KR20130077118A - 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법 - Google Patents

적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법 Download PDF

Info

Publication number
KR20130077118A
KR20130077118A KR1020110145659A KR20110145659A KR20130077118A KR 20130077118 A KR20130077118 A KR 20130077118A KR 1020110145659 A KR1020110145659 A KR 1020110145659A KR 20110145659 A KR20110145659 A KR 20110145659A KR 20130077118 A KR20130077118 A KR 20130077118A
Authority
KR
South Korea
Prior art keywords
sampling data
ultrasound
data
pixels
doppler
Prior art date
Application number
KR1020110145659A
Other languages
English (en)
Other versions
KR101348772B1 (ko
Inventor
이한우
김형진
Original Assignee
삼성메디슨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성메디슨 주식회사 filed Critical 삼성메디슨 주식회사
Priority to KR1020110145659A priority Critical patent/KR101348772B1/ko
Priority to EP12199548.4A priority patent/EP2610635A3/en
Priority to CN2012105771340A priority patent/CN103181782A/zh
Priority to JP2012285402A priority patent/JP2013138866A/ja
Priority to US13/731,652 priority patent/US20130172749A1/en
Publication of KR20130077118A publication Critical patent/KR20130077118A/ko
Application granted granted Critical
Publication of KR101348772B1 publication Critical patent/KR101348772B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52034Data rate converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52066Time-position or time-motion displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법이 개시된다. 본 실시예에 따른 초음파 시스템은, 적어도 2개의 샘플볼륨 각각에 대응하는 초음파 데이터를 이용하여 적어도 2개의 샘플볼륨에 대응하는 적어도 2개의 도플러 스펙트럼 영상을 형성하고, 적어도 2개의 샘플볼륨과 적어도 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행하도록 동작하는 프로세서를 포함한다.

Description

적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법{ULTRASOUND SYSTEM AND METHOD FOR PROVIDING DOPPLER SPECTRUM IMAGES CORRESPONDING TO AT LEAST TWO SAMPLE VOLUMES}
본 발명은 초음파 시스템에 관한 것으로, 특히 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법에 관한 것이다.
초음파 시스템은 무침습 및 비파괴 특성을 가지고 있어, 생체 내부의 정보를 얻기 위한 의료 분야에서 널리 이용되고 있다. 초음파 시스템은 생체를 직접 절개하여 관찰하는 외과 수술의 필요 없이, 생체 내부 조직의 고해상도 영상을 실시간으로 제공할 수 있으므로 의료 분야에서 매우 중요하게 사용되고 있다.
초음파 시스템은 대상체로부터 반사되는 초음파 신호(즉, 초음파 에코신호)의 반사 계수를 2차원 영상으로 보이는 B 모드(brightness mode) 영상, 도플러 효과(Doppler effect)를 이용하여 움직이는 대상체의 속도를 도플러 스펙트럼으로 보이는 도플러 스펙트럼 영상, 도플러 효과를 이용하여 움직이는 대상체의 속도와 방향을 컬러로 보이는 컬러 도플러 영상, 대상체에 컴프레션(compression)을 가할 때와 가하지 않을 때의 반응 차이를 영상으로 보이는 탄성 영상 등을 제공하고 있다.
특히, 초음파 시스템은 B 모드 영상에 샘플볼륨(sample volume)을 설정하고, 앙상블 넘버(ensemble number)에 기초하여 초음파 신호를 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 샘플볼륨에 해당하는 도플러 스펙트럼 영상을 형성한다.
본 발명은 적어도 2개의 샘플볼륨에 대응하는 적어도 2개의 도플러 스펙트럼 영상을 형성하고, 적어도 2개의 샘플볼륨과 적어도 2개의 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행하는 초음파 시스템 및 방법을 제공한다.
본 발명에 따른 초음파 시스템은, 적어도 2개의 샘플볼륨 각각에 대응하는 초음파 데이터를 이용하여 상기 적어도 2개의 샘플볼륨에 대응하는 적어도 2개의 도플러 스펙트럼 영상을 형성하고, 상기 적어도 2개의 샘플볼륨과 상기 적어도 2개의 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행하도록 동작하는 프로세서를 포함한다.
또한 본 발명에 따른 도플러 스펙트럼 영상 제공 방법은, a) 적어도 2개의 샘플볼륨 각각에 대응하는 초음파 데이터를 이용하여 상기 적어도 2개의 샘플볼륨에 대응하는 적어도 2개의 도플러 스펙트럼 영상을 형성하는 단계; 및 b) 상기 적어도 2개의 샘플볼륨과 상기 적어도 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행하는 단계를 포함한다.
본 발명은 적어도 2개의 샘플볼륨과 적어도 2개의 도플러 스펙트럼 영상 간의 연결 정보를 제공할 수 있어, 사용자가 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 용이하게 구분할 수 있다.
도 1은 본 발명의 실시예에 따른 초음파 시스템의 구성을 보이는 블록도.
도 2는 본 발명의 실시예에 따른 B 모드 영상 및 샘플볼륨을 보이는 예시도.
