KR20130085880A - Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof - Google Patents

Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof Download PDF

Info

Publication number
KR20130085880A
KR20130085880A KR1020120007020A KR20120007020A KR20130085880A KR 20130085880 A KR20130085880 A KR 20130085880A KR 1020120007020 A KR1020120007020 A KR 1020120007020A KR 20120007020 A KR20120007020 A KR 20120007020A KR 20130085880 A KR20130085880 A KR 20130085880A
Authority
KR
South Korea
Prior art keywords
palladium
pattern
conductive metal
metal
etching
Prior art date
Application number
KR1020120007020A
Other languages
Korean (ko)
Inventor
문학범
권해철
방석현
황호준
김수정
김철환
Original Assignee
주식회사 넥스트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 넥스트론 filed Critical 주식회사 넥스트론
Priority to KR1020120007020A priority Critical patent/KR20130085880A/en
Publication of KR20130085880A publication Critical patent/KR20130085880A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Biochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE: A method for manufacturing a palladium nano wire hydrogen sensor using double etching and the palladium nano wire hydrogen sensor using the same are provided to increase reliability with constant resistance of a number of palladium nano wires, by attaching the linear and straight nano wire to a substrate stably by manufacturing a metal pattern accurately. CONSTITUTION: According to a method for manufacturing a palladium nano wire hydrogen sensor using double etching, a conductive metal is formed on the surface of a substrate (S1). A photoresist pattern is formed with a photoresist material on a part of the conductive metal (S2). The conductive metal which is not exposed because the photoresist pattern is not formed is dry-etched (S3). A metal pattern is formed in the lower part of the photoresist pattern by dry-etching of a part of the conductive metal covered by the photoresist pattern (S4). The metal pattern is plated with palladium (S5). A palladium nano wire is formed by removing the photoresist pattern and the metal pattern (S6). An external electrode connected to the palladium nano wire is formed (S7). [Reference numerals] (AA) Start; (BB) End; (S1) Coating conductive metal on the surface of a substrate; (S2) Forming photoresist pattern with a photoresist material on a part of the conductive metal; (S3) Etching the exposed conductive metal through dry etching; (S4) Forming a metal pattern by excessive etching with wet-etching; (S5) Forming a palladium nano wire by plating with palladium; (S6) Removing the photoresist pattern and the metal pattern; (S7) Forming an external electrode connected to the palladium nano wire

Description

이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법 및 이를 이용한 팔라듐 나노 와이어 수소센서{Method of Palladium Nanowire Hydrogen Sensor Using Double eching and a Sensor Thereof}Method of manufacturing palladium nanowire hydrogen sensor using double etching and palladium nanowire hydrogen sensor using same {Method of Palladium Nanowire Hydrogen Sensor Using Double eching and a Sensor Thereof}

본 발명은 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법 및 이를 이용한 팔라듐 나노 와이어 수소센서에 관한 것으로, 건식과 습식을 에칭으로 금속패턴을 정교하게 형성하여 기판에 접착력이 높고, 휘어지지 않고 직진성이 좋은 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법 및 이를 이용한 팔라듐 나노 와이어 수소센서에 관한 것이다.The present invention relates to a method of manufacturing a palladium nanowire hydrogen sensor using a double etching, and a palladium nanowire hydrogen sensor using the same, by precisely forming a metal pattern by etching dry and wet, high adhesion to the substrate, does not bend straight The present invention relates to a method for producing a palladium nanowire hydrogen sensor using a double etching, and a palladium nanowire hydrogen sensor using the same.

산업의 발달로 반도체의 단위가 점차 고집적화 되어가면서, 대체에너지, 전자, 광전자, 기계, 생물 등의 산업에 나노 크기의 구조물의 중요성이 대두되고 있다.As the unit of semiconductor is becoming more and more highly integrated with the development of industry, the importance of nano-scale structures is emerging in industries such as alternative energy, electronics, optoelectronics, machinery, and biology.

현재까지 진행되고 있는 나노 구조물에 대한 연구는 주로 양자효과와 같은 광소재 물질로서 연구가 많이 진행되고 있다. 특히 나노 구조물은 단일 전자 트랜지스터 소자뿐 아니라, 각종 화학/바이오 센서 등의 이용 가능성이 있어서 차세대 재료로 주목을 받고 있다. 이러한 나노 구조물에는 탄소 나노 튜브, 나노 로드, 나노 벨트, 나노 리본, 나노 막대 그리고 나노 와이어 등이 있다. 나노 와이어의 응용을 위해서는 나노 와이어의 크기 및 길이를 균일하게 형성하고, 나노 와이어의 위치를 조절하여 균일한 나노 구조물을 형성하는 것이 중요하다.The research on nanostructures that have been conducted up to now is mainly being conducted as optical material materials such as quantum effects. In particular, nanostructures are attracting attention as next-generation materials because of their availability for various chemical / biosensors as well as single electronic transistor devices. These nanostructures include carbon nanotubes, nanorods, nanobelts, nanoribbons, nanorods and nanowires. For the application of the nanowires, it is important to uniformly form the size and length of the nanowires and to control the position of the nanowires to form a uniform nanostructure.

기존 나노 와이어는 기상-액상-고상(Vapor-Liquid-Solid: VLS) 성장법의 bottom-up 방식을 주로 사용하고 있는데 금속 촉매 나노입자를 조절하기가 쉽지 않아서 나노 와이어의 지름과 밀도를 조절하기가 어려우며, 원하는 위치에 형성하는 것이 어려운 단점이 있다. 이를 해결하기 위해 리소그라피 공정 및 식각 공정을 이용하는 top-down 방식의 반도체 미세가공기술이 제안되어 사용되고 있는데, 절연체 위 실리콘(Silicon-On-Insulator) 기판에 나노 와이어를 패터닝한 뒤, 이를 채널로 사용하여 다양한 화학적 물질을 검출하는 기술에 제안되고 있다. 도 1은 종래 기술에 따라 제조된 끊어진 나노 와이어 SEM을 나타낸 도이다. 도시된 바와 같이, 종래에는 나노 와이어를 제작할 때에 중간이 끊어지는 경우가 많아서 품질의 신뢰성이 낮고 기판과의 접착도 잘 되지 않아서 부수적인 장치를 이용하여 나노 와이어를 기판에 접착하고자 하여 공정이 복잡해지는 문제점이 있었다. 그리고, 도 2는 종래 기술에 따라 제조된 직진성이 나노 와이어 SEM을 나타낸 도이다. 도시된 바와 같이, 종래의 기술에서는 나노 와이어가 곧게 형성되지 않고 중간에 구부러지거나 휘어지게 형성되어 평균 나노 와이어의 저항을 예측하기가 어려워 신뢰성이 낮은 문제점이 있었다.Conventional nanowires mainly use the bottom-up method of Vapor-Liquid-Solid (VLS) growth, which is difficult to control metal catalyst nanoparticles, making it difficult to control the diameter and density of nanowires. It is difficult and difficult to form in the desired position has a disadvantage. To solve this problem, a top-down semiconductor micromachining technique using a lithography process and an etching process has been proposed and used. After patterning a nanowire on a silicon-on-insulator substrate on an insulator, the nanowire is used as a channel. It is proposed in the technology of detecting various chemical substances. 1 shows a broken nanowire SEM prepared according to the prior art. As shown in the related art, in the past, when the nanowire is manufactured, the intermediate is often broken, so that the reliability of the quality is low and the adhesion with the substrate is not good. Therefore, the process is complicated by using the secondary device to adhere the nanowire to the substrate. There was a problem. And, Figure 2 is a diagram showing a straight-wire nanowire SEM prepared according to the prior art. As shown, the conventional technology has a problem that the nanowires are not formed straight but bent or bent in the middle to make it difficult to predict the resistance of the average nanowires and thus have low reliability.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 건식과 습식 에칭을 순차적으로 적용하여 금속패턴의 형상이 보다 정확하게 형성하여, 기판과 접착력이 우수하고, 직전성이 뛰어나 초감도의 성능을 가지는 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법 및 이를 이용한 팔라듐 나노 와이어 수소센서를 제공하는데 그 목적이 있다.The present invention is to solve the above problems, by applying a dry and wet etching in sequence to form a metal pattern more accurately, excellent adhesion with the substrate, excellent directivity, double etching having a super-sensitivity performance It is an object of the present invention to provide a method for producing a palladium nanowire hydrogen sensor and a palladium nanowire hydrogen sensor using the same.

상기 목적을 달성하기 위하여 본 발명은 기판 표면에 전도성 금속을 형성하는 단계; 상기 전도성 금속의 일부에 감광성 물질로 감광패턴을 형성하는 단계; 상기 감광패턴이 형성되지 않아서 노출된 전도성 금속을 건식에칭하는 단계; 상기 감광패턴으로 가려진 전도성 금속의 일부를 건식에칭하여 상기 감광패턴 하부에 금속패턴을 형성하는 단계; 상기 금속패턴에 팔라듐 도금을 하는 단계; 상기 감광패턴을 제거하고 금속패턴을 제거하여 팔라듐 나노 와이어를 형성하는 단계; 및 상기 팔라듐 나노 와이어과 연결된 외부 전극을 형성하는 단계;를 포함하여 이루어지는 것을 특징으로 한다..In order to achieve the above object, the present invention comprises the steps of forming a conductive metal on the substrate surface; Forming a photosensitive pattern on a portion of the conductive metal with a photosensitive material; Dry etching the exposed conductive metal since the photosensitive pattern is not formed; Dry etching a portion of the conductive metal covered by the photosensitive pattern to form a metal pattern under the photosensitive pattern; Palladium plating the metal pattern; Removing the photosensitive pattern and removing the metal pattern to form palladium nanowires; And forming an external electrode connected to the palladium nanowires.

본 발명에서 상기 금속패턴의 폭이 50nm 내지 1000nm인 것을 특징으로 한다.In the present invention, the width of the metal pattern is characterized in that 50nm to 1000nm.

본 발명에서 상기 전도성 금속은 은(Ag), 금(Au), 구리(Cu), 니켈(Ni), 주석(Sn), 아연(Zn) 중, 선택된 어느 하나로 이루어진 것을 특징으로 한다.In the present invention, the conductive metal is characterized in that it is made of any one selected from silver (Ag), gold (Au), copper (Cu), nickel (Ni), tin (Sn), zinc (Zn).

본 발명은 전도성 금속과 감광패턴이 형성된 기판에 상기 전도성 금속을 건식에칭과 습식에칭하여 상기 감광패턴 아래의 일부에 금속패턴을 형성하고, 상기 금속패턴을 팔라듐 전해도금을 하여 팔라듐 나노 와이어를 형성하고, 상기 팔라듐 나노 와이어에 외부 전극을 형성하는 것을 특징으로 한다.The present invention dry and wet etching the conductive metal on a substrate on which the conductive metal and the photosensitive pattern are formed to form a metal pattern under the photosensitive pattern, and palladium electroplating the metal pattern to form palladium nanowires. The external electrode may be formed on the palladium nanowires.

상기 과제 해결 수단에 의해 본 발명은, 금속패턴을 정확하게 제조하여 나노 와이어가 안정적으로 기판과 접착되고, 곧게 선형으로 형성되어 다수의 팔라듐 나노 와이어의 저항이 일정하여 신뢰성이 높은 효과가 있다.According to the present invention, the present invention, by precisely manufacturing a metal pattern, the nanowires are stably bonded to the substrate, and formed in a straight line, the resistance of the plurality of palladium nanowires is constant, there is a high reliability effect.

도 1 - 종래 기술에 따라 제조된 끊어진 나노 와이어 SEM을 나타낸 도.
도 2 - 종래 기술에 따라 제조된 직진성이 나노 와이어 SEM을 나타낸 도.
도 3 - 본 발명의 일 실시예에 따른 팔라듐 와이어 수소센서 제조 방법을 나타낸 순서도.
도 4 - 본 발명의 일 실시예에 따른 팔라듐 와이어 수소센서 제조 방법의 주요 단면도
1-shows a broken nanowire SEM prepared according to the prior art.
FIG. 2-Straightness nanowire SEM prepared according to the prior art.
3-a flowchart showing a method for manufacturing a palladium wire hydrogen sensor according to an embodiment of the present invention.
4-Main cross-sectional view of a method for manufacturing a palladium wire hydrogen sensor according to an embodiment of the present invention

본 발명은 식각비가 뛰어난 건식에칭과 위치제어가 높은 습식에칭을 통해, 금속패턴의 형태가 정확하게 형성되어, 팔라듐 도금된 팔라듐 나노 와이어가 기판과 접촉면적이 넓어 부착력이 우수하고, 휘어지지않고 직진성이 좋은 팔라듐 나노 와이어 수소센서 제조방법과 이를 이용한 팔라듐 나노 와이어 수소센서에 관한 것이다.According to the present invention, through the dry etching with excellent etching ratio and the wet etching with high position control, the shape of the metal pattern is precisely formed. A method for producing a good palladium nanowire hydrogen sensor and a palladium nanowire hydrogen sensor using the same.

