KR20130078084A - A micronized particle process of ceramide using supercritical fluid and it's application - Google Patents

A micronized particle process of ceramide using supercritical fluid and it's application Download PDF

Info

Publication number
KR20130078084A
KR20130078084A KR1020110146836A KR20110146836A KR20130078084A KR 20130078084 A KR20130078084 A KR 20130078084A KR 1020110146836 A KR1020110146836 A KR 1020110146836A KR 20110146836 A KR20110146836 A KR 20110146836A KR 20130078084 A KR20130078084 A KR 20130078084A
Authority
KR
South Korea
Prior art keywords
ceramide
supercritical fluid
particles
supercritical
organic solvent
Prior art date
Application number
KR1020110146836A
Other languages
Korean (ko)
Inventor
신문삼
Original Assignee
을지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 을지대학교 산학협력단 filed Critical 을지대학교 산학협력단
Priority to KR1020110146836A priority Critical patent/KR20130078084A/en
Publication of KR20130078084A publication Critical patent/KR20130078084A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/20Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

PURPOSE: A manufacturing method of ceramide microparticles is provided to be able to provide minute ceramide particles with an increased skin absorption rate by modification of temperature and pressure which are operating variables in the supercritical fluid process, or flux variation of a solution of ceramide and an organicl solvent, and the supercritical carbon dioxide. CONSTITUTION: A manufacturing method of ceramide microparticles using the supercritical fluid process comprises a step of forming ceramide particles by contacting a mixture solvent in which ceramide is dissolved in an organic solvent to supercritical fluid with spraying; and a step of removing the organic solvent which has been used in the mixture solution by introducing the supercritical fluid to the ceramide particles. Ceramide is used at a weight fraction of 0.0001-0.50 to the weight fraction of the organic solvent.

Description

초임계 유체를 이용한 세라마이드 미세입자 제조방법과 그 응용 {A Micronized Particle Process of Ceramide using Supercritical Fluid and it's Application}A method for producing ceramide microparticles using supercritical fluids and its application {A Micronized Particle Process of Ceramide using Supercritical Fluid and it's Application}

본 발명은 초임계 유체 공정을 이용한 피부구성성분인 미세입자 세라마이드 제제에 관한 공법과 의약외품으로의 응용에 관한 것으로, 세라마이드를 유기용매에 용해시킨 혼합용액을 초임계 유체에 분무하여 접촉시켜 세라마이드 입자를 생성시키는 단계 및 상기 입자에 초임계 유체를 도입하여 상기 혼합용액에 사용된 유기용매를 제거하는 단계를 포함하는, 초임계 유체 공정을 이용하여 초미세화된 세라마이드 입자를 제조하는 방법에 관한 것이다.The present invention relates to a process for the preparation of microparticle ceramides, which are skin components using a supercritical fluid process, and to application to quasi-drugs. It relates to a method for producing ultrafine ceramide particles using a supercritical fluid process comprising the step of producing and introducing a supercritical fluid to the particles to remove the organic solvent used in the mixed solution.

일반적으로 세라마이드는 피부구성성분으로 아토피 등의 건선피부 환자에게 유용하게 사용되고 있고, 일반 유기용매를 이용하여 미세입자를 만들지만, 이것은 잔존유기용매 등의 문제로 인해 부작용을 수반하는 경우도 많이 존재한다.       In general, ceramide is used as a skin component in psoriasis skin patients such as atopic dermatitis, and it uses microorganisms to make fine particles. However, this is often accompanied by side effects due to residual organic solvents. .

