KR20130091497A - Development of lightweight hi-friction materials using thermal spray plasma coating - Google Patents

Development of lightweight hi-friction materials using thermal spray plasma coating Download PDF

Info

Publication number
KR20130091497A
KR20130091497A KR1020120012821A KR20120012821A KR20130091497A KR 20130091497 A KR20130091497 A KR 20130091497A KR 1020120012821 A KR1020120012821 A KR 1020120012821A KR 20120012821 A KR20120012821 A KR 20120012821A KR 20130091497 A KR20130091497 A KR 20130091497A
Authority
KR
South Korea
Prior art keywords
gas
spray coating
plasma
spraying
coating
Prior art date
Application number
KR1020120012821A
Other languages
Korean (ko)
Inventor
이현규
Original Assignee
이현규
주)에코텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이현규, 주)에코텍코리아 filed Critical 이현규
Priority to KR1020120012821A priority Critical patent/KR20130091497A/en
Publication of KR20130091497A publication Critical patent/KR20130091497A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE: A high function anti-abrasive light weight material utilizing a plasma spray coating method is provided to form a sprayed film directly on an Al alloy due to spraying by using a spray material consisting of MoS2 and WC powder. CONSTITUTION: A high function anti-abrasive light weight material utilizing a plasma spray coating method comprises the following steps: a mixed gas of a hydrogen gas and an inactive gas is an action gas for a plasma and a jet generation; a sprayed film is formed by plasma-spraying a compound powder of mixing 0.8 w% of MoS2 and 0.2 w% of WC; in a spray mood in which a spray material flies, 80 - 700 hPa of a decompression environment is maintained by the inactive gas; and a coating material preferably has 20 - 80μm of a particle size. [Reference numerals] (AA) Base material preparation; (BB) Sand blasting; (CC) Coating material preparation; (DD) Mixing; (EE) Powder spraying; (FF) Spray coating; (GG) Post treatment (processing); (HH) Test

Description

플라즈마 용사 코팅법을 활용한 고기능내마모 경량부품소재개발{Development of lightweight hi-friction materials using thermal spray plasma coating}Development of lightweight hi-friction materials using thermal spray plasma coating

본 발명은 고기능내마모 경량부품소재의 제조방법에 관한 것으로서, 보다 상세하게는 열간 용사 코팅 기법(Thermal spraying coating:플라즈마 스프레이 코팅)을 이용하여 경량부품소재를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a high functional wear-resistant lightweight component material, and more particularly, to a method for manufacturing a lightweight component material using a thermal spraying coating technique (plasma spray coating).

플라즈마 용사법은, 물리적 기상 증착법이나 화학적 기상 증착법에 비해서, 피막을 형성하는 속도가 빠르고, 모재도 제한되지 않는다고 점에서 대중적이다. 또한, 물리적 기상 증착법이나 화학적 기상 증착법은, 진공하거나 감압하, 또는 분위기 가스가 제어된 환경에서 행하는 것이 일반적이다. 따라서, 이들 방법은, 그와 같은 환경을 만드는 용기 내에서만 행할 수 있다. 이에 대해서, 플라스마 용사법은 대기 중에서의 막형성이 가능하여, 기상 증착법과 같은 제한은 적다. 이러한 용사법을 적용하여 얻어진 용사 막은, 이 피막을 구성하는 입자끼리의 결합력의 강약, 결합되지 않은 입자의 양, 또 용융되지 않은 입자의 양 등에 의해 피막의 기계적 강도나 내식성에 큰 차이가 발생하는 것이 알려져 있다.     The plasma spraying method is popular in that the film forming speed is faster than the physical vapor deposition method or the chemical vapor deposition method, and the base material is not limited. In addition, the physical vapor deposition method and the chemical vapor deposition method are generally performed under vacuum, reduced pressure, or in an environment in which an atmospheric gas is controlled. Therefore, these methods can be performed only in the container which produces such an environment. On the other hand, the plasma spraying method can form a film in the air, and there are few restrictions such as the vapor deposition method. The thermal spraying film obtained by applying such a thermal spraying method has a large difference in the mechanical strength and corrosion resistance of the coating due to the strength of the bonding strength between the particles constituting the coating, the amount of unbound particles, and the amount of unmelted particles. Known.