도 3은 본 발명의 일 실시예에 따른 팔라듐 와이어 수소센서 제조 방법을 나타낸 순서도이고, 도 4는 본 발명의 일 실시예에 따른 팔라듐 와이어 수소센서 제조 방법의 주요 단면도이다.3 is a flowchart illustrating a method of manufacturing a palladium wire hydrogen sensor according to an embodiment of the present invention, and FIG. 4 is a main cross-sectional view of a method of manufacturing a palladium wire hydrogen sensor according to an embodiment of the present invention.

도 3 및 도 4를 참조하면, 단계 S1에서는 종류가 특별히 제한되지 않지만, 비전도성 기판이거나, 상부에 절연층이 형성된 기판 또는 SiO2 성분의 플로트 유리(float glass)를 기판(10)으로 준비한다. 이때, 상황에 따라서는 기판에 집적회로가 형성되어 있을 수도 있다.3 and 4, the type is not particularly limited in step S1, but is a non-conductive substrate, a substrate having an insulating layer formed thereon, or SiO 2. Float glass of the component is prepared as the substrate 10. In this case, an integrated circuit may be formed on the substrate in some cases.

상기 플로트 유리는 플로트법(녹은 유리를 녹은 주석 위에 붓는 유리 제조법)으로 형성된다. 상기 기판(10)은 오염물질을 제거하기 위해, 플라즈마 박리를 하거나, 아세톤 등으로 세척한 뒤, 질소로 블로잉하여 건조할 수 있다. The float glass is formed by a float method (glass manufacturing method in which molten glass is poured onto molten tin). In order to remove contaminants, the substrate 10 may be plasma exfoliated or washed with acetone, and then blown with nitrogen and dried.

이렇게 준비된 기판(10)에 전도성 금속(20)을 코팅하는데 스퍼터링(Sputtering), 전자빔증착법(E-beam evaporation), 열증착법(Thermal evaporation), 레이저분자빔증착법(L-MBE, Laser Molecular Beam Epitaxy), 펄스레이저증착법(PLD, Pulsed Laser Deposition) 등과 같은 PVD(Physical Vapor Deposition) -물리적 기상증착법-을 사용하거나, MOCVD(Metal-Organic Chemical Vapor Deposition), MVPE(Hydride Vapor Phase Epitaxy)등과 같은 CVD(Chemical Vapor Deposition) -화학적 기상증착법-을 사용할 수 있다. 이때, 증착 시간을 조절하여 증착되는 전도성 금속(20)의 높이를 조절하는데, 수 nm~ 수십 nm 단위로 증착하며, 전도성 금속(20)은 은(Ag), 금(Au), 구리(Cu), 니켈(Ni), 주석(Sn), 아연(Zn) 등과 같이 기판(10)과 접착력이 놓고, 전도도가 우수한 금속이면 모두 사용이 가능하다.Sputtering, E-beam evaporation, Thermal evaporation, Laser Molecular Beam Epitaxy (L-MBE) for coating the conductive metal 20 on the substrate 10 thus prepared. Physical vapor deposition (PVD), such as pulsed laser deposition (PLD), or physical vapor deposition, or chemical-CVD chemical vapor deposition (MOCVD) or chemical vapor phase epitaxy (MVPE). Vapor Deposition—chemical vapor deposition—can be used. At this time, by adjusting the deposition time to adjust the height of the deposited conductive metal 20, a few nm ~ several tens of nm deposition, the conductive metal 20 is silver (Ag), gold (Au), copper (Cu) As long as the adhesion strength with the substrate 10, such as nickel (Ni), tin (Sn), zinc (Zn), is excellent and the conductivity is excellent, all of them can be used.

단계 S2에서는 상기 증착된 전도성 금속(20)에 4000 rpm 정도의 속도로 감광성 물질을 1 ~ 2 ㎛ 코팅한 뒤, 원하는 패턴만 남기기 위해, 리소그라피를 이용하여 노광을 하고 현상을 한다. 그래서 한 방향으로 긴 직선 형태의 감광패턴(30)을 형성한다. 이 때, 노광하는 시간은 사용하는 UV 소스의 전력에 따라서 다르게 조절되어야 한다.In step S2, the photosensitive material is coated on the deposited conductive metal 20 at a speed of about 4000 rpm to 1 to 2 μm, and then exposed and developed using lithography to leave only a desired pattern. Thus, a long photosensitive pattern 30 is formed in one direction. At this time, the exposure time should be adjusted differently according to the power of the UV source to be used.

단계 S3에서는 도 4의 (a)에 도시된 바와 같이, 화살표 방향으로 건식에칭(Dry Etching) 중 이온 충격법(Ion Bombardment), 화학반응법(Chemical Reactive), 이온 빔(Ion Beam) 방법으로 진공 챔버에서 플라즈마를 이용하여 상기 감광패턴(30)에 의해 가려지지 않고 외부로 노출되어 있는 전도성 금속(20)을 에칭한다. 이 때, 건식에칭은 선택성이 낮아서 원하지 않는 면도 에칭할 수 있으므로 짧은 시간 수행하되, 이방성(Anisotropic) 에칭을 할 수 있어서 가로와 세로의 식각비가 일정하게 되어 에칭되는 면이 곧게 선형으로 에칭할 수 있다.In step S3, as shown in (a) of FIG. 4, vacuum is performed by ion bombardment, chemical reactive, and ion beam during dry etching in the direction of the arrow. The conductive metal 20 which is not covered by the photosensitive pattern 30 and exposed to the outside is etched using plasma in the chamber. In this case, dry etching may be performed in a short time because the selectivity is low, so that unwanted etching may be performed. However, the anisotropic etching may be performed, so that the etch ratio of the horizontal and vertical is constant so that the etched surface may be linearly etched. .

단계 S4에서는 도 4의 (b) 및 (c)에 도시된 바와 같이, 감광패턴(30) 아래에 가려져 있던 전도성 물질의 양측의 일부(40)가 제거 되도록 습식에칭을 수행한다. 습식에칭은 다양한 액상의 화합물 Etchant를 사용하며, 기판(10)에 손상이 적으며 원하는 부분을 정확하게 식각하는 높은 선택비를 나타낸다. 이 때, 식각하는 넓이는 원하 나노 와이어의 굵기만큼 과도에칭하여 제조할 수 있다. 주로 감광패턴(30) 아래에 수십 nm ~ 수백 nm 폭의 금속패턴(50)이 형성되도록 한다.In step S4, as shown in FIGS. 4B and 4C, wet etching is performed to remove portions 40 on both sides of the conductive material that are covered under the photosensitive pattern 30. Wet etching uses a variety of liquid compounds Etchant, less damage to the substrate 10 and exhibits a high selectivity to accurately etch the desired portion. At this time, the area to be etched can be prepared by over-etching as much as the thickness of the desired nanowire. Mainly, a metal pattern 50 having a width of several tens nm to several hundred nm is formed under the photosensitive pattern 30.

단계 S5에서는 상기 금속패턴(50)에 팔라듐 도금을 하는 것으로, 도금할 전극을 형성하기 위해 상기 감광패턴(30)의 끝부분을 리소그라피로 노광, 현상하면 전도성 금속(20)이 드러나도록 하여 이를 도금 전극으로 사용한다. 그 후, 전도성 금속(20)을 양극으로, 흑연(Graphite) 백금(Pt) 등을 음극으로 하여 PdCl2, KCl, EDTA 등을 혼합한 팔라듐 전해 용액을 제조한다. 다음으로 상기 양극과 음극을 상기 팔라듐 전해 용액에 함침한 후, 상기 금속패턴(50)에 한 grain(덩어리)씩 팔라듐이 도금 성장하여 팔라듐 나노 와이어가 형성되도록 한다. 이러한 금속패턴(50)은 폭이 50 nm 내지 1000nm정도로 이루어지며, 금속패턴(50)의 안쪽에서 바깥쪽으로 나노 와이어의 폭만큼 성장한다. In step S5, palladium plating is performed on the metal pattern 50. When the end portion of the photosensitive pattern 30 is exposed and lithographically developed in order to form an electrode to be plated, the conductive metal 20 is exposed to be plated. Used as an electrode. Thereafter, a palladium electrolytic solution in which PdCl 2 , KCl, EDTA, or the like is mixed is prepared using the conductive metal 20 as an anode and graphite platinum (Pt) as a cathode. Next, after the positive electrode and the negative electrode are impregnated in the palladium electrolytic solution, palladium is plated and grown by grain (lump) on the metal pattern 50 to form palladium nanowires. The metal pattern 50 has a width of about 50 nm to about 1000 nm, and grows from the inside of the metal pattern 50 to the outside by the width of the nanowires.

단계 S6에서는 상기 감광패턴(30)을 아세톤 등으로 제거하고, 질산용액을 이용하여 금속패턴(50)을 제거하면, 상기 금속패턴(50)에 의해 직선형이고 상기 기판(10)과 접촉면적이 넓어서 안정되게 상기 기판(10)에 접착되고 끊어짐 없고 곧은 팔라듐 나노 구조물을 형성한다.In step S6, when the photosensitive pattern 30 is removed with acetone or the like, and the metal pattern 50 is removed using a nitric acid solution, the metal pattern 50 is linear and has a large contact area with the substrate 10. It stably adheres to the substrate 10 and forms a seamless and straight palladium nanostructure.

단계 S7에서는 상기 팔라듐 나노 와이어의 길이방향과 수직방향으로 상기 팔라듐 나노 와이어의 양단에 감광물질을 형성한 뒤, 리소그라피를 통해 금(Au) 또는 티타늄(Ti)과 같은 전도성 금속을 상기 팔라듐 나노 와이어와 연결되게 형성하여 팔라듐 나노 와이어 수소 센서를 만들 수 있다. 여러 가지 방법 중 4단자법(4-point probe method)이 사용될 수 있으며, 전류-전압 측정장치와 4 단자와 연결되어 수소가스가 노출되면 팔라듐 나노 와이어 수소센서에 있는 팔라듐 표면에 수소가스가 흡착되어 팔라듐 내부에 침입형 자리로 침투하여 저항이 증가하면 전류-전압 측정장치를 통해 수소 유무를 검출할 수 있다.In step S7, photosensitive materials are formed at both ends of the palladium nanowires in a lengthwise direction perpendicular to the palladium nanowires, and then a conductive metal such as gold (Au) or titanium (Ti) is formed through lithography with the palladium nanowires. It can be connected to form a palladium nanowire hydrogen sensor. Among the various methods, the 4-point probe method can be used. When hydrogen gas is exposed in connection with the current-voltage measuring device and the 4 terminals, hydrogen gas is adsorbed onto the palladium surface of the palladium nanowire hydrogen sensor. If the resistance is increased by penetrating into an invasive site inside the palladium, the presence of hydrogen can be detected by the current-voltage measuring device.

그리고 상기와 같은 방법을 이용한 팔라듐 나노 와이어 수소센서는 전도성 금속(20)과 감광패턴(30)이 형성된 기판(10)에 상기 전도성 금속(20)을 건식에칭과 습식에칭하여 상기 감광패턴(30) 아래의 일부에 금속패턴(50)을 형성하고, 상기 금속패턴(50)을 팔라듐 전해도금을 하여 팔라듐 나노 와이어를 형성하고, 상기 팔라듐 나노 와이어에 외부 전극을 형성하고, 전류-전압장치와 연결하여 수소 농도를 감지할 수 있는 수소센서를 제작할 수 있다.In the palladium nanowire hydrogen sensor using the method as described above, the photosensitive pattern 30 is formed by dry etching and wet etching the conductive metal 20 on the substrate 10 on which the conductive metal 20 and the photosensitive pattern 30 are formed. A metal pattern 50 is formed on a portion below, palladium electroplating is performed on the metal pattern 50 to form a palladium nanowire, an external electrode is formed on the palladium nanowire, and connected to a current-voltage device. It is possible to manufacture a hydrogen sensor that can detect the concentration of hydrogen.

본 명세서에 개시된 기술은 여기서 설명되어지는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 당업자에게 본 개시의 기술 및 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. The technology disclosed herein is not limited to the embodiments described herein and may be embodied in other forms. It is merely to be understood that the embodiments introduced herein are provided to enable those skilled in the art to fully convey the spirit and spirit of the present disclosure to those skilled in the art.