한편, 초임계 유체란 임계점이상의 온도와 압력하에 있는 비압축성 유체로서, 기존의 유기용매에서는 나타나지 않는 독특한 특징을 나타낸다. 즉, 초임계유체는 액체에 가까운 큰 밀도, 기체에 가까운 낮은 점도와 높은 확산계수, 매우 낮은 표면장력 등의 우수한 물성을 동시에 가지고 있다. 초임계 유체는 밀도를 이상기체에 가까운 희박 상태에서부터 액체 밀도에 가까운 고밀도 상태까지 연속적으로 변화시킬 수 있기 때문에 유체의 평형물성(용해도, 반출[entrainer]효과), 전달물성(점도, 확산계수, 열전도도), 분자 뭉침(clustering) 상태 등을 조절할 수 있다. 따라서, 초임계 유체의 물성조절의 용이성을 이용한다면, 하나의 용매로 여러 종류의 액체용매에 필적하는 용매특성을 얻을 수 있다. 특히, 이산화탄소는 임계온도가 31.1도로 낮기 때문에 약물과 같은 열변성 물질에 적용하기 적합하며, 무독성, 불연성이고, 가격이 매우 저렴할 뿐 아니라, 회수하여 재사용할 수 있으므로 여러 환경 친화적인 공정을 설계할 수 있는 등의 많은 장점이 있기 때문에 의약물질에 적용하기에 매우 이상적이다.Supercritical fluids, on the other hand, are incompressible fluids at temperatures and pressures above the critical point, and exhibit unique characteristics not found in conventional organic solvents. That is, supercritical fluids have excellent physical properties such as high density close to liquid, low viscosity close to gas, high diffusion coefficient, and very low surface tension. Supercritical fluids can continuously vary in density from lean to near ideal gas to high density near liquid density, so that the fluid's equilibrium (solubility, entrainer effect) and transfer properties (viscosity, diffusion coefficient, and thermal conductivity). Fig. 2), molecular clustering (clustering) state can be adjusted. Therefore, by utilizing the ease of controlling the physical properties of the supercritical fluid, it is possible to obtain solvent characteristics comparable to various liquid solvents with one solvent. In particular, carbon dioxide has a low critical temperature of 31.1 degrees, making it suitable for thermally denatured substances such as drugs, non-toxic, non-flammable, inexpensive, and easy to recover and reuse. It is ideal for applications in pharmaceuticals because of its many advantages.

초임계 유체의 이러한 독특한 성질을 이용하여 근래에는 특정 물질의 선택적 추출, 추출을 통한 물질의 분석 등의 분야에서 많은 연구가 이루어지고 있으며, 또한 초임계 유체를 용매로 사용하거나 역용매(anti-solvent)로 사용하여 재결정 또는 미세입자를 얻는 방법에 관한 연구가 활발히 이루어지고 있다.
Using these unique properties of supercritical fluids, much research has recently been conducted in the fields of selective extraction of specific substances and analysis of substances through extraction. Also, supercritical fluids are used as solvents or anti-solvents. There is an active research on how to obtain recrystallized or fine particles.

기존에 사용되던 세라마이드는 입자크기가 커서 피부흡수율이 좋지않고, 또한 유기용매를 이용하여 미세입자를 얻으면 잔존 유기용매로 인한 부작용이 있다. 본 발명에서는 유기용매를 사용하지 않고, 별도의 분리공정이 필요없는 초임계 이산화탄소를 이용하여 세라마이드의 미세입자를 얻고자 한다.
The ceramide used in the past has a large particle size, so that the skin absorption rate is not good, and when the fine particles are obtained using the organic solvent, there are side effects due to the remaining organic solvent. In the present invention, to obtain the fine particles of ceramide using supercritical carbon dioxide, which does not require an organic solvent and does not require a separate separation process.

본 발명자들은 초임계 이산화탄소를 이용한 초임계유체 공정으로 세라마이드의 입자크기를 미세화하여 유효단면적 증가로 인한 피부흡수율이 증가된 세라마이드를 제조하는 방법을 개발하고 이로부터 제조된 세라마이드 제제가 초임계 유체 공정의 조작변수인 온도 및 압력의 변화 또는 함께 사용된 용액의 유량과 초임계 이산화탄소의 유량 변화를 통해 약물자체의 결정화를 변화시켜 유효단면적이 증가하여 피부흡수율이 예견되는 미세화된 세라마이드 입자를 얻어 본 발명을 완성하고자 한다.The present inventors have developed a method for producing ceramide with increased skin absorption rate by increasing the effective area by miniaturizing the particle size of ceramide in a supercritical fluid process using supercritical carbon dioxide, and the ceramide formulation prepared from the supercritical fluid process The present invention was obtained by changing the crystallization of the drug itself through the change of the operating variables such as temperature and pressure, or the flow rate of the solution and the flow rate of supercritical carbon dioxide. I want to complete.