이 때문에, 종래의 용사 기술 개발의 목표는 예를 들어, 플라즈마와 같은 고온의 열원을 이용함으로써, 피용사체의 표면에 강한 충돌 에너지를 발생시킴으로써 입자간 결합력을 높임과 함께 기공률을 작게 하고, 또한 피막과 기재의 접착력을 향상시키는 것에 있었다. For this reason, the objective of the conventional thermal spraying technique is to generate a strong collision energy on the surface of a to-be-projected object, for example, by using a high temperature heat source, such as a plasma, to raise the cohesion force between particles, and to make a porosity small, and to coat It was in improving the adhesive force of a base material.

한편, 금속의 용사 피막은 이것을 대기 중에서 형성하면, 모든 용사 입자가 공기와 접촉하여 입자의 표면에 산화막이 생성되고, 그 때문에 입자간 결합력이 저하되어 기재와의 밀착성도 나빠진다. 종래, 이 문제를 해결하는 방법으로서, 예를 들어 일본 공개특허공보 평6-196421호에서는 저압의 불활성 가스 분위기 중에서 용사하는 방법이 제안되어 있다 (일반적으로, 감압 플라즈마 용사법이라고 불리고 있다). 구체적으로는, 공기를 배출한 진공 용기 중에 Ar 가스를 50 ∼ 200hPa 도입하고, 이 분위기 중에서 플라즈마 용사하는 방법이다.On the other hand, when the metal thermal spray coating forms this in air | atmosphere, all the thermal spray particles will come into contact with air, and an oxide film will be produced | generated on the surface of particle | grains, Therefore, the adhesive force between particle | grains will fall and adhesiveness with a base material will also worsen. Conventionally, as a method of solving this problem, for example, Japanese Unexamined Patent Publication No. Hei 6-196421 proposes a method of thermal spraying in a low pressure inert gas atmosphere (generally referred to as a reduced pressure plasma spraying method). Specifically, 50-200 hPa of Ar gas is introduce | transduced into the vacuum container which discharged air, and it is the method of plasma-spraying in this atmosphere.

본 발명의 목적은 MoS2, WC 분말로 이루어지는 용사 재료를 이용하여, Al합금에 용사피막을 용사에 의해 직접 형성하는 방법을 제안하는 것이다. 즉, 용사코팅법을 이용하여 고기능내마모 경량부품소재를 제조함으로써 우수한 마모특성을 갖는 경량부품소재를 간편하고 낮은 비용으로 제조할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.An object of the present invention is to propose a method of directly forming a thermal sprayed coating on an Al alloy by thermal spraying using a thermal spraying material composed of MoS2 and WC powder. In other words, by providing a high-performance wear-resistant lightweight component material using a thermal spray coating method to provide a method for producing a lightweight component material having excellent wear characteristics at a simple and low cost.

이하, 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described.

본 발명은 불활성 가스와 수소 가스의 혼합 가스를 플라즈마·제트 발생용 동작 가스로 하여 MoS2, WC 분말을 플라즈마 용사함으로써, 모재에 균일한 용사 피막을 형성하는 것을 특징으로 용사 피막의 형성 방법이다.The present invention is a method of forming a thermal spray coating, wherein a uniform thermal spray coating is formed on a base material by plasma-spraying MoS2 and WC powders using a mixed gas of an inert gas and hydrogen gas as an operation gas for plasma jet generation.

또, 본 발명에서는, In the present invention,

(1) 용사 재료가 비행하는 용사 분위기가 불활성 가스에 의한 80 ∼ 700hPa 의 감압 환경으로 유지되어 있을 것,(1) The thermal spraying atmosphere in which the thermal spraying material flies is maintained in a reduced pressure environment of 80 to 700 hPa by an inert gas,

(2) 용사 분위기가, 플라즈마 용사 건의 주위에 비산화성 가스를 흘려, 피표면을 향하는 플라즈마·제트에 대한 공기의 침입을 방지한 환경으로 할 것, (2) The spraying atmosphere should be a non-oxidizing gas flowing around the plasma spray gun to prevent the intrusion of air into the plasma jet toward the surface,

(3) 상기 MoS2, WC 혼합분말로 이루어지는 용사 재료는 입경이 20 ∼ 80㎛ 의 크기일 것,(3) The thermal spraying material which consists of said MoS2 and WC mixed powder should be 20-80 micrometers in particle size,

(4) 플라즈마·제트 발생을 위한 상기 작동 가스는 불활성 가스와 수소 가스의 용적비가 10/2 ∼ 3/1 의 범위내의 가스일 것, (4) The working gas for the generation of plasma jet should be a gas having a volume ratio of inert gas and hydrogen gas in the range of 10/2 to 3/1,

(5) 상기 MoS2, WC의 흑색 용사 피막은 기재의 표면에 직접, 또는 언더 코트를 개재하여 형성되어 있을 것, (5) The black thermal sprayed coatings of MoS2 and WC should be formed directly on the surface of the substrate or through an undercoat;

(6) 상기 모재는 알루미늄 및 그 합금일 것 (6) The base material should be aluminum and its alloys

이 바람직한 해결 수단을 부여하게 될 것으로 생각된다.It is believed that this preferable solution will be given.

또, 본 발명은 상기 방법에 의해 형성된 MoS2, WC의 조성을 나타내는 용사 피막이 막 두께가 100∼ 1000㎛ 의 두께로 형성되어 있는 것을 특징으로 하는 MoS2, WC 혼합 용사 피막 피복 부재를 제안한다.Moreover, this invention proposes the MoS2 and WC mixed sprayed coating member characterized in that the thermal sprayed coating which shows the composition of MoS2 and WC formed by the said method is formed in the thickness of 100-1000 micrometers.

본 발명에 의하면, 우수한 고기능내마모 특성을 갖는 경량부품소재를 간편하고 낮은 비용으로 제공할 수 있다.According to the present invention, it is possible to provide a lightweight component material having excellent high wear resistance characteristics at a low cost.

또한, 본 발명에 의하면, 경량부품소재의 표면에 발생하는 국부적인 파괴 등이 용이하게 수리가 가능하고, 또한 이로 인하여 수리 시 필요한 운송 및 수리기간 등과 관련되는 제반비용을 절감할 수 있다.In addition, according to the present invention, it is possible to easily repair the local breakdown, etc. occurring on the surface of the lightweight component material, and thereby it is possible to reduce the overall costs associated with the transportation and repair period required for the repair.

도 1는 본 발명에 따르는 용사코팅법을 이용한 연삭공구 제조방법의 일례를 나타내는 공정 순서도1 is a process flowchart showing an example of a method for manufacturing a grinding tool using the thermal spray coating method according to the present invention.

이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 용사코팅법을 이용하여 고기능내마모 경량부품소재를 제조하는 방법이다.The present invention is a method for producing a high functional wear-resistant lightweight component material using a spray coating method.

열간 용사 코팅에 의한 경량부품소재의 제조는 간단한 제조 공정과 낮은 제조 단가를 가져올 수 있으며, 이러한 용사코팅법의 이점은 앞으로 발전할 수 있는 구동력으로 작용한다.The manufacture of lightweight component materials by hot spray coating can result in a simple manufacturing process and low manufacturing cost, and the advantages of the thermal spray coating act as a driving force that can be developed in the future.

일반적으로, 용사코팅법은 금속성분의 표면 특징들을 향상시키기 위한 다재다능한 코팅 제조 기술로 사용되어 왔다. In general, thermal spray coating has been used as a versatile coating fabrication technique for improving the surface characteristics of metallic components.

용사과정은 에너지원에 의해서 개개의 과정을 나눌 수 있다.The spraying process can be divided into individual processes by energy sources.

분말의 코팅재는 열과 추진력에 의해 타켓으로 가스 흐름을 이용하여 높은 속도로 분사되어 운반된다.The coating of powder is sprayed and transported at high speed by using a gas flow to the target by heat and propulsion.

타켓 표면 위에서 분말은 빠르게 산개 코팅을 형성하고 굳어진다.On the target surface the powder quickly forms an open coating and hardens.

용사는 불꽃 안에서 분말의 분무 속도가 코팅층 형성에 열쇠가 되는 요인이다.Spraying is a key factor in the formation of a coating layer on the spray rate of the powder in the flame.

본 발명에서 중요한 것은 MoS2, WC 혼합 분말을 이용한 경량부품소재를 제조할 수 있는 용사 코팅 방법 및 그에 따른 용사코팅조건을 설정하는데 있다.
What is important in the present invention is to set the spray coating method and the spray coating conditions that can produce a lightweight component material using MoS2, WC mixed powder.

도 1에 나타난 바와 같이, 본 발명에 따라 고기능내마모 경량부품소재를 제조하기 위해서는 우선 코팅재인 0.8w%MoS2, 0.2w%WC 혼합 분말을 준비한다.As shown in Figure 1, in order to manufacture a high functional wear-resistant lightweight component material according to the present invention, first, 0.8w% MoS2, 0.2w% WC mixed powder is prepared.