도 3은 본 발명의 실시예에 따른 초음파 데이터 획득부의 구성을 보이는 블록도.
도 4는 본 발명의 실시예에 따른 샘플링 데이터 및 초음파 영상의 픽셀을 보이는 예시도.
도 5 내지 도 8은 본 발명의 실시예에 따른 수신 빔 포밍 처리를 수행하는 예를 보이는 예시도.
도 9는 본 발명의 실시예에 따라 가중치를 설정하는 예를 보이는 예시도.
도 10은 본 발명의 실시예에 따라 샘플링 데이터 세트를 설정하는 예를 보이는 예시도.
도 11은 본 발명의 실시예에 따라 도플러 스펙트럼 영상을 형성하는 절차를 보이는 플로우챠트.
도 12 및 도 13은 본 발명의 실시예에 따른 제1 연결정보 및 제2 연결정보를 보이는 예시도.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.
도 1은 본 발명의 실시예에 따른 초음파 시스템의 구성을 보이는 블록도이다. 도 1을 참조하면, 초음파 시스템(100)은 사용자 입력부(110)를 포함한다.
사용자 입력부(110)는 사용자의 입력정보를 수신한다. 본 실시예에 있어서, 입력정보는 도 2에 도시된 바와 같이 B 모드(brightness mode) 영상(BI)에 적어도 2개의 샘플볼륨(SV1, SV2, SV3)을 설정하기 위한 입력정보를 포함한다. 그러나, 입력정보는 반드시 이에 한정되지 않는다. 도 2에 있어서, 도면부호 BV는 혈관을 나타낸다. 사용자 입력부(110)는 컨트롤 패널(control panel), 트랙볼(trackball), 마우스(mouse), 키보드(keyboard) 등을 포함한다.
초음파 시스템(100)은 초음파 데이터 획득부(120)를 더 포함한다. 초음파 데이터 획득부(120)는 초음파 신호를 생체에 송신하고, 생체로부터 반사되는 초음파 신호(즉, 초음파 에코 신호)를 수신하여 초음파 데이터를 획득한다. 생체는 대상체(예를 들어, 혈관, 혈류, 심장, 간 등)를 포함한다.
도 3은 본 발명의 실시예에 따른 초음파 데이터 획득부의 구성을 보이는 블록도이다. 도 3을 참조하면, 초음파 데이터 획득부(120)는 초음파 프로브(310)를 포함한다.
초음파 프로브(310)는 전기적 신호와 초음파 신호를 상호 변환하도록 동작하는 복수의 변환소자(transducer element)(도시하지 않음)를 포함한다. 초음파 프로브(310)는 초음파 신호를 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호를 형성한다. 수신신호는 아날로그 신호이다. 초음파 프로브(310)는 컨벡스 프로브(convex probe), 리니어 프로브(linear probe) 등을 포함한다.
초음파 데이터 획득부(120)는 송신부(320)를 더 포함한다. 송신부(320)는 초음파 신호의 송신을 제어한다. 또한, 송신부(320)는 초음파 영상을 얻기 위한 전기적 신호(이하, 송신신호라 함)를 형성한다.
본 실시예에 있어서, 송신부(320)는 B 모드 영상(BI)을 얻기 위한 송신신호(이하, B 모드 송신신호라 함)를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 B 모드 송신신호가 제공되면, B 모드 송신신호를 초음파 신호로 변환하여 생체에 송신한다. 이때, 초음파 프로브(310)로부터 송신된 초음파 신호는 비초점 초음파 신호 또는 초점 초음파 신호이다. 즉, 초음파 프로브(310)로부터 송신된 초음파 신호(초음파 빔)는 집속점(focal point)이 이미징 영역안에 위치하는 일반적인 초점 초음파 빔, 집속점이 이미징 영역의 바깥 쪽에 위치하는 브로드(broad) 초음파 빔, 집속점이 무한대에 위치하는 평판파(planewave) 초음파 빔, 집속점이 초음파 프로브(310)의 표면 뒤쪽에 위치하는 가상 에이펙스(virtual apex) 초음파 빔 등을 포함한다. 그러나, 초음파 신호는 반드시 이에 한정되지 않는다. 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, B 모드 수신신호라 함)를 형성한다.
또한, 송신부(320)는 앙상블 넘버(ensemble number)에 기초하여, 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 얻기 위한 송신신호(이하, 도플러 모드 송신신호라 함)를 형성한다. 앙상블 넘버는 빔 포밍(beamforming)에 해당하는 도플러 신호를 얻기 위해 초음파 신호를 송수신하는 횟수를 나타낸다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 도플러 모드 송신신호가 제공되면, 도플러 모드 송신신호를 초음파 신호로 변환하여 생체에 송신한다. 이때, 초음파 프로브(310)로부터 송신된 초음파 신호는 평면파 신호이다. 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, 도플러 모드 수신신호라 함)를 형성한다.
초음파 데이터 획득부(120)는 수신부(330)를 더 포함한다. 수신부(330)는 초음파 프로브(310)로부터 제공되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터를 형성한다. 또한, 수신부(330)는 변환소자를 고려하여 샘플링 데이터에 수신 빔 포밍(receiving beam forming)을 수행하여 수신집속 데이터를 형성한다. 수신 빔 포밍은 아래에서 설명한다.