본 발명의 초임계유체 공정을 이용하여 얻어진 세라마이드는 기존 세라마이드에 비하여 초미세한 입자를 얻을 수 있었으며, 유효단면적 증가로 인한 피부효능의 증진이 예견되는 초미세화 세라마이드 제제의 제조공정을 완성하게 되었다. 이 미세입자 세라마이드을 의약외품 등에 응용될 수 있다.
The ceramide obtained by using the supercritical fluid process of the present invention was able to obtain ultrafine particles compared to the existing ceramide, and completed the preparation process of the ultrafine ceramide formulation, which is expected to enhance skin efficacy due to an increase in the effective area. This microparticle ceramide can be applied to quasi-drugs and the like.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 초임계 유체 공정을 이용하여 입자크기가 큰 세라마이드을 미세화하여 피부흡수율이 증가하는 제제를 제공하는 것이다.     The present invention is to solve the problems of the prior art as described above, to provide a formulation that increases the skin absorption rate by miniaturizing the ceramide having a large particle size using a supercritical fluid process.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 세라마이드를 유기용매로 용해시킨 혼합용액을 초임계유체에 분무하여 접촉시킴으로써 세라마이드 입자를 생성시키는 단계 및 상기 입자에 초임계유체를 도입하여 상기 혼합용액에 사용된 유기용매를 제거하는 단계를 포함하는, 초임계 유체 공정을 이용하여 미세화된 세라마이드를 제조하는 방법을 제공한다.The present invention is to generate a ceramide particles by spraying a mixed solution of ceramide dissolved in an organic solvent by spraying the supercritical fluid and to remove the organic solvent used in the mixed solution by introducing a supercritical fluid to the particles. It provides a method for producing micronized ceramide using a supercritical fluid process, comprising.

상기 제조방법의 기본 원리는 세라마이드를 적량의 유기용매에 용해시킨 후 이를 초임계 이산화탄소로 평형을 이룬 반응구에 노즐을 통해 분사하여 입자를 얻은 뒤 수차례 초임계 이산화탄소를 흘려보내 유기용매를 추출해낸 후 이산화탄소를 제거함으로써 미세화된 세라마이드를 제조하는 것이다.The basic principle of the manufacturing method is to dissolve the ceramide in an appropriate amount of an organic solvent, and then spray it through a nozzle in a reaction zone equilibrated with supercritical carbon dioxide to obtain particles, and then flow the supercritical carbon dioxide several times to extract the organic solvent. After the carbon dioxide is removed to refine the ceramide.

보다 구체적으로, 본 발명에서 초임계유체 공정을 이용하여 미세화된 세라마이드를 제조하는 방법은 1)세라마이드를 유기용매에 용해시킨 후 이들의 혼합물을 제조하는 단계; 2)초임계 유체에 상기 혼합용액을 분무하여 접촉시켜 세라마이드 입자를 생성시키는 단계; 3)상기 입자에 별도의 초임계 유체를 도입하여 유기용매를 제거하는 단계; 4)생성된 입자를 회수하는 단계를 포함한다. 상기 제조방법을 각 단계별로 상세히 설명하면 다음과 같다.More specifically, in the present invention, a method for preparing micronized ceramide using a supercritical fluid process includes the steps of: 1) dissolving ceramide in an organic solvent and preparing a mixture thereof; 2) spraying the mixed solution with a supercritical fluid to make contact with the ceramide particles; 3) removing the organic solvent by introducing a separate supercritical fluid to the particles; 4) recovering the generated particles. The manufacturing method will be described in detail for each step as follows.

