KR20070058279A - A nano-particle process of zinc pyrithione and it's application to antidandruff otc products - Google Patents

A nano-particle process of zinc pyrithione and it's application to antidandruff otc products Download PDF

Info

Publication number
KR20070058279A
KR20070058279A KR1020050117313A KR20050117313A KR20070058279A KR 20070058279 A KR20070058279 A KR 20070058279A KR 1020050117313 A KR1020050117313 A KR 1020050117313A KR 20050117313 A KR20050117313 A KR 20050117313A KR 20070058279 A KR20070058279 A KR 20070058279A
Authority
KR
South Korea
Prior art keywords
zinc pyrithione
supercritical
organic solvent
particles
supercritical fluid
Prior art date
Application number
KR1020050117313A
Other languages
Korean (ko)
Inventor
신문삼
김화용
Original Assignee
신문삼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신문삼 filed Critical 신문삼
Priority to KR1020050117313A priority Critical patent/KR20070058279A/en
Publication of KR20070058279A publication Critical patent/KR20070058279A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A method for preparing nano-sized zinc pyrithione is provided to micronize zinc pyrithione particles by changing self-crystallization degree of the zinc pyrithione through temperature and pressure change or flow change of a solution of zinc pyrithione and an organic solvent and supercritical CO2, thereby increasing skin efficacy of the zinc pyrithione due to increased cross-sectional area thereof. The method comprises the steps of: (a) spray-contacting a mixture solvent prepared by dissolving zinc pyrithione in an organic solvent such as methanol and ethanol with supercritical fluid to generate zinc pyrithione particles; and (b) introducing supercritical fluid such as supercritical CO2, supercritical N2O, supercritical CHF3, supercritical propane, supercritical ethylene and supercritical xenon into a reactor of the step(a) to remove the organic solvent used for the mixture solvent, wherein the content of the organic solvent used regarding the zinc pyrithione is 0.0001-0.50 wt.%, and preferably 0.001-0.20 wt.%.

Description

나노입자 징크피리치온 제조방법과 비듬치료 의약외품으로의 응용 { A Nano-Particle Process of Zinc Pyrithione and it's Application to Antidandruff OTC Products}Nanoparticle Particle Process of Zinc Pyrithione and It's Application to Antidandruff OTC Products

본 발명은 초임계 유체 공정을 이용한 나노입자 징크피리치온 제제에 관한 공법과 비듬 의약외품으로의 응용에 관한 것으로, 징크피리치온을 유기용매에 용해시킨 혼합용액을 초임계 유체에 분무하여 접촉시켜 징크피리치온 입자를 생성시키는 단계 및 상기 입자에 초임계 유체를 도입하여 상기 혼합용액에 사용된 유기용매를 제거하는 단계를 포함하는, 초임계 유체 공정을 이용하여 초미세화된 징크피리치온 입자를 제조하는 방법에 관한 것이다. The present invention relates to a method for nanoparticle zinc pyrithione formulations using a supercritical fluid process and application to dandruff quasi-drugs, by contacting a supercritical fluid by spraying a mixed solution of zinc pyrithione dissolved in an organic solvent Ultrafine zinc pyrithione particles using a supercritical fluid process comprising producing zinc pyrithione particles and introducing a supercritical fluid into the particles to remove organic solvents used in the mixed solution. It relates to a method of manufacturing.

비듬을 일으키는 여러 원인이 많지만, 몸에 기생하는 진균의 일종인 비듬균에 의한 것이 주요한 요인으로 받아들여지고 있다. 이러한 비듬 치료제가 많이 있음에도, 아직까지 만족할만한 안전한 치료약제가 미흡하다. 그동안 이들 질환의 치료에는 많은 치료제들이 사용되고 있으나, 물이나 유기용매에 대한 용해도 문제나 이로 인한 피부에 흡수성의 제한성으로 또한 유기용매 사용으로 인한 잔존용매에 의한 부작용으로 치료에 어려움이 존재한다.There are many causes of dandruff, but it is accepted as a major factor by dandruff, a kind of fungus that is parasitic in the body. Although there are many such dandruff treatments, there are still insufficient satisfactory safe treatments. Many therapeutic agents have been used for the treatment of these diseases, but there are difficulties in treatment due to solubility problems in water or organic solvents and the limited absorbency to the skin and the side effects of residual solvents due to the use of organic solvents.