본 실시예에 있어서, 수신부(330)는 초음파 프로브(310)로부터 B 모드 수신신호가 제공되면, B 모드 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(이하, B 모드 샘플링 데이터라 함)를 형성한다. 수신부(330)는 B 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 수신집속 데이터(이하, B 모드 수신집속 데이터라 함)를 형성한다.
또한, 수신부(330)는 초음파 프로브(310)로부터 도플러 모드 수신신호가 제공되면, 도플러 모드 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(이하, 도플러 모드 샘플링 데이터라 함)를 형성한다. 수신부(330)는 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 적어도 2개의 샘플볼륨 각각에 해당하는 수신집속 데이터(이하, 도플러 모드 수신집속 데이터라 함)를 형성한다.
일례로서, 수신부(330)는 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여, 샘플볼륨(SV1)에 해당하는 제1 도플러 모드 수신집속 데이터를 형성한다. 또한, 수신부(330)는 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여, 샘플볼륨(SV2)에 대응하는 제2 도플러 모드 수신집속 데이터를 형성한다. 또한, 수신부(330)는 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여, 샘플볼륨(SV3)에 해당하는 제3 도플러 모드 수신집속 데이터를 형성한다.
이하, 첨부된 도면을 참조하여 수신 빔 포밍에 대해 설명하기로 한다.
일실시예에 있어서, 수신부(330)는 도 4에 도시된 바와 같이, 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤p))을 통해 수신되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(Sk,j(i≤j≤t))를 형성한다. 수신신호는 B 모드 수신신호 또는 도플러 모드 수신신호를 포함한다. 샘플링 데이터(Sk,j)는 저장부(140)에 저장될 수 있다. 수신부(330)는 변환소자의 위치와, 초음파 영상(UI)의 픽셀의 방위(orientation)에 기초하여, 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 초음파 영상(UI)은 B 모드 영상 또는 도플러 스펙트럼 영상을 포함한다. 즉, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 누적 할당한다.
예를 들면, 수신부(330)는 도 5에 도시된 바와 같이, 샘플링 데이터(S6,3)에 대응하는 픽셀, 즉 샘플링 데이터(S6,3)가 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 곡선(이하, 수신 빔 포밍 곡선이라 함)(CV6,3)을 설정한다. 수신부(330)는 초음파 영상(UI)의 픽셀들(Pa,b(1≤a≤M, 1≤b≤M))에서 수신 빔 포밍 곡선(CV6 ,3)에 해당하는 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, …, P3,N)을 검출한다. 수신부(330)는 도 6에 도시된 바와 같이 검출된 픽셀(P3 ,1, P3 ,2, P4,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, …, P3 ,N)에 샘플링 데이터(S6 ,3)를 누적 할당한다.
이어서, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 도 7에 도시된 바와 같이 샘플링 데이터(S6,4)에 대응하는 픽셀, 즉 샘플링 데이터(S6 ,4)가 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 수신 빔 포밍 곡선(CV6 ,4)을 설정한다. 수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b(1≤a≤M, 1≤b≤M))에서 수신 빔 포밍 곡선(CV6 ,3)에 해당하는 픽셀(P2 ,1, P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4,4, P5 ,4, P5 ,5, P5 ,6, P5 ,7, P5 ,8, P4 ,9, P5 ,9, … P4 ,N, P3 ,N)을 검출한다. 수신부(330)는 도 8에 도시된 바와 같이, 검출된 픽셀(P2 ,1, P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P5 ,4, P5 ,5, P5,6, P5 ,7, P5 ,8, P4 ,9, P5 ,9, … P4 ,N, P3 ,N)에 샘플링 데이터(S6 ,4)를 누적 할당한다.
수신부(330)는 초음파 영상(UI)의 픽셀들(Pa,b) 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리(즉, 가산(summing))를 수행하여 수신집속 데이터를 형성한다.
다른 실시예에 있어서, 수신부(330)는 도 4에 도시된 바와 같이, 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤p))을 통해 제공되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(Sk ,j)를 형성한다. 샘플링 데이터(Sk ,j)는 저장부(140)에 저장될 수 있다. 수신부(330)는 변환소자의 위치와, 초음파 영상(UI)의 픽셀의 방위에 기초하여, 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 즉, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 누적 할당한다. 수신부(330)는 검출된 픽셀 중에서 동일한 열(column)에 존재하는 픽셀을 검출하고, 동일한 열에 존재하는 픽셀에 대응하는 가중치를 설정하며, 설정된 가중치를 해당 픽셀에 할당된 샘플링 데이터에 가한다.