1) 분무를 위한 세라마이드의 혼합용액 제조1) Preparation of mixed solution of ceramide for spraying

단계 1)에서 유기용매로 사용되는 것은 메탄올이나 에탄올 등이 사용되지만, 본 발명에서는 인체에 독성이 적은 에탄올을 사용하였다.The organic solvent used in step 1) is methanol or ethanol, but in the present invention, ethanol having less toxicity to human body is used.

사용되는 유기용매는 중량분율로 세라마이드가 0.0001 내지 0.50중량분율을 사용하는 것이 바람직하며, 더욱 바람직하게는 0.001 내지 0.20 중량분율을 사용한다. 0.0001중량분율이하에서는 얻을 수 있는 입자의 양이 너무 적게되고, 0.50중량분율이상에서는 세라마이드이 유기용매에 용해되지 않는다.The organic solvent to be used preferably has a ceramide of 0.0001 to 0.50 parts by weight, more preferably 0.001 to 0.20 parts by weight. Below 0.0001 parts by weight, the amount of particles obtainable is too small, and above 0.50 parts by weight, ceramide does not dissolve in the organic solvent.

2) 초임계 유체에 혼합용액의 분부를 통한 입자의 생성2) Generation of particles through the portion of the mixed solution in the supercritical fluid

상기 단계 2)에서 사용될 수 있는 초임계 유체로는 초임계 이산화탄소, 초임계 일산화이질소, 초임계 삼불화메탄, 초임계 프로판, 초임계 에틸렌 또는 초임계 제논 등이 있으며, 본 발명에서는 바람직한 실시예로서 초임계 이산화탄소를 사용하였다.Supercritical fluids that can be used in step 2) include supercritical carbon dioxide, supercritical dinitrogen monoxide, supercritical methane trifluoride, supercritical propane, supercritical ethylene or supercritical xenon, and the like in the present invention. Supercritical carbon dioxide was used.

스테인레스스틸로 만들어진 반응구의 온도와 압력을 이산화탄소의 임계점인 31.1도와 73.8바(bar)이상이 되도록 이산화탄소를 반응구에 주입하고, 가압, 가온하여 초임계 상태를 유지하고, 반응구가 초임계 상태로 평형을 이룰 때까지 기다린다. 이산화탄소의 가압시 일정한 압력을 유지하고 정확한 주입량을 알기 위해 주사 펌프(syringe pump)를 사용하고, 항온을 유지하기 위해 순환식 항온조나 자동온도조절기를 사용하는 것이 바람직하다. 반응구가 초임계 상태로 평형을 이루면 정확한 속도 조절이 가능한 소형 액체펌프(liquid pump)를 사용하여 단계 1)에서 제조된 세라마이드과 첨가제의 혼합용액을 반응구 내로 일정한 속도로 주입한다. 이때, 노즐의 막힘 현상을 방지하기 위해 혼합용액의 주입 전 공(空)용매를 소량, 예를들면 3-4ml정도 주입하는 것이 바람직하고, 주입되는 공용매의 양이 많아질수록 이후의 초임계유체에 의한 세척시간이 더 길어지게 된다. 주입된 혼합용액은 노즐을 통해 분사되며 분사된 혼합용액 중 유기용매는 빠른 속도로 초임계 이산화탄소에 섞여 들어가며 입자를 생성하게 된다. 상기 혼합용액의 주입과 동시에 반응구 내의 포화되는 것을 방지하기 위하여 별도의 초임계 유체를 주입할 수 있다.The carbon dioxide is injected into the reaction port so that the temperature and pressure of the reaction port made of stainless steel are above the critical point of carbon dioxide of 31.1 degrees and 73.8 bar, and are pressurized and warmed to maintain the supercritical state. Wait for equilibrium. It is preferable to use a syringe pump to maintain a constant pressure and pressurize the carbon dioxide to know the precise injection amount, and to use a circulating thermostat or a thermostat to maintain a constant temperature. When the reaction port is equilibrated in a supercritical state, a mixture of the ceramide and the additive prepared in step 1) is injected into the reaction port at a constant speed using a small liquid pump capable of precise speed control. At this time, in order to prevent clogging of the nozzle, it is preferable to inject a small amount of empty solvent, for example, 3-4 ml, into the mixed solution.The higher the amount of the cosolvent to be injected, the more supercritical thereafter. The cleaning time by the fluid will be longer. The injected mixed solution is sprayed through the nozzle, and the organic solvent in the injected mixed solution is rapidly mixed into the supercritical carbon dioxide to generate particles. A separate supercritical fluid may be injected to prevent the mixture from being saturated at the same time as the injection of the mixed solution.

