0087021 (hereinafter referred to as "prior literature") and many other applications and publications.

선행문헌에 따른 티타네이트 나노튜브 제조방법은, 티타니아 화합물을 알칼리 처리로 용해시키는 공정과, 상기 용해된 화합물을 물로 세척한 후, 무기산으로 상온 ∼ 100 ℃에서 0.5 ∼ 6 시간동안 산처리 하여 숙성시키는 공정을 포함하여 이루어진다. The method for preparing titanate nanotubes according to the prior document is a step of dissolving the titania compound by alkali treatment, and washing the dissolved compound with water, followed by acid treatment with inorganic acid at room temperature to 100 ° C. for 0.5 to 6 hours to mature. Including the process.

현재 이러한 티타네이트 나노튜브는 광촉매나 태양전지에서 많이 적용하고 있으나, 금속 와이어를 미디어 사용하는 고성능 필터에는 사용을 하지 못하고 있다. At present, such titanate nanotubes are widely used in photocatalysts and solar cells, but are not used in high performance filters using metal wires as media.

따라서, 본 발명에서는 금속 와이어를 사용하는 필터의 나노 기공층을 형성하기 위해서 수열합성법(Hydrothermal)으로 제작되는 티타네이트 나노튜브를 반복적 자기조립 방법으로 금속 와이어를 코팅하여 금속 필터의 나노 기공 크기를 제어하고자 한다.Therefore, in the present invention, to form a nano-pore layer of the filter using a metal wire, the titanate nanotubes produced by hydrothermal method (Hydrothermal) coating the metal wire by repeated self-assembly method to control the nano-pore size of the metal filter I would like to.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 티타네이트 나노튜브의 막을 금속 와이어에 코팅하여 금속 필터의 기공 크기를 줄이는데 그 목적이 있다. The present invention has been made in view of the above problems, and an object thereof is to reduce the pore size of a metal filter by coating a film of a titanate nanotube on a metal wire.

구체적으로는, 반복적 자기조립법은 양전위를 갖는 PEI(Polyethyleneimine) 수용액과 PDDA(Polydiallyldimethylammonium) 수용액 사이에 반대 전하를 가지는 티타네이트 나노튜브(titanate nanotube, TiNT) 수용액을 위치시키고 교대로 담가두면 수용액 안에서 상반되는 전하를 가진 재료들이 이온 흡착에 의해서 결합이 되는 방법인데, 금속 필터의 기공 크기를 줄이기 위하여, 반복적 자기조립법으로 티타네이트 나노튜브의 막을 반복해서 금속 필터에 코팅하고, 금속 필터의 기공의 크기가 0.3 ㎛ 입자까지 포집할 수 있는 필터 구조체를 제공한다. 그리고, 고성능 금속 필터의 내식 내마모성을 향상시키기 위해서 금속 증착법을 이용하여 금속을 코팅한다. Specifically, iterative self-assembly method is to place a solution of a titanate nanotube (TiNT) having a reverse charge between an aqueous polyimideimine (PEI) solution and a polydiallyldimethylammonium (PDDA) aqueous solution with a positive potential, In order to reduce the pore size of the metal filter, the film of the titanate nanotubes is repeatedly coated on the metal filter by repeated self-assembly to reduce the pore size of the metal filter. Provided is a filter structure capable of collecting up to 0.3 μm particles. In order to improve the corrosion resistance of the high performance metal filter, the metal is coated using a metal deposition method.

이러한 기술적 과제를 달성하기 위한 본 발명은 티타네이트 나노튜브 막을 이용한 금속 필터 제조방법에 관한 것으로서, (a) 금속 메쉬 표면이 양전위가 되도록 PEI 수용액에 일정 시간 담가둔 후, 증류수로 세척하는 단계; (b) 양전위가 된 금속 메쉬를 TiNT 수용액에 일정 시간 담가두어 TiNT 막을 코팅한 후, 증류수로 세척하는 단계; 및 (c) 상기 TiNT 막이 코팅된 금속 메쉬를 PDDA 수용액에 일정 시간 담가둔 후, 증류수로 세척하는 단계; 를 포함한다. The present invention for achieving the technical problem relates to a method for manufacturing a metal filter using a titanate nanotube membrane, (a) after immersing in a PEI aqueous solution for a predetermined time so that the metal mesh surface is a positive potential, washing with distilled water; (b) coating the TiNT membrane by immersing the positively charged metal mesh in a TiNT aqueous solution for a predetermined time, and then washing with distilled water; And (c) immersing the TiNT membrane-coated metal mesh in a PDDA aqueous solution for a predetermined time and then washing with distilled water; .

또한 상기 (c) 단계 이후에, 상기 (b) 단계 내지 (c) 단계를 소정횟수 반복수행하는 단계; 를 더 포함하는 것을 특징으로 한다.Also, after the step (c), repeating the steps (b) to (c) a predetermined number of times; And further comprising:

그리고 상기 (c) 단계 이후에, 상기 금속 메쉬에 코팅된 TiNT 막에 Ti 또는 Al을 증착하는 단계; 를 더 포함하는 것을 특징으로 한다.And after step (c), depositing Ti or Al on the TiNT film coated on the metal mesh; And further comprising:

상기와 같은 본 발명에 따르면, 반복적 자기조립법을 이용하여 티타네이트 나노튜브의 막을 금속 필터에 코팅하여 기공 크기를 줄이는 방법은 내식 내마모성이 우수한 고성능 필터를 얻을 수 있는 효과가 있다. According to the present invention as described above, the method of reducing the pore size by coating the membrane of the titanate nanotubes on the metal filter by using a repetitive self-assembly has the effect of obtaining a high-performance filter excellent in corrosion resistance and wear resistance.

도 1 은 본 발명에 따른 금속 와이어를 미디어로 사용하는 금속 메쉬 구조를 보이는 일예시도.
도 2 는 본 발명에 따른 반복적 자기조립법을 이용하여 금속 메쉬의 기공의 크기를 줄이기 위한, 티타네이트 나노튜브 막을 이용한 금속 필터 제조방법에 관한 전체 흐름도.
도 3 은 본 발명에 따른 코팅된 TiNT 막에 증착 장비를 이용하여, Ti 또는 Al을 증착한 금속 메쉬를 보이는 일예시도.
1 is an exemplary view showing a metal mesh structure using a metal wire according to the present invention as a media.
2 is an overall flow chart of a metal filter manufacturing method using a titanate nanotube membrane for reducing the size of the pores of the metal mesh using an iterative self-assembly according to the present invention.
Figure 3 is an exemplary view showing a metal mesh deposited Ti or Al using a deposition equipment on the coated TiNT film according to the present invention.

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. It is to be noted that the detailed description of known functions and constructions related to the present invention is omitted when it is determined that the gist of the present invention may be unnecessarily blurred.

이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

본 발명에 따른 티타네이트 나노튜브 막을 이용한 금속 필터 제조방법에 관하여 도 1 내지 도 3 을 참조하여 설명하면 다음과 같다. A method of manufacturing a metal filter using a titanate nanotube membrane according to the present invention will be described with reference to FIGS. 1 to 3.

본 발명에서는 상술한 바와 같은 목적을 달성하기 위하여, 반복적 자기조립법을 이용하여 티타네이트 나노튜브의 막을 금속 메쉬에 코팅하고, 증착 장비를 이용하여 Ti 또는 Al을 증착하는 제조방법을 개시하도록 한다.In the present invention, in order to achieve the object as described above, by using a repeating self-assembly method to coat the film of the titanate nanotubes on the metal mesh, to disclose a manufacturing method for depositing Ti or Al using a deposition equipment.

이하에서, 상술한 제조방법을 구체적으로 살피면 다음과 같다. In the following, the manufacturing method described above will be described in detail.

도 1 은 본 발명에 따른 금속 와이어를 미디어로 사용하는 금속 메쉬에 관한 일예시도로서, 도시된 바와 같이 금속 메쉬(100)는 금속 와이어가 격자로 형성되어 있다. 1 is an exemplary view of a metal mesh using a metal wire as a media according to the present invention. As illustrated, the metal mesh 100 is formed of a grid of metal wires.

한편, 도 2 는 반복적 자기조립법을 이용하여 티타네이트 나노튜브의 막을 금속 메쉬에 코팅하는 본 발명에 따른 티타네이트 나노튜브 막을 이용한 고성능 금속 필터 제조방법에 관한 전체 흐름도로서, 도시된 바와 같이 PEI 수용액이 들어 있는 용기에 금속 메쉬(100)를 일정 시간 담가두어 금속 메쉬(100) 표면이 양전위가 되도록 한 후(S110), DI water(증류수)가 들어 있는 용기에 일정 시간 담가두어 세척한다(S120). On the other hand, Figure 2 is an overall flow chart of a high-performance metal filter manufacturing method using a titanate nanotube membrane according to the present invention to coat the membrane of the titanate nanotube using a repetitive self-assembly method, as shown in the PEI aqueous solution After soaking the metal mesh 100 in a container for a predetermined time so that the surface of the metal mesh 100 becomes a positive potential (S110), it is immersed in a container containing DI water (distilled water) for a predetermined time and washed (S120). .

이후, 양전위가 된 금속 메쉬(100)를 TiNT 수용액이 들어 있는 용기에 일정 시간 담가두어 TiNT 막을 코팅한 후(S130), DI water(증류수)가 들어 있는 용기에 일정 시간 담가두어 세척한다(S140).Subsequently, the metal mesh 100 having the positive potential is immersed in a container containing a TiNT aqueous solution for a predetermined time and coated with a TiNT film (S130), and then immersed in a container containing DI water (distilled water) for a predetermined time and washed (S140). ).

또한, TiNT 막이 코팅된 금속 메쉬(100)를 PDDA 수용액이 들어 있는 용기에 일정 시간 담가두어 TiNT 막이 다시 양전위가 되도록 한 후(S150), DI water(증류수)가 들어 있는 용기에 일정 시간 담가두어 세척한다(S160). In addition, the TiNT membrane coated metal mesh 100 is immersed in a container containing a PDDA aqueous solution for a predetermined time so that the TiNT membrane is a positive potential again (S150), soaked in a container containing DI water (distilled water) for a certain time. Wash (S160).

이후, 금속 메쉬의 기공 크기를 줄이기 위해, 상기 제S130 단계 내지 제S160 단계의 과정을 소정횟수 반복수행하여(S170) 금속 메쉬(100)에 TiNT 막을 코팅한다. 그리고, 코팅된 TiNT 막에 증착 장비를 이용하여 Ti 또는 Al을 증착한다(S170).
Thereafter, in order to reduce the pore size of the metal mesh, the processes of steps S130 to S160 are repeatedly performed a predetermined number of times (S170) to coat the TiNT film on the metal mesh 100. Then, Ti or Al is deposited on the coated TiNT film using deposition equipment (S170).

도 3 은 코팅된 TiNT 막에 증착 장비를 이용하여, Ti 또는 Al을 증착한 금속 메쉬(100)를 보이는 일예시도이다.
3 is an exemplary view showing a metal mesh 100 deposited with Ti or Al by using a deposition apparatus on a coated TiNT film.

지금까지 상술한 바와 같은, 본 발명에 따른 반복적 자기조립법을 이용하여 티타네이트 나노튜브의 막을 금속 필터에 코팅하여 기공 크기를 줄이는 제조방법은, 금속 와이어를 이용하여 내식 내마모성이 우수하고 사용 후 필터 폐기 시, 재사용이 가능한 고성능 금속 필터를 얻을 수 있는 특징적인 장점을 가진다.
As described above, the manufacturing method of reducing the pore size by coating the membrane of the titanate nanotubes on the metal filter using the repeated self-assembly according to the present invention is excellent in corrosion resistance and wear resistance using metal wires and discarding the filter after use. It has the characteristic advantage to obtain a high performance metal filter that can be reused.

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be appreciated by those skilled in the art that numerous changes and modifications may be made without departing from the invention. Accordingly, all such appropriate modifications and changes, and equivalents thereof, should be regarded as within the scope of the present invention.

100: 금속 메쉬100: metal mesh

Claims (3)

(a) 금속 메쉬 표면이 양전위가 되도록 PEI 수용액에 일정 시간 담가둔 후, 증류수로 세척하는 단계;
(b) 양전위가 된 금속 메쉬를 TiNT 수용액에 일정 시간 담가두어 TiNT 막을 코팅한 후, 증류수로 세척하는 단계; 및
(c) 상기 TiNT 막이 코팅된 금속 메쉬를 PDDA 수용액에 일정 시간 담가둔 후, 증류수로 세척하는 단계; 를 포함하는 티타네이트 나노튜브 막을 이용한 금속 필터 제조방법.
(a) soaking in a PEI aqueous solution for a predetermined time so that the surface of the metal mesh becomes a positive potential, and then washing with distilled water;
(b) coating the TiNT membrane by immersing the positively charged metal mesh in a TiNT aqueous solution for a predetermined time, and then washing with distilled water; And
(c) immersing the TiNT membrane-coated metal mesh in a PDDA aqueous solution for a predetermined time and then washing with distilled water; Metal filter manufacturing method using a titanate nanotube membrane comprising a.
제 1 항에 있어서,
상기 (c) 단계 이후에,
상기 (b) 단계 내지 (c) 단계를 소정횟수 반복수행하는 단계; 를 더 포함하는 것을 특징으로 하는 티타네이트 나노튜브 막을 이용한 금속 필터 제조방법.
The method of claim 1,
After the step (c)
Repeating steps (b) to (c) a predetermined number of times; Metal filter manufacturing method using a titanate nanotube membrane, characterized in that it further comprises.
제 1 항 또는 제 2 항에 있어서,
상기 (c) 단계 이후에,
상기 금속 메쉬에 코팅된 TiNT 막에 Ti 또는 Al을 증착하는 단계; 를 더 포함하는 것을 특징으로 하는 티타네이트 나노튜브 막을 이용한 금속 필터 제조방법.
3. The method according to claim 1 or 2,
After the step (c)
Depositing Ti or Al on the TiNT film coated on the metal mesh; Metal filter manufacturing method using a titanate nanotube membrane, characterized in that it further comprises.
KR1020120032167A 2012-03-29 2012-03-29 Method for manufacturing metal filter using titanate nanotube film KR101348353B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120032167A KR101348353B1 (en) 2012-03-29 2012-03-29 Method for manufacturing metal filter using titanate nanotube film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120032167A KR101348353B1 (en) 2012-03-29 2012-03-29 Method for manufacturing metal filter using titanate nanotube film

Publications (2)

Publication Number Publication Date
KR20130110316A true KR20130110316A (en) 2013-10-10
KR101348353B1 KR101348353B1 (en) 2014-01-08

Family

ID=49632146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120032167A KR101348353B1 (en) 2012-03-29 2012-03-29 Method for manufacturing metal filter using titanate nanotube film

Country Status (1)

Country Link
KR (1) KR101348353B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024964A (en) * 2015-08-27 2017-03-08 엘에스엠트론 주식회사 Ultra Capacitor Module
CN109745775A (en) * 2019-02-28 2019-05-14 西部宝德科技股份有限公司 A kind of pollution of oil resistant, adsorbable iron ion stainless steel filter core preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664751B1 (en) * 2004-02-24 2007-01-03 한국화학연구원 Preparation of titania nanotubes
KR101164635B1 (en) * 2010-03-29 2012-07-16 순천대학교 산학협력단 A photocatalyst filter for air cleaning using high corrosion resistance chips and a manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024964A (en) * 2015-08-27 2017-03-08 엘에스엠트론 주식회사 Ultra Capacitor Module
CN109745775A (en) * 2019-02-28 2019-05-14 西部宝德科技股份有限公司 A kind of pollution of oil resistant, adsorbable iron ion stainless steel filter core preparation method

Also Published As

Publication number Publication date
KR101348353B1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN105396466B (en) Cellulose nanofiber-graphene oxide hybrid composite ultrafiltration membrane and preparation method thereof
Liu et al. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons
KR101703916B1 (en) Nano composite structure having nano patterned structure on its surface, and method for preparing the same
Ge et al. Fabrication of BiOBr-silicone aerogel photocatalyst in an aqueous system with degradation performance by sol-gel method
CN102586771B (en) Metallic aluminum bionic super-hydrophobic surface preparation method
Liu et al. Durable Co (OH) 2/stearic acid-based superhydrophobic/superoleophilic nanocellulose membrane for highly efficient oil/water separation and simultaneous removal of soluble dye
WO2008034190A1 (en) Metal oxide nanofibre filter
CN103551050A (en) Inorganic composite ultra-filtration membrane and preparation method thereof
CN107617344B (en) Nanowire-loaded polymer microporous membrane and preparation method thereof
KR101348353B1 (en) Method for manufacturing metal filter using titanate nanotube film
JP2010058109A (en) Low contamination filtration membrane for cleaning water
JP6078336B2 (en) Photocatalyst carrier and method for producing the same
CN108026691B (en) Photocatalyst functional non-woven fabric and preparation method thereof
CN105749763A (en) Preparation method of ceramic hollow-fiber solvent-resistant composite nanofiltration membrane
CN112619622A (en) Nano composite fiber membrane capable of efficiently removing ionic dye and heavy metal ions in water, and preparation method and application thereof
CN107188569B (en) Graphene oxide-based seawater desalination composite membrane and preparation method thereof
KR102033119B1 (en) Antibacterial and antiviral positive electric charge-filter and method of manufacturing using the same
CN102166485A (en) Modified polyvinylidene fluoride (PVDF) hollow fibrous membrane and preparation method thereof
Wang et al. Activated carbon fibers functionalized with superhydrophilic coated pDA/TiO2/SiO2 with photoluminescent self-cleaning properties for efficient oil-water separation
WO2015115919A1 (en) A non-woven filtering material modified with zno nanorods, a method of its manufacturing and a use in the filtering cartridge
CN102784633A (en) Preparation method for photocatalyst TiO2 supporter and manufacturing method for photocatalyst air cleaner
KR101599112B1 (en) Positive electric charge-coating agent for antivirus media, Antivirus media using that and Preparing method thereof
CN105774149A (en) Composite filtering material capable of being used for gas-liquid separation
KR20110114074A (en) Process of producting metal filter for water treatment using metal fiber
Than-ardna et al. Superhydrophilic bacterial cellulose membranes efficiently separate oil-in-water emulsions

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191223

Year of fee payment: 7