예를 들면, 수신부(330)는 변환소자의 위치와 초음파 영상(UI)의 픽셀의 방위에 기초하여, 도 5에 도시된 바와 같이 샘플링 데이터(S6 ,3)에 대응하는 픽셀, 즉, 샘플링 데이터(S6 ,3)가 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 수신 빔 포밍 곡선(CV6 ,3)을 설정한다. 수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b(1≤a≤M, 1≤b≤N))에서 수신 빔 포밍 곡선(CV6 ,3)에 해당하는 픽셀(P3 ,1, P3 ,2, P4 ,2, P4,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, … P3 ,N)을 검출한다. 수신부(330)는 도 6에 도시된 바와 같이 검출된 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, … P3,N)에 샘플링 데이터(S6 ,3)를 누적 할당한다. 수신부(330)는 도 9에 도시된 바와 같이, 검출된 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, … P3 ,N) 중에서 동일한 열에 존재하는 픽셀(P3 ,2, P4 ,2)을 검출하고, 검출된 픽셀(P3 ,2, P4 ,2)의 중점을 기준으로 중점과 수신 빔 포밍 곡선(CV6 ,3) 간의 거리(W1 및 W2)를 산출한다. 수신부(330)는 산출된 거리에 기초하여 픽셀(P3 ,2)에 대한 제1 가중치(α1) 및 픽셀(P4 ,2)에 대한 제2 가중치(α2)를 설정한다. 제1 가중치(α1) 및 제2 가중치(α2)는 산출된 거리에 비례 또는 반비례하게 설정될 수 있다. 수신부(330)는 제1 가중치(α1)를 픽셀(P3 ,2)에 할당된 샘플링 데이터(S6 ,3)에 가하고, 제2 가중치(α2)는 픽셀(P4,2)에 할당된 샘플링 데이터(S6 ,3)에 가한다. 수신부(330)는 나머지 샘플링 데이터에 대해서도 전술한 바와 같이 수행한다.
수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b) 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 수신집속 데이터를 형성한다.
또 다른 실시예에 있어서, 수신부(330)는 도 4에 도시된 바와 같이, 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤N))을 통해 제공되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(Sk ,j)를 형성한다. 샘플링 데이터(Sk ,j)는 저장부(140)에 저장될 수 있다. 수신부(330)는 샘플링 데이터(Sk ,j) 중에서 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 샘플링 데이터 세트를 설정한다.
예를 들면, 수신부(330)는 도 10에 도시된 바와 같이, 샘플링 데이터(Sk ,j) 중에서 수신 빔 포밍 처리에 관여하는 픽셀을 검출하기 위한 샘플링 데이터 세트(S1 ,1, S1 ,4 … S1 ,t, S2 ,1, S2 ,4 … S2 ,t … Sp ,t)(박스 표시)를 설정한다.
수신부(330)는 변환소자의 위치와, 초음파 영상(UI)의 픽셀의 방위에 기초하여, 샘플링 데이터 세트의 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 즉, 수신부(330)는 변환소자의 위치와 초음파 영상(UI)의 픽셀의 방위에 기초하여, 샘플링 데이터 세트의 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 전술한 실시예와 같이 누적 할당한다. 수신부(330)는 초음파 영상(UI)의 픽셀들 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 수신집속 데이터를 형성한다.
또 다른 실시예에 있어서, 수신부(330)는 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤N))을 통해 제공되는 수신신호를 다운 샘플링하여 다운 샘플링된 샘플링 데이터를 형성한다. 수신부(330)는 전술한 바와 같이, 변환소자의 위치와 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 전술한 바와 같이 누적 할당한다. 수신부(330)는 초음파 영상(UI)의 픽셀들 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 수신집속 데이터를 형성한다.
그러나, 수신 빔 포밍은 반드시 이에 한정되지 않고 다양한 수신 빔 포밍 방법이 이용될 수 있다.
다시 도 3을 참조하면, 초음파 데이터 획득부(120)는 초음파 데이터 형성부(340)를 더 포함한다. 초음파 데이터 형성부(340)는 수신부(330)로부터 제공되는 수신집속 데이터를 이용하여 초음파 영상에 대응하는 초음파 데이터를 형성한다. 또한, 초음파 데이터 형성부(340)는 초음파 데이터를 형성하는데 필요한 다양한 데이터 처리(예를 들어, 이득(gain) 조절 등)를 수신집속 데이터에 수행할 수도 있다.
본 실시예에 있어서, 초음파 데이터 형성부(340)는 수신부(330)로부터 B 모드 수신집속 데이터가 제공되면, B 모드 수신집속 데이터를 이용하여 B 모드 영상(BI)에 대응하는 초음파 데이터(이하, B 모드 초음파 데이터라 함)를 형성한다. B 모드 초음파 데이터는 RF(radio frequency) 데이터를 포함한다. 그러나, B 모드 초음파 데이터는 반드시 이에 한정되지 않는다.
또한, 초음파 데이터 형성부(340)는 수신부(330)로부터 도플러 모드 수신집속 데이터가 제공되면, 도플러 모드 수신집속 데이터를 이용하여 적어도 2개의 샘플볼륨 각각에 대응하는 초음파 데이터(이하, 도플러 모드 초음파 데이터라 함)를 형성한다. 도플러 모드 초음파 데이터는 RF 데이터 또는 IQ 데이터(in-phase/quadrature data)를 포함한다. 그러나, 도플러 모드 초음파 데이터는 반드시 이에 한정되지 않는다.
일례로서, 초음파 데이터 형성부(340)는 수신부(330)로부터 제1 도플러 모드 수신집속 데이터가 제공되면, 제1 도플러 모드 수신집속 데이터를 이용하여 샘플볼륨(SV1)에 대응하는 제1 도플러 모드 초음파 데이터를 형성한다. 또한, 초음파 데이터 형성부(340)는 수신부(330)로부터 제2 도플러 모드 수신집속 데이터가 제공되면, 제2 도플러 모드 수신집속 데이터를 이용하여 샘플볼륨(SV2)에 대응하는 제2 도플러 모드 초음파 데이터를 형성한다. 또한, 초음파 데이터 형성부(340)는 수신부(330)로부터 제3 도플러 모드 수신집속 데이터가 제공되면, 제3 도플러 모드 수신집속 데이터를 이용하여 샘플볼륨(SV3)에 대응하는 제3 도플러 모드 초음파 데이터를 형성한다.
다시 도 1을 참조하면, 초음파 시스템(100)은 프로세서(130)를 더 포함한다. 프로세서(130)는 사용자 입력부(110) 및 초음파 데이터 획득부(120)에 연결된다. 프로세서(130)는 CPU(central processing unit), GPU(graphic processing unit), 마이크로프로세서(microprocessor) 등을 포함한다.
도 11은 본 발명의 실시예에 따라 도플러 스펙트럼 영상을 형성하는 절차를 보이는 플로우챠트이다. 도 11을 참조하면, 프로세서(130)는 초음파 데이터 획득부(120)로부터 제공되는 B 모드 초음파 데이터를 이용하여 B 모드 영상(BI)을 형성한다(S1102). B 모드 영상(BI)은 디스플레이부(150)에 디스플레이된다. 따라서, 사용자는 사용자 입력부(110)를 이용하여 디스플레이부(150)에 디스플레이된 B 모드 영상(BI)에 적어도 2개의 샘플볼륨을 설정할 수 있다.
프로세서(130)는 사용자 입력부(110)로부터 제공되는 입력정보에 기초하여 B 모드 영상(BI)에 적어도 2개의 샘플볼륨을 설정한다(S1104). 따라서, 초음파 데이터 획득부(120)는 적어도 2의 샘플볼륨을 고려하여, 초음파 신호를 생체에 송신하고 생체로부터 반사되는 초음파 에코신호를 수신하여 적어도 2개의 샘플볼륨 각각에 대응하는 도플러 모드 초음파 데이터를 획득한다.
프로세서(130)는 초음파 데이터 획득부(120)로부터 제공되는 도플러 모드 초음파 데이터를 이용하여 적어도 2개의 샘플볼륨 각각에 대응하는 도플러 신호를 형성한다(S1106). 도플러 신호는 공지된 다양한 방법을 이용하여 형성될 수 있으므로 본 실시예에서 상세하게 설명하지 않는다.
일례로서, 프로세서(130)는 초음파 데이터 획득부(120)로부터 제1 도플러 모드 초음파 데이터가 제공되면, 제1 도플러 모드 초음파 데이터를 이용하여 샘플볼륨(SV1)에 대응하는 제1 도플러 신호를 형성한다. 또한, 프로세서(130)는 초음파 데이터 획득부(120)로부터 제2 도플러 모드 초음파 데이터가 제공되면, 제2 도플러 모드 초음파 데이터를 이용하여 샘플볼륨(SV2)에 대응하는 제2 도플러 신호를 형성한다. 또한, 프로세서(130)는 초음파 데이터 획득부(120)로부터 제3 도플러 모드 초음파 데이터가 제공되면, 제3 도플러 모드 초음파 데이터를 이용하여 샘플볼륨(SV3)에 대응하는 제3 도플러 신호를 형성한다.
프로세서(130)는 적어도 2개의 샘플볼륨 각각에 대응하는 도플러 신호를 이용하여 적어도 2개의 샘플볼륨 각각에 대응하는 도플러 스펙트럼 영상을 형성한다(S1108). 도플러 스펙트럼 영상은 공지된 다양한 방법을 이용하여 형성될 수 있으므로 본 실시예에서 상세하게 설명하지 않는다.
일례로서, 프로세서(130)는 샘플볼륨(SV1)에 대응하는 제1 도플러 신호를 이용하여 샘플볼륨(SV1)에 대응하는 제1 도플러 스펙트럼 영상을 형성한다. 또한, 프로세서(130)는 샘플볼륨(SV2)에 대응하는 제2 도플러 신호를 이용하여 샘플볼륨(SV2)에 대응하는 제2 도플러 스펙트럼 영상을 형성한다. 또한, 프로세서(130)는 샘플볼륨(SV3)에 대응하는 제3 도플러 신호를 이용하여 샘플볼륨(SV3)에 대응하는 제3 도플러 스펙트럼 영상을 형성한다.
프로세서(130)는 적어도 2개의 샘플볼륨과 적어도 2개의 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행한다(S1110). 본 실시예에 있어서, 프로세서(130)는 적어도 2개의 샘플볼륨 각각에 상이한 제1 연결정보를 설정한다. 프로세서(130)는 적어도 2개의 도플러 스펙트럼 영상 각각에 제1 연결정보에 대응하는 제2 연결정보를 설정한다. 제1 연결정보 및 제2 연결정보는 컬러, 도형, 수치, 텍스트 및 영상중 적어도 하나를 포함한다.
일례로서, 프로세서(130)는 도 12에 도시된 바와 같이 샘플볼륨(SV1, SV2, SV3)에 상이한 제1 연결정보(즉, 컬러)를 설정한다. 즉, 프로세서(130)는 샘플볼륨(SV1)에 황색을 설정하고, 샘플볼륨(SV2)에 적색을 설정하며, 샘플볼륨(SV3)에 청색을 설정한다. 프로세서(130)는 도 12에 도시된 바와 같이 샘플볼륨(SV1, SV2, SV3)에 대응하는 도플러 스펙트럼 영상(DSI1, DSI2, DSI3)에 샘플볼륨(SV1, SV2, SV3)에 설정된 컬러에 해당하는 제2 연결정보(즉, 타임라인 마커(timeline marker))(TL1, TL2, TL3)를 설정한다. 즉, 프로세서(130)는 샘플볼륨(SV1)에 대응하는 제1 도플러 스펙트럼 영상(DSI1)에 샘플볼륨(SV1)에 설정된 컬러(즉, 황색)의 타임라인 마커(TL1)를 설정한다. 또한, 프로세서(130)는 샘플볼륨(SV2)에 대응하는 제2 도플러 스펙트럼 영상(DSI2)에 샘플볼륨(SV2)에 설정된 컬러(즉, 적색)의 타임라인 마커(TL2)를 설정한다. 또한, 프로세서(130)는 샘플볼륨(SV3)에 대응하는 제3 도플러 스펙트럼 영상(DSI3)에 샘플볼륨(SV3)에 설정된 컬러(즉, 청색)의 타임라인 마커(TL3)를 설정한다.
다른 예로서, 프로세서(130)는 도 13에 도시된 바와 같이 샘플볼륨(SV1, SV2, SV3)에 상이한 제1 연결정보(즉, 컬러)를 설정한다. 즉, 프로세서(130)는 샘플볼륨(SV1)에 황색을 설정하고, 샘플볼륨(SV2)에 적색을 설정하며, 샘플볼륨(SV3)에 청색을 설정한다. 프로세서(130)는 도 13에 도시된 바와 같이 샘플볼륨(SV1, SV2, SV3)에 대응하는 도플러 스펙트럼 영상(DSI1, DSI2, DSI3)의 일부 또는 전부에 샘플볼륨(SV1, SV2, SV3)에 설정된 컬러에 대응하는 제2 연결정보를 설정한다. 즉, 프로세서(130)는 샘플볼륨(SV1)에 대응하는 제1 도플러 스펙트럼 영상(DSI1)의 일부 또는 전부에 샘플볼륨(SV1)에 설정된 컬러(즉, 황색)에 대응하는 제2 연결정보(즉, 황색)를 매팽시킨다. 또한, 프로세서(130)는 샘플볼륨(SV2)에 대응하는 제2 도플러 스펙트럼 영상(DSI2)의 일부 또는 전부에 샘플볼륨(SV2)에 설정된 컬러(즉, 적색)에 대응하는 제2 연결정보(즉, 적색)를 매핑시킨다. 또한, 프로세서(130)는 샘플볼륨(SV3)에 대응하는 제3 도플러 스펙트럼 영상(DSI3)의 일부 또는 전부에 샘플볼륨(SV3)에 설정된 컬러(즉, 청색)에 대응하는 제2 연결정보(즉, 청색)를 매핑시킨다.
다시 도 1을 참조하면, 초음파 시스템(100)은 저장부(140)를 더 포함한다. 저장부(140)는 초음파 데이터 획득부(120)에서 획득된 초음파 데이터(B 모드 초음파 데이터 및 도플러 모드 초음파 데이터)를 저장한다. 또한, 저장부(140)는 사용자 입력부(110)에서 수신된 입력정보를 저장할 수도 있다.
초음파 시스템(100)은 디스플레이부(150)를 더 포함한다. 디스플레이부(150)는 프로세서(130)에서 형성된 B 모드 영상을 디스플레이한다. 또한, 디스플레이부(150)는 프로세서(130)에서 형성된 도플러 스펙트럼 영상을 디스플레이한다.
본 발명은 바람직한 실시예를 통해 설명되고 예시되었으나, 당업자라면 첨부된 특허청구범위의 사항 및 범주를 벗어나지 않고 여러 가지 변경 및 변형이 이루어질 수 있음을 알 수 있을 것이다.
100: 초음파 시스템 110: 사용자 입력부
120: 초음파 데이터 획득부 130: 프로세서
140: 저장부 150: 디스플레이부
BI: B 모드 영상 SV1, SV2, SV3: 샘플볼륨
UI: 초음파 영상 DSI1, DSI2, DSI3: 도플러 스펙트럼 영상
TL1, TL2, TL3: 타임라인 마커

Claims (27)

  1. 초음파 시스템으로서,
    적어도 2개의 샘플볼륨 각각에 대응하는 초음파 데이터를 이용하여 상기 적어도 2개의 샘플볼륨에 대응하는 적어도 2개의 도플러 스펙트럼 영상을 형성하고, 상기 적어도 2개의 샘플볼륨과 상기 적어도 2개의 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행하도록 동작하는 프로세서
    를 포함하는 초음파 시스템.
  2. 제1항에 있어서,
    초음파 신호를 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 수신하여 복수의 샘플링 데이터를 형성하고, 상기 복수의 샘플링 데이터를 이용하여 상기 적어도 2개의 샘플볼륨 각각에 대응하는 상기 초음파 데이터를 획득하도록 동작하는 초음파 데이터 획득부
    를 더 포함하는 초음파 시스템.
  3. 제2항에 있어서, 상기 초음파 신호는 비초점(unfocused) 초음파 신호 또는 초점(focused) 초음파 신호를 포함하는 초음파 시스템.
  4. 제2항에 있어서, 상기 초음파 데이터 획득부는,
    상기 초음파 에코신호를 이용하여 수신신호를 형성하고,
    상기 수신신호에 아날로그 디지털 변환 처리를 수행하여 상기 복수의 샘플링 데이터를 형성하고,
    상기 도플러 스펙트럼 영상의 픽셀들에 대해 상기 복수의 샘플링 데이터 각각에 대응하는 픽셀을 검출하여 상기 검출된 픽셀에 해당 샘플링 데이터를 누적 할당하고,
    상기 픽셀들 각각에 대해 상기 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 상기 적어도 2개의 샘플볼륨에 대응하는 수신집속 데이터를 형성하고,
    상기 수신집속 데이터를 이용하여 상기 적어도 2개의 샘플볼륨 각각에 대응하는 상기 초음파 데이터를 형성하도록 동작하는 초음파 시스템.
  5. 제4항에 있어서, 상기 초음파 데이터 획득부는,
    상기 복수의 샘플링 데이터 중에서 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 샘플링 데이터 세트를 설정하고,
    상기 샘플링 데이터 세트의 각 샘플링 데이터에 대응하는 픽셀을 검출하도록 더 동작하는 초음파 시스템.
  6. 제4항에 있어서, 상기 초음파 데이터 획득부는, 상기 수신신호에 다운 샘플링 처리를 수행하여 다운 샘플링된 상기 복수의 샘플링 데이터를 형성하도록 더 동작하는 초음파 시스템.
  7. 제4항 내지 제6항중 어느 한 항에 있어서, 상기 초음파 데이터 획득부는,
    상기 복수의 샘플링 데이터 각각이 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 빔 포밍 곡선을 설정하고,
    상기 빔 포밍 곡선에 해당하는 픽셀을 검출하도록 동작하는 초음파 시스템.
  8. 제4항 내지 제6항중 어느 한 항에 있어서, 상기 초음파 데이터 획득부는,
    상기 복수의 샘플링 데이터 각각이 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 빔 포밍 곡선을 설정하고,
    상기 빔 포밍 곡선에 해당하는 픽셀을 검출하고,
    상기 검출된 픽셀에 해당 샘플링 데이터를 누적 할당하고,
    상기 검출된 픽셀 중에서 상기 도플러 스펙트럼 영상의 동일한 열(column)에 존재하는 픽셀을 검출하고,
    상기 동일한 열에 존재하는 픽셀에 대응하는 가중치를 설정하고,
    상기 설정된 가중치를 해당 픽셀에 할당된 샘플링 데이터에 가하도록 더 동작하는 초음파 시스템.
  9. 제8항에 있어서, 상기 초음파 데이터 획득부는,
    상기 동일한 열에 존재하는 픽셀의 중점을 기준으로 상기 중점과 상기 빔 포밍 곡선 간의 거리를 산출하고,
    상기 산출된 거리에 기초하여 상기 가중치를 설정하도록 동작하는 초음파 시스템.
  10. 제9항에 있어서, 상기 초음파 데이터 획득부는, 상기 산출된 거리에 반비례 또는 비례하여 상기 가중치를 설정하도록 동작하는 초음파 시스템.
  11. 제1항에 있어서, 상기 프로세서는,
    상기 적어도 2개의 샘플볼륨 각각에 상이한 제1 연결정보를 설정하고,
    상기 적어도 2개의 도플러 스펙트럼 영상 각각에 상기 제1 연결정보에 대응하는 제2 연결정보를 설정하도록 동작하는 초음파 시스템.
  12. 제11항에 있어서, 상기 제1 연결정보는, 컬러, 도형, 수치, 텍스트 및 영상중 적어도 하나를 포함하는 초음파 시스템.
  13. 제11항에 있어서, 상기 제2 연결정보는, 컬러, 도형, 수치, 텍스트 및 영상중 적어도 하나를 포함하는 초음파 시스템.