3) 초임계 유체를 이용한 유기용매의 제거3) Removal of organic solvent using supercritical fluid

혼합용액의 분무가 끝나면 생성 입자 중의 유기용매를 제거하기 위해 초임계 유체를 도입하는 입자 세척과정이 필요하다. 상기 과정에서는 초임계 유체를 일정한 속도로 반응기 내로 주입하면서 반응구 상태를 일정한 압력으로 유기하기 위해 주입속도와 동일한 속도로 배출구를 통해 배출시킨다. 이때, 배출속도를 조절하여 반응구에서 항압을 유지하기 위해 배출구에 역압조절기(back pressure regulator)를 연결한다. 배출구의 구멍크기가 0.45μm인 막 필터를 이중으로 사용하여 입자가 빠져나가는 것을 방지한다. 용매가 잔존하게 되면 입자를 수거하기 위해 온도와 압력을 낮추었을 때 용매가 재석출되어 만들어진 입자를 다시 녹여 응집을 형성하게 되므로 세척과정은 용매가 모두 제거될 때까지 충분히 계속 수행해야 한다. 세척을 위한 초임계 유체의 양은 사용된 용매의 양 및 반응구의 크기에 따라 달라지며, 약 2,000-3,000ml 정도가 바람직하다.After spraying the mixed solution, a particle washing process is required to introduce a supercritical fluid to remove the organic solvent in the resulting particles. In the above process, the supercritical fluid is injected into the reactor at a constant rate, and discharged through the outlet at the same rate as the injection rate to induce the reaction port state at a constant pressure. At this time, the back pressure regulator is connected to the outlet to maintain the constant pressure in the reaction port by adjusting the discharge rate. A double membrane filter with an aperture size of 0.45 μm is used to prevent particles from escaping. When the solvent remains, the solvent is reprecipitated when the temperature and pressure are lowered to collect the particles, so that the particles are re-dissolved to form agglomerates. Therefore, the washing process should be sufficiently performed until all solvents are removed. The amount of supercritical fluid for washing depends on the amount of solvent used and the size of the reaction port, preferably about 2,000-3,000 ml.

4) 입자의 회수4) Recovery of Particles

세척과정이 끝나면 반응구로의 초임계유체 공급을 중단하고 초임계유체를 배출시킨다. 이때, 배출이 너무 급속하게 이루어지면 생성된 입자가 손상될 수 있으므로 서서히 배출시키는 것이 바람직하다. 반응구 내의 초임계 유체를 모두 제거한 후 반응구 내의 기벽이나 바닥으로부터 입자를 수거한다.At the end of the cleaning process, the supercritical fluid supply to the reactor is stopped and the supercritical fluid is discharged. At this time, if the discharge is made too fast, the produced particles may be damaged, so it is preferable to discharge slowly. After removing all of the supercritical fluid in the reactor, the particles are collected from the base wall or bottom of the reactor.

이하 본 발명에 대한 비교예와 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to comparative examples and examples.

먼저 비교예는 50-100마이크론 입자크기의 처리 전 세라마이드를 나타내고, 실시예는 아래의 조건으로 생성된 세라마이드 입자를 입도분석기로 입자크기를 측정하였고, 작업조건에 따라 50에서 150 nm의 미세입자크기를 얻을 수 있었다. 초임계유체 공정을 이용하여 표면적이 작은 세라마이드를 제조하기 위하여 사용되는 혼합용액의 함량은 세라마이드가 0.12g이고 에탄올은 23.67g이며, 침전이 일어나는 침전조의 높이는 200mm이고 부피는 100㎖이다.First, the comparative example shows the ceramide before the treatment of the particle size of 50-100 microns, the Example was measured the particle size of the ceramide particles produced by the following conditions, the particle size of 50 to 150 nm depending on the working conditions Could get The content of the mixed solution used to prepare the ceramide with small surface area using the supercritical fluid process is 0.12 g of ceramide, 23.67 g of ethanol, and the height of the settling tank where precipitation occurs is 200 mm and the volume is 100 ml.

하기 표 1에서 보는 바와 같이, 본 실시예에서 조작변수로는 온도와 압력, 이산화탄소 유량, 용액유량이고, 실시예1-2는 온도을 조절하여 313, 333K의 변화, 실시예3-4에서는 압력을 130-170바(bar), 실시예5-6에서는 이산화탄소 유량을 2.5-3.5kg/hr, 실시예7-8에서는 용액유량 0.5-1.5㎖/min을 변화시키면서 미세화 세라마이드을 얻을 수 있었다.As shown in Table 1, the operating variables in this embodiment are the temperature and pressure, the carbon dioxide flow rate, the solution flow rate, Example 1-2 is to change the temperature of 313, 333K by adjusting the temperature, the pressure in Example 3-4 In 130-170 bar (Example 5-6), the fine ceramide was obtained while changing the carbon dioxide flow rate 2.5-3.5kg / hr, Example 7-8, the solution flow rate 0.5-1.5ml / min.

실시예1-8에서의 4가지 조작변수에 의한 작업조건 및 입자크기Working Condition and Particle Size by Four Operational Variables in Example 1-8 실시예Example 온도(K)Temperature (K) 압력(bar)Pressure (bar) 이산화탄소유량(kg/hr)Carbon Dioxide Flow Rate (kg / hr) 용액유량(ml/min)Solution flow rate (ml / min) 입자크기(nm)Particle Size (nm) 실시예1Example 1 313313 150150 2.52.5 0.50.5 110110 실시예2Example 2 333333 150150 2.52.5 0.50.5 136136 실시예3Example 3 313313 130130 2.52.5 0.50.5 134134 실시예4Example 4 313313 170170 2.52.5 0.50.5 6767 실시예5Example 5 313313 150150 2.52.5 0.50.5 150150 실시예6Example 6 313313 150150 3.53.5 0.50.5 5050 실시예7Example 7 313313 150150 2.52.5 0.50.5 137137 실시예8Example 8 313313 150150 2.52.5 1.51.5 5050

본 발명의 초임계유체 공정을 이용하여 얻어진 세라마이드는 기존 세라마이드에 비하여 초미세한 입자를 얻을 수 있었으며, 유효단면적 증가로 인한 피부효능의 증진이 예견되는 초미세화 세라마이드 제제의 제조공정을 완성하게 되었다. 이 미세입자 세라마이드를 화장품, 의약외품 등에 응용될 수 있다. The ceramide obtained by using the supercritical fluid process of the present invention was able to obtain ultrafine particles compared to the existing ceramide, and completed the preparation process of the ultrafine ceramide formulation, which is expected to enhance skin efficacy due to an increase in the effective area. The fine particle ceramide can be applied to cosmetics, quasi-drugs and the like.