10: 기판 20: 전도성 금속
30: 감광패턴 40: 전도성 금속 일부
50: 금속패턴
10: substrate 20: conductive metal
30: photosensitive pattern 40: part of the conductive metal
50: metal pattern

Claims (5)

기판(10) 표면에 전도성 금속(20)을 형성하는 단계;
상기 전도성 금속(20)의 일부에 감광성 물질로 감광패턴(30)을 형성하는 단계;
상기 감광패턴(30)이 형성되지 않아서 노출된 전도성 금속(20)을 건식에칭하는 단계;
상기 감광패턴(30)으로 가려진 전도성 금속의 일부(40)를 건식에칭하여 상기 감광패턴(30) 하부에 금속패턴(50)을 형성하는 단계;
상기 금속패턴(50)에 팔라듐 도금을 하는 단계;
상기 감광패턴(30)을 제거하고 금속패턴(50)을 제거하여 팔라듐 나노 와이어를 형성하는 단계; 및
상기 팔라듐 나노 와이어과 연결된 외부 전극을 형성하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법.
Forming a conductive metal 20 on the surface of the substrate 10;
Forming a photosensitive pattern 30 on a portion of the conductive metal 20 with a photosensitive material;
Dry etching the exposed conductive metal 20 because the photosensitive pattern 30 is not formed;
Dry etching the portion 40 of the conductive metal covered by the photosensitive pattern 30 to form a metal pattern 50 under the photosensitive pattern 30;
Palladium plating the metal pattern (50);
Removing the photosensitive pattern 30 and removing the metal pattern 50 to form palladium nanowires; And
Forming an external electrode connected to the palladium nanowires; Method of manufacturing a palladium nanowires hydrogen sensor using a double etching comprising a.
제1항에 있어서,
상기 금속패턴(50)은 폭이 50nm 내지 1000nm인 것을 특징으로 하는 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법.
The method of claim 1,
The metal pattern (50) has a width of 50nm to 1000nm method for producing a palladium nanowire hydrogen sensor using a double etching.
제1항 또는 제2항에 있어서,
상기 전도성 금속(20)은 은(Ag), 금(Au), 구리(Cu), 니켈(Ni), 주석(Sn), 아연(Zn) 중, 선택된 어느 하나로 이루어진 것을 특징으로 하는 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서의 제조방법.
The method according to claim 1 or 2,
The conductive metal 20 may be formed of any one selected from silver (Ag), gold (Au), copper (Cu), nickel (Ni), tin (Sn), and zinc (Zn). Method of manufacturing palladium nanowire hydrogen sensor.
전도성 금속(20)과 감광패턴(30)이 형성된 기판(10)에 상기 전도성 금속(20)을 건식에칭과 습식에칭하여 상기 감광패턴(30) 아래의 일부에 금속패턴(50)을 형성하고, 상기 금속패턴(50)을 팔라듐 전해도금을 하여 팔라듐 나노 와이어를 형성하고, 상기 팔라듐 나노 와이어에 외부 전극을 형성하는 것을 특징으로 하는 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서.The conductive metal 20 is dry-etched and wet-etched on the substrate 10 having the conductive metal 20 and the photosensitive pattern 30 formed thereon to form a metal pattern 50 under the photosensitive pattern 30. The palladium nanowire hydrogen sensor using a double etching, characterized in that the metal pattern (50) by palladium electroplating to form a palladium nanowire, an external electrode on the palladium nanowire. 제4항에 있어서, 상기 전도성 금속(20)은,
상기 전도성 금속은 은(Ag), 금(Au), 구리(Cu), 니켈(Ni), 주석(Sn), 아연(Zn) 중, 선택된 어느 하나로 이루어진 것을 특징으로 하는 이중 에칭을 이용한 팔라듐 나노 와이어 수소센서.
The method of claim 4, wherein the conductive metal 20,
The conductive metal is silver (Ag), gold (Au), copper (Cu), nickel (Ni), tin (Sn), zinc (Zn), palladium nanowires using a double etching, characterized in that any one selected from Hydrogen sensor.
KR1020120007020A 2012-01-20 2012-01-20 Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof KR20130085880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120007020A KR20130085880A (en) 2012-01-20 2012-01-20 Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120007020A KR20130085880A (en) 2012-01-20 2012-01-20 Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof

Publications (1)

Publication Number Publication Date
KR20130085880A true KR20130085880A (en) 2013-07-30

Family

ID=48995952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120007020A KR20130085880A (en) 2012-01-20 2012-01-20 Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof

Country Status (1)

Country Link
KR (1) KR20130085880A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868951A (en) * 2014-02-24 2014-06-18 北京大学 Method for preparing nanowire array gas sensitive elements by dry method
KR20150089291A (en) 2014-01-27 2015-08-05 울산대학교 산학협력단 Hydrogen sensor based on nickel/palladium-graphene nanocomposite and method of fabricating the same
KR101586441B1 (en) 2014-09-17 2016-01-20 순천대학교 산학협력단 Method for etching of palladium layer for opto-electronic device
KR20160014925A (en) 2014-07-30 2016-02-12 울산대학교 산학협력단 Hydrogen sensor based on palladium nanodendrite/graphene nanocomposite and method of fabricating the same
KR20160074291A (en) 2014-12-18 2016-06-28 울산대학교 산학협력단 Hydrogen sensor based on platinum/palladium-graphene hybrid and method of fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150089291A (en) 2014-01-27 2015-08-05 울산대학교 산학협력단 Hydrogen sensor based on nickel/palladium-graphene nanocomposite and method of fabricating the same
CN103868951A (en) * 2014-02-24 2014-06-18 北京大学 Method for preparing nanowire array gas sensitive elements by dry method
KR20160014925A (en) 2014-07-30 2016-02-12 울산대학교 산학협력단 Hydrogen sensor based on palladium nanodendrite/graphene nanocomposite and method of fabricating the same
KR101586441B1 (en) 2014-09-17 2016-01-20 순천대학교 산학협력단 Method for etching of palladium layer for opto-electronic device
KR20160074291A (en) 2014-12-18 2016-06-28 울산대학교 산학협력단 Hydrogen sensor based on platinum/palladium-graphene hybrid and method of fabricating the same

Similar Documents

Publication Publication Date Title
US8142984B2 (en) Lithographically patterned nanowire electrodeposition
US20060270229A1 (en) Anodized aluminum oxide nanoporous template and associated method of fabrication
Noh et al. High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires
US10079322B2 (en) Necklaces of silicon nanowires
US20100003822A1 (en) Method for producing columnar structured material
Arif et al. Metallic nanowire–graphene hybrid nanostructures for highly flexible field emission devices
US7375368B2 (en) Superlattice for fabricating nanowires
US8968582B2 (en) Device for electrical characterization of molecules using CNT-nanoparticle-molecule-nanoparticle-CNT structure
KR20130085880A (en) Method of palladium nanowire hydrogen sensor using double eching and a sensor thereof
JP2009255025A6 (en) Method of forming catalyst nanoparticles for growing elongated nanostructures
Canevali et al. Influence of doping elements on the formation rate of silicon nanowires by silver-assisted chemical etching
KR101665020B1 (en) GAS SENSOR and Method for Manufacturing GAS SENSOR
EP4150675A1 (en) Method of preparing nanowire networks and networks prepared thereby
US10037896B2 (en) Electro-assisted transfer and fabrication of wire arrays
US20100109101A1 (en) Method of Positioning Catalyst Nanoparticle and Nanowire-Based Device Employing Same
KR102169125B1 (en) Method of manufacturing gold nanostructure, 3-dimensional gold electrode and sensor comprising gold nanostructure manufactured thereby
KR101548704B1 (en) Silicon nanowire array, anode of lithium ion battery and fabricating method for the same
Lee et al. Suspended and localized single nanostructure growth across a nanogap by an electric field
CN101817499B (en) Nanoscale gap electrode pair array and preparation method thereof
KR20050025386A (en) Method for manufacturing organic molecular device
KR100821740B1 (en) Pd nanowire hydrogen sensors and its manufacturing method
Van Hoang et al. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications
KR101242349B1 (en) Carbon nanotube electronic device and manufacturing method for the same
KR102423791B1 (en) Nano structure with selectively deposited nano materials and method for selective deposition of nanomaterials on nano structure
CN102208350B (en) Method for preparing groove structure embedded with carbon nano tube (CNT) by virtue of selective wet etching

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right