상기 코팅재는 특별히 한정되는 것은 아니지만, 20 ∼ 80㎛의 입자크기를 갖는 것이 바람직하다.Although the said coating material is not specifically limited, It is preferable to have a particle size of 20-80 micrometers.

다음에Next

고기능내마모 경량부품소재를 제조하기 위해서는 MoS2, WC와 같이 혼합된 혼합물을 타켓에 용사코팅하여 경량부품소재를 제조한다.In order to manufacture high-performance wear-resistant lightweight component materials, the mixture is sprayed onto the target, such as MoS2 and WC, to manufacture lightweight component materials.

상기 용사 코팅 시 플라즈마 발생을 위한 가스는 수소 가스에 불활성 가스 또는 질소 가스를 혼합한 가스를 이용 한다.The gas for plasma generation during the thermal spray coating uses a gas in which an inert gas or nitrogen gas is mixed with hydrogen gas.

상기 불활성 가스 중 바람직한 것은 Ar 가스이다.Among the above inert gases, Ar gas is preferable.

상기 불활성 가스 또는 질소가스의 유량은 25∼80 Slpm으로 선정하는 것이 바람직하며, 수소 가스의 유량은 1∼30 Slpm으로 선정하는 것이 바람직하다.Preferably, the flow rate of the inert gas or nitrogen gas is selected from 25 to 80 Slpm, and the flow rate of hydrogen gas is preferably selected from 1 to 30 Slpm.

그리고 플라즈마 발생 전류 및 전압은 각각 200∼600A 및 30∼80V로 선정하는 것이 바람직하다.The plasma generation current and the voltage are preferably selected from 200 to 600 A and 30 to 80 V, respectively.

운송가스의 유량은 3∼10 Slpm으로 선정하는 것이 바람직하고, 용사거리는 50∼300mm로 선정하는 것이 바람직하다. The flow rate of the transport gas is preferably set to 3 to 10 Slpm, and the spraying distance is preferably set to 50 to 300 mm.

용사코팅시간은 얻고자 하는 코팅층의 두께 등에 따라 변화될 수 있으며, 15초에서 1시간 정도이다.Spray coating time may vary depending on the thickness of the coating layer to be obtained, such as 15 seconds to about 1 hour.

바람직한 용사코팅시간은 5~10분 정도이다, Preferred spray coating time is about 5-10 minutes,

본 발명에 따라 제조된 경량부품소재의 MoS2, WC혼합분말 함유 코팅층의 두께는 100∼ 1000㎛이다.The thickness of the MoS2, WC mixed powder-containing coating layer of the lightweight component material produced according to the present invention is 100 ~ 1000㎛.

본 발명과 전통적인 방법과 비교해 보면 열간 용사 코팅(thermal spray coating)법을 이용한 본 발명은 일반적인 정밀주조 방법에 비해 제작시간을 1/100 까지 절약 할 수 있고 정밀주조 방법에서 필요로 하는 금형 제작비용 또한 절감할 수 있으며 주조후 금형을 분리, 제거하는데 필요한 후처리 공정을 없앨 수 있다는 장점을 가지고 있다.
Compared with the conventional method and the conventional method, the present invention using the thermal spray coating method can save 1/100 of the manufacturing time compared to the general precision casting method, and also the mold manufacturing cost required by the precision casting method. It can reduce the cost and eliminate the post-treatment process necessary to separate and remove the mold after casting.

Not necessaryNot necessary

Claims (1)

청구항 1
불활성 가스와 수소 가스의 혼합 가스를 플라즈마·제트 발생용 동작 가스로 하여 0.8w%MoS2, 0.2w%WC 혼합 분말을 플라즈마 용사함으로써, 용사 피막을 형성하는 것을 특징으로 하는 경량부품소재 제조

청구항 2
제 1 항에 있어서, 용사 재료가 비행하는 용사 분위기가 불활성 가스에 의한 80 ∼ 700hPa의 감압 환경으로 유지되어 있는 것을 특징으로 하는 용사 피막의 형성 방법.