Claims (1)

세라마이드를 유기용매에 용해시킨 혼합용매를 초임계 유체에 분무하여 접촉시켜 세라마이드 입자를 생성시키는 단계; 및 초임계 유체를 도입하여 상기 혼합용액에 사용된 유기용매를 제거하는 단계;를 포함하여 구성되며,
유기용매에 대해 중량분율로 세라마이드 0.0001 내지 0.50중량분율을 사용하는 것을 특징으로 하는, 초임계 유체 공정을 이용한 미세입자 세라마이드 제조 방법.
Spraying the mixed solvent in which the ceramide is dissolved in the organic solvent by contacting the supercritical fluid to generate ceramide particles; And removing an organic solvent used in the mixed solution by introducing a supercritical fluid.
A method for producing fine particle ceramide using a supercritical fluid process, characterized in that 0.001 to 0.50 weight percent ceramide is used as the weight fraction with respect to the organic solvent.
KR1020110146836A 2011-12-30 2011-12-30 A micronized particle process of ceramide using supercritical fluid and it's application KR20130078084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110146836A KR20130078084A (en) 2011-12-30 2011-12-30 A micronized particle process of ceramide using supercritical fluid and it's application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110146836A KR20130078084A (en) 2011-12-30 2011-12-30 A micronized particle process of ceramide using supercritical fluid and it's application

Publications (1)

Publication Number Publication Date
KR20130078084A true KR20130078084A (en) 2013-07-10

Family

ID=48991139

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110146836A KR20130078084A (en) 2011-12-30 2011-12-30 A micronized particle process of ceramide using supercritical fluid and it's application

Country Status (1)

Country Link
KR (1) KR20130078084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114403280A (en) * 2022-01-30 2022-04-29 杭州佳嘉乐生物技术有限公司 Preparation method of multifunctional nano-scale oyster peptide powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114403280A (en) * 2022-01-30 2022-04-29 杭州佳嘉乐生物技术有限公司 Preparation method of multifunctional nano-scale oyster peptide powder

Similar Documents

Publication Publication Date Title
Reverchon Supercritical-assisted atomization to produce micro-and/or nanoparticles of controlled size and distribution
CN101357310B (en) Device for preparing particulates using supercritical fluid assistant spray and use thereof
Ventosa et al. Depressurization of an expanded liquid organic solution (DELOS): a new procedure for obtaining submicron-or micron-sized crystalline particles
Miao et al. Supercritical fluid extraction and micronization of ginkgo flavonoids from ginkgo biloba leaves
JP2011506059A (en) Methods and structures for generating particles using subcritical fluids
KR100802278B1 (en) A supercritical nanoparticle process with vitamin k using molecular association theory
KR100508518B1 (en) Method for the preparation of paclitaxel solid dispersion by using the supercritical fluid process and paclitaxel solid dispersion prepared thereby
Bhusnure et al. Importance of supercritical fluid extraction techniques in pharmaceutical industry: A Review
CN103989635A (en) Method for preparing coenzyme Q10 lipidosome through supercritical carbon dioxide
KR20130078084A (en) A micronized particle process of ceramide using supercritical fluid and it's application
KR20130078083A (en) A micronized particle process of triclosan using supercritical anti-solvent method and it's application
KR100818685B1 (en) A nano-particle process of triclocarban
KR100811447B1 (en) A nano-particle process of ceramide using supercritical fluid
KR20080044527A (en) A nano-particle process of piroctone olamine using supercritical fluid process and its application
KR20130124781A (en) A composition of high moisturizing over the counter products using ecofriendly micronized ceramide
KR20070058279A (en) A nano-particle process of zinc pyrithione and it's application to antidandruff otc products
KR20080060074A (en) A nanoparticle process of phytoestrogen using supercritical carbon dioxide
KR20080044541A (en) A nano-particle process of triclocarban and it's application
US7767118B2 (en) Nanoparticles from supercritical fluid antisolvent process using particle growth and agglomeration retardants
KR20070058275A (en) A method for micronized climbazole using antisolvent supercritical fluid process
KR20080060059A (en) A nanoparticle process of panthenol using molecular association near critical regions
KR20070058277A (en) A nano-particle process of triclosan and it's application to otc products
KR20080060082A (en) A nanoparticle process of phytoestrogen
KR20080060092A (en) A nanoparticle process of ascorbic acid using repid expension of supercritical system
KR20070058278A (en) A supercritical process of vitamine k using antisolvent carbon dioxide

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination