KR20130094989A - Collagen from squid muscle skin and alaska pollock and production method thereof - Google Patents

Collagen from squid muscle skin and alaska pollock and production method thereof Download PDF

Info

Publication number
KR20130094989A
KR20130094989A KR1020120016328A KR20120016328A KR20130094989A KR 20130094989 A KR20130094989 A KR 20130094989A KR 1020120016328 A KR1020120016328 A KR 1020120016328A KR 20120016328 A KR20120016328 A KR 20120016328A KR 20130094989 A KR20130094989 A KR 20130094989A
Authority
KR
South Korea
Prior art keywords
collagen
squid
pollack
content
skin
Prior art date
Application number
KR1020120016328A
Other languages
Korean (ko)
Inventor
조효현
홍주헌
정희경
정유석
양수진
이대훈
박혜미
Original Assignee
주식회사 바다누리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바다누리 filed Critical 주식회사 바다누리
Priority to KR1020120016328A priority Critical patent/KR20130094989A/en
Publication of KR20130094989A publication Critical patent/KR20130094989A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish

Abstract

PURPOSE: A collagen originated from pollack and cuttlefish skin is provided to have an effect of making cuttlefish and Pollack skin into resources, and to have an excellent effect of providing a cosmetic composition having a high absorption rate. CONSTITUTION: A method of manufacturing a collagen comprises the steps of enzymolysis of fish byproducts. The enzyme is one between Alcalase and Neutrase. The fish byproduct is cuttlefish skin or Pollack skin. Collagen powder is manufactured by the method. A cosmetic composition comprises the collagen powder as an active ingredient.

Description

오징어껍질 및 명태껍질 유래의 콜라겐 및 그 제조방법 {Collagen from Squid muscle skin and Alaska pollock and production method thereof}Collagen derived from squid shell and pollock shell and its manufacturing method {Collagen from Squid muscle skin and Alaska pollock and production method

본 발명은 수산물 특히 어류 부산물인 오징어껍질과 명태껍질 유래의 콜라겐과 그 제조방법에 관한 것이다.
The present invention relates to a collagen derived from aquatic products, particularly fish by-products and squid shells and pollock shells and a method for producing the same.

콜라겐은 동물성 기원의 풍부한 섬유상의 구조단백질로 척추동물 및 무척추 동물의 총 단백질의 30%를 차지하고 3중 나선구조를 이루며 여러 가지 형태로 주로 피부, 뼈, 치아 유기물질의 대부분을 형성하는 역할을 하고 특히 뼈와 피부(진피)에 함량이 높다. 콜라겐을 이루는 기본단위는 troprocollagen으로 분자 내 또는 분자간 공유결합성 가교결합을 이룸으로서 물리적 또는 생물학적 안정성을 가지며, 콜라겐을 이루는 아미노산의 조성은 그 type에 따라 다소 차이가 있으나 보통 glycine이 전체의 1/3정도이며, proline이 1/4, hydroxyproline이 1/7 정도 차지하고 있다. 콜라겐을 구성하는 아미노산인 hydroxyproline은 hydroxylysine과 함께 일정비율(12.5 ~ 14%)을 이룸으로써 콜라겐을 정량하는 지표성분으로 활용되고 있으며 콜라겐의 구성 비율은 생물의 종류와 연령에 따라 차이가 있는 것으로 알려져 있다.
Collagen is an abundant fibrous structural protein of animal origin, which accounts for 30% of the total protein of vertebrates and invertebrates, forms a triple helix, and forms various forms of skin, bone and tooth organic matter in various forms. Especially high in bones and skin (dermis). The basic unit that forms collagen is troprocollagen, which has physical or biological stability by covalent crosslinking between molecules or molecules, and the amino acid composition of collagen varies slightly depending on its type, but glycine is one third of the total. Proline accounts for 1/4 and hydroxyproline accounts for 1/7. Hydroxyproline, an amino acid constituting collagen, is used as an indicator component to quantify collagen by forming a certain ratio (12.5 to 14%) along with hydroxylysine, and the composition ratio of collagen is known to vary depending on the species and age. .

수산물을 이용한 콜라겐에 관한 연구는 불가사리, 오징어, 해파리, 홍어 등의 척추동물 및 무척추동물의 결합 조직 및 피부에서 추출한 콜라겐의 연구가 많이 보고되고 있다. 이러한 어류 콜라겐에 대한 연구로는 꽃도미 (Lutjanus lutjanus) (Kittiphattanabawon 등 2005), 농어 (Lates niloticus) (Muyonga 등 2004), 황다랑어 (Thunnus albacares) (Woo 등 2008), 홍어 (Sebastes mentella) (Wang 등 2008), 밍크고래 (Balaenoptera acutorostrata) (Nagai 등 2008), 흑돔 (Pogonias cromis)와 양돔 (Archosargus probatocephalsu) (Ogawa 등 2003) 등을 이용하여 추출조건, 물리화학적 특성 등 다양한 연구가 보고되고 있다.
Research on collagen using aquatic products has been reported a lot of studies on collagen extracted from connective tissue and skin of vertebrate and invertebrates such as starfish, squid, jellyfish, skate. Studies on such fish collagen include bream ( Lutjanus lutjanus ) (Kittiphattanabawon et al. 2005), perch ( Lates niloticus ) (Muyonga et al. 2004), yellowfin tuna ( Thunnus albacares ) (Woo et al. 2008), and skate ( Sebastes mentella) (Wang et al. Et al 2008), mink whales ( Balaenoptera acutorostrata ) (Nagai et al. 2008), black sea bream ( Pogonias cromis ) and sheep bream ( Arkosargus probatocephalsu ) (Ogawa et al. 2003).

상기 수산물에 관한 콜라겐 연구는 수산 가공 부산물로 얻어지는 껍질, 뼈 및 비늘 등을 이용한 연구가 대부분이다. 어류 가공 부산물로 얻어지는 껍질과 뼈는 대략 30% 이상으로 그 양이 많을 뿐 아니라 콜라겐을 다량 함유하고 있으므로 수산가공 부산물을 이용하여 육상동물 유래 콜라겐을 대체할 수 있는 어류 콜라겐의 제조는 그 의미가 크다.
Collagen research on the aquatic products is mostly conducted using shells, bones and scales obtained as a by-product of fish processing. The shells and bones obtained from fish processing by-products are more than 30% and contain large amounts of collagen. Therefore, the production of fish collagen that can replace terrestrial animal-derived collagen using fish processing by-products is significant. .

한편, 콜라겐은 의약품, 화장품 및 식품분야에서 다양하게 이용되어 왔으며 최근에는 항피부노화 및 피부 탄력개선, 관절염 예방 등으로 확대되고 있다. 현재 유통되고 있는 콜라겐 제품은 주로 소, 돼지 등 육상동물에서 유래한 것으로 최근 광우병 및 구제역 발생으로 인해 콜라겐을 제조하지 못하는 문제가 발생하기도 하였다. 따라서 육상동물 콜라겐을 대체하기 위한 연구의 필요성이 높아지고 있고, 광우병 및 구제역으로부터 안전한 수산자원을 이용한 콜라겐의 추출에 대한 관심이 높아지고 있다.
On the other hand, collagen has been used in a variety of fields, such as pharmaceuticals, cosmetics and foods, and has recently been expanded to anti-aging skin, skin elasticity, arthritis prevention. Currently, collagen products are mainly derived from terrestrial animals such as cows and pigs. Recently, collagen production failed due to mad cow disease and foot and mouth disease. Therefore, the necessity of research to replace terrestrial animal collagen is increasing, and there is a growing interest in extracting collagen using safe fishery resources from mad cow disease and foot-and-mouth disease.

그런데,콜라겐의 공급원이 부족한 상황에서 많은 수산물을 소비하고 있는 우리나라는 어패류 가공 처리 시 어류가공잔사가 증가하고 있다. 그 중 명태는 소비량이 약 40만 톤이며 그 중 껍질이 8 ~ 10%로 상당량의 부산물이 배출되고 있으나 대부분 이용도가 낮아 폐기되어 자원 낭비는 물론 환경오염의 원인이 되기도 한다. 오징어는 연간 어획량이 세계 2위인 30 ~ 40만 톤으로 그 중 15%가 동해안에서 어획되고 있다. 오징어껍질의 콜라겐 함량은 15% 이상으로 오징어 가공 시 발생하는 부산물을 이용할 필요가 있고 이 오징어껍질의 콜라겐을 정제한 활용이 최근 들어 증가하는 추세이며 이러한 부산물로 콜라겐을 산업적 소재로 이용할 수 있다면 그 의미는 매우 클 것으로 생각된다.
By the way, in the situation where there is a shortage of collagen source and consume a lot of marine products, fish processing residues are increasing when processing fish and shellfish. Among them, pollock consumes about 400,000 tons, of which shells are 8-10%, and a considerable amount of by-products are emitted, but most of them are discarded due to their low use, which can lead to waste of resources and environmental pollution. Squid has an annual catch of 30-400,000 tons, the second largest in the world, of which 15% is caught from the east coast. The collagen content of squid shell is more than 15%, and it is necessary to use by-products generated during squid processing, and the utilization of refined collagen of squid shells is increasing in recent years. Is thought to be very large.

그러나 단백질을 산으로 가수분해할 경우 tryptophan, cysteine 등의 필수아미노산의 손실을 가져오는 단점이 있으며 산 분해형의 경우 중화공정과정에서 생기는 식염을 조절할 필요가 있지만 효소 분해형에서는 이러한 공정이 필요 없기 때문에 제품화 단계에서 식염의 조정이 쉽다. 또한 산에 의한 단백질 분해는 보통 아미노산 말단까지 분해되지만 효소분해는 단백질을 한정 분해시키므로 그 분해물 중에는 아미노산과 저분자 펩티드가 혼합된 경우가 많다.
However, hydrolysis of proteins to acids results in the loss of essential amino acids such as tryptophan and cysteine. In the case of acid degradation, it is necessary to control the salts generated during the neutralization process. Adjustment of salt is easy in the commercialization stage. Proteolytic degradation by acids is usually degraded to the amino acid terminus, but enzymatic degradation decomposes the protein in a limited way, so that the degradation products often contain amino acids and low molecular weight peptides.

본 발명은 상기와 같은 점들을 감안하여 안출한 것으로 어류 부산물로부터 콜라겐을 추출함에 있어서, 효소(Alcalase, Neutrase)를 사용함에 그 목적이 있다.
The present invention has been made in view of the above-mentioned point, and has an object to use enzymes (Alcalase, Neutrase) in extracting collagen from fish by-products.

본 발명의 상기 목적은 어류 부산물에 Alcalase 또는 Neutrase 효소를 적용하여 효소분해하는 단계와 추출·분리된 콜라겐의 이화학적 성질을 측정하는 단계를 통하여 달성하였다.
The object of the present invention was achieved through the step of enzymatic digestion by applying Alcalase or Neutrase enzyme to fish by-products and measuring the physicochemical properties of extracted and separated collagen.

본 발명은 어류 부산물인 오징어껍질과 명태껍질을 자원화하는 효과가 있고, 생체 내 흡수율이 높은 화장료 조성물을 제공하는 뛰어난 효과가 있다.
The present invention has the effect of resourceizing the squid shell and pollack shell which are fish by-products, and has an excellent effect of providing a cosmetic composition with high absorption rate in vivo.

도 1은 본 발명의 바람직한 실시예를 보인 효소분해 공정도이다.
도 2는 본 발명의 collagen의 FT-IR 스펙트럼 비교도이다.
도 3은 본 발명 collagen의 입자크기를 보인 사진도이다.
1 is an enzymatic process chart showing a preferred embodiment of the present invention.
Figure 2 is a comparison of the FT-IR spectrum of collagen of the present invention.
Figure 3 is a photograph showing the particle size of the collagen of the present invention.

본 발명에서 사용한 오징어껍질과 명태껍질은 (주)바다누리(Daegu, Korea)에서 제공 받았으며 -70℃ deep freezer에 저장하면서 실험재료로 사용하였다. 콜라겐 표준품은 Collagen, from calr(E.C 232-697-4), 대조구로는 Marine Collagen(Dermalab Co., Ltd, Gangwondo, Korea)을 사용하였다.
The cuttlefish shell and pollack shell used in the present invention were provided by Baan Nuri Co., Ltd. (Daegu, Korea) and used as experimental materials while stored in a -70 ° C deep freezer. Collagen standard was used as Collagen, from calr (EC 232-697-4) and Marine Collagen (Dermalab Co., Ltd, Gangwondo, Korea) as a control.

실험시료 준비Sample Preparation

명태와 오징어껍질로부터 콜라겐의 제조는 알칼리 처리와 효소 가수분해 2가지 공정을 통해 이루어졌다. 우선 시료를 수세하여 이물질을 제거하고 알칼리 처리 공정은 명태와 오징어껍질의 비단백질 제거의 목적으로 실시되었고, 효소 가수분해는 알칼리 처리한 원료에서 콜라겐의 추출을 용이하게 하기 위해 실시하였다.
Collagen production from pollock and squid skin was carried out through two processes: alkali treatment and enzymatic hydrolysis. First, the sample was washed with water to remove foreign substances, and the alkali treatment process was carried out for the purpose of removing non-protein of pollack and squid shell, and enzymatic hydrolysis was performed to facilitate the extraction of collagen from the alkali treated raw material.

콜라겐의 추출은 도 1과 같이 하였다. 오징어의 알칼리 처리는 원료에 0.1N, 0.2N, 0.3N NaOH 용액을 원료 대비 5배(v/w) 가하여 4에서 24시간 동안 비콜라겐 물질을 제거 및 추출수율 향상을 위해 처리하였다. 이후 잔존하는 NaOH를 제거하기 위하여 수세를 하였다. 효소가수분해 공정에서는 세척한 시료에 10배량의 증류수에 0.1%(v/v)의 Alcalase, Neutrase를 각각 가하여 24시간 동안 교반, 추출한 후 여과 하였다. 명태 또한 오징어와 동일하게 처리 후 동결건조하여 총 12개의 동결건조 시료를 얻었다. 이 후 오징어, 명태 유래 콜라겐의 최적 추출 조건을 확인하기 위하여 이화학적 특성을 조사하였다.
Collagen extraction was performed as shown in FIG. 1. Alkaline treatment of the squid was added to the raw material 0.1N, 0.2N, 0.3N NaOH solution 5 times (v / w) compared to the raw material was treated for 4 to 24 hours to remove the non-collagen material and to improve the extraction yield. Then, washed with water to remove the remaining NaOH. In the enzymatic hydrolysis process, 0.1% (v / v) of Alcalase and Neutrase were added to 10 times the amount of distilled water, and the mixture was stirred, extracted for 24 hours, and filtered. Pollack and squid were processed and lyophilized to obtain a total of 12 lyophilized samples. The physicochemical properties were then investigated to determine the optimal extraction conditions for squid and pollack-derived collagen.

수율 측정Yield measurement

수율(yield)은 추출액을 회전 감압 증발기(Rotavapor R-123, Buchi, Swizerland)로 감압 농축한 후 건조오븐(Forced convection oven, Jeico Tech, Korea)을 이용하여 105℃ 상압가열건조법으로 항량이 될 때까지 건조한 후 추출액 조제에 사용한 원료 건물량에 대한 고형분 수율(%, d.b.)로 나타내었다.
Yield is concentrated under reduced pressure with a rotary decompression evaporator (Rotavapor R-123, Buchi, Swizerland) and then subjected to 105 ° C atmospheric pressure drying using a dry oven (Forced convection oven, Jeico Tech, Korea). After drying to a solid content yield (%, db) relative to the amount of building material used to prepare the extract.

오징어 및 명태껍질로부터 추출하여 얻은 콜라겐의 수율을 조사한 결과는 하기의 [표 1]과 같다. 오징어껍질에서는 0.3N NaOH처리한 Neutrase, 명태껍질에서는 0.3N NaOH를 처리한 Alcalase와 0.5N NaOH를 처리한 Neutrase에서 각각 비슷한 수치로 가장 높게 나타났으며 평균적으로 Alcalase보다 Neutrase에서 높은 수율을 나타내었고 오징어 보다는 명태에서 훨씬 높은 수율을 나타내었다.The results of investigating the yield of collagen extracted from squid and pollack shells are shown in Table 1 below. In squid shells, 0.3N NaOH-treated Neutrase and pollack shells showed the highest values in Alcalase and 0.3N NaOH-treated Neutrase, respectively. The yield was much higher than pollack.

[표 1] Contents of Alcalase and Neutrase soluble collagens prepared from squid muscle and Alaska pollockTable 1 Contents of Alcalase and Neutrase soluble collagens prepared from squid muscle and Alaska pollock

Figure pat00001

Figure pat00001

단백질 함량 산출Protein content calculation

단백질 함량은 Lowry 법으로 측정하였으며 BSA(bovine serum albumin, Sigma-Aldrich Co.)를 표준품으로 한 표준곡선에 의하여 함량을 산출하였다.
Protein content was measured by the Lowry method and the content was calculated by a standard curve using BSA (bovine serum albumin, Sigma-Aldrich Co.) as a standard.

단백질 함량을 측정한 결과 전체적인 함량은 오징어보다 명태껍질에서 높은 것을 알 수 있었다. 오징어껍질의 경우 30.3 ~ 38.3% 로 가장 높은 단백질 함량을 나타낸 것은 0.1N NaOH에서 Neutrase를 처리한 구간이었으며 그 다음으로는 0.2N NaOH에서 Neutrase를 처리한 구간이었으며 이 둘을 제외한 나머지 구간에서는 단백질의 함량 차이가 크게 나지 않았다. 명태껍질은 43.0 ~ 62.7% 함량을 나타내었으며 0.1N NaOH에서 Nuetrase에서 처리한 구간에서 가장 높은 함량을 나타내었고 다음으로 0.3N NaOH에서 Neutrase를 처리한 구간에서 57.3%로 높게 나타나 명태껍질의 경우 Netrase에서 단백질의 함량이 높았다. 이 같은 현상은 콜라겐의 추출시의 효소처리가 콜라겐과 결합하고 있는 non-helical domain을 분해함으로써 콜라겐 분자사이의 공유결합을 절단시켜 콜라겐의 용해도를 높이는 작용을 하는 것과 관련이 있는 것으로 사료된다.
As a result of measuring the protein content, the overall content was found to be higher in the pollack shell than the squid. In the case of squid shells, the highest protein content was 30.3 ~ 38.3%, which was treated with Neutrase in 0.1N NaOH, followed by Neutrase in 0.2N NaOH, and the contents of protein in the remaining sections except these two. The difference wasn't much. The content of pollack shell was 43.0 ~ 62.7%, and the highest content was found in the section treated with Nuetrase in 0.1N NaOH, followed by 57.3% in the section treated with Neutrase in 0.3N NaOH. The protein content was high. This phenomenon is thought to be related to the enzymatic treatment of collagen extraction by breaking down the non-helical domains that bind collagen, thereby reducing the covalent bonds between collagen molecules and increasing the solubility of collagen.

콜라겐 함량 및 수율Collagen Content and Yield

콜라겐 함량 및 수율은 Bergman 등의 방법을 수정하여 측정하였다. 즉, 알칼리처리, 수세, 효소처리 하여 동결건조한 조 콜라겐 300 mg에 6N HCl 3 ml를 가한 후 발생하는 가스를 흔들어 제거한 다음 110℃에서 24시간 가수분해 한 후 50 mL로 정용하여 측정용 시료로 하였다. 이 시액 0.3 mL에 0.6 mL의 isopropanol을 가한 후 7% chloramine T용액과 0.25M sodium acetate, 0.13M trisodium citrate, 0.03M citric acid 및 0.3% isopropanol 1:4(v/v)의 비율로 혼합한 용액 0.3 mL을 가하여 상온에서 4분 동안 산화시켰다. 여기에 Ehrlich 시약과 isopropanol을 3:13(v/v)의 비율로 혼합한 액 4 mL 가하여 60℃의 water bath에서 25분간 반응시킨 후 558 nm에서 흡광도를 측정하였다. Hydroxyproline 함량은 hydroxyproline을 표준품으로 한 표준곡선에 의하여 함량을 산출하였고 콜라겐 함량은 아래의 계산식으로 계산하였다.
Collagen content and yield were determined by modifying the method of Bergman et al. In other words, 3 ml of 6N HCl was added to 300 mg of lyophilized crude collagen by alkali treatment, washing with water, and enzymatically treated. The resulting gas was shaken to remove gas, hydrolyzed at 110 ° C for 24 hours, and then used as a sample for measurement by 50 mL. . 0.6 mL of isopropanol was added to 0.3 mL of this solution, followed by mixing 7% chloramine T solution with 0.25M sodium acetate, 0.13M trisodium citrate, 0.03M citric acid, and 0.3% isopropanol 1: 4 (v / v). 0.3 mL was added and oxidized at room temperature for 4 minutes. 4 mL of a mixture of Ehrlich reagent and isopropanol in a ratio of 3:13 (v / v) was added thereto, and the resultant was reacted in a water bath at 60 ° C. for 25 minutes, and the absorbance was measured at 558 nm. The content of hydroxyproline was calculated by the standard curve using hydroxyproline as standard, and the content of collagen was calculated by the following formula.

Figure pat00002
Figure pat00003

Figure pat00002
Figure pat00003

Hydroxyproline의 함량으로부터 산출한 순 콜라겐 함량은 오징어껍질에서 8.46 ~ 26.58%로 명태껍질에서는 5.80 ~ 25.89%로 Alcalse를 처리한 구간보다 Nutrase를 처리한 구간에서 높은 함량을 나타내었다. 두 구간 모두 0.1N NaOH에서 Nutrase를 처리한 구간에서 가장 높은 콜라겐함량을 나타내었으며, 오징어껍질과 명태껍질 경우 0.3N NaOH에서 Nuetrase를 처리한 구간이 0.1N NaOH에서 Neutrase를 처리한 조건과 비슷한 함량을 나타내어 콜라겐의 함량의 경우 Nuetrase를 사용한 구간에서 가장 많은 콜라겐 함량이 나타나는 것을 알 수 있어 Alcalase 보다 Neutrase에서 콜라겐 수율 측면에서 경제적인 것으로 사료된다. 콜라겐은 구조적 단백질로서의 특이성 때문에 일반적으로 추출이 어려우며, 이러한 콜라겐 분자는 helical domain과 N- 및 C-말단에 non-helical domain으로 구성되어 있는데 non-helical 부분과 helical domain이 공유결합으로 가교되어 섬유소를 이룬다. 이 섬유소는 산성용액에서 용해되지 못하고 콜로이드 형상을 나타낸다. 따라서 효소로 가교결합을 제거함으로써 콜라겐분자를 용해 상태로 전환시키는 방법이 제시되어왔다. 또한 효소 처리시 콜라겐 분자는 helical domain이 특정 조건에서 효소반응에 대한 저항성을 가져 이때 활성화 된 효소가 non-helical domain을 분해하여 콜라겐 분자 사이의 공유결합을 절단함으로써 콜라겐의 용해도를 높이는 작용을 한다.
The net collagen content calculated from the content of hydroxyproline was 8.46 ~ 26.58% in the squid shell and 5.80 ~ 25.89% in the pollack shell, which was higher in the Nutrase treated section than the Alcalse treated section. Both sections showed the highest collagen content in the section treated with Nutrase in 0.1N NaOH, and the section treated with Nuetrase in 0.3N NaOH in the case of squid shell and pollack shell showed similar content to Neutrase treatment in 0.1N NaOH. In the case of collagen content, the highest collagen content was shown in the section using Nuetrase, which is considered to be more economical in terms of collagen yield in Neutrase than Alcalase. Collagen is generally difficult to extract due to its specificity as a structural protein, and these collagen molecules are composed of helical domains and non-helical domains at the N- and C-terminus. Achieve. This fiber does not dissolve in acidic solution and shows a colloidal shape. Therefore, a method of converting collagen molecules into a dissolved state by removing crosslinking with an enzyme has been proposed. In addition, the collagen molecule has resistance to enzymatic reaction under specific conditions during enzyme treatment, and the activated enzyme breaks down the non-helical domain to cut the covalent bonds between collagen molecules to increase the solubility of collagen.

아미노산 조성 분석Amino Acid Composition Analysis

건조된 콜라겐 시료 100 mg을 glass tube에 넣고 6N HCl 용액 3 mL에 녹인 후 110℃에서 24시간 동안 열풍건조기에서 산가수분해 시켰다. 이 후 콜라겐 시료를 감압건조 하여 HCl을 제거한 다음 구연산 완충용액을 사용하여 20 mL로 정용한 후 아미노산 자동분석기(Biochrom 30, Biochrom co., UK)로 아미노산 조성을 분석하였다.100 mg of the dried collagen sample was placed in a glass tube, dissolved in 3 mL of 6N HCl solution, and acid-hydrolyzed in a hot air dryer at 110 ° C. for 24 hours. Thereafter, the collagen sample was dried under reduced pressure, HCl was removed, and then, the solution was purified to 20 mL using citric acid buffer solution.

콜라겐의 아미노산 구성은 Gly-X-Y 배열이 반복되는 특징을 가지고 있다. 일반적으로 Gly-X-Y가 Glycine-Proline-Hydroxyproline일 때 hydroxylproline (Hyp) 잔기는 콜라겐 triple helix의 열 안정성을 높여 준다. 또한 hydroxyproline의 함량은 콜라겐으로부터 유도되는 젤라틴의 중요한 기능적 특성인 겔강도와 같은 물리적 특성에 중요한 영향을 미치며, 함량이 높을수록 좋은 물리적 특성을 가진다고 알려져 있다. 따라서 imino acid인 proline, hydroxyproline 잔기의 함량은 콜라겐에 있어서 매우 중요한 것이라 할 수 있다. 오징어껍질 및 명태껍질 콜라겐의 아미노산 분석결과 각각 glycine의 함량이 아미노산 중 가장 많은 비중을 차지하였다(표 2). 오징어껍질의 glycine 함량은 0.1N NaOH에서 Alcalase를 처리한 구간에서 가장 높은 194.180 mmole/100g을 나타내었으며 다음으로는 0.1N NaOH에서 Neutrase를 첨가한 구간에서 높은 함량을 나타내어 Proline의 함량은 0.1N NaOH에서 Neutrase를 처리한 구간에서 가장 높은 함량을 나타내어 오징어껍질의 경우 NaOH를 0.1N에서 처리한 구간에서 glycine과 proline의 함량이 높은 것을 알 수 있었다. 명태껍질의 경우도 오징어보다 전체적인 함량은 높지만 비슷한 경향을 나타내어 Glycine의 경우 0.1N NaOH에서 Alcalase를 처리한 구간에서 291.540 mmole/100g으로 가장 높은 함량을 나타내었고 proline의 경우 0.1N NaOH에서 Nutrase를 처리한 구간에서 83.640으로 가장 높은 함량을 나타내었다. The amino acid composition of collagen has the characteristic of repeating the Gly-X-Y sequence. In general, when Gly-X-Y is Glycine-Proline-Hydroxyproline, hydroxylproline (Hyp) residues enhance the thermal stability of collagen triple helix. In addition, the content of hydroxyproline has an important effect on physical properties such as gel strength, which is an important functional property of gelatin derived from collagen, and it is known that higher content has better physical properties. Therefore, the content of imino acid proline and hydroxyproline residues is very important for collagen. As a result of amino acid analysis of squid shell and pollack shell collagen, glycine content accounted for the largest proportion among amino acids (Table 2). The glycine content of squid shells was the highest at 194.180 mmole / 100g in the Alcalase-treated section at 0.1N NaOH, followed by higher content in the section to which Neutrase was added at 0.1N NaOH. The squid shell showed the highest content in the neutrase treated section, and the glycine and proline contents were high in the NaOH treated section at 0.1N. In the case of pollack shells, the overall content was higher than that of squid, but showed similar tendency. Glycine showed the highest content of 291.540 mmole / 100g in the Alcalase-treated section at 0.1N NaOH and Nutrase in 0.1N NaOH at the proline line. The highest content was 83.640 in the interval.

[표 2] Amino acid composition of squid muscle and Alaska pollock at extraction conditionsTable 2 Amino acid composition of squid muscle and Alaska pollock at extraction conditions

Figure pat00004
Figure pat00004

전자공여능 측정Electron donating ability measurement

항산화성은 α,α'-diphenyl-β-picrylhydrazyl(DPPH)를 사용하는 Blois의 방법에 준하여 517 nm에서 흡광도를 측정하였다. 시료 0.5 mL에 DPPH 용액 5 mL를 첨가하여 혼합한 뒤 15분 후에 517 nm에서 흡광도를 측정하였으며, 전자공여능은 시료첨가구와 비첨가구의 흡광도 차이를 백분율로 표시하였다 Antioxidant was measured for absorbance at 517 nm according to Blois' method using α, α'-diphenyl-β-picrylhydrazyl (DPPH). 15 mL of DPPH solution was added to 0.5 mL of the sample, and after 15 minutes, the absorbance was measured at 517 nm. The electron donating ability was expressed as a percentage of the absorbance difference between the sample and non-additions.

Figure pat00005
Figure pat00005

A : 시료첨가구의 흡광도A: Absorbance of Sample Addition

B : blank 흡광도B: blank absorbance

C : 대조구 흡광도
C: Control absorbance

오징어와 명태를 조건별로 동결건조한 시료 12개의 전자공여능을 비교한 결과는 하기 [표 3]과 같다. The results of comparing the electron donating ability of the 12 samples squid and pollack freeze-dried according to the conditions are shown in Table 3 below.

[표 3] Electron donating ability and SOD-like activities of squid muscle and Alaska pollock at optimal conditions at extraction conditionsTable 3 Electron donating ability and SOD-like activities of squid muscle and Alaska pollock at optimal conditions at extraction conditions

Figure pat00006

Figure pat00006

전자공여능은 각각 NaOH의 농도가 낮은 추출물에서 높은 활성을 나타내었다. SMA는 13.26 ~ 14.05%, SMN은 13.30 ~ 14.68%로 가장 높은 활성을 나타낸 구간은 SMN 0.1N에서 14.68%였으며 APA는 10.20 ~ 11.81%, APN은 11.26 ~ 12.93%로 APN 0.1N에서 12.93%의 활성을 나타내어 명태보다 오징어에서 조금 더 높은 활성을 나타내었다. 콜라겐함량과 비교할 경우 콜라겐 함량이 높게 나타난 조건에서 전자공여능의 활성도 높게 나타냄을 알 수 있었다. 전자공여능은 free radical을 환원 시키는 힘으로 그 값이 높을수록 항산화 활성이 높음을 나타내며, 생체의 노화를 억제하는 척도가 된다.
Electron donating ability showed high activity in extracts with low concentration of NaOH, respectively. The highest activity was 13.26 ~ 14.05% in SMA, 13.30 ~ 14.68% in SMN and 14.68% in 0.1N in SMN, 10.20 ~ 11.81% in APA, and 11.26 ~ 12.93% in APN and 12.93% in APN 0.1N. It showed slightly higher activity in squid than pollack. Compared with the collagen content, it was found that the electron donating activity was also high under the conditions in which the collagen content was high. The electron donating ability is a force for reducing free radicals, and the higher the value, the higher the antioxidant activity.

Superoxide dismutase(SOD) 유사활성 측정Superoxide dismutase (SOD) -like activity measurement

SOD 유사활성은 Markllund와 Marlund의 방법에 따라 과산화수소(H2O2)로 전환시키는 반응을 촉매하는 pyrogallol의 생성량을 측정하여 SOD유사활성으로 나타내었다. 일정 농도의 시료 0.2 mL에 pH 8.5로 보정한 tris-HCl buffer (50 mM tris[hydroxymethyl] amino-methane + 10 mM EDTA, pH 8.5) 3 mL와 7.2 mM pyrogallol 0.2 mL 를 첨가하여 25℃에서 10분간 반응시킨 후 1N HCl 0.1 mL를 가하여 반응을 정지시켰다. 반응액 중 산화된 pyrogallol의 양은 420 nm에서 흡광도를 측정하였다. SOD유사활성은 시료의 첨가구와 무 첨가구 사이의 흡광도의 차이를 백분율로 나타내었다.
SOD-like activity was expressed as SOD-like activity by measuring the amount of pyrogallol catalyzing the conversion of hydrogen peroxide (H 2 O 2 ) according to the method of Markllund and Marlund. To 0.2 mL of sample, add 3 mL of tris-HCl buffer (50 mM tris [hydroxymethyl] amino-methane + 10 mM EDTA, pH 8.5) and 0.2 mL of 7.2 mM pyrogallol adjusted to pH 8.5 for 10 minutes at 25 ° C. After the reaction, 0.1 mL of 1N HCl was added to stop the reaction. The amount of oxidized pyrogallol in the reaction solution was measured for absorbance at 420 nm. SOD-like activity was expressed as a percentage of the difference in absorbance between the addition and no addition of the sample.

Figure pat00007

Figure pat00007

SOD유사활성은 상기 [표 3]에 나타내었으며 비교한 결과 전자공여능과 비슷하게 NaOH의 농도가 낮은 구간에서 더 높은 활성이 나타났으며 NaOH의 농도가 낮을수록 SOD유사활성이 비례적으로 증가하였다. 각각의 활성은 오징어의 경우 14.64 ~ 22.76%를 나타내었으며, 명태는 12.34 ~ 21.74%를 나타내어 명태보다 오징어에서 더 높은 SOD유사활성을 나타냄을 볼 수 있었다. SOD는 체내 항산화제 효소의 하나로 superoxide anion radical을 hydrogen peroxide로 전환하는데 관여하나 SOD 유사활성은 이러한 반응성을 억제함으로서 생체를 보호하는 역할을 한다.
The SOD-like activity is shown in the above [Table 3]. As a result of comparison, the SOD-like activity was higher in the low NaOH concentration, and the SOD-like activity was increased proportionally with the lower NaOH concentration. Each activity was 14.64 ~ 22.76% in squid, and pollack was 12.34 ~ 21.74%, indicating higher SOD-like activity in squid than pollack. SOD is one of the antioxidant enzymes in the body that is involved in the conversion of superoxide anion radicals to hydrogen peroxide, but SOD-like activity protects the body by inhibiting this reactivity.

FT-IR (Fourier transform infrared spectrocoppy) 분석Fourier transform infrared spectrocoppy (FT-IR) analysis

콜라겐의 FT-IR 분석은 FT-IR spectrophotometer(JASCO FT/IR-4100, JASCO co., JPN)를 이용하여 600부터 4,000-1 까지 데이터 포착 속도로 분석하였다. FT-IR 분석 곡선은 Jasco Spectra Manager Version 2를 이용하여 나타내었다.
The FT-IR analysis of collagen was analyzed at 600 to 4,000 -1 data capture rate using an FT-IR spectrophotometer (JASCO FT / IR-4100, JASCO co., JPN). FT-IR analysis curves are shown using Jasco Spectra Manager Version 2.

오징어와 명태껍질로부터 콜라겐을 추출하기 위한 실험에서 가장 좋은 추출수율을 보인 구간으로 선정된 0.1N 알카리 처리 후 Neutrase로 효소분해한 오징어 및 명태껍질의 FT-IR 스펙트럼 특성을 콜라겐 표준품과 비교하였다(도 2). 콜라겐의 아미노산 구성은 Glycine-Proline-Hydroxyproline imino acids 로 이루어져 있으며 콜라겐의 분자구조는 glycine의 -NH group과 polypeptide chain의 carbonyl group인 C=O로 이루어져 있다. Amide Ⅱ Band인 NH는 1500-1550cm-1, Amide Ⅰ Band인 C=O는 1600-1700cm-1 Amide A인 N-H는 3200-3600-1의 Wavenumber에서 각각을 나타내고 있다. 본 실험에는 콜라겐 수율이 가장 높게 나타난 오징어 및 명태 조건에서 추출한 콜라겐을 시료로 하여 측정하였다. 그 결과 콜라겐 standard인 (A)의 경우 최대 peak band는 각각 1631.48-1과 1549.52-1 3321.78-1로 각각 Amide Ⅰ와 Amide Ⅱ, Amide A범위에 포함되었고 SMN 0.1N과 APN 0.1N에서도 각각 Amide Ⅰ과 Amide Ⅱ 그리고 Amide A의 범위안의 Wavenumber속에 포함되어 콜라겐 standard와 비슷한 파장값을 나타내므로 각각의 추출 조건에서 그 물질이 콜라겐의 화학구조와 동일함을 알 수 있다.
The FT-IR spectral characteristics of squid and pollack shells digested with Neutrase after 0.1N alkali treatment, selected as the best extraction yield in the experiment for extracting collagen from squid and pollack shells, were compared with the collagen standard (Fig. 2). The amino acid composition of collagen is composed of Glycine-Proline-Hydroxyproline imino acids. The molecular structure of collagen is composed of -NH group of glycine and C = O, carbonyl group of polypeptide chain. Amide Ⅱ Band is NH is 1500-1550cm -1, the C = O Amide Ⅰ Band is 1600-1700cm -1 Amide A is NH is shown in each of 3200-3600 Wavenumber -1. In this experiment, the collagen extracted under the squid and pollack conditions, which showed the highest collagen yield, was measured as a sample. As a result, for the collagen standard (A), the maximum peak bands were 1631.48 -1 and 1549.52 -1 3321.78 -1 , respectively, and were included in the Amide I, Amide II, and Amide A ranges, respectively, and the Amide I in SMN 0.1N and APN 0.1N, respectively. It is included in the wavenumber within the range of and Amide Ⅱ and Amide A, and shows similar wavelength value as collagen standard. Therefore, it can be seen that the material is identical to the chemical structure of collagen under each extraction condition.

Particle size 분석 및 SEM (scanning electron microscope)Particle size analysis and scanning electron microscope

건조분말의 평균크기를 알아보기 위해서 laser particle size analyzer(LS-320, Beckman Coulter co., USA)를 이용하여 isopropyl alcohol에 분산시켜 측정하였다.
In order to determine the average size of the dry powder was measured by dispersing in isopropyl alcohol using a laser particle size analyzer (LS-320, Beckman Coulter Co., USA).

표면 구조를 자세히 관찰하기 위해서 gold ion coating한 후 주사형 전자현미경(scanning electron microscope, 160A, Shimazu, Japan)을 이용하였다. 전자현미경을 이용한 관찰은 3.0kV에서 100배 및 1000배 배율로 관찰하였다.
In order to observe the surface structure in detail, after scanning with gold ion coating, a scanning electron microscope (160A, Shimazu, Japan) was used. Observations using an electron microscope were observed at 100 and 1000 times magnification at 3.0 kV.

평균입도를 측정한 결과는 [표 4]와 같았다. SMN 0.1N-FD의 평균값은 187.5 ㎛를 나타내었고 SMN 0.1N-SD 입자 크기의 평균은 50.67 ㎛로 FD에 비하여 평균 입자 크기가 작았다. APN 0.1N의 경우도 SMN 0.1N과 비슷하게 APN 0.1N-FD에서 139.8 ㎛ APN 0.1N-SD에서 40.43 ㎛로 SD에서 입자의 크기가 작음을 알 수 있었다. 도 3의 입자모양에서도 FD의 경우 입자의 크기가 크고 구형이 아닌 거친 모양을 나타내었지만 SD의 경우 대체적으로 구형을 이루며 균일한 입자 모양을 나타내었다. 이 결과 오징어껍질보다 명태껍질에서, FD 보다 SD에서 더 작은 입자의 크기와 균일한 모양을 나타내어 콜라겐을 이용한 제품화 개발 시 분무건조를 통한 명태껍질 추출 콜라겐이 생체 내 흡수율이 더 높을 것으로 기대된다.
The average particle size was measured as shown in [Table 4]. The average value of SMN 0.1N-FD was 187.5 μm, and the average size of SMN 0.1N-SD particle size was 50.67 μm, which was smaller than that of FD. In the case of APN 0.1N, similar to SMN 0.1N, 139.8 μm in APN 0.1N-FD showed 40.43 μm in APN 0.1N-SD. In the particle shape of FIG. 3, the FD showed a large grain size and a rough shape rather than a spherical shape, but SD showed a generally spherical shape and a uniform particle shape. As a result, pollack shell extract collagen through spray drying is expected to have higher in vivo absorption rate during the development of product using collagen because it shows smaller particle size and uniform shape in pollack shell than in squid shell and SD than FD.

[표 4] Particle size(㎛) of freeze dried and spray dried powders MPAP freeze drying and spray dryingTable 4 Particle size (μm) of freeze dried and spray dried powders MPAP freeze drying and spray drying

Figure pat00008

Figure pat00008

본 발명은 효소분해 방법을 적용하여 어류 부산물로부터 신규한 화장료 조성물의 신소재를 제공하는 뛰어난 효과가 있으므로 화장품 산업상 매우 유용한 발명인 것이다.The present invention is a very useful invention in the cosmetic industry because it has an excellent effect of applying the enzyme decomposition method to provide a new material of the novel cosmetic composition from fish by-products.

Claims (5)

어류 부산물을 효소분해함을 특징으로 하는 콜라겐 제조방법
Collagen manufacturing method characterized by enzymatically decomposing fish by-products
제1항에 있어서, 상기 효소는 Alcalase 또는 Neutrase 중 어느 하나임을 특징으로 하는 방법
The method of claim 1, wherein the enzyme is one of Alcalase or Neutrase
제1항에 있어서, 상기 어류 부산물이 오징어껍질 또는 명태껍질인 것을 특징으로 하는 방법
The method of claim 1, wherein the fish by-products are squid shells or pollack shells.
제1항 내지 제3항의 어느 하나의 방법으로 제조되는 콜라겐 분말
Collagen powder prepared by any one of claims 1 to 3
제4항 기재의 콜라겐 분말을 유효성분으로 함유하는 화장료 조성물Cosmetic composition containing the collagen powder of claim 4 as an active ingredient
KR1020120016328A 2012-02-17 2012-02-17 Collagen from squid muscle skin and alaska pollock and production method thereof KR20130094989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120016328A KR20130094989A (en) 2012-02-17 2012-02-17 Collagen from squid muscle skin and alaska pollock and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120016328A KR20130094989A (en) 2012-02-17 2012-02-17 Collagen from squid muscle skin and alaska pollock and production method thereof

Publications (1)

Publication Number Publication Date
KR20130094989A true KR20130094989A (en) 2013-08-27

Family

ID=49218524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120016328A KR20130094989A (en) 2012-02-17 2012-02-17 Collagen from squid muscle skin and alaska pollock and production method thereof

Country Status (1)

Country Link
KR (1) KR20130094989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086421A (en) * 2019-07-11 2019-07-22 주식회사 미싹바이오 Companion animal nutrient containing collagen extract and method for producing the same
KR20210010207A (en) 2019-07-19 2021-01-27 김재호 Manufacturing method for fried muk from Alaska pollack and fried muk manufactured therefrom
KR102212279B1 (en) 2020-08-28 2021-02-03 강은주 Method for extracting collagen from pollock skin, collagen food from pollock skin and manufacturing method thereof
KR20220055370A (en) 2020-10-26 2022-05-03 주식회사 아라움 Manufacturing Method of Fried Fish Skin
KR20230050652A (en) 2021-10-08 2023-04-17 임강범 Smart go

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086421A (en) * 2019-07-11 2019-07-22 주식회사 미싹바이오 Companion animal nutrient containing collagen extract and method for producing the same
KR20210010207A (en) 2019-07-19 2021-01-27 김재호 Manufacturing method for fried muk from Alaska pollack and fried muk manufactured therefrom
KR102212279B1 (en) 2020-08-28 2021-02-03 강은주 Method for extracting collagen from pollock skin, collagen food from pollock skin and manufacturing method thereof
KR20220055370A (en) 2020-10-26 2022-05-03 주식회사 아라움 Manufacturing Method of Fried Fish Skin
KR20230050652A (en) 2021-10-08 2023-04-17 임강범 Smart go

Similar Documents

Publication Publication Date Title
SF et al. Physicochemical properties of gelatins extracted from skins of different freshwater fish species
Pal et al. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen
Benjakul et al. Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus
Irwandi et al. Extraction and characterization of gelatin from different marine fish species in Malaysia
Zhu et al. Physicochemical properties and radical scavenging capacities of pepsin-solubilized collagen from sea cucumber Stichopus japonicus
JP5774999B2 (en) Collagen extract from aquatic animals
EP3240902B1 (en) Chitin, hydrolysate and method for the production of one or more desired products from insects by means of enzymatic hydrolysis
KR20130094989A (en) Collagen from squid muscle skin and alaska pollock and production method thereof
Kiew et al. The influence of acetic acid concentration on the extractability of collagen from the skin of hybrid Clarias sp. and its physicochemical properties: A preliminary study
CN108935913A (en) Sequestering pig bone collagen peptide of calcium and preparation method thereof
Song et al. Extraction optimization and characterization of collagen from the lung of soft-shelled turtle Pelodiscus sinensis
KR101603276B1 (en) The method for extraction of collagen from the jellyfish using irradiation
Noor et al. Nutritional composition of different grades of edible bird’s nest and its enzymatic hydrolysis
Ong et al. Isolation and characterization of acid and pepsin soluble collagen extracted from sharpnose stingray (Dasyatis zugei) skin
FR2474036A1 (en) PROCESS FOR PRODUCING OLIGOPEPTIDES FROM COLLAGEN
Ahmed et al. In-vitro self-assembly and antioxidant properties of collagen type I from Lutjanus erythropterus, and Pampus argenteus skin
Liyanage et al. Physico-chemical properties of chitosan extracted from Whiteleg shrimp (Litopenaeus vannamei) processing shell waste in Sri Lanka
Moniruzzaman et al. Characterization of acid-and pepsin-soluble collagens extracted from scales of carp and lizardfish caught in Japan, Bangladesh and Vietnam with a focus on thermostability
JP2870871B2 (en) A method for treating crustacean shells using enzymes
KR20160087318A (en) Method for producing high purity marine collagen
Nur et al. Characterization, antioxidant and α-glucosidase inhibitory activity of collagen hydrolysate from lamuru (caranx ignobilis) fishbone
KR100965479B1 (en) Method of making myoprotein water-soluble by Using Sonication
Samsudin et al. Physicochemical properties of quail bone gelatin extract with hydrochloric acid and citric acid
Nazeer et al. Exploitation of Marine Waste for Value-Added Products Synthesis
EP1613662B1 (en) Novel method of obtaining chondroitin sulphuric acid and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application