한편, 초임계 유체란 임계점이상의 온도와 압력하에 있는 비압축성 유체로서, 기존의 유기용매에서는 나타나지 않는 독특한 특징을 나타낸다. 즉, 초임계유체는 액체에 가까운 큰 밀도, 기체에 가까운 낮은 점도와 높은 확산계수, 매우 낮은 표면장력 등의 우수한 물성을 동시에 가지고 있다. 초임계 유체는 밀도를 이상기체에 가까운 희박 상태에서부터 액체 밀도에 가까운 고밀도 상태까지 연속적으로 변화시킬 수 있기 때문에 유체의 평형물성(용해도, 반출[entrainer]효과), 전달물성(점도, 확산계수, 열전도도), 분자 뭉침(clustering) 상태 등을 조절할 수 있다. 따라서, 초임계 유체의 물성조절의 용이성을 이용한다면, 하나의 용매로 여러 종류의 액체용매에 필적하는 용매특성을 얻을 수 있다. 특히, 이산화탄소는 임계온도가 31.1도로 낮기 때문에 약물과 같은 열변성 물질에 적용하기 적합하며, 무독성, 불연성이고, 가격이 매우 저렴할 뿐 아니라, 회수하여 재사용할 수 있으므로 여러 환경 친화적인 공정을 설계할 수 있는 등의 많은 장점을 가지고 있기 때문에 의약물질에 적용하기에 매우 이상적이다.Supercritical fluids, on the other hand, are incompressible fluids at temperatures and pressures above the critical point, and exhibit unique characteristics not found in conventional organic solvents. That is, supercritical fluids have excellent physical properties such as high density close to liquid, low viscosity close to gas, high diffusion coefficient, and very low surface tension. Supercritical fluids can continuously vary in density from lean to near ideal gas to high density near liquid density, so that the fluid's equilibrium (solubility, entrainer effect) and transfer properties (viscosity, diffusion coefficient, and thermal conductivity). Fig. 2), molecular clustering (clustering) state can be adjusted. Therefore, by utilizing the ease of controlling the physical properties of the supercritical fluid, it is possible to obtain solvent characteristics comparable to various liquid solvents with one solvent. In particular, carbon dioxide has a low critical temperature of 31.1 degrees, making it suitable for thermally denatured substances such as drugs, non-toxic, non-flammable, inexpensive, and easy to recover and reuse. It is ideal for pharmaceutical applications because it has many advantages.

초임계 유체의 이러한 독특한 성질을 이용하여 근래에는 특정 물질의 선택적 추출, 추출을 통한 물질의 분석 등의 분야에서 많은 연구가 이루어지고 있으며, 또한 초임계 유체를 용매로 사용하거나 역용매(anti-solvent)로 사용하여 재결정 또는 미세입자를 얻는 방법에 관한 연구가 활발히 이루어지고 있다.Using these unique properties of supercritical fluids, much research has recently been conducted in the fields of selective extraction of specific substances and analysis of substances through extraction. Also, supercritical fluids are used as solvents or anti-solvents. There is an active research on how to obtain recrystallized or fine particles by using).

이에 본 발명자들은 초임계 이산화탄소를 이용한 초임계유체 공정으로 징크 피리치온의 입자크기를 미세화하여 유효단면적 증가로 인한 피부흡수율이 증가된 징크피리치온을 제조하는 방법을 개발하고 이로부터 제조된 징크피리치온 제제가 초임계 유체 공정의 조작변수인 온도 및 압력의 변화 또는 함께 사용된 용액의 유량과 초임계 이산화탄소의 유량 변화를 통해 약물자체의 결정화를 변화시켜 유효단면적이 증가하여 피부흡수율이 예견되는 미세화된 징크피리치온 입자를 얻어 본 발명을 완성하고자 한다.Accordingly, the present inventors have developed a method for producing zinc pyrithione having an increased skin absorption rate by increasing the effective area by miniaturizing the particle size of zinc pyrithione in a supercritical fluid process using supercritical carbon dioxide. The pyrithione formulation changes the crystallization of the drug itself through the change of temperature and pressure, which are the operating variables of the supercritical fluid process, or the flow rate of the solution and the flow rate of supercritical carbon dioxide. It is intended to complete the present invention to obtain a refined zinc pyrithione particles.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 초임계 유체 공정을 이용하여 입자크기가 큰 징크피리치온을 미세화하여 피부흡수율이 증가하는 제제를 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, to provide a formulation that increases the skin absorption rate by miniaturizing the zinc pyrithione having a large particle size using a supercritical fluid process.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 징크피리치온을 유기용매로 용해시킨 혼합용액을 초임계유체에 분무하여 접촉시킴으로써 징크피리치온 입자를 생성시키는 단계 및 상기 입자에 초임계유체를 도입하여 상기 혼합용액에 사용된 유기용매를 제거하는 단계를 포함하는, 초임계 유체 공정을 이용하여 미세화된 징크피리치온을 제조하는 방법을 제공한다.The present invention is to produce a zinc pyrithione particles by spraying a mixed solution of zinc pyrithione dissolved in an organic solvent by spraying the supercritical fluid and to introduce the supercritical fluid to the particles, the organic solution used in the mixed solution Provided is a method for preparing micronized zinc pyrithione using a supercritical fluid process comprising removing a solvent.

상기 제조방법의 기본 원리는 징크피리치온을 적량의 유기용매에 용해시킨 후 이를 초임계 이산화탄소로 평형을 이룬 반응구에 노즐을 통해 분사하여 입자를 얻은 뒤 수 차례 초임계 이산화탄소를 흘려보내 유기용매를 추출해낸 후 이산화탄소를 제거함으로써 미세화된 징크피리치온을 제조하는 것이다.The basic principle of the manufacturing method is to dissolve zinc pyrithione in an appropriate amount of an organic solvent, and then spray it through a nozzle into a reaction port equilibrated with supercritical carbon dioxide to obtain particles, and then flow the supercritical carbon dioxide several times. By extracting the carbon dioxide is removed to prepare a fine zinc pyrithione.

보다 구체적으로, 본 발명에서 초임계유체 공정을 이용하여 미세화된 징크피리치온 를 제조하는 방법은 1)징크피리치온을 유기용매에 용해시킨 후 이들의 혼합물을 제조하는 단계; 2)초임계 유체에 상기 혼합용액을 분무하여 접촉시켜 징크피리치온 입자를 생성시키는 단계; 3)상기 입자에 별도의 초임계 유체를 도입하여 유기용매를 제거하는 단계; 4)생성된 입자를 회수하는 단계를 포함한다. 상기 제조방법을 각 단계별로 상세히 설명하면 다음과 같다.More specifically, in the present invention, the method for producing micronized zinc pyrithione using a supercritical fluid process comprises the steps of: 1) dissolving zinc pyrithione in an organic solvent and preparing a mixture thereof; 2) spraying the mixed solution with a supercritical fluid to make zinc pyrithione particles; 3) removing the organic solvent by introducing a separate supercritical fluid to the particles; 4) recovering the generated particles. The manufacturing method will be described in detail for each step as follows.

1) 분무를 위한 징크피리치온의 혼합용액 제조1) Preparation of mixed solution of zinc pyrithione for spraying

단계 1)에서 유기용매로 사용되는 것은 메탄올이나 에탄올 등이 사용되지만, 본 발명에서는 인체에 독성이 적은 에탄올을 사용하였다.The organic solvent used in step 1) is methanol or ethanol, but in the present invention, ethanol having less toxicity to human body is used.

사용되는 유기용매는 중량분율로 징크피리치온가 0.0001 내지 0.50중량분율을 사용하는 것이 바람직하며, 더욱 바람직하게는 0.001 내지 0.20 중량분율을 사용한다. 0.0001중량분율이하에서는 얻을 수 있는 입자의 양이 너무 적게되고, 0.50중량분율이상에서는 징크피리치온이 유기용매에 용해되지 않는다.The organic solvent used preferably has a zinc pyrithione value of 0.0001 to 0.50 parts by weight, more preferably 0.001 to 0.20 parts by weight. Below 0.0001 parts by weight, the amount of particles obtainable is too small, and above 0.50 parts by weight, zinc pyrithione is not dissolved in the organic solvent.

2) 초임계 유체에 혼합용액의 분부를 통한 입자의 생성2) Generation of particles through the portion of the mixed solution in the supercritical fluid

상기 단계 2)에서 사용될 수 있는 초임계 유체로는 초임계 이산화탄소, 초임계 일산화이질소, 초임계 삼불화메탄, 초임계 프로판, 초임계 에틸렌 또는 초임계 제논 등이 있으며, 본 발명에서는 바람직한 실시예로서 초임계 이산화탄소를 사용하였다.Supercritical fluids that can be used in step 2) include supercritical carbon dioxide, supercritical dinitrogen monoxide, supercritical methane trifluoride, supercritical propane, supercritical ethylene or supercritical xenon, and the like in the present invention. Supercritical carbon dioxide was used.

스테인레스스틸로 만들어진 반응구의 온도와 압력을 이산화탄소의 임계점인 31.1도와 73.8바(bar)이상이 되도록 이산화탄소를 반응구에 주입하고, 가압, 가온하여 초임계 상태를 유지하고, 반응구가 초임계 상태로 평형을 이룰 때까지 기다린다. 이 산화탄소의 가압시 일정한 압력을 유지하고 정확한 주입량을 알기 위해 주사 펌프(syringe pump)를 사용하고, 항온을 유지하기 위해 순환식 항온조나 자동온도조절기를 사용하는 것이 바람직하다. 반응구가 초임계 상태로 평형을 이루면 정확한 속도 조절이 가능한 소형 액체펌프(liquid pump)를 사용하여 단계 1)에서 제조된 징크피리치온과 첨가제의 혼합용액을 반응구 내로 일정한 속도로 주입한다. 이때, 노즐의 막힘 현상을 방지하기 위해 혼합용액의 주입 전 공(空)용매를 소량, 예를들면 3-4ml정도 주입하는 것이 바람직하고, 주입되는 공용매의 양이 많아질수록 이후의 초임계유체에 의한 세척시간이 더 길어지게 된다. 주입된 혼합용액은 노즐을 통해 분사되며 분사된 혼합용액 중 유기용매는 빠른 속도로 초임계 이산화탄소에 섞여 들어가며 입자를 생성하게 된다. 상기 혼합용액의 주입과 동시에 반응구 내의 포화되는 것을 방지하기 위하여 별도의 초임계 유체를 주입할 수 있다.The carbon dioxide is injected into the reaction port so that the temperature and pressure of the reaction port made of stainless steel are above the critical point of carbon dioxide of 31.1 degrees and 73.8 bar, and are pressurized and warmed to maintain the supercritical state. Wait for equilibrium. When pressurizing the carbon oxide, it is preferable to use a syringe pump to maintain a constant pressure and to know an accurate injection amount, and to use a circulating thermostat or a thermostat to maintain a constant temperature. When the reaction port is equilibrated in a supercritical state, a mixed solution of zinc pyrithione and the additive prepared in step 1) is injected into the reaction port at a constant speed using a small liquid pump capable of precise speed control. At this time, in order to prevent clogging of the nozzle, it is preferable to inject a small amount of empty solvent, for example, 3-4 ml, into the mixed solution.The higher the amount of the cosolvent to be injected, the more supercritical thereafter. The cleaning time by the fluid will be longer. The injected mixed solution is sprayed through the nozzle, and the organic solvent in the injected mixed solution is rapidly mixed into the supercritical carbon dioxide to generate particles. A separate supercritical fluid may be injected to prevent the mixture from being saturated at the same time as the injection of the mixed solution.

3) 초임계 유체를 이용한 유기용매의 제거3) Removal of organic solvent using supercritical fluid

혼합용액의 분무가 끝나면 생성 입자 중의 유기용매를 제거하기 위해 초임계 유체를 도입하는 입자 세척과정이 필요하다. 상기 과정에서는 초임계 유체를 일정한 속도로 반응기 내로 주입하면서 반응구 상태를 일정한 압력으로 유기하기 위해 주입속도와 동일한 속도로 배출구를 통해 배출시킨다. 이때, 배출속도를 조절하여 반응구에서 항압을 유지하기 위해 배출구에 역압조절기(back pressure regulator)를 연결한다. 배출구의 구멍크기가 0.45μm인 막 필터를 이중으로 사용하여 입자가 빠져나가는 것을 방지한다. 용매가 잔존하게 되면 입자를 수거하기 위해 온도와 압력을 낮추었을 때 용매가 재석출되어 만들어진 입자를 다시 녹여 응집을 형성하게 되므 로 세척과정은 용매가 모두 제거될 때까지 충분히 계속 수행해야 한다. 세척을 위한 초임계 유체의 양은 사용된 용매의 양 및 반응구의 크기에 따라 달라지며, 약 2,000-3,000ml 정도가 바람직하다.After spraying the mixed solution, a particle washing process is required to introduce a supercritical fluid to remove the organic solvent in the resulting particles. In the above process, the supercritical fluid is injected into the reactor at a constant rate, and discharged through the outlet at the same rate as the injection rate to induce the reaction port state at a constant pressure. At this time, the back pressure regulator is connected to the outlet to maintain the constant pressure in the reaction port by adjusting the discharge rate. A double membrane filter with an aperture size of 0.45 μm is used to prevent particles from escaping. When the solvent remains, when the temperature and pressure are lowered to collect the particles, the solvent is re-precipitated to re-dissolve the produced particles to form agglomerations. Therefore, the washing process should be sufficiently performed until all solvent is removed. The amount of supercritical fluid for washing depends on the amount of solvent used and the size of the reaction port, preferably about 2,000-3,000 ml.

4) 입자의 회수4) recovery of particles

세척과정이 끝나면 반응구로의 초임계유체 공급을 중단하고 초임계유체를 배출시킨다. 이때, 배출이 너무 급속하게 이루어지면 생성된 입자가 손상될 수 있으므로 서서히 배출시키는 것이 바람직하다. 반응구 내의 초임계 유체를 모두 제거한 후 반응구 내의 기벽이나 바닥으로부터 입자를 수거한다.At the end of the cleaning process, the supercritical fluid supply to the reactor is stopped and the supercritical fluid is discharged. At this time, if the discharge is made too fast, the produced particles may be damaged, so it is preferable to discharge slowly. After removing all of the supercritical fluid in the reactor, the particles are collected from the base wall or bottom of the reactor.

이하 본 발명에 대한 비교예와 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to comparative examples and examples.

먼저 비교예는 50-100마이크론 입자크기의 처리 전 징크피리치온을 나타내고, 실시예는 아래의 조건으로 생성된 징크피리치온 입자를 입도분석기로 입자크기를 측정하였고, 작업조건에 따라 50에서 150 nm의 미세입자크기를 얻을 수 있었다. 초임계유체 공정을 이용하여 표면적이 작은 징크피리치온을 제조하기 위하여 사용되는 혼합용액의 함량은 징크피리치온이 0.12g이고 에탄올은 23.67g이며, 침전이 일어나는 침전조의 높이는 200mm이고 부피는 100㎖이다.First, the comparative example shows the zinc pyrithione before the treatment of the particle size of 50-100 microns, the Example was measured for the particle size of the zinc pyrithione particles produced under the following conditions by the particle size analyzer, at 50 A fine particle size of 150 nm was obtained. The content of the mixed solution used to prepare the zinc pyrithione having a small surface area using the supercritical fluid process is 0.12 g of zinc pyrithione, 23.67 g of ethanol, and the height of the precipitation tank where precipitation occurs is 200 mm and the volume is 100. Ml.

하기 표 1에서 보는 바와 같이, 본 실시예에서 조작변수로는 온도와 압력, 이산화탄소 유량, 용액유량이고, 실시예1-2는 온도을 조절하여 313, 333K의 변화, 실시예3-4에서는 압력을 130-170바(bar), 실시예5-6에서는 이산화탄소 유량을 2.5-3.5kg/hr, 실시예7-8에서는 용액유량 0.5-1.5㎖/min을 변화시키면서 미세화 징크피리치온을 얻을 수 있었다.As shown in Table 1, the operating variables in this embodiment are the temperature and pressure, the carbon dioxide flow rate, the solution flow rate, Example 1-2 is to change the temperature of 313, 333K by adjusting the temperature, the pressure in Example 3-4 In Example 5-6, the refined zinc pyrithione was obtained while changing the carbon dioxide flow rate at 2.5-3.5 kg / hr, and Example 7-8 at 0.5-1.5 mL / min. .

(표 1) 실시예1-8에서의 4가지 조작변수에 의한 작업조건 및 입자크기Table 1 Working conditions and particle size by four operating variables in Example 1-8

실시예Example 온도(K)Temperature (K) 압력(bar)Pressure (bar) 이산화탄소유량(kg/hr)Carbon Dioxide Flow Rate (kg / hr) 용액유량(ml/min)Solution flow rate (ml / min) 입자크기(nm)Particle size (nm) 실시예1Example 1 313313 150150 2.52.5 0.50.5 110110 실시예2Example 2 333333 150150 2.52.5 0.50.5 136136 실시예3Example 3 313313 130130 2.52.5 0.50.5 134134 실시예4Example 4 313313 170170 2.52.5 0.50.5 6767 실시예5Example 5 313313 150150 2.52.5 0.50.5 150150 실시예6Example 6 313313 150150 3.53.5 0.50.5 5050 실시예7Example 7 313313 150150 2.52.5 0.50.5 137137 실시예8Example 8 313313 150150 2.52.5 1.51.5 5050

이상에서 설명한 바와 같이, 본 발명의 초임계유체 공정을 이용하여 얻어진 징크피리치온(실시예1-8)은 기존 징크피리치온(비교예)에 비하여 초미세한 입자를 얻을 수 있었으며, 유효단면적 증가로 인한 피부효능의 증진이 예견되는 초미세화 징크피리치온 제제의 제조공정을 완성하게 되었다. 이 나노입자 징크피리치온을 의약외품 등에 응용하여 비듬 치료제 등으로 응용될 수 있다. As described above, the zinc pyrithione (Example 1-8) obtained using the supercritical fluid process of the present invention was able to obtain ultrafine particles compared to the conventional zinc pyrithione (comparative example), and the effective cross-sectional area The preparation of the ultrafine zinc pyrithione formulation, which is expected to increase skin efficacy due to the increase, has been completed. The nanoparticle zinc pyrithione may be applied to quasi-drugs and the like to be used as a dandruff treatment.

Claims (1)

징크피리치온을 유기용매에 용해시킨 혼합용매를 초임계 유체에 분무하여 접촉시켜 징크피리치온 입자를 생성시키는 단계 및 초임계 유체를 도입하여 상기 혼합용액에 사용된 유기용매를 제거하는 단계를 포함하는, 초임계 유체 공정을 이용하여 나노입자 징크피리치온를 제조하는 공정으로,사용되는 유기용매는 중량분율로 징크피리치온가 0.0001 내지 0.50중량분율을 사용하는 것이 바람직하며, 더욱 바람직하게는 0.001 내지 0.20 중량분율을 특징으로 하는 방법과 비듬치료 의약외품으로의 응용.Spraying a mixed solvent in which zinc pyrithione is dissolved in an organic solvent by spraying the supercritical fluid to generate zinc pyrithione particles and introducing a supercritical fluid to remove the organic solvent used in the mixed solution. In the process for producing nanoparticle zinc pyrithione using a supercritical fluid process comprising, it is preferable that the use of the organic solvent is zinc pyrithione is 0.0001 to 0.50 parts by weight, more preferably 0.001 To 0.20% by weight of the method and the application to the dandruff therapy quasi-drugs.
KR1020050117313A 2005-12-04 2005-12-04 A nano-particle process of zinc pyrithione and it's application to antidandruff otc products KR20070058279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050117313A KR20070058279A (en) 2005-12-04 2005-12-04 A nano-particle process of zinc pyrithione and it's application to antidandruff otc products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050117313A KR20070058279A (en) 2005-12-04 2005-12-04 A nano-particle process of zinc pyrithione and it's application to antidandruff otc products

Publications (1)

Publication Number Publication Date
KR20070058279A true KR20070058279A (en) 2007-06-08

Family

ID=38355240

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050117313A KR20070058279A (en) 2005-12-04 2005-12-04 A nano-particle process of zinc pyrithione and it's application to antidandruff otc products

Country Status (1)

Country Link
KR (1) KR20070058279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214668B1 (en) * 2019-11-18 2021-02-09 성균관대학교산학협력단 Method of drying ecamsule powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214668B1 (en) * 2019-11-18 2021-02-09 성균관대학교산학협력단 Method of drying ecamsule powder

Similar Documents

Publication Publication Date Title
KR101172081B1 (en) Therapeutic foam
US8440614B2 (en) Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein
KR100802278B1 (en) A supercritical nanoparticle process with vitamin k using molecular association theory
KR100508518B1 (en) Method for the preparation of paclitaxel solid dispersion by using the supercritical fluid process and paclitaxel solid dispersion prepared thereby
KR20180130568A (en) Aqueous solution capable of administration in vivo and a method for producing the same
CN107303263B (en) Tripterygium glycosides nanoemulsion gel and preparation method thereof
KR20070058279A (en) A nano-particle process of zinc pyrithione and it's application to antidandruff otc products
KR100818685B1 (en) A nano-particle process of triclocarban
KR20080044527A (en) A nano-particle process of piroctone olamine using supercritical fluid process and its application
KR20130078083A (en) A micronized particle process of triclosan using supercritical anti-solvent method and it's application
KR100811447B1 (en) A nano-particle process of ceramide using supercritical fluid
KR20130078084A (en) A micronized particle process of ceramide using supercritical fluid and it's application
KR20070058278A (en) A supercritical process of vitamine k using antisolvent carbon dioxide
KR20070058277A (en) A nano-particle process of triclosan and it's application to otc products
KR20070058275A (en) A method for micronized climbazole using antisolvent supercritical fluid process
KR20080060074A (en) A nanoparticle process of phytoestrogen using supercritical carbon dioxide
KR20080060092A (en) A nanoparticle process of ascorbic acid using repid expension of supercritical system
KR20080060082A (en) A nanoparticle process of phytoestrogen
KR20070058276A (en) A process for micronized iodopropynyl carbamate using supercritical fluid
KR20080060059A (en) A nanoparticle process of panthenol using molecular association near critical regions
KR20080044541A (en) A nano-particle process of triclocarban and it's application
KR20130124781A (en) A composition of high moisturizing over the counter products using ecofriendly micronized ceramide
KR20090070846A (en) A supercritical nanoparticle process with ceramide using molecular association theory
CN101785867B (en) Preparation method of corn protein nano-particles
KR20060119612A (en) A method for micronized arbutin using supercritical fluid process

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid