KR20130099727A - 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도 - Google Patents

중간엽 기질세포 배양용 항산화 조성물 및 이의 용도 Download PDF

Info

Publication number
KR20130099727A
KR20130099727A KR1020120021449A KR20120021449A KR20130099727A KR 20130099727 A KR20130099727 A KR 20130099727A KR 1020120021449 A KR1020120021449 A KR 1020120021449A KR 20120021449 A KR20120021449 A KR 20120021449A KR 20130099727 A KR20130099727 A KR 20130099727A
Authority
KR
South Korea
Prior art keywords
cells
stromal cells
composition
growth factor
cell
Prior art date
Application number
KR1020120021449A
Other languages
English (en)
Other versions
KR101410332B1 (ko
Inventor
주보빈
김승현
김경숙
고성호
이태용
이준호
민혜진
장인영
Original Assignee
코아스템(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코아스템(주) filed Critical 코아스템(주)
Priority to KR1020120021449A priority Critical patent/KR101410332B1/ko
Publication of KR20130099727A publication Critical patent/KR20130099727A/ko
Application granted granted Critical
Publication of KR101410332B1 publication Critical patent/KR101410332B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 네크로스타틴을 유효성분으로 포함하는 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도에 관한 것이다. 본 발명의 조성물은 산화적 스트레스-유도된 세포 사멸(cell death, necroptosis)을 억제하고, 산화적 스트레스 하에서 기질세포의 고유 형태를 유지시킬 뿐 아니라 세포 생존율을 증가시킨다. 따라서, 본 발명의 조성물은 산화적 스트레스로 인해 초래되는 기질세포의 증식 또는 분화능의 개선에 매우 효과적으로 적용될 수 있다.

Description

중간엽 기질세포 배양용 항산화 조성물 및 이의 용도{Anti-Oxidant Compositions for Culturing Mesenchymal Stromal Cells and Uses Thereof}
본 발명은 네크로스타틴을 유효성분으로 포함하는 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도에 관한 것이다.
줄기세포 생물학 이해에서의 최근 진보 및 전임상 연구에서의 초기 성공을 통해 과학자들은 시급한 의학적 필요를 가지는 난치성 질환(intractable diseases)에 대한 임상적 시도를 고안하고자 하였다. 자가 또는 이종 세포 트랜스플랜테이션에 의한 단일방향 신경재생을 목표로 하는 세포 대체 치료 전략 외에, 신경보호성 조절 또는 면역-염증성 조절이 임상적 시도에 주요 테마가 되고 있다. 난치성 신경학적 질환에 대한 줄기-세포 치료법이 매력적인 전략일 지라도, 줄기-세포 치료법을 위해서는 안전성, 효과성 및 소스 조절 뿐 아니라, 임상 프로토콜 및 윤리적, 조절적, 사회적 및 비용-경제적 효율성을 타겟팅하는 수많은 중요 이슈들이 성공적인 임상 적용을 위해 도입되어야 한다. 탐구적 줄기세포-기반된 산물들의 안정성 및 효율성을 유지하기 위한 상세 정보가 OCTGT(Office of Cellular, Tissue, and Gene Therapy) 및 CBER(Center for Biologics Evaluation and Researcher)에 의해 심사되고 있다. 신규한 줄기세포 산물이 OCTGT/CBER의 본질적인 요구사항에 만족될 지라도, 연구자들은 이의 효율성을 개선하기 위한 방법들을 개발하고자 시도하고 있다.
전통적인 줄기세포 배양 과정 동안, 물리적 손상 또는 산화적 스트레스가 필연적으로 유발되는 데, 이는 물리적 및/또는 화학적 스트레스(예를 들어, 반복 파이펫팅, 트립신 처리) 및 산화적 스트레스에 의해 야기된다.
중간엽 기질세포(Mesenchymal stromal cells, MSCs)는 대부분 골수(BM)에 위치하는 중복성 줄기세포(multipotent stem cells) 집단이다[1]. 자신의 기원 조직 이외의 세포 형태로 분화할 수 있는 MSCs[1-3]는 인증된 유연성(plasticity) 및 혈관내피성장인자(vascular endothelial growth factor, VEGF), 간세포 성장인자(hepatic growth factor, HGF), 인슐린-유사 성장인자-1(insulin-like growth factor-1, IGF-1) 및 이식 부위에서 배출될 수 있는 항-아팝토틱 사이토카인을 포함하는 다양한 스펙트럼의 성장인자들[4-6]로 인해 주목할 만하다. MSCs는 섬유아세포-유사 방추형 세포로 보인다[7]. 일련의 단일클론 항체들이 MSCs 특징화를 위한 FACS 분석에 이용될 수 있다. MSCs는 항-SH2(CD105, endoglin), SH3(CD166, ALCAM), SH4(CD73) 및 STRO-1로 양성적으로 염색되는 반면에, CD45(hematopoietic cells), CD34(hematopoietic progenitors, endothelial cells) 및 CD14(monocytesmacrophages)의 표면항원을 발현하지 않는다[1].
MSCs는 세포 노화(Cellular senescence)에 따라 성장능이 제한되고 증식을 멈춘다[8]. 세포 노화는 내인성 및 외인성 인자들 모두에 의해 유도된다[9]. 텔로미어의 감소는 가장 중요한 내인성 인자이고 성장인자 자극들(mitogenic stimuli) 및 DNA 손상은 주요 외인성 인자들이다. 활성산소종(reactive oxygen species, ROS)에 의해 야기되는 산화적 스트레스는 DNA 손상을 유도하는 인자들 중 하나이다[10].
전통적으로, H2O2 같은 ROS에 의해 유도된 세포 사멸은 세포 거대분자들(예컨대, 단백질, DNA 및 지질)의 산화 및 손상으로 이어져 세포 사멸을 초래하는 재앙적 손상을 초래하였다[11]. ROS는 세포에 아팝토시스 및 괴사(necrosis) 모두를 유도하는 것으로 알려져 있다[11-15]. ROS가 아팝토틱 또는 괴사성 세포 사멸을 유도하는 지 여부는 세포 형태 및/또는 ROS에 대한 노출 정도에 의존적이다[12, 14]. 일반적으로, 더 높은 ROS에의 노출은 많은 세포 형태에서 아팝토시스보다는 오히려 괴사를 유발하는 데, 이는 광범위한 단백질의 산화(예컨대, 카스파제 내 시스테인의 산화)로 인해 아팝토시스를 매개하는 카스파제 활성을 억제하기 때문이다[11, 16-18]. 내인성 소스(예컨대, SOD, Catalase, Glutathione-peroxidase, Glutathione-reductasem, Super-oxide reductases, 등) 및 외인성 소스(Vitamin-E, Vitamin-C, Flavonoids, Vitamin-B, Copper, Zinc, Selenium, 등)를 포함하는 여러 ROS 제거제(scavengers)들이 존재한다[19, 20]. 상기 여러 약물들은 세포 사멸을 억제한다.
네크로스타틴(5-(1H-indol-3-ylmethyl)-3-methyl-2-sulfanylideneimidazolidin-4)은 프로그램된 세포 괴사에 대한 트립토판-기반된 작은 분자 억제제이다[21]. 괴사를 억제하는 네크로스타틴의 특이성은 다음과 같이 잘 확립되어 있다[21-23]: (a) Nec-1은 네크롭토시스(necroptosis)를 특이적으로 억제하지만 아팝토시스 및 자가포식(autophagy)에는 영향을 미치지 않고; (b) Nec-1은 건강한 세포의 일반적인 생리학(예컨대, ATP 레벨, 마이토콘드리아 막 포텐셜, 세포막 통합성, 세포 형태 및 크기, 세포 주기 분포, 증식, 전체적인 mRNA 발현, 세포 내 ROS, 등)에는 영향을 미치지 않으며; (c) 네크롭토시스를 억제하는 Nec-1의 특이성은 광범위한 구조-활성 관계 분석에 의해 잘 정립되어 있고; 및 (d) Nec-1은 세포 사멸 수용체(death receptor, DR)-유도된 네크롭토시스에 중요한 다른 기능성 도메인에 영향을 미치지 않고 T-루프(loop)와 상호작용함으로써 RIP1의 키나제 활성을 알로스테릭하게 억제한다. 네크로스타틴은 다운스트림 항-염증 효과 및 다른 기작들과 함께 RIP1 키나제 활성화를 억제함으로써 보호한다[22, 24]. 네크로스타틴은 외상성(traumatic) 및 허혈성 뇌 손상 뿐 아니라 심근 허혈의 설치류 성체 모델에서 신경보호제(neuroprotectant)로서의 유망성을 보여줬다[24, 25]. 비트로에서, 네크로스타틴은 고전적인 아팝토틱 세포 사멸에는 거의 작용하지 않고, 오히려 프로그램된 세포 내 괴사를 강하게 억제한다[21]. 네크로스타틴은 글루타티온 레벨을 증가시키고 ROS 생산을 감소시키며, 산화 질소-매개된 세포 괴사 및 마이토콘드리아 ROS 생산을 차단한다[26].
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 산화적 스트레스-저항성 중간엽 기질세포 배양 방법을 개발하고자 노력하였다. 그 결과, 본 발명자들은 네크로스타틴(necrostatin)이 활성산소종(reactive oxygen species, ROS)-유도된 세포 사멸을 억제하고 다양한 사이토카인 및 신경성장인자의 발현을 증가시킴으로써, 산화적 스트레스 하에서 중간엽 기질세포의 형태 및 생존율을 향상시킬 수 있다는 것을 발견함으로써, 본 발명을 완성하게 되었다.
본 발명의 목적은 중간엽 기질세포 배양용 항산화(antioxidant) 조성물을 제공한다.
본 발명의 다른 목적은 중간엽 기질세포의 인 비트로 확장(expansion) 방법을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 네크로스타틴(necrostatin)을 유효성분으로 함유하는 중간엽 기질세포 배양용 항산화(antioxidant) 조성물을 제공한다.
본 발명자들은 산화적 스트레스-저항성 중간엽 기질세포 배양 방법을 개발하고자 노력하였다. 그 결과, 본 발명자들은 네크로스타틴이 활성산소종-유도된 세포 사멸을 억제하고 다양한 사이토카인 및 신경성장인자의 발현을 증가시킴으로써, 산화적 스트레스 하에서 중간엽 기질세포의 형태 및 생존율을 향상시킬 수 있다는 것을 발견하였다.
네크로스타틴(5-(1H-indol-3-ylmethyl)-3-methyl-2-sulfanylideneimidazolidin-4-one)은 프로그램된 세포 괴사의 작은 분자 억제제로, RIP1 키나제 활성화를 억제함으로써 다운스트림 항염 효과 및 다른 기작들을 통해 보호하는 기능을 수행한다(Degterev et al., Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol., 4:31321(2008)).
본 발명에 따르면, 중간엽 기질세포(바람직하게는, 인간 중간엽 기질세포)를 배양 시에 본 발명의 네크로스타틴을 처리하여 산화적 스트레스에 대한 보호능을 증가시킴으로써, 보다 효율적이고 안정적으로 중간엽 기질세포를 배양할 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용되는 네크로스타틴은 하기의 화학식(I)을 가진다:
Figure pat00001
(I)
본 발명의 바람직한 구현예에 따르면, 본 발명의 항산화 조성물에서 이용되는 네크로스타틴의 농도는 1-200 μM의 범위이고, 보다 바람직하게는 1-100 μM의 범위이며, 보다 더 바람직하게는 1-75 μM의 범위이고, 가장 바람직하게는 1-50 μM의 범위이다.
중간엽 기질세포(바람직하게는, 인간 중간엽 기질세포)의 배양 과정 동안 포함된 물리적 및/또는 화학적 과정(예컨대, 파이펫팅, 트립신 처리, 등)으로 인해 유발되는 산화적 스트레스는 중간엽 기질세포의 배양에서 극복되어야 할 문제이다. 상기 산화적 스트레스-유도된 활성산소종의 축적은 세포 사멸(예컨대, 네크롭토시스)을 유도하고 기질세포의 증식 및 분화능의 감소를 초래한다.
본 발명에 따르면, 본 발명의 항산화 조성물은 산화적 스트레스-유도된 세포 사멸(cell death, necroptosis)을 억제하고, 산화적 스트레스 하에서 기질세포의 고유 형태를 유지시킬 뿐 아니라 세포 생존율을 증가시켰다(참고: 도 3 내지 도 5).
본 발명의 바람직한 구현예에 따르면, 본 발명의 항산화 조성물은 사이토카인 또는 신경성장인자의 발현을 증가시킨다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 사이토카인 또는 신경성장인자는 Oct4, PGF(plaacental growth factor), FGF 1(fibroblast growth factor 1), IGF 1(inslulin-like growth factor 1), TGFIP6(transforming growth factor alpha inositol hexaphosphate), TGF1, IL(interleukin)4 및 IL10을 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 항산화 조성물은 활성산소종(reactive oxygen species, ROS)의 생성을 억제한다.
본 발명의 조성물은 약제학적 조성물로 제조될 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 (a) 상술한 본 발명의 중간엽 기질세포 배양액의 약제학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물이다.
본 명세서에서 용어 "약제학적 유효량"은 상술한 중간엽 기질세포 배양액의 효능 또는 활성을 달성하는 데 충분한 양을 의미한다.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물은 경구 또는 비경구 투여할 수 있으며, 예를 들어 피하 주입, 근육 주입, 경피 투여, 관절강내 주사, 등으로 투여할 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약제학적 조성물의 일반적인 투여량은 성인 기준으로 1일 당 102-1010 세포이다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 다른 양태에 따르면, 네크로스타틴을 포함하는 배지에서 중간엽 기질세포(mesenchymal stromal cells)를 배양하는 단계를 포함하는 중간엽 기질세포의 인 비트로 확장(expansion) 방법을 제공한다.
본 발명의 방법은 상술한 본 발명의 네크로스타틴을 유효성분으로 포함하기 때문에, 둘 사이에 중복된 내용은 중복 기재에 따른 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명의 방법은 배양 배지에 포함된 네크로스타틴의 항산화 활성을 통해 줄기세포 배양 시에 유발되는 산화적 스트레스에 따른 줄기세포 증식 또는 분화능의 감소를 효과적으로 개선할 수 있는 방법이다.
본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용될 수 있는 중간엽 기질세포는 자가(autologous) 기질세포 또는 이종(allogenic) 기질세포이고, 보다 바람직하게는 자가 기질세포이다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 네크로스타틴을 유효성분으로 포함하는 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도에 관한 것이다.
(b) 본 발명의 조성물은 산화적 스트레스-유도된 세포 사멸(cell death, necroptosis)을 억제하고, 산화적 스트레스 하에서 기질세포의 고유 형태를 유지시킬 뿐 아니라 세포 생존율을 증가시킨다.
(c) 따라서, 본 발명의 조성물은 산화적 스트레스로 인해 초래되는 기질세포의 증식 또는 분화능의 개선에 매우 효과적으로 적용될 수 있다.
도 1은 hBM-MSCs의 특징을 형태, 실-시간 PCR 및 FACS 분석을 통해 보여주는 결과이다. 도 1A는 현미경을 통해 hBM-MSCs의 방추형-유사 형태를 관찰한 결과이다. 도 1B는 실-시간 PCR을 통해 유전자(Oct4, FGF1, PGF, IGF1, TNFaIP6, TGFb1 및 IL4) 발현을 분석한 결과이다. 도 1C는 FACS를 통해 hBM-MSCs에서 표면 마커 발현을 분석한 결과이다. 상기 세포들은 CD34(0.20%) 및 CD45(0.10%)에 대해 음성이지만, CD29(99.10%), CD44(98.20%), CD49C(94.20%), CD73(99.80%) 및 CD105(99.10%)의 높은 발현을 보여줬다.
도 2는 hBM-MSCs에서 H2O2-유도된 산화적 스트레스의 효과를 보여주는 결과이다. 도 2A는 CCK-8 어세이를 통해 H22-처리된(0 mM 내지 2.5 mM) hBM-MSCs의 생존율을 측정한 결과이다. 데이터는 비처리된 대조군에 대한 백분율로 표시된다. 도 2B는 H2O2-처리된(0 mM 내지 2.5 mM) hBM-MSCs의 형태를 관찰한 결과이다(배율, X 320). 표시: 화살표, 방추형-유사 세포 형태(→), 거대 세포질(
Figure pat00002
) 및 사이토스켈레톤만 존재(▲).
도 3은 네크로스타틴-처리된 hBM-MSCs의 생존율을 측정한 결과이다. 도 3A는 CCK-8 어세이를 통해 네크로스타틴-처리된(0 μM 내지 1,000 μM) hBM-MSCs의 생존율을 측정한 결과이다. 도 3B는 네크로스타틴-처리된(0 μM 내지 1,000 μM) hBM-MSCs의 형태를 관찰한 결과이다(배율, X 200).
도 4는 hBM-MSCs에서 H2O2-유도된 산화적 스트레스에 대한 네크로스타틴의 세포 보호 효과를 보여주는 결과이다. 도 4A는 네크로스타틴이 H2O2-유도된 형태적 변화를 보호한다는 것을 보여주는 결과이다. 도4B는 CCK-8 어세이 및 트립판 블루 어세이를 통해 네크로스타틴 전-처리에 의한 hBM-MSCs의 생존율을 측정한 결과이다.
도 5는 H2O2-처리된 hBM-MSCs에서 네크로스타틴의 마이토콘드리아 ROS 제거 활성을 H2DCF-DA 어세이로 비트로에서 관찰한 결과이다. 네크로스타틴-처리된 hBM-MSCs는 H2O2만-처리된 세포보다 더 낮은 ROS 레벨을 나타냈다.
도 6은 H2O2-처리된 hBM-MSCs에서 네크로스타틴의 아팝토시스 억제를 DAPI 염색(A) 및 살아있는 세포의 백분율(B)로 보여주는 결과이다. 표시: 화살표, 세포사멸체.
도 7은 hBM-MSCs 특징의 유지를 보여주는 유전자 발현 결과이다. 도 7A는 대조군, H2O2 및 H2O2 + 10 μM 네크로스타틴 군 간의 사이토카인 및 신경성장인자에 대한 유전자 발현을 실-시간 PCR로 비교한 결과이다. 도 7B는 대조군, H2O2 및 H2O2 + 10 μM 네크로스타틴 군 간의 면역세포화학 분석에 의한 비교 결과이다. 도 7C는 대조군, H2O2 및 H2O2 + 10 μM 네크로스타틴 군 간의 성장인자의 분비를 ELISA에 의해 비교한 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험재료 및 실험방법
실험재료
인간 골수 중간염 줄기세포(hBM-MSCs)는 Lonza(Switzerland, Passage 5)로부터 구매하였다. H2O2(Cat. No. 216763) 및 네크로스타틴(Cat. No. N9037)은 Sigma(USA)로부터 구매하였다.
세포 배양
인간 골수 중간엽 기질세포(hBM-MSCs)는 10% FBS(Gibco, USA), 2.5 mM 글루타맥스(Glutamax; Gibco, USA) 및 1% Pen-Strep(Gibco, USA)이 보충된 DMEM/F12(Gibco, USA)에서 유지되었다. 세포는 T75 플라스크(Nunc, Denmark)에서 37℃, 7% CO2의 습도 유지된 배양기에서 배양되었다.
FACS 분석
hBM-MSCs의 일반적인 특징을 조사하기 위해, CD34-, CD45-, CD29+, CD44+, CD49C+, CD73+ 또는 CD105+의 발현이 FACS(fluorescence-activated cell sorter) 분석으로 확인되었다. 본 발명자들은 CD49C+, CD73+, CD106+, CD34-, CD45-, CD54-, CD29+ 또는 CD44+의 항원(BD, USA) 및 CD105+의 항원(eBioscience, USA)을 검출하기 위해 단일클론 항체를 이용하였다. 간략하게는, 세포는 2% FBS(Gibco, USA)가 보충된 DPBS(Gibco, USA)로 세척한 후, 얼음 위에서 피코에리트린(Phycoerythrin)-컨쥬게이션된 항체와 암 조건에서 30분 동안 반응시킨 후, 냉장 PBS로 2번 세척하였다. FACS 분석은 FACSCanto II(Becton Dickinson, USA)를 이용하여 최소 10,000 이벤트들을 카운팅함으로써 실시하였다.
세포 생존율 측정( CCK -8 어세이 트립판 블루 염색 어세이 )
H2O2-유도된 세포 손상 하에서 전-처리된 네크로스타틴의 효과를 평가하기 위해, 본 발명자들은 CCK-8 어세이를 이용하였다. 간략하게는, 본 발명자들은 1 x 104 hBM-MSC 세포를 96-웰 배양 플레이트에 플레이팅하여 하룻밤 동안 배양하였다. 배지는 혈청-결핍 배지로 교체하여 (1) 각 농도의 네크로스타틴(0, 1, 5, 10, 20, 50, 100, 200, 500 및 1000 μM)으로 30분 동안 반응시키거나, (2) 각 농도의 H2O2(0, 0.5, 1.0, 1.5, 2.0 및 2.5 mM)로 30분 동안 반응시키거나 또는 (3) 각 농도의 네크로스타틴으로 30분 동안 반응시킨 후 1.5 mM H2O2로 30분 동안 처리하였다. 총 CCK-8(10 ; Sigma, USA)가 각 웰 내 100 ㎕의 배지에 첨가하여 2시간 동안 반응시켰다. 총 용액을 각 웰로부터 제거하였다. 웰 내 침전물을 마이크로 판독기 혼합기(Bio-Rad, xMark)를 이용하여 1분 동안 용해시킨 후, ELISA 판독기를 이용하여 450 nm에서의 광학 밀도(optical density, O.D.)를 측정하였다. 모든 결과들은 세포 배양액 없이 동일한 처리를 거친 웰에서 O.D.를 측정하여 조정되었다. 트립판 블루 염색을 위해, 각 시료로부터 얻어진 세포와 트립판 블루 용액(Sigma, USA)이 1:1로 혼합되었다. 세포들이 혈구계수기(hemacytometer)로 카운팅되었다. 살아있는 세포는 트립판 블루로 염색되지 않는 반면에, 죽은 세포는 트립판 블루로 염색되었다.
세포 내 ROS 측정
원심분리를 통해 성장 배지로부터 세포를 수거하여 5 mM의 다이의 최종 농도를 제공하도록 프로브를 포함하는 전-열된 DPBS(Gibco, USA)에 재현탁하여 37℃에서 15분 동안 반응시켰다. 로딩 완충액을 제거하고 전-열된 성장 배지에 세포를 옮겨 37℃에서 5분 동안 반응시켰다. 모든 형광 이미지는 Leica 레이저 스캐닝 현미경(Leica, Germany)을 이용하여 얻었다. 이미지들은 Leica Application Suite Advanced Fluorescence Lite(Leica, Germany)로 캡쳐되었다.
DAPI 염색
아팝토틱 세포 사멸을 측정하기 위해 DAPI 염색을 실시하였다. 세포를 3.7% 파라포름알데하이드(Sigma, USA)를 포함하는 DPBS(Gibco, USA)로 4℃에서 10분 동안 고정하였다. 세 번에 걸쳐서 세척한 후, 상기 세포들은 DPBS 완충액에 녹여진 0.5 lg/ml DAPI 용액과 20분 동안 반응시켰다. 이후, 세포를 DPBS 완충액으로 2번에 걸쳐서 세퍽하였다. 모든 형광 이미지는 Leica 레이저 스캐닝 현미경(Leica, Germany)을 이용하여 얻었다. 이미지들은 Leica Application Suite Advanced Fluorescence Lite(Leica, Germany)로 캡쳐되었다.
면역세포화학법( Immunocytochemistry )
세포들을 0.1% 젤라틴으로 전-코팅된 24-웰 플레이트 내 글라스 커버 슬립에서 배양시키고 4% 파라포름알데하이드로 고정시킨 후, PBS에 녹여진 0.1% Triton X-100으로 투과화 시키고 DPBS에 녹여진 5% 정상 염소 혈청으로 블랏킹시켰다. 이용된 일차 항체는 다능성 줄기세포 마커로서 래빗 항-Oct4(SantaCruz, USA), 염소 항-Nanog(SantaCruz, USA) 및 마우스 항-Sox2(Chemicon, Temecula, CA)였으며, 부착 분자 마커로서 마우스 항-HCAM(CD44; Nova Castra) 또는 마우스 항-ICAM-1(CD54; Nova Castra, Newcastle, UK)였다. 이용된 2차 항체는 Alexa 488 또는 555(Molecular Probes, Eugene, Ore., USA)-컨쥬게이션된 항-마우스, 항-래빗 및 항-염소 IgG를 이용하였다. 모든 항체들은 제조자의 지시에 따라 블랏킹 용액을 이용하여 1:150 내지 1:200으로 희석되었으며, 4℃에서 24시간 동안 세포와 반응시켰다. 핵은 DAPI(4,6- diamino-2-phenylindole)로 카운터 염색된 후, 2.5% 폴리비닐 알코올 및 1,4-디아자비사이클로옥탄(diazabicyclo octane)을 포함하는 글라이세롤-기반된 마운틴 용액으로 마운팅하였다. 모든 형광 이미지는 Leica 레이저 스캐닝 현미경(Leica, Germany)을 이용하여 얻었다. 이미지들은 Leica Application Suite Advanced Fluorescence Lite(Leica, Germany)로 캡쳐되었다.
실-시간 PCR( Real - time Polymerase Chain Reaction )
총 RNA는 TRIzol 시약(Invitrogen, USA)을 이용하여 단일층 세포로부터 추출되었다. 세포로부터 추출된 RNA에 DNase(DNAse I, Roche, Switzerland)를 처리하고 RT-PCR을 위해 SuperScript First-strand 합성 시스템(Invitrogen, USA)을 이용하여 cDNA로 역전사시켰다. 이용된 프라이머의 서열은 표 1에 나열되어 있다. 재현탁된 총 RNA(1 ㎍), 25 mM dNTP(deoxynucleotide triphosphate), 1 oligo(dT)(0.5 ㎍/ml) 및 3 ㎕ DEPC(diethylpyrocarbonate)-처리된 물을 혼합한 현탁액이 65℃에서 5분 동안 가열처리되었다. 4℃로 식힌 후, 상기 용액에 4 ㎕ 1차-가닥 완충액, 2 ㎕ DTT(dithiothreitol, 0.1 M) 및 1 ㎕ RNase 억제제를 포함하는 혼합액을 처리하여 42℃에서 2분 동안 반응시켰다. 이후, 1 ㎕ SuperScript (50 units/㎕)를 RNA 반응 용액에 처리하고 42℃에서 50분 동안 반응시켰다. 각 cDNA는 유전자-특이적 프라이머를 이용한 PCR 증폭에 이용되었다. PCR은 2 PCR PreMix(INTRON Biotech., Korea)를 이용하여 실시하였다. 50 ng의 총 RNA를 나타내는 상보적인 DNA를 이용하여 40 사이클의 PCR 증폭을 실시하였다. 우선, 시료들은 95℃에서 5분 동안 반응시킨 후, Rotor-gene SYBR green PCR kit(Qiagen, Germany)로 증폭 사이클을 실시하였다. 각 증폭 사이클은 한 사이클당 (a) 변성 단계, 95℃에서 5초; 및 (b) 증폭/연장 단계, 60℃에서 10초 및 72℃에서 20초로 이루어진 40 사이클로 실시하였다. 세트 포인트 온도는 2 사이클 후 0.5℃씩 증가시켰다. 표준 곡선은 각 실험 동안 3쌍으로 증폭되었고, 타겟 유전자의 양은 내인성 대조군(GAPDH)로 표준화시켰다.
실험결과
hBM - MSCs 의 표현형 특징
hBM-MSCs는 부착성 및 방추형 형태를 가져 섬유아세포-유사 세포와 유사하게 보인다(도 1A). 실-시간(real time) PCR을 통해 hBM-MSCs는 Oct4, FGF1, PGF, IGF1, TNFaIP6, TGFb1 및 IL4의 유전자 발현을 유지하였으며(도 1B), 면역세포화학 분석을 통해 Oct4, Nanog, H-CAM 및 I-CAM 단백질 발현을 나타냈다(도 7B). 또한, FACS 분석을 통해 hBM-MSCs의 전형적인 특징과 본질적으로 동일한 CD34-, CD45-, CD29+, CD44+, CD49C+, CD73+, CD105+ 표현형을 나타냈다(도 1C).
hBM - MSCs 에서 H 2 O 2 -유도된 산화적 스트레스
H2O2 처리 후 hBM-MSCs의 생존율을 조사하기 위해, hBM-MSCs는 H2O2(0(대조군), 0.5, 1, 1.5, 2 또는 2.5 mM)와 30분 동안 반응되었다. 이후, hBM-MSCs의 세포 생존율이 CCK-8 어세이로 측정되었다(도 2A). H2O2 처리 후, 세포 생존율이 0.5-1.5 mM의 처리 농도에서 농도-의존적으로 감소하였다. 상술한 결과들을 토대로, 1.5 mM H2O2가 이후 실험을 위한 최적의 H2O2 농도로 선택되었는데, 이는 세포 생존율이 약 50%였기 때문이다. H2O2 제거 후 30분 째에, 비처리된 대조군 세포의 형태, 그리고 1.5 mM 또는 2.5 mM H2O2 처리된 세포의 형태가 위상차 현미경에 부착된 디지털 카메라로 기록되었다. 세포 형태는 농도-의존적으로 상당히 변화되었다. H2O2-유도된 산화적 손상 세포의 세포질이 비처리된 세포보다 더 컸으며 방추-유사 형태가 없었다(도 2B).
네크로스타틴 -처리된 hBM - MSCs 에서 세포 생존율의 측정
네크로스타틴의 효과를 조사하기 위해, hBM-MSCs에 여러 농도의 네크로스타틴(0, 1, 5, 10, 20, 50, 100, 200, 500 및 1000 μM)을 30분 동안 처리하였다. 대조군과 비교하여, 세포 생존율은 50 M까지 감소하지 않았지만, 100 μM 또는 그 이상의 처리에서는 감소하였다(도 3A). 네크로스타틴 자체는 세포 형태에 영향을 미치지 않았다(도 3B).
hBM - MSCs 에서 H 2 O 2 -유도된 산화적 스트레스에 대한 네크로스타틴의 세포 보호 효과
H2O2-유도된 산화적 스트레스에서 네크로스타틴의 세포 보호 효과를 조사하기 위해, hBM-MSCs를 T75 플라스크에 플레이팅하고 다양한 농도의 네크로스타틴(0, 1, 5, 10, 20, 50, 100, 200, 500 및 1000 μM)으로 30분 동안 전-처리한 후, 1.5 mM H2O2로 30분 동안 손상을 가하였다. 세포들은 위상차 현미경으로 사진을 찍었다. 1.5 mM H2O2만 또는 1.5 mM H2O2 + 네크로스타틴 처리한 세포의 대표적인 사진이 보여졌다(도 4A). 세포 생존율은 CCK-8 어세이 및 트립판 블루 염색 어세이로 측정되었다. 대조군과 비교하여, 세포 생존율은 10 μM 전-처리된 네크로스타틴에서 증가하였으나(36.94.2%), 다른 농도(1, 5, 20, 50, 100, 200, 500 및 1,000 μM)에서는 감소하였다(도 4B).
네크로스타틴 -처리된 세포의 ROS 제거( scavenging ) 활성
네크로스타틴은 H2O2-유도된 세포 내 ROS 발생을 효과적으로 억제하였으며, 이는 H2DCF-DA 어세이로 확인되었다. 10 μM 네크로스타틴-전-처리된 세포에서 H2O2만 처리된 세포보다 더 낮은 ROS 레벨을 나타냈다(도 5).
DAPI 염색을 통한 hBM - MSCs 에서 네크로스타틴의 세포 보호 효과 규명
아팝토시스는 DAPI 염색을 통한 형광 현미경을 이용하여 아팝토틱 핵 형태를 가진 세포를 관찰함으로써 결정하였다. DAPI 염색 분석을 통해, 10 μM 네크로스타틴 전-처리된 세포와 비교하여 1.5 mM H2O2 처리된 세포에서 살아있는 세포의 백분율이 감소하였으며, 세포사멸체(apoptotic bodies)가 현저하게 증가하였다. H2O2만 처리된 세포의 수가 10 μM 네크로스타틴 전-처리된 세포의 수보다 더 적었다(도 6).
H 2 O 2 -유도된 산화적 스트레스에도 불구하고 hBM - MSCs 특성의 유지
10 μM 네크로스타틴 전-처리된 hBM-MSCs에서 발현된 사이토카인 및 성장인자들이 실-시간 PCR로 분석되었다. 배양 배지 내 사이토카인 및 성장인자들의 발현 레벨을 분석하기 위해 hBM-MSCs이 배양되었다. 10 μM 전-처리된 hBM-MSCs는 H2O2만 처리된 군보다 Oct4(7.70.36%), PGF(4.90.6%), FGF1(12.81.8%), IGF(8.41.3%), TGFb1(1.20.2%), TNFaIP6(8.20.6%), IL4(55.14.9%) 또는 IL10(5.00.5%)의 증가된 발현을 나타냈다(도 7A). 면역세포화학 분석은 대조군 및 네크로스타틴 전-처리된 군에서 H2O2만 처리된 군보다 Oct4, Nanog, H-CAM 및 I-CAM의 배출이 더 증가하였다(도 7B). ELISA 어세이에 따르면, 10 μM 네크로스타틴 전-처리된 hBM-MSCs는 H2O2만 처리된 세포보다 더 많은 VEGF 및 IL4을 배출하였고 대조군 보다는 덜 배출하였다. 하지만, ANG의 배출에서는 모두 동일하였다(도 7C).
추가논의사항
네크로스타틴은 TNFα 자극에 의해 야기된 세포 사멸을 카스파제 억제를 통해 억제하는 활성을 가지는 넓은 화합물 라이브러리로부터 선택된 작은 분자이다[21]. 또한, 네크로스타틴은 프로그램된 괴사로 알려진 세포 사멸의 형태에서 핵심 시그널링 중간산물인 RIP(inhibitor of receptor-interacting protein) 1 키나제의 알로스테릭 억제제이다[21, 27]. 비트로에서, RIP1 키나제의 억제는 카스파제 억제 하에서 세포 사멸 수용체(DR) 시그널링에 의해 야기된 세포 사멸을 차단한다[22].
본 발명자들은 네크로스타틴이 H2O2-유도된 산화적 스트레스 하에서 세포 사멸을 억제한다는 것을 확인하였다. 인간 이배체 섬유아세포(human diploid fibroblasts, HDFs)에서처럼[28], 본 연구에서는 H2O2 처리 후 세포 생존율이 감소하였으며, 세포 형태가 0.5-1.5 mM 처리 농도에서 농도-의존적으로 변화하였다.
네크로스타틴 자체는 해마 HT-22 세포에서 세포 형태에 아무런 영향을 끼치지 않았고[29], hBM-MSCs에서도 세포 형태에 영향을 끼치지 않았으며 세포 독성도 나타내지 않았다.
H2O2-유도된 산화적 스트레스 하에서 네크로스타틴의 세포 보호 효과를 조사하기 위해, 여러 농도의 네크로스타틴의 전-처리 후 1.5 mM H2O2로 손상을 가하였다. 대조군과 비교하여, 세포 생존율은 10 μM 네크로스타틴 전-처리된 세포에서 증가하였으나 다른 농도에서는 감소하였다.
네크로스타틴은 H2O2-유도된 세포 내 ROS 발생을 효과적으로 억제하였으며, 이는 H2DCF-DA 어세이로 확인되었다. 네크로스타틴 전-처리된 세포는 H2O2만-처리된 세포보다 더 낮은 세포 내 ROS 레벨을 나타냈다.
아팝토시스는 DAPI 염색을 이용하여 아팝토틱 핵 형태를 가진 세포를 검출함으로써 조사하였다. DAPI 염색 결과, H2O2만-처리된 세포는 대조군 및 네크로스타틴 전-처리된 세포보다 더 많은 세포사멸체를 포함하였다.
사이토카인 및 성장인자(Oct4, PGF, FGF1, IGF, TGF-1, TNFIP6, IL4, IL10)의 발현이 실-시간 PCR로 확인되었다. Oct4 단백질은 비분화된 줄기세포의 마커로 이용되고 있으며[30], PGF, FGF1, IGF 및 TGF-1은 많은 중간엽 조직에서 발현되는 성장인자들이다[31-33]. TNFIP6는 세포외 매트릭스 안정성 및 세포 이동에 포함되어 있다고 알려져 있고[34], IL4 및 IL10은 면역 반응 유전자들로 알려져 있다[35]. 본 연구에서, 네크로스타틴 전-처리된 세포는 H2O2만-처리된 세포보다 상술한 사이토카인 및 성장인자들의 증가된 발현을 보인다.
면역세포화학법에 따르면, 대조군 및 네크로스타틴 전-처리된 세포는 H2O2만-처리된 세포보다 더 많은 Oct4, Nanog, H-CAM 및 I-CAM을 배출하였다. Nanog 단백질은 다능성 외배엽 세포(epiblast)를 유지하고 분화를 억제하는 기능을 하고, H-CAM 및 I-CAM 단백질은 각각 형태형성과정(morphogenesis), 기관형성과정(organogenesis) 및 이동[H-CAM; 36], 그리고 다양한 염증 상태의 개시 및 확대(propagation)[I-CAM; 37]에 관여하는 활성을 나타낸다.
발생하는 생물체에서 혈관신생과정(angiogenesis)에서 생리학적 성장인자(VEGF) 및 사이토카인(IL4)의 분비가 네크로스타틴 전-처리된 세포에서 증가하였다. 하지만, ANG(Angiogenin)의 분비가 변화하지 않았다.
상술한 결과들로부터, 네크로스타틴 전-처리된 세포는 H2O2-유도된 산화적 스트레스에 대한 세포 보호 효과를 가지고, 보다 효과적인 hBM-MSCs 기능을 가진다. 이후의 추가적인 연구는 세포 치료법으로서 hBM-MSCs를 이용하는 것이 필요할 것이다.
이미 30년 이상 임상적으로 이용되어 온 세포치료법은 골수 이식이고, 보다 최근에는 파킨슨병[38, 39] 및 알쯔하이머병[40] 같은 뇌 질환의 치료, 그리고 헌팅톤병[41], 다발성 경화증[42, 43], 척수 손상[44, 45] 및 근위축성측색경화증[46] 같은 다른 신경학적 질환들의 치료에 적용되고 있다. 현재는 많은 세포 수가 임상 적용(5백만 MSCs/kg 체중까지의 세포 투여량)에 필요한 상태이다[47, 48].
세포 배양은 대사 경로를 조사하고 시그널 트랜스덕션에 포함된 기작들, 유전자 발현의 조절, 세포 증식 및 세포 사멸을 이해하기 위해 전세계 실험실에서 가장 보편적으로 이용되고 있다. 세포 배양은 대사 경로 및 MAP 키나제, NFUB, AP-1, 산화질소 및 카스파제의 기능을 인 비보에서 설명하는 데 도움을 주는 것을 포함하는 막대한 양의 가치있는 정보를 제공하고 있다. 하지만, 배양된 세포는 다양한 측면에서 인 비보 세포들과 다를 수 있다[49]. 동물에서 인 비보 세포들은 예외인 경우(예컨대, 피부 상피세포, 각막 세포 및 호흡기계 세포)도 있지만 대부분 낮은 농도의 O2(1-10 mmHg의 범위)에 노출된 상태이다[49-51]. 세포 배양은 일반적으로 95% 공기/5% CO2 하(약 150 mm Hg O2 텐션)에서 실시한다. 세포 내 효소 시스템 및 전자전달계로부터 유래한 전자의 누출(leakage)에 의한 ROS의 생산율은 정상 세포 레벨에서 O2-제한적이기 때문에 O2 레벨이 증가한다면 비례하여 증가할 것이다[49-53]. 따라서, 세포 배양에서 더 많은 ROS가 발생할 것이고 세포 내 산화적 스트레스는 노화, 세포 사멸 또는 적응(adaptation)을 야기할 수 있다[50].
임상적 용도로서 양질의 신경보호 효과를 가진 hBM-MSCs을 제조하기 위해, 본 발명자들은 네크로스타틴의 처리를 통해 세포 배양 과정 동안 산화적 스트레스를 효과적으로 감소하기 위한 추가적인 실험을 하고자 한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명 의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참고문헌
1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143147.
2. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101:29993001.
3. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci. 2004;117:56555664.
4. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007;25:23632370.
5. Tgel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31F42.
6. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res. 2000;9:841848.
7. Tocci A, Forte L. Forte Mesenchymal stem cell: use and perspectives. The Hematology Journal. 2003;4:9296.
8. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 3. 2008;3(5):e2213.
9 Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology. 2004;5: 110.
10. Loft S, Hgh Danielsen P, Mikkelsen L, Risom L, Forchhammer L, Mller P. Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans. 2008;36(Pt 5):1071-6.
11. Saberi B, Shinohara M, Ybanez MD, Hanawa N, Gaarde WA, Kaplowitz N, Han D. Regulation of H2O2-induced necrosis by PKC and AMP-activated kinase signaling in primary cultured hepatocytes. Am J Physiol Cell Physiol 2008;295:C50-C63.
12. Antunes F, Cadenas E. Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med. 2001;30: 10081018.
13. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss, J Biol Chem. 1998;273: 1140111404.
14. Han D, Hanawa N, Saberi B, Kaplowitz N. Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosis. Free Radic Biol Med. 2006;41: 627639.
15. Wang Y, Schattenberg JM, Rigoli RM, Storz P, Czaja MJ. Hepatocyte resistance to oxidative stress is dependent on protein kinase C-mediated down-regulation of c-Jun/AP-1. J Biol Chem. 2004;279: 3108931097.
16. Baker A, Santos BD, Powis G. Redox control of caspase-3 activity by thioredoxin and other reduced proteins. Biochem Biophys Res Commun. 2000;268: 7881.
17. Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 1997;414: 552556.
18. Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol. 2006;291: G1G7.
19. Carmelina Gemma. Brain Aging: Models, Methods, and Mechanisms. CRC Press. 2007;chapter 15.
20. Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions. 1996;24(3): 790-795.
21. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112119.
22. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313321.
23. Han W, Xie J, Li L, Liu Z, Hu X. Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis. 2009;14:674-686.
24. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, Whalen MJ. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2008;28:15641573.
25. Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther Sponsored by the International Society of Cardiovascular Pharmacotherapy. 2007;21:467469.
26. Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Rad Biol Med. 2010;48:306317.
27. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1: 489495.
28. Chen QM, Liu J, Merrett JB. Apoptosis or senescence-like growth arrest : influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J. 2000;347:543-551.
29. Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. Journal of Neurochemistry. 2007;5(103):20042014.
30. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000; 4:372-376.
31. Lettre G, Butler JL, Ardlie KG, Hirschhorn JN. Common genetic variation in eight genes of the GH/IGF1 axis does not contribute to adult height variation. Hum Genet. 2007;122(2):129-139.
32. Khalil A, Muttukrishna S, Harrington K, Jauniaux E. Effect of antihypertensive therapy with alpha methyldopa on levels of angiogenic factors in pregnancies with hypertensive disorders. PLoS One. 2008;23:e2766.
33. Jang JH, Chung CP. Fibronectin-mediated adhesion rescues cell cycle arrest induced by fibroblast growth factor-1 by decreased expression of p21(cip/waf) in human chondrocytes. In Vitro Cell Dev Biol Anim. 2005 ;41(5-6):126-129.
34. Blundell CD, Mahoney DJ, Almond A, DeAngelis PL, Kahmann JD, Teriete P, Pickford AR, Campbell ID, Day AJ. The link module from ovulation- and inflammation-associated protein TSG-6 changes conformation on hyaluronan binding. J. Biol. Chem. 2003;278 (49):4926149270.
35. Jay S. Fine, Alberto Rojas-Triana, James V. Jackson, Laura W. Engstrom,
Gregory S. Deno, Daniel J. Lundell, Loretta A. Bober. Impairment of Leukocyte Trafficking in a Murine Pleuritis Model by IL-4 and IL-10. Inflammation. 2003; 27(4): C_ 2003.
36. R. Marhaba, M. Zoller. CD44 in cancer progression: Adhesion, migration and growth regulation. Journal of Molecular Histology.2004; 35: 211231.
37. Cigdem Arikan , Afig Berdeli, Murat Kilic, Gokhan ,Tumgor , Rasit V, Yagci , Sema Aydogdu. ICAM-1 Inter cellular adhesion molecule Polymorphisms of the ICAM-1 Gene Are Associated with Biliary Atresia. Dig Dis Sci. 2008;53:20002004.
38. Lindvall O, Bjrklund A. Cell therapy in Parkinson's disease. NeuroRx. 2004;1: 382-393.
39. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113:1701-1710.
40. Sugaya K. Possible use of autologous stem cell therapies for Alzheimer's disease. Curr Alzheimer Res. 2005;2: 367-376.
41. Clelland CD, Barker RA, Watts C. Cell therapy in Huntington disease. Neurosurg Focus. 2008;24: E9.
42. Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med. 2004;10: 93-97.
43. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441:1094-1096.
44. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, Park HS. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005;11: 913-922.
45. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells. 2007;25: 2066-2073.
46. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp Neurol. 2009;223:229-237.
47. Ringdn O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lnnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006;81(10):13901397.
48. Subbanna PK. Mesenchymal stem cells for treating GVHD: in-vivo fate and optimal dose, Medical Hypotheses. 2007;69 (2):469470.
49. Halliwell B. Oxidative stress in cell culture: an under-appreciated problem?. FEBS Letters. 2003;540: 3-6.
50. Barry Halliwell. Free Radicals in Biology and Medicine. Oxford University Press. 1999
51. de Groot H, Littauer A. Hypoxia, reactive oxygen, and cell injury. Free Radic Biol Med. 1989;173:541-551.
52. Yusa T, Crapo JD, Freeman BA. Liposome-mediated augmentation of brain SOD and catalase inhibits CNS O2 toxicity. J Appl Physiol. 1984;57(6):1674-1681.
53. Turrens JF, Freeman BA, Levitt JG, Crapo JD. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982;217(2):401-410.

Claims (12)

  1. 네크로스타틴(necrostatin)을 유효성분으로 함유하는 중간엽 기질세포 배양용 항산화(antioxidant) 조성물.
  2. 제 1 항에 있어서, 상기 네크로스타틴의 농도는 1-50 μM의 범위인 것을 특징으로 하는 항산화 조성물.
  3. 제 1 항에 있어서, 상기 조성물은 사이토카인 또는 신경성장인자의 발현을 증가시키는 것을 특징으로 하는 항산화 조성물.
  4. 제 3 항에 있어서, 상기 사이토카인 또는 신경성장인자는 Oct4, PGF(plaacental growth factor), FGF 1(fibroblast growth factor 1), IGF 1(inslulin-like growth factor 1), TGFαIP6(transforming growth factor alpha inositol hexaphosphate), TGFβ1, IL(interleukin)4 또는 IL10인 것을 특징으로 하는 항산화 조성물.
  5. 제 1 항에 있어서, 상기 조성물은 활성산소종(reactive oxygen species, ROS)의 생성을 억제하는 것을 특징으로 하는 항산화 조성물.
  6. 제 1 항에 있어서, 상기 조성물은 산화적 스트레스-유도된 세포 사멸(cell death, apoptosis)를 억제하는 것을 특징으로 하는 항산화 조성물.
  7. 제 1 항에 있어서, 상기 조성물은 산화적 스트레스 하에서 줄기세포 고유 형태를 유지시키는 것을 특징으로 하는 조성물.
  8. 제 1 항에 있어서, 상기 조성물은 산화적 스트레스 하에서 줄기세포의 생존율을 증가시키는 것을 특징으로 하는 조성물.
  9. 네크로스타틴을 포함하는 배지에서 중간엽 기질세포(mesenchymal stromal cells)를 배양하는 단계를 포함하는 중간엽 기질세포의 인 비트로 확장(expansion) 방법.
  10. 제 9 항에 있어서, 상기 네트로스타틴의 농도는 1-50 μM의 범위인 것을 특징으로 하는 인 비트로 확장 방법.
  11. 제 9 항에 있어서, 상기 중간엽 기질세포는 자가(autologous) 기질세포 또는 이종(allogenic) 기질세포인 것을 특징으로 하는 인 비트로 확장 방법.
  12. 제 11 항에 있어서, 상기 중간엽 기질세포는 자가 기질세포인 것을 특징으로 하는 인 비트로 확장 방법.
KR1020120021449A 2012-02-29 2012-02-29 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도 KR101410332B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120021449A KR101410332B1 (ko) 2012-02-29 2012-02-29 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120021449A KR101410332B1 (ko) 2012-02-29 2012-02-29 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20130099727A true KR20130099727A (ko) 2013-09-06
KR101410332B1 KR101410332B1 (ko) 2014-06-24

Family

ID=49450976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120021449A KR101410332B1 (ko) 2012-02-29 2012-02-29 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도

Country Status (1)

Country Link
KR (1) KR101410332B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556152B2 (en) 2013-02-15 2017-01-31 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
KR20180088068A (ko) * 2017-01-26 2018-08-03 중앙대학교 산학협력단 네크로스타틴-1을 포함하는 정원줄기세포의 동결보존용 조성물 및 이를 이용한 정원줄기세포의 동결보존 방법
KR101970656B1 (ko) 2018-01-02 2019-04-19 강원대학교산학협력단 신규한 스트렙토마이시스 리노마이시니 ds620 균주 및 이의 추출물을 포함하는 항균 조성물

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381775A4 (en) 2008-12-23 2012-08-15 Harvard College INHIBITORS OF NECROPTOSIS OF SMALL MOLECULAR SIZE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556152B2 (en) 2013-02-15 2017-01-31 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US9624202B2 (en) 2013-02-15 2017-04-18 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US10292987B2 (en) 2013-02-15 2019-05-21 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US10933070B2 (en) 2013-02-15 2021-03-02 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US10940154B2 (en) 2013-02-15 2021-03-09 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
KR20180088068A (ko) * 2017-01-26 2018-08-03 중앙대학교 산학협력단 네크로스타틴-1을 포함하는 정원줄기세포의 동결보존용 조성물 및 이를 이용한 정원줄기세포의 동결보존 방법
KR101970656B1 (ko) 2018-01-02 2019-04-19 강원대학교산학협력단 신규한 스트렙토마이시스 리노마이시니 ds620 균주 및 이의 추출물을 포함하는 항균 조성물

Also Published As

Publication number Publication date
KR101410332B1 (ko) 2014-06-24

Similar Documents

Publication Publication Date Title
JP6983195B2 (ja) 間葉系間質細胞及びその関連用途
TWI299752B (en) Multipotent placental stem cell and methods thereof
Manuelpillai et al. Amniotic membrane and amniotic cells: potential therapeutic tools to combat tissue inflammation and fibrosis?
Zhou et al. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury
US7534606B2 (en) Placental stem cell and methods thereof
KR101532556B1 (ko) 간엽줄기세포의 배양 방법
US20110312091A1 (en) Pluripotent stem cells, method for preparation thereof and uses thereof
Whone et al. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor
US20170313983A1 (en) Multipotent stem cells and uses thereof
US9982234B2 (en) Culture medium composition for improving regenerative capacity of stem cells, and stem cell culturing method using same
CN109312303B (zh) 表达间充质和神经元标志物的干细胞、其组合物及其制备方法
Taghi et al. Characterization of in vitro cultured bone marrow and adipose tissue‐derived mesenchymal stem cells and their ability to express neurotrophic factors
JPWO2003080822A1 (ja) 胎盤由来の間葉系細胞およびその医学的用途
WO2008080200A1 (en) Process for obtaining stem cells
Zeng et al. Human amniotic membrane-derived mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles: the effect on neuron-like differentiation in vitro
JP2011519574A5 (ko)
KR101410332B1 (ko) 중간엽 기질세포 배양용 항산화 조성물 및 이의 용도
CA3168330A1 (en) Method for treating chronic graft versus host disease
EP3909591B1 (en) Pharmaceutical composition for treating pancreatitis, comprising clonal stem cells
US20120141432A1 (en) Use of catalytic antioxidant to preserve stem cell phenotype and control cell differentiation
KR102637401B1 (ko) 레노그라스팀에 의한 줄기세포의 운동신경전구세포로의 유도 및 운동신경세포로의 분화
US20230242873A1 (en) Fibroblast based therapy for treatment of parkinson's disease
KR20130099707A (ko) 중간엽 줄기세포 배양용 항산화 조성물 및 이의 용도
Diaz-Prado et al. Human amniotic membrane: a potential tissue and cell source for cell therapy and regenerative medicine
WO2024168161A1 (en) Potency assay and manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170612

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190610

Year of fee payment: 6