KR20130088426A - A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same - Google Patents

A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same Download PDF

Info

Publication number
KR20130088426A
KR20130088426A KR1020120009643A KR20120009643A KR20130088426A KR 20130088426 A KR20130088426 A KR 20130088426A KR 1020120009643 A KR1020120009643 A KR 1020120009643A KR 20120009643 A KR20120009643 A KR 20120009643A KR 20130088426 A KR20130088426 A KR 20130088426A
Authority
KR
South Korea
Prior art keywords
lithium
sulfur
sulfur battery
positive electrode
group
Prior art date
Application number
KR1020120009643A
Other languages
Korean (ko)
Other versions
KR101329550B1 (en
Inventor
이용민
최재철
손봉기
이윤주
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020120009643A priority Critical patent/KR101329550B1/en
Publication of KR20130088426A publication Critical patent/KR20130088426A/en
Application granted granted Critical
Publication of KR101329550B1 publication Critical patent/KR101329550B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An anode for a lithium-sulfur battery is provided to suppress the flow out of a polysulfide which is a charging/discharging intermediate product of the anode active material into an electrolyte according to introduction of an anion immobilization materials in the lithium-sulfur anode thereby the capacity retention rate of the lithium-sulfur battery is improved. CONSTITUTION: An anode for a lithium-sulfur battery comprises the followings: elemental sulfur (S8); anode active material which comprises sulfur series compound and a mixture thereof; a conductive material; a binder, and an anion immobilization material. A content of the anion immobilization material is 0.5-50 weight%; an average size of a particle of the anion immobilization material is 0.01-10 micron. The conductive material is selected from a group which comprises a graphite material, a carbon-based material and conductivity polymer. In addition, the lithium-sulfur battery comprises an anode, a cathode, a separator which is interposed between anode and cathode, and electrolyte. [Reference numerals] (AA) Volume (mAh/g electrode); (BB) Number of cycle; (CC) Implementation example 3; (DD) Implementation example 2; (EE) Implementation example 1; (FF) Comparison example 1

Description

음이온 고정화 물질을 포함하는 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지{A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same}A positive electrode for lithium-sulfur battery comprising an anion immobilization material and a lithium-sulfur battery comprising the same {A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same}

본 발명은 음이온 고정화 물질을 포함하는 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지에 관한 것으로, 보다 상세하게는, 리튬-황 양극에 음이온고정화물질이 도입됨에 따라 양극 활물질의 충방전 중간 산물인 폴리설파이드가 전해질로 유출되는 것이 억제됨으로써 리튬-황 전지의 용량 유지율이 크게 개선된 음이온 고정화 물질을 포함하는 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지에 관한 것이다.
The present invention relates to a lithium-sulfur battery positive electrode including an anion-immobilized material and a lithium-sulfur battery including the same, and more particularly, the charge-discharge intermediate product of the positive electrode active material as the anion-immobilized material is introduced into the lithium-sulfur positive electrode The present invention relates to a positive electrode for a lithium-sulfur battery including an anion-immobilized material in which the capacity retention rate of the lithium-sulfur battery is greatly improved by suppressing the outflow of phosphorus polysulfide into the electrolyte, and a lithium-sulfur battery including the same.

휴대전자기기 시장의 지속적 확대와 전기자동차 및 에너지저장장치 시장의 폭발적 성장에 대한 기대감으로 핵심 부품인 전기화학소자에 대한 관심이 급속히 높아지고 있다. 전기화학소자 중 가장 많이 적용되고 있는 소자가 이차전지로서, 작동전압, 에너지 및 출력 밀도 측면에서 리튬이차전지가 시장을 주도하고 있다. 리튬이차전지는 수계 전해액을 사용하는 납축전지, Ni-Cd, Ni-MH(Nickel- metal hydrate) 등의 기존 이차전지에 비해 성능은 우수하지만, 비수계 전해액 사용에 따른 발화 및 폭발 등의 안전성 문제와 제조 공정이 까다로운 단점이 있다. 또한, 전기자동차와 에너지저장장치 사용을 위해서는 고에너지밀도, 고온신뢰성, 저온특성, 단가 등 해결되어야 할 문제가 다수 존재한다. The interest in electrochemical devices, a key component, is rapidly increasing due to expectations for the continuous expansion of the portable electronic device market and the explosive growth of the electric vehicle and energy storage devices markets. The most widely used device among electrochemical devices is a secondary battery, and lithium secondary batteries are leading the market in terms of operating voltage, energy, and power density. Lithium secondary batteries have better performance than conventional secondary batteries such as lead acid batteries using Ni-Cd and Ni-MH (Nickel-Metal Hydrate), but safety problems such as ignition and explosion due to the use of non-aqueous electrolyte And the manufacturing process is difficult disadvantages. In addition, there are a number of problems to be solved such as high energy density, high temperature reliability, low temperature characteristics, and unit cost for the use of electric vehicles and energy storage devices.

특히, 고에너지밀도 구현을 위해서는 이론 용량이 큰 전극 활물질의 개발이 필수적으로 요구된다. 그러나, 기존의 리튬이차전지용 양극 활물질인 전이금속산화물의 이론 용량이 약 250mAh/g 이하로, 고에너지밀도 전지를 구현하기가 쉽지 않다. 이를 극복하기 위한 방안으로 황 계열의 화합물을 양극 활물질로 사용하는 리튬-황 전지에 대한 개발이 활발하게 진행되고 있다.In particular, in order to realize high energy density, development of an electrode active material having a large theoretical capacity is required. However, the theoretical capacity of the transition metal oxide, which is a conventional cathode active material for lithium secondary batteries, is about 250 mAh / g or less, and it is not easy to implement a high energy density battery. In order to overcome this problem, development of a lithium-sulfur battery using a sulfur-based compound as a cathode active material is being actively conducted.

리튬-황 전지는 황-황 결합(Sulfur-sulfur bond)을 갖는 황 계열 화합물을 양극 활물질로 사용하고, 리튬 금속, 리튬 합금 또는 리튬 이온 등과 같은 금속 이온의 삽입/탈삽입이 일어나는 탄소계 물질을 음극 활물질로 사용하는 이차 전지이다. 환원 반응시 (방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시 (충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기에너지를 저장 및 생성한다.Lithium-sulfur batteries use a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and a carbon-based material in which metal ions such as lithium metal, lithium alloy, or lithium ion are inserted / deinserted. It is a secondary battery used as a negative electrode active material. In the reduction reaction (discharged), the SS bond is broken and the oxidation number of S decreases, and in the oxidation reaction (charged), the oxidation-reduction reaction of the SS bond is formed by increasing the oxidation number of S and the electrical energy is stored and stored. Create

리튬-황 전지는 음극 활물질로 사용되는 리튬 금속을 사용할 경우 에너지 밀도가 3860mAh/g이고, 양극 활물질로 사용되는 황(S8)을 사용할 경우 에너지 밀도가 1675mAh/g으로, 현재까지 개발되고 있는 전지 중에서 에너지 밀도 면에서 가장 유망한 전지이다. 또한 양극 활물질로 사용되는 황 계열 화합물은 자체가 값싸고 환경친화적인 물질이라는 장점이 있다.The lithium-sulfur battery has an energy density of 3860 mAh / g using lithium metal used as a negative electrode active material, and an energy density of 1675 mAh / g using sulfur (S 8 ) used as a positive electrode active material. Among the most promising cells in terms of energy density. In addition, the sulfur-based compound used as a positive electrode active material has the advantage that it is a cheap and environmentally friendly material.