상기 코팅재는 특별히 한정되는 것은 아니지만, 20 ∼ 80㎛의 입자크기를 갖는 것이 바람직하다.
다음에

청구항 3
제 1 항에 있어서, 코팅재의 크기가 20 ∼ 80㎛인 것을 특징으로 하는 용사코팅법을 이용한 경량부품소재의 제조방법

청구항 4
제 1 항에 있어서, 기재 표면에, 불활성 가스와 수소 가스의 혼합 가스를 플라즈마·제트 발생용 작동 가스로 하여, MoS2, WC 혼합 분말을 플라즈마 용사함으로써 형성된, 용사 피막이, 막 두께가 100 ∼ 1000㎛ 의 두께로 형성되어 있는 것을 특징으로 하는 용사 피막 피복 부재.
Claim 1
A spray coating is formed by plasma spraying 0.8w% MoS2 and 0.2w% WC mixed powder using a mixed gas of an inert gas and a hydrogen gas as the operating gas for plasma jet generation.

Claim 2
The method of forming a thermal spray coating according to claim 1, wherein the thermal spraying atmosphere in which the thermal spraying material flies is maintained in a reduced pressure environment of 80 to 700 hPa by an inert gas.

Although the said coating material is not specifically limited, It is preferable to have a particle size of 20-80 micrometers.
Next

Claim 3
The method of manufacturing a lightweight component material using a spray coating method according to claim 1, wherein the coating material has a size of 20 to 80 µm.

Claim 4
The thermal spray coating according to claim 1, wherein the thermal spray coating formed by plasma-spraying MoS2 and WC mixed powder using a mixed gas of an inert gas and a hydrogen gas as a working gas for plasma jet generation on a substrate surface has a film thickness of 100 to 1000 µm. It is formed by the thickness of the spray coating member characterized by the above-mentioned.
KR1020120012821A 2012-02-08 2012-02-08 Development of lightweight hi-friction materials using thermal spray plasma coating KR20130091497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120012821A KR20130091497A (en) 2012-02-08 2012-02-08 Development of lightweight hi-friction materials using thermal spray plasma coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120012821A KR20130091497A (en) 2012-02-08 2012-02-08 Development of lightweight hi-friction materials using thermal spray plasma coating

Publications (1)

Publication Number Publication Date
KR20130091497A true KR20130091497A (en) 2013-08-19

Family

ID=49216669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120012821A KR20130091497A (en) 2012-02-08 2012-02-08 Development of lightweight hi-friction materials using thermal spray plasma coating

Country Status (1)

Country Link
KR (1) KR20130091497A (en)

Similar Documents

Publication Publication Date Title
Lee et al. Correlation between Al2O3 particles and interface of Al–Al2O3 coatings by cold spray
Kang et al. Tungsten/copper composite deposits produced by a cold spray
EP2202328A1 (en) Process for obtaining protective coatings for high temperature with high roughness and coating obtained
US20140251255A1 (en) Piston
CN1837406A (en) Applying bond coat to engine components using cold spray
CN107761035A (en) A kind of corrosion resistant fine and close thermal spray metal alloy coat and preparation method thereof completely
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
US11008645B2 (en) Wear-resistant Cu—Ni—Sn coating
CA2482085A1 (en) A plasma spraying method
JP2009138231A (en) Method for forming black thermal-sprayed film of yttrium oxide, and member covered with black thermal-sprayed film of yttrium oxide
US20130034661A1 (en) Method for processing a surface of a component
Salhi et al. Development of coating by thermal plasma spraying under very low-pressure condition< 1 mbar
Yao et al. Deposition behavior of semi-molten spray particles during flame spraying of porous metal alloy
JP5017675B2 (en) Film manufacturing method
Bhuyan et al. Sensitivity of process parameters in atmospheric plasma spray coating
KR20130091497A (en) Development of lightweight hi-friction materials using thermal spray plasma coating
Jifeng et al. Preparation of electrical contact materials by cold gas-spray
US20110076414A1 (en) Process for Applying a Bonding Primer Layer
CN110616397A (en) Preparation of Al/(Y) by atmospheric plasma spraying2O3-ZrO2) Method for composite coating
CN106609349B (en) A kind of surface strengthening treatment technology of bearing steel
Lee et al. Effect of SiC particle size on cold sprayed Al–SiC composite coatings
CN108715989A (en) A kind of preparation method of plasma spraying insulating coating
KR101336755B1 (en) Thin film coating method of hard metal
CN105624602B (en) A kind of Y applied to aluminium base base material3Al5O12The preparation method of coating
EP3034648A1 (en) Methods for coating gas turbine engine components

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application