그러나 아직 리튬-황 전지 시스템으로 상용화에 성공한 예는 없는 실정이다. 리튬-황 전지는 우선 황을 활물질로 사용하면 투입된 황의 양에 대한 전지 내 전기화학적 산화환원 반응에 참여하는 황의 이용률이 낮아, 이론 용량과 달리 실제로는 극히 낮은 전지 용량을 나타내는 문제점이 있다.However, there is no example in which lithium-sulfur battery system has been successfully commercialized yet. Lithium-sulfur batteries have a problem of using sulfur as an active material, and having a low utilization rate of sulfur participating in the electrochemical redox reaction in the battery with respect to the amount of sulfur introduced, and in fact, shows a very low battery capacity unlike the theoretical capacity.

이에, 대한민국 출원특허 제10-2001-0042633호에서는 음이온 고분자를 세퍼레이터에 부착하여 폴리설파이드가 음극으로 이동하는 것을 억제하는 방법으로 전지 내 전기화학적 산화환원반응에서의 황의 이용률을 개선시키는 방법이 제안되었으나 그 양극 내 폴리설파이드가 빠져나오는 것을 억제하는 데는 한계가 있는 문제점이 있다. Thus, in Korean Patent Application No. 10-2001-0042633, a method of improving sulfur utilization in an electrochemical redox reaction in a battery has been proposed as a method of attaching an anionic polymer to a separator to suppress the migration of polysulfide to the cathode. There is a problem that there is a limit in suppressing the escape of the polysulfide in the anode.

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 리튬-황 전지에 음이온 고정화 물질을 도입하여 양극 활물질의 충방전 중간 산물인 폴리설파이드가 전해질로 유출되는 것이 억제됨으로써 리튬-황 전지의 용량 유지율이 크게 개선되는 것을 확인하고, 본 발명을 완성하게 되었다.
Accordingly, the present inventors have made diligent efforts to solve the above problems, and as a result, the capacity of the lithium-sulfur battery is suppressed by introducing an anion-immobilized material into the lithium-sulfur battery, thereby preventing polysulfide, which is a charge / discharge intermediate product of the positive electrode active material, from leaking into the electrolyte. It was confirmed that the retention rate was greatly improved, and the present invention was completed.

본 발명의 목적은 양극 활물질의 충방전 중간 산물인 폴리설파이드가 전해질로 유출되는 것이 억제하기 위해 리튬-황 양극에 음이온 고정화 물질을 포함하는 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지를 제공하는데 있다.
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium-sulfur battery positive electrode including an anion-immobilized material in a lithium-sulfur positive electrode in order to suppress the leakage of polysulfide, which is a charge / discharge intermediate product of the positive electrode active material, into an electrolyte, and a lithium-sulfur battery including the same. It is.

상기 목적을 달성하기 위하여, 본 발명은 황 원소(S8); 황 계열 화합물 및 이들의 혼합물로 이루어진 양극 활물질; 도전재; 바인더; 및 음이온 고정화 물질을 포함하는 리튬-황 전지용 양극을 제공한다.In order to achieve the above object, the present invention is a sulfur element (S 8 ); A cathode active material consisting of a sulfur-based compound and mixtures thereof; Conductive material; bookbinder; And it provides a positive electrode for a lithium-sulfur battery comprising an anion immobilization material.

본 발명은 또한, 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터, 전해액을 포함하는 리튬-황 전지를 제공한다.
The present invention also provides a lithium-sulfur battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an electrolyte solution.

본 발명에 따른 음이온 고정화 물질을 포함하는 리튬-황 전지는 음이온 고정화 물질이 도입됨에 따라 양극 활물질의 충방전 중간 산물인 폴리설파이드가 전해질로 유출되는 것이 억제됨으로써 리튬-황 전지의 용량 유지율이 크게 개선될 수 있다.
In the lithium-sulfur battery including the anion-immobilized material according to the present invention, as the anion-immobilized material is introduced, polysulfide, which is a charge / discharge intermediate product of the positive electrode active material, is prevented from leaking into the electrolyte, thereby greatly improving the capacity retention rate of the lithium-sulfur battery. Can be.

도 1은 본 발명에 따른 리튬-황 전지용 양극을 포함하는 리튬-황 전지의 용량 유지율을 나타낸 그래프이다.1 is a graph showing the capacity retention rate of a lithium-sulfur battery including a positive electrode for a lithium-sulfur battery according to the present invention.

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. 이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로서, 본 발명을 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시예에 한정되는 것이 아니다. 그리고, 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 부재임을 나타낸다. In order to fully understand the present invention, operational advantages of the present invention, and objects achieved by the practice of the present invention, reference should be made to the accompanying drawings and the accompanying drawings which illustrate preferred embodiments of the present invention. Hereinafter, the present invention will be described in detail with reference to the preferred embodiments of the present invention with reference to the accompanying drawings. However, the present invention can be implemented in various different forms, and is not limited to the embodiments described. In order to clearly describe the present invention, parts that are not related to the description are omitted, and the same reference numerals in the drawings denote the same members.

본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다. In the present specification, when a part "includes" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.

이하, 본 발명을 상세히 설명하나, 본 발명의 범위는 이에 제한되지 않는다.
Hereinafter, the present invention will be described in detail, but the scope of the present invention is not limited thereto.

본 발명은 일 관점에서, 황 원소(S8); 황 계열 화합물 및 이들의 혼합물로 이루어진 양극 활물질; 도전재; 바인더; 및 음이온 고정화 물질을 포함하는 리튬-황 전지용 양극에 관한 것이다.The present invention, in one aspect, elemental sulfur (S 8 ); A cathode active material consisting of a sulfur-based compound and mixtures thereof; Conductive material; bookbinder; And it relates to a positive electrode for a lithium-sulfur battery comprising an anion immobilization material.

본 발명에 따른, 음이온고정화물질은 IIIA족 원소를 포함한 무기물로서 비수계 전해액 내 음이온과 루이스산-루이스염기 상호 작용이 가능한 물질이면 사용할 수 있다. 구체적인 음이온고정화물질로는 보론 옥사이드(B2O3), 알루미늄 옥사이드(Al2O3), 알루미늄 플루오라이드(AlF3), 알루미늄 클로라이드 (AlCl3) 등이 있으며, 음이온고정화물질이 도입됨에 따라 양극 활물질의 충방전 중간 산물인 폴리설파이드가 전해질로 유출되는 것이 억제됨으로써 리튬-황 전지의 용량 유지율을 크게 개선시킬 수 있다.According to the present invention, the anion-immobilizing material may be used as an inorganic material containing a group IIIA element as long as the anion and Lewis acid-Lewis base interaction in the non-aqueous electrolyte are possible. Specific anion fixing materials include boron oxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), aluminum fluoride (AlF 3 ), aluminum chloride (AlCl 3 ), and the like as the anion fixing material is introduced. By suppressing the outflow of the polysulfide which is the charge / discharge intermediate product of the active material into the electrolyte, the capacity retention rate of the lithium-sulfur battery can be greatly improved.

본 발명에 따른, 음이온고정화물질 입자 크기는 제한이 없으나, 균일한 전극의 형성과 음이온고정화 효과를 위하여, 가능한 한 입경이 0.01 내지 10㎛ 범위인 것이 바람직하다. 0.01㎛ 미만인 경우 분산성이 저하되어 양극 슬러리의 분산성을 조절하기가 용이하지 않고, 10㎛를 초과하는 경우 도입 함량 대비 음이온고정화 효과가 떨어지는 문제점이 있다.According to the present invention, the particle size of the anion stabilizer is not limited, but in order to form a uniform electrode and anion fixing effect, the particle size is preferably in the range of 0.01 to 10 μm. If it is less than 0.01㎛ dispersibility is not easy to control the dispersibility of the positive electrode slurry, if it exceeds 10㎛ there is a problem in that the anion fixation effect is lower than the introduction content.

본 발명에 따른, 리튬-황 전지용 양극의 음이온고정화물질의 조성비는 예를 들어 0.5중량% 내지 50중량% 범위가 바람직하며, 더욱 바람직하게는 1중량% 내지 25중량%이다. 음이온고정화물질 함량이 너무 낮으면 음이온고정화효과를 부여할 수 없으며, 음이온고정화물질 함량이 너무 높으면 음이온고정화효과가 높아지는 대신 양극 활물질의 함량이 상대적으로 줄어들어 전극의 용량이 너무 낮이지는 문제점이 있다. According to the present invention, the composition ratio of the anion-immobilized material of the positive electrode for a lithium-sulfur battery is preferably in the range of 0.5% by weight to 50% by weight, more preferably 1% by weight to 25% by weight. If the content of the anion immobilization material is too low, it is not possible to give an anion immobilization effect. If the content of the anion immobilization material is too high, there is a problem that the capacity of the electrode is too low because the content of the positive electrode active material is relatively reduced instead of increasing the anion immobilization effect.

본 발명에 따른, 양극 활물질은 황 원소(elemental sulfur, S8 ), 황 계열 화합물 또는 이들의 혼합물을 사용할 수 있다. 상기 황 계열 화합물은 Li2Sn(n≥1), 유기 황 화합물, 및 탄소-황 폴리머((C2Sx) n : x= 2.5 내지 50, n≥2)로 이루어진 군에서 선택되는 것을 사용할 수 있다. 또한, 상기 양극 활물질과 함께 전자가 양극활물질 내에서 원활하게 이동하도록 하기 위한 도전재로는 특히 한정하지 않으나, 흑연계 물질, 카본계 물질 등과 같은 전도성 물질 또는 전도성 고분자가 바람직하게 사용될 수 있다. 상기 흑연계 물질로는 KS 6(Timcal사 제품)가 있고 카본계 물질로는 수퍼 P(MMM사 제품), 케첸 블랙(ketjen black), 덴카 블랙(denka black), 아세틸렌 블랙, 카본 블랙 등이 있다. 상기 전도성 고분자의 예로는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등이 있다. 이들 전도성 도전재들은 단독으로 사용하거나 둘 이상을 혼합하여 사용할 수도 있다.According to the present invention, the positive electrode active material may use elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof. The sulfur-based compound is selected from the group consisting of Li 2 S n (n ≧ 1), an organic sulfur compound, and carbon-sulfur polymer ((C 2 S x ) n: x = 2.5 to 50, n ≥ 2) Can be used. In addition, the conductive material for allowing electrons to move smoothly in the positive electrode active material together with the positive electrode active material is not particularly limited, and a conductive material or a conductive polymer such as a graphite material or a carbon material may be preferably used. The graphite material is KS 6 (manufactured by Timcal) and the carbon material is super P (MMM company), ketjen black, denka black, acetylene black, carbon black, and the like. . Examples of the conductive polymer include polyaniline, polythiophene, polyacetylene, polypyrrole, and the like. These conductive conductive materials may be used alone or in combination of two or more thereof.

본 발명에 따른, 양극 활물질을 집전체에 부착시키는 역할을 수행하는 일반적인 바인더로는 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드와 헥사플루오로프로필렌의 코폴리머, 폴리(비닐아세테이트), 폴리(비닐 부티랄-코-비닐 알콜-코-비닐 아세테이트), 폴리(메틸메타크릴레이트-코-에틸 아크릴레이트), 폴리아크릴로니트릴, 폴리 비닐 클로라이드-코-비닐 아세테이트, 폴리비닐알콜, 폴리(1-비닐피롤리돈-코-비닐 아세테이트), 셀룰로즈 아세테이트, 폴리비닐피롤리돈, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리올레핀, 폴리우레탄, 폴리비닐 에테르, 아크릴로니트릴-부타디엔 러버, 스티렌-부타디엔 러버, 아크릴로니트릴-부타디엔 스티렌, 설포네이티드 스티렌/에틸-부틸렌/스티렌 트리블록 코폴리머, 폴리에틸렌 옥사이드, 이들의 유도체, 블랜드, 코폴리머 등으로 구성된 군에서 선택되고, 바람직하게는 폴리비닐리덴 플루오라이드를 사용할 수 있다. According to the present invention, a general binder which serves to attach the positive electrode active material to the current collector is polyvinylidene fluoride, a copolymer of polyvinylidene fluoride and hexafluoropropylene, poly (vinylacetate), poly (vinyl Butyral-co-vinyl alcohol-co-vinyl acetate), poly (methylmethacrylate-co-ethyl acrylate), polyacrylonitrile, polyvinyl chloride-co-vinyl acetate, polyvinylalcohol, poly (1- Vinylpyrrolidone-co-vinyl acetate), cellulose acetate, polyvinylpyrrolidone, polyacrylate, polymethacrylate, polyolefin, polyurethane, polyvinyl ether, acrylonitrile-butadiene rubber, styrene-butadiene rubber, Acrylonitrile-butadiene styrene, sulfonated styrene / ethyl-butylene / styrene triblock copolymer, polyethylene oxide, oils thereof Body can be selected from the group consisting of blends, copolymers, and the like, preferably using a polyvinylidene fluoride.

상기 집전체로는 특히 제한하지 않으나 스테인레스 스틸, 알루미늄, 구리, 티타늄 등의 도전성 물질을 사용하는 것이 바람직하며, 카본-코팅된 알루미늄 집전체를 사용하면 더욱 바람직하다. 탄소가 코팅된 Al 기판을 사용하는 것이 탄소가 코팅되지 않은 것에 비해 활물질에 대한 접착력이 우수하고, 접촉 저항이 낮으며, 알루미늄의 폴리설파이드에 의한 부식을 방지할 수 있는 장점이 있다.The current collector is not particularly limited, but conductive materials such as stainless steel, aluminum, copper, titanium, and the like are preferably used, and more preferably, a carbon-coated aluminum current collector is used. The use of an Al substrate coated with carbon has an advantage in that the adhesion to the active material is excellent, the contact resistance is low, and the corrosion by polysulfide of aluminum can be prevented, compared with the non-carbon coated Al substrate.

또한, 본 발명의 양극은 고분자, 무기물, 유기물 또는 이들의 혼합물로 이루어진 코팅층을 포함할 수도 있다.In addition, the anode of the present invention may include a coating layer made of a polymer, an inorganic material, an organic material or a mixture thereof.

상기 고분자는 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드와 헥사플루오로프로필렌의 코폴리머, 폴리(비닐아세테이트), 폴리(비닐 부티랄-코-비닐 알콜-코-비닐 아세테이트), 폴리(메틸메타크릴레이트-코-에틸 아크릴레이트), 폴리아크릴로니트릴, 폴리 비닐 클로라이드-코-비닐 아세테이트, 폴리비닐알콜, 폴리(1-비닐피롤리돈-코-비닐 아세테이트), 셀룰로즈 아세테이트, 폴리비닐피롤리돈, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리올레핀, 폴리우레탄, 폴리비닐 에테르, 아크릴로니트릴-부타디엔 러버, 스티렌-부타디엔 러버, 아크릴로니트릴-부타디엔 스티렌, 설포네이티드 스티렌/에틸렌-부틸렌/스티렌 트리블록 코폴리머, 폴리에틸렌 옥사이드 및 이들의 혼합물로 구성된 군에서 선택되고, 바람직하게는 폴리비닐리덴 플루오라이드를 사용할 수 있다. The polymers include polyvinylidene fluoride, copolymers of polyvinylidene fluoride and hexafluoropropylene, poly (vinylacetate), poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate), poly (methylmetha) Acrylate-co-ethyl acrylate), polyacrylonitrile, polyvinyl chloride-co-vinyl acetate, polyvinylalcohol, poly (1-vinylpyrrolidone-co-vinyl acetate), cellulose acetate, polyvinylpyrroly Don, polyacrylate, polymethacrylate, polyolefin, polyurethane, polyvinyl ether, acrylonitrile-butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene styrene, sulfonated styrene / ethylene-butylene / styrene Triblock copolymer, polyethylene oxide and mixtures thereof, preferably polyvinylidene fluoride It can be used.

상기 무기물로는 콜로이달 실리카, 비정질 실리카, 표면 처리된 실리카, 콜로이달 알루미나, 비정질 알루미나, 틴 옥사이드, 티타늄 옥사이드, 타타늄 설파이드(TiS2), 바나듐 옥사이드, 지르코늄 옥사이드(ZrO2), 산화철(Iron Oxide), 황화철(Iron Sulfide, FeS), 티탄산 철(Iron titanate, FeTiO3), 티탄산 바륨(Vanadium titanate, BaTiO3) 및 이들의 혼합물로 이루어진 군에서 선택되고, 바람직하게는 콜로이달 실리카 또는 콜로이달 알루미나를 사용할 수 있다.
The inorganic materials include colloidal silica, amorphous silica, surface treated silica, colloidal alumina, amorphous alumina, tin oxide, titanium oxide, titanium sulfide (TiS 2 ), vanadium oxide, zirconium oxide (ZrO 2 ), iron oxide (Iron). Oxide), iron sulfide (Iron Sulfide, FeS), iron titanate (Iron titanate, FeTiO 3 ), barium titanate (Vanadium titanate, BaTiO 3 ), and mixtures thereof, preferably colloidal silica or colloidal alumina Can be used.

본 발명은 다른 관점에서, 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터, 전해액을 포함하는 리튬-황 전지에 있어서, 상기 양극이 제 1항 내지 제 7항 중 어느 한 항의 양극인 리튬-황 전지에 관한 것이다.According to another aspect of the present invention, in a lithium-sulfur battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an electrolyte solution, the positive electrode is a lithium- which is the positive electrode of any one of claims 1 to 7. Relates to a sulfur battery.

상기 비수계 용매로는 벤젠, 플루오로벤젠, 톨루엔, 트리플루오로톨루엔, 자일렌, 사이클로헥산, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 사이클록헥사논, 에탄올, 이소프로필알콜, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸프로피오네이트, 에틸프로피오네이트, 메틸아세테이트, 에틸 아세테이트, 프로필 아세테이트, 디메톡시 에탄, 1,3-디옥솔란, 디글라임, 테트라글라임, 에틸렌 카보네이트, 프로필렌 카보네이트, γ-부티로락톤 및 설포란으로 이루어진 군에서 선택되는 용매를 하나 이상 사용한다.The non-aqueous solvents include benzene, fluorobenzene, toluene, trifluorotoluene, xylene, cyclohexane, tetrahydrofuran, 2-methyl tetrahydrofuran, cyclohexanone, ethanol, isopropyl alcohol, dimethyl carbonate, Ethylmethyl carbonate, diethyl carbonate, methylpropyl carbonate, methylpropionate, ethylpropionate, methyl acetate, ethyl acetate, propyl acetate, dimethoxy ethane, 1,3-dioxolane, diglyme, tetraglyme, ethylene At least one solvent selected from the group consisting of carbonate, propylene carbonate, γ-butyrolactone and sulfolane is used.

상기 전해염인 리튬염으로는 리튬 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide), 리튬 트리플레이트(lithium triflate), 리튬 퍼클로레이트(lithium perclorate), 리튬 헥사플루오로아제네이트(LiAsF6), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), LiPF6, LiBF4 또는 테트라알킬암모늄, 예를 들어 테트라부틸암모늄 테트라플루오로보레이트, 또는 상온에서 액상인 염, 예를 들어 1-에틸-3-메틸이미다졸리움 비스(퍼플루오로에틸 설포닐) 이미드와 같은 이미다졸리움 염 등을 하나 이상 사용할 수 있다. 상기 비수계 용매는 리튬염을 0.5 내지 2.0M의 농도로 포함한다. 이때, 리튬염의 농도가 0.5M 미만일 경우, 전해질 내 리튬이온의 농도가 적어 이온전도도가 낮은 문제점이 있고, 리튬염의 농도가 2.0M 초과일 경우, 전해액의 높은 점도로 인해 이온전도도가 다시 낮아지는 문제점이 있다.The electrolytic salt lithium salt is lithium trifluoromethansulfonimide (lithium trifluoromethansulfonimide), lithium triflate (lithium triflate), lithium perchlorate (lithium perclorate), lithium hexafluoro azenate (LiAsF 6 ), lithium trifluor Romethanesulfonate (CF 3 SO 3 Li), LiPF 6 , LiBF 4 or tetraalkylammonium, for example tetrabutylammonium tetrafluoroborate, or a liquid salt at room temperature, for example 1-ethyl-3-methyl One or more imidazolium salts such as imidazolium bis (perfluoroethyl sulfonyl) imide and the like can be used. The non-aqueous solvent includes lithium salt at a concentration of 0.5 to 2.0 M. At this time, when the concentration of the lithium salt is less than 0.5M, there is a problem that the ion conductivity is low due to the low concentration of lithium ions in the electrolyte, the ion conductivity is lowered again due to the high viscosity of the electrolyte when the concentration of the lithium salt is higher than 2.0M There is this.

상기 양극 활물질, 도전재, 바인더 및 음이온 고정화 물질을 혼합하기 위해 사용되는 용매는 끓는점 (boiling point)이 낮은 것이 바람직하다. 이는 혼합 균일하게 이루어질 수 있으며, 이후 용매를 용이하게 제거할 수 있기 때문이다. 이때, 용매는 아세톤(acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합물로 이루어진 군에서 선택되고, 바람직하게는 N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP)을 사용 할 수 있다.
It is preferable that the solvent used for mixing the positive electrode active material, the conductive material, the binder, and the anion-immobilized material has a low boiling point. This can be achieved by mixing uniformly, since the solvent can be easily removed. At this time, the solvent is acetone (acetone), tetrahydrofuran (tetrahydrofuran), methylene chloride (methylene chloride), chloroform (chloroform), dimethylformamide (dimethylformamide), N-methyl-2-pyrrolidone (N-methyl-2 -pyrrolidone, NMP), cyclohexane, water or a mixture thereof, preferably N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP) Can be.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

비교예Comparative example 1 : B 1: B 22 OO 3 3 0중량%가 함유된 리튬-황 전지용 양극Cathode for lithium-sulfur battery containing 0% by weight

양극 활물질로는 황 분말 58중량%, 도전재로 카본 블랙(carbon black) 28중량%, 바인더로는 폴리비닐리덴플로라이드(PVdF) 14중량%에 용제인 N-메틸-2 피롤리돈(NMP)을 활물질, 도전재 및 바인더의 4~5배 중량비로 첨가하여 혼합된 슬러리를 두께 15㎛인 Al foil에 도포하여 65℃ 오븐에 2~3시간 건조를 시켜 전극을 제조한다. 이 때, 황 원소(S8) 분말은 입경 254um 이하인 분말을 사용하였고, 전극 건조 후 롤 프레스(roll press)를 실시하여 전극의 두께 및 밀도를 조절하였다.
N-methyl-2 pyrrolidone (NMP) as a solvent in 58 wt% sulfur powder as a positive electrode active material, 28 wt% carbon black as a conductive material, and 14 wt% polyvinylidene fluoride (PVdF) as a binder. ) Was added in an amount of 4 to 5 times the weight ratio of the active material, the conductive material and the binder, and the mixed slurry was applied to an Al foil having a thickness of 15 μm and dried in an oven at 65 ° C. for 2 to 3 hours to prepare an electrode. At this time, the elemental sulfur (S 8 ) powder was used as a powder having a particle size of 254um or less, and after drying the electrode was subjected to a roll press (roll press) to adjust the thickness and density of the electrode.

실시예Example 1 : B 1: B 22 OO 33 2.9중량%가 함유된 리튬-황 전지용 양극 2.9% by weight of lithium-sulfur battery positive electrode

평균 입경이 약 500nm인 B2O3를 음이온고정화물질로 2.9중량%, 양극 활물질로는 황 분말 55.1중량%, 도전재로 카본 블랙(carbon black) 28중량%, 바인더로는 폴리비닐리덴플로라이드(PVdF) 14중량%인 것을 제외하고는, 상기 비교예1과 동일하게 제조하였다.B 2 O 3 with an average particle diameter of about 500 nm is 2.9 wt% as an anion stabilizing material, 55.1 wt% sulfur powder as the positive electrode active material, 28 wt% carbon black as the conductive material, and polyvinylidene fluoride as the binder (PVdF) was prepared in the same manner as in Comparative Example 1 except for 14% by weight.

실시예Example 2 : B 2: B 22 OO 33 5.8중량%가 함유된 리튬-황 전지용 양극 Cathode for lithium-sulfur battery containing 5.8% by weight

평균 입경이 약 500nm인 B2O3를 음이온고정화물질로 5.8중량%, 양극 활물질로는 황 분말 52.2중량%, 도전재로 카본 블랙(carbon black) 28중량%, 바인더로는 폴리비닐리덴플로라이드(PVdF) 14중량%인 것을 제외하고는, 상기 비교예1과 동일하게 제조하였다.
B 2 O 3 with an average particle diameter of about 500 nm is 5.8 wt% as an anion stabilizing material, 52.2 wt% sulfur powder as the positive electrode active material, 28 wt% carbon black as the conductive material, and polyvinylidene fluoride as the binder (PVdF) was prepared in the same manner as in Comparative Example 1 except for 14% by weight.

실시예Example 3 : B 3: B 22 OO 33 11.6중량%가 함유된 리튬-황 전지용 양극 Cathode for lithium-sulfur battery containing 11.6 wt%

평균 입경이 약 500nm인 B2O3를 음이온고정화물질로 11.6중량%, 양극 활물질로는 황 분말 46.4중량%, 도전재로 카본 블랙(carbon black) 28중량%, 바인더로는 폴리비닐리덴플로라이드(PVdF) 14중량%인 것을 제외하고는, 상기 비교예1과 동일하게 제조하였다.
B 2 O 3 with an average particle diameter of about 500 nm is 11.6 wt% as an anion stabilizing material, 46.4 wt% sulfur powder as a positive electrode active material, 28 wt% carbon black as a conductive material, and polyvinylidene fluoride as a binder (PVdF) was prepared in the same manner as in Comparative Example 1 except for 14% by weight.

실험예Experimental Example 1 :  One : 충방전Charging and discharging 평가 evaluation

비교예 1, 실시예 1, 실시예 2, 실시예 3에서 제조된 양극, 리튬메탈 음극, 기공도 40%, 두께는 20㎛인 다공성 폴리에틸렌 분리막, 1,3-Dioxolane과 TEGDME가 부피비로 65대 35로 혼합된 유기용매에 1M LiTFSI 리튬염이 포함된 전해질을 사용하여 2032 코인셀을 제조하였다.The positive electrode prepared in Comparative Example 1, Example 1, Example 2, Example 3, lithium metal negative electrode, porous polyethylene separator having a porosity of 40% and a thickness of 20㎛, 1,3-Dioxolane and TEGDME in a volume ratio of 65 units A 2032 coin cell was prepared using an electrolyte containing 1M LiTFSI lithium salt in an organic solvent mixed with 35.

상기 코인셀을 0.1C의 전류 속도로 1.5V와 2.5V 사이에서 충방전을 진행하여 리튬-황 전지의 용량유지율을 측정하였다.The coin cell was charged and discharged between 1.5V and 2.5V at a current rate of 0.1C to measure the capacity retention rate of the lithium-sulfur battery.

그 결과, 도 1에 나타낸 바와 같이, 비교예 1의 경우에서 제조된 리튬-황 전지용 양극의 경우, 충·방전 도중에 양극에서 폴리설파이드가 전해질로 유출되기 때문에 30회 충방전 후 용량 유지율이 33.9% (661mAh/g → 224mAh/g)로 매우 낮은 반면에 실시예 1 내지 3에 의해 제조된 리튬-황 전지용 양극은 음이온고정화물 함량에 비례해서 초기 용량값은 떨어지지만 용량유지율은 크게 향상되는 결과를 나타내었다. 그러나, 실시예 1에서처럼 음이온고정화물질의 함량이 낮은 경우에는 용량유지율이 49.7% (608mAh/g → 302mAh/g)로 향상이 크지 않고, 실시예 3에서처럼 음이온고정화물질 함량이 너무 높으면 용량유지율은 좋으나 초기 용량값이 너무 낮아 리튬-황 전지의 고용량 특성이 제대로 구현되기 어렵다. 따라서, 실시예 2에서 제조된 리튬-황 전지용 양극과 같이 적절한 음이온고정화물질 함량을 선택해야만, 높은 초기 용랑값과 우수한 싸이클 특성을 나타낼 수 있다.
As a result, as shown in FIG. 1, in the case of the lithium-sulfur battery positive electrode manufactured in Comparative Example 1, since the polysulfide flowed out of the positive electrode into the electrolyte during charging and discharging, the capacity retention rate was 33.9% after 30 charge and discharge cycles. (661 mAh / g → 224 mAh / g), while the positive electrode for the lithium-sulfur battery prepared in Examples 1 to 3 had a lower initial capacity value in proportion to the anion fixation content, but a capacity maintenance rate was greatly improved. Indicated. However, when the content of the anion stabilizer is low as in Example 1, the capacity retention rate is not largely improved to 49.7% (608 mAh / g → 302 mAh / g). The initial capacity value is so low that high capacity characteristics of the lithium-sulfur battery are difficult to be properly implemented. Therefore, it is necessary to select an appropriate anion stabilizer content, such as the positive electrode for a lithium-sulfur battery prepared in Example 2, it can exhibit a high initial melt value and excellent cycle characteristics.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (18)

황 원소(S8); 황 계열 화합물 및 이들의 혼합물로 이루어진 양극 활물질;
도전재; 바인더; 및 음이온 고정화 물질을 포함하는 리튬-황 전지용 양극.
Elemental sulfur (S 8 ); A cathode active material consisting of a sulfur-based compound and mixtures thereof;
Conductive material; bookbinder; And an anion immobilization material.
제1항에 있어서, 상기 음이온 고정화 물질은 IIIA족 원소를 포함한 무기물로서 양극 활물질 충방전 중간 산물인 폴리설파이드와 루이스산-루이스염기 상호 작용이 가능한 물질인 것을 특징으로 하는 리튬-황 전지용 양극.
The cathode for a lithium-sulfur battery according to claim 1, wherein the anion-immobilizing material is an inorganic material containing a group IIIA element and is a material capable of interacting with polysulfide, which is an intermediate product of charge and discharge of a positive electrode active material, and a Lewis acid-Lewis base.
제2항에 있어서, 상기 음이온 고정화 물질은 보론 옥사이드(B2O3), 알루미늄 옥사이드(Al2O3), 알루미늄 플루오라이드(AlF3) 및 알루미늄 클로라이드 (AlCl3)으로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지용 양극.
The method of claim 2, wherein the anion immobilization material is selected from the group consisting of boron oxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), aluminum fluoride (AlF 3 ) and aluminum chloride (AlCl 3 ) A positive electrode for a lithium-sulfur battery, characterized in that.
제1항에 있어서, 상기 음이온고정화물질의 함량이 0.5중량% 내지 50중량%인 것을 특징으로 하는 리튬-황 전지용 양극.
The positive electrode for a lithium-sulfur battery according to claim 1, wherein the content of the anion-immobilizing material is 0.5% by weight to 50% by weight.
제1항에 있어서, 상기 음이온고정화물질의 평균 입자의 크기는 0.01 내지 10㎛인 것을 특징으로 하는 리튬-황 전지용 양극.
The positive electrode for a lithium-sulfur battery according to claim 1, wherein the average particle size of the anion-immobilized material is 0.01 to 10 µm.
제1항에 있어서, 상기 황 계열 화합물은 Li2Sn (n≥1), 유기-황 화합물 및 탄소-황 고분자[(C2Sx)n , x = 2.5 내지 50, n ≥ 2]로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지용 양극.
The method of claim 1, wherein the sulfur-based compound is Li 2 S n (n ≧ 1), organo-sulfur compound and carbon-sulfur polymer [(C 2 S x ) n , x = 2.5 to 50, n ≥ 2] A positive electrode for a lithium-sulfur battery, characterized in that selected from the group consisting of.
제1항에 있어서, 상기 도전재는 흑연계 물질, 카본계 물질 및 전도성 고분자로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지용 양극.
The cathode of claim 1, wherein the conductive material is selected from the group consisting of a graphite material, a carbon material, and a conductive polymer.
제1항에 있어서, 상기 바인더는 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드와 헥사플루오로프로필렌의 코폴리머, 폴리(비닐아세테이트), 폴리(비닐 부티랄-코-비닐 알콜-코-비닐 아세테이트), 폴리(메틸메타크릴레이트-코-에틸 아크릴레이트), 폴리아크릴로니트릴, 폴리 비닐 클로라이드-코-비닐 아세테이트, 폴리비닐알콜, 폴리(1-비닐피롤리돈-코-비닐 아세테이트), 셀룰로즈 아세테이트, 폴리비닐피롤리돈, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리올레핀, 폴리우레탄, 폴리비닐 에테르, 아크릴로니트릴-부타디엔 러버, 스티렌-부타디엔 러버, 아크릴로니트릴-부타디엔 스티렌, 설포네이티드 스티렌/에틸-부틸렌/스티렌 트리블록 코폴리머, 폴리에틸렌 옥사이드 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지용 양극.
The method of claim 1, wherein the binder is polyvinylidene fluoride, copolymer of polyvinylidene fluoride and hexafluoropropylene, poly (vinylacetate), poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate ), Poly (methylmethacrylate-co-ethyl acrylate), polyacrylonitrile, polyvinyl chloride-co-vinyl acetate, polyvinyl alcohol, poly (1-vinylpyrrolidone-co-vinyl acetate), cellulose Acetate, polyvinylpyrrolidone, polyacrylate, polymethacrylate, polyolefin, polyurethane, polyvinyl ether, acrylonitrile-butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene styrene, sulfonated styrene / Lithium, characterized in that selected from the group consisting of ethyl-butylene / styrene triblock copolymer, polyethylene oxide and mixtures thereof -Anode for sulfur battery.
제1항에 있어서, 양극은 고분자, 무기물, 유기물, 및 이들의 혼합물로 이루어진 코팅층을 포함하는 것을 특징으로 하는 리튬-황 전지용 양극.
The positive electrode for a lithium-sulfur battery according to claim 1, wherein the positive electrode comprises a coating layer made of a polymer, an inorganic material, an organic material, and a mixture thereof.
제9항에 있어서, 고분자는 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드와 헥사플루오로프로필렌의 코폴리머, 폴리(비닐아세테이트), 폴리(비닐 부티랄-코-비닐 알콜-코-비닐 아세테이트), 폴리(메틸메타크릴레이트-코-에틸 아크릴레이트), 폴리아크릴로니트릴, 폴리 비닐 클로라이드-코-비닐 아세테이트, 폴리비닐알콜, 폴리(1-비닐피롤리돈-코-비닐 아세테이트), 셀룰로즈 아세테이트, 폴리비닐피롤리돈, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리올레핀, 폴리우레탄, 폴리비닐 에테르, 아크릴로니트릴-부타디엔 러버, 스티렌-부타디엔 러버, 아크릴로니트릴-부타디엔 스티렌, 설포네이티드 스티렌/에틸렌-부틸렌/스티렌 트리블록 코폴리머, 폴리에틸렌 옥사이드 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지용 양극.
10. The polymer according to claim 9, wherein the polymer is polyvinylidene fluoride, a copolymer of polyvinylidene fluoride and hexafluoropropylene, poly (vinylacetate), poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) , Poly (methylmethacrylate-co-ethyl acrylate), polyacrylonitrile, polyvinyl chloride-co-vinyl acetate, polyvinyl alcohol, poly (1-vinylpyrrolidone-co-vinyl acetate), cellulose acetate , Polyvinylpyrrolidone, polyacrylate, polymethacrylate, polyolefin, polyurethane, polyvinyl ether, acrylonitrile-butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene styrene, sulfonated styrene / ethylene Lithium-sulfur, characterized in that it is selected from the group consisting of butylene / styrene triblock copolymers, polyethylene oxides and mixtures thereof Battery positive electrode.
제9항에 있어서, 무기물은 콜로이달 실리카, 비정질 실리카, 표면 처리된 실리카, 콜로이달 알루미나, 비정질 알루미나, 틴 옥사이드, 티타늄 옥사이드, 타타늄 설파이드(TiS2), 바나듐 옥사이드, 지르코늄 옥사이드(ZrO2), 산화철(Iron Oxide), 황화철(Iron Sulfide, FeS), 티탄산 철(Iron titanate, FeTiO3), 티탄산 바륨(Vanadium titanate, BaTiO3) 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지용 양극.
The method of claim 9, wherein the inorganic material is colloidal silica, amorphous silica, surface-treated silica, colloidal alumina, amorphous alumina, tin oxide, titanium oxide, titanium sulfide (TiS 2 ), vanadium oxide, zirconium oxide (ZrO 2 ) Lithium-sulfur, characterized in that selected from the group consisting of iron oxide (Iron Oxide), iron sulfide (Iron Sulfide, FeS), iron titanate (FeTiO 3 ), barium titanate (Vanadium titanate, BaTiO 3) and mixtures thereof Battery positive electrode.
양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터, 전해액을 포함하는 리튬-황 전지에 있어서, 상기 양극이 제 1항 내지 제 12항 중 어느 한 항의 양극인 리튬-황 전지.
A lithium-sulfur battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the positive electrode is the positive electrode of any one of claims 1 to 12.
제12항에 있어서, 상기 음극은 리튬 금속, 리튬 합금 및 리튬 이온을 가역적으로 함유할 수 있는 물질로 이루어진 군에서 선택되는 음극 활물질을 포함하는 것을 특징으로 하는 리튬-황 전지.
The lithium-sulfur battery of claim 12, wherein the negative electrode comprises a negative electrode active material selected from the group consisting of lithium metal, lithium alloys, and materials capable of reversibly containing lithium ions.
제12항에 있어서, 상기 세퍼레이터는 폴리올레핀계 다공성 막 및 1종 이상의 고분자로 형성된 부직포로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬-황 전지.
The lithium-sulfur battery of claim 12, wherein the separator is selected from the group consisting of a polyolefin-based porous membrane and a nonwoven fabric formed of one or more polymers.
제12항에 있어서, 상기 전해액은 1종 이상의 리튬염과 1종 이상의 비수계 용매를 포함하는 것을 특징으로 하는 리튬-황 전지.
The lithium-sulfur battery of claim 12, wherein the electrolyte solution includes at least one lithium salt and at least one non-aqueous solvent.
제15항에 있어서, 상기 전해염은 리튬 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide), 리튬 트리플레이트(lithium triflate), 리튬 퍼클로레이트(lithium perclorate), 리튬 헥사플루오로아제네이트(LiAsF6), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), LiPF6, LiBF4 또는 테트라알킬암모늄, 테트라부틸암모늄 테트라플루오로보레이트, 1-에틸-3-메틸이미다졸리움 비스(퍼플루오로에틸 설포닐) 이미드 및 이미다졸리움 염으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 리튬-황 전지.
The method of claim 15, wherein the electrolytic salt is lithium trifluoromethansulfonimide, lithium triflate, lithium perclorate, lithium hexafluoroazate (LiAsF 6 ), lithium Trifluoromethanesulfonate (CF 3 SO 3 Li), LiPF 6 , LiBF 4 or tetraalkylammonium, tetrabutylammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis (perfluoroethyl sulfonyl Lithium-sulfur battery, characterized in that at least one selected from the group consisting of imide and imidazolium salt.
제15항에 있어서, 비수계 용매는 벤젠, 플루오로벤젠, 톨루엔, 트리플루오로톨루엔, 자일렌, 사이클로헥산, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 사이클록헥사논, 에탄올, 이소프로필알콜, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸프로피오네이트, 에틸프로피오네이트, 메틸아세테이트, 에틸 아세테이트, 프로필 아세테이트, 디메톡시 에탄, 1,3-디옥솔란, 디글라임, 테트라글라임, 에틸렌 카보네이트, 프로필렌 카보네이트, γ-부티로락톤 및 설포란으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 리튬-황 전지.
The non-aqueous solvent according to claim 15, wherein the non-aqueous solvent is benzene, fluorobenzene, toluene, trifluorotoluene, xylene, cyclohexane, tetrahydrofuran, 2-methyl tetrahydrofuran, cyclohexanone, ethanol, isopropyl alcohol , Dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, methylpropyl carbonate, methyl propionate, ethyl propionate, methyl acetate, ethyl acetate, propyl acetate, dimethoxy ethane, 1,3-dioxolane, diglyme, tetra Lithium-sulfur battery, characterized in that at least one selected from the group consisting of glyme, ethylene carbonate, propylene carbonate, γ-butyrolactone and sulfolane.
제15항에 있어서, 비수계 용매는 리튬염을 0.5 내지 2.0M의 농도로 포함하는 것을 특징으로 하는 리튬-황 전지.16. The lithium-sulfur battery of claim 15, wherein the non-aqueous solvent comprises lithium salt at a concentration of 0.5 to 2.0 M.
KR1020120009643A 2012-01-31 2012-01-31 A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same KR101329550B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120009643A KR101329550B1 (en) 2012-01-31 2012-01-31 A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120009643A KR101329550B1 (en) 2012-01-31 2012-01-31 A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same

Publications (2)

Publication Number Publication Date
KR20130088426A true KR20130088426A (en) 2013-08-08
KR101329550B1 KR101329550B1 (en) 2013-11-15

Family

ID=49214772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120009643A KR101329550B1 (en) 2012-01-31 2012-01-31 A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same

Country Status (1)

Country Link
KR (1) KR101329550B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076636A1 (en) * 2014-11-12 2016-05-19 한국기술교육대학교 산학협력단 Lithium-sulfur battery
CN108155383A (en) * 2017-11-29 2018-06-12 中山大学 A kind of lithium-sulfur cell binding agent and preparation method thereof and lithium-sulphur cell positive electrode
CN110707264A (en) * 2019-09-19 2020-01-17 河北金力新能源科技股份有限公司 High-conductivity coating diaphragm for lithium-sulfur battery and preparation method and application thereof
CN110828827A (en) * 2019-10-18 2020-02-21 河北金力新能源科技股份有限公司 High-conductivity slurry, preparation method thereof and diaphragm
WO2020198365A1 (en) * 2019-03-26 2020-10-01 Conamix Inc. Nanoparticles having polythionate cores
WO2022086095A1 (en) * 2020-10-22 2022-04-28 주식회사 엘지에너지솔루션 Positive electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561678B1 (en) * 2014-02-24 2015-10-20 (주)오렌지파워 Electrode material for rechargeable battery and method of fabricating the same
CN109802124A (en) * 2019-02-14 2019-05-24 西南大学 Metal atom doped porous carbon nano-composite material of one kind and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399650B1 (en) * 2001-10-27 2003-09-29 삼성에스디아이 주식회사 Positive active material for lithium-sulfur battery and method of preparing same
KR100495567B1 (en) * 2002-08-14 2005-06-16 한국과학기술원 Lithium/Sulfur Rechargeable Battery Comprising Electrode Composition Based on Vinylidene Fluoride Polymer as A Binder, and Preparation Method thereof
KR100508920B1 (en) * 2003-01-21 2005-08-17 삼성에스디아이 주식회사 Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
KR20050052258A (en) * 2003-11-29 2005-06-02 삼성에스디아이 주식회사 Lithium sulfur battery and method for manufacturing thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076636A1 (en) * 2014-11-12 2016-05-19 한국기술교육대학교 산학협력단 Lithium-sulfur battery
US10381680B2 (en) 2014-11-12 2019-08-13 J-Innotech Co., Ltd Lithium-sulfur battery
CN108155383A (en) * 2017-11-29 2018-06-12 中山大学 A kind of lithium-sulfur cell binding agent and preparation method thereof and lithium-sulphur cell positive electrode
CN108155383B (en) * 2017-11-29 2020-07-28 中山大学 Binder for lithium-sulfur battery, preparation method of binder and lithium-sulfur battery anode
WO2020198365A1 (en) * 2019-03-26 2020-10-01 Conamix Inc. Nanoparticles having polythionate cores
CN110707264A (en) * 2019-09-19 2020-01-17 河北金力新能源科技股份有限公司 High-conductivity coating diaphragm for lithium-sulfur battery and preparation method and application thereof
CN110828827A (en) * 2019-10-18 2020-02-21 河北金力新能源科技股份有限公司 High-conductivity slurry, preparation method thereof and diaphragm
WO2022086095A1 (en) * 2020-10-22 2022-04-28 주식회사 엘지에너지솔루션 Positive electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same

Also Published As

Publication number Publication date
KR101329550B1 (en) 2013-11-15

Similar Documents

Publication Publication Date Title
KR101329550B1 (en) A positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
EP2927996B1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
JP6246361B2 (en) Positive electrode for lithium-sulfur battery and method for producing the same
KR100454030B1 (en) Positive electrode for lithium-sulfur battery, method of preparing same, and lithium-sulfur battery comprising same
US20180301693A1 (en) Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
KR101764455B1 (en) Cathode for lithium-sulfur battery and method for preparing the same
JP6156939B2 (en) Lithium ion secondary battery
KR20150045363A (en) Carbon nanotube-sulfur composite comprising carbon nanotube aggregates and method for manufacturing the same
CA2641152A1 (en) Lithium secondary battery using ionic liquid
KR100551005B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
KR102268184B1 (en) Sulfur-carbon composite, method for preparing the same, positive electrode and lithium secondary battery comprising the same
KR101475763B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR101348810B1 (en) Separator for lithium-sulfur battery, method for manufacturing the same and lithium-sulfur battery including the same
CN108780926B (en) Method for manufacturing secondary battery
KR101501267B1 (en) Positive electrode material for lithium-sulfur battery, method of manufacturing the same and lithium-sulfur battery
WO2019024313A1 (en) Lithium sulfur battery and assembly thereof, and application of functional material layer in lithium sulfur battery
KR102090296B1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
KR101356393B1 (en) A positive electrode for lithium-sulfur battery, and lithium-sulfur battery comprising the same
US20130164636A1 (en) Hybrid energy storage device
JP2016152153A (en) Power storage element and method of manufacturing power storage element
JP2016134218A (en) Lithium ion secondary battery
KR20130134910A (en) Electrode assembly and lithium secondary battery comprising the same
KR20220130199A (en) Salt additive for sulfur secondary battery
JP2018097935A (en) Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material
KR101416807B1 (en) Hybrid capacitor contained Ionic Liquid And Manufacturing Method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191105

Year of fee payment: 7