  14. 도플러 스펙트럼 영상 제공 방법으로서,
    a) 적어도 2개의 샘플볼륨 각각에 대응하는 초음파 데이터를 이용하여 상기 적어도 2개의 샘플볼륨에 대응하는 적어도 2개의 도플러 스펙트럼 영상을 형성하는 단계; 및
    b) 상기 적어도 2개의 샘플볼륨과 상기 적어도 도플러 스펙트럼 영상을 연결시키기 위한 영상 처리를 수행하는 단계
    를 포함하는 도플러 스펙트럼 영상 제공 방법.
  15. 제14항에 있어서, 상기 단계 a) 수행 이전에,
    초음파 신호를 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 수신하여 복수의 샘플링 데이터를 형성하는 단계; 및
    상기 복수의 샘플링 데이터를 이용하여 상기 적어도 2개의 샘플볼륨 각각에 대응하는 상기 초음파 데이터를 획득하는 단계
    를 더 포함하는 도플러 스펙트럼 영상 제공 방법.
  16. 제15항에 있어서, 상기 초음파 신호는 비초점 초음파 신호 또는 초점 초음파 신호를 포함하는 도플러 스펙트럼 영상 제공 방법.
  17. 제15항에 있어서, 상기 단계 a) 수행 이전에,
    상기 초음파 에코신호를 이용하여 수신신호를 형성하는 단계;
    상기 수신신호에 아날로그 디지털 변환 처리를 수행하여 상기 복수의 샘플링 데이터를 형성하는 단계;
    상기 도플러 스펙트럼 영상의 픽셀들에 대해 상기 복수의 샘플링 데이터 각각에 대응하는 픽셀을 검출하여 상기 검출된 픽셀에 해당 샘플링 데이터를 누적 할당하는 단계;
    상기 픽셀들 각각에 대해 상기 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 상기 적어도 2개의 샘플볼륨에 대응하는 수신집속 데이터를 형성하는 단계; 및
    상기 수신집속 데이터를 이용하여 상기 적어도 2개의 샘플볼륨 각각에 대응하는 상기 초음파 데이터를 형성하는 단계
    를 더 포함하는 도플러 스펙트럼 영상 제공 방법.
  18. 제17항에 있어서, 상기 샘플링 데이터를 누적 할당하는 단계는,
    상기 복수의 샘플링 데이터 각각이 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하는 단계; 및
    상기 검출된 픽셀에 해당 샘플링 데이터를 누적 할당하는 단계
    를 포함하는 도플러 스펙트럼 영상 제공 방법.
  19. 제17항에 있어서, 상기 샘플링 데이터를 누적 할당하는 단계는,
    상기 복수의 샘플링 데이터 중에서 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 샘플링 데이터 세트를 설정하는 단계; 및
    상기 샘플링 데이터 세트의 각 샘플링 데이터에 대응하는 픽셀을 검출하는 단계
    를 더 포함하는 도플러 스펙트럼 영상 제공 방법.
  20. 제17항에 있어서, 상기 복수의 샘플링 데이터를 형성하는 단계는,
    상기 수신신호에 다운 샘플링 처리를 수행하여 다운 샘플링된 상기 복수의 샘플링 데이터를 형성하는 단계
    를 더 포함하는 도플러 스펙트럼 영상 제공 방법.
  21. 제17항 내지 제20항중 어느 한 항에 있어서, 상기 샘플링 데이터를 누적 할당하는 단계는,
    상기 복수의 샘플링 데이터 각각이 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 빔 포밍 곡선을 설정하는 단계; 및
    상기 빔 포밍 곡선에 해당하는 픽셀을 검출하는 단계
    를 포함하는 도플러 스펙트럼 영상 제공 방법.
  22. 제17항 내지 제20항중 어느 한 항에 있어서, 상기 샘플링 데이터를 누적 할당하는 단계는,
    상기 복수의 샘플링 데이터 각각이 상기 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 빔 포밍 곡선을 설정하는 단계;
    상기 빔 포밍 곡선에 해당하는 픽셀을 검출하는 단계;
    상기 검출된 픽셀에 해당 샘플링 데이터를 누적 할당하는 단계;
    상기 검출된 픽셀 중에서 상기 도플러 스펙트럼 영상의 동일한 열에 존재하는 픽셀을 검출하는 단계;
    상기 동일한 열에 존재하는 픽셀에 대응하는 가중치를 설정하는 단계; 및
    상기 설정된 가중치를 해당 픽셀에 할당된 샘플링 데이터에 가하는 단계
    를 더 포함하는 도플러 스펙트럼 영상 제공 방법.
  23. 제22항에 있어서, 상기 가중치를 설정하는 단계는,
    상기 동일한 열에 존재하는 픽셀의 중점을 기준으로 상기 중점과 상기 빔 포밍 곡선 간의 거리를 산출하는 단계; 및
    상기 산출된 거리에 기초하여 상기 가중치를 설정하는 단계
    를 포함하는 도플러 스펙트럼 영상 제공 방법.
  24. 제22항에 있어서, 상기 가중치를 설정하는 단계는,
    상기 산출된 거리에 반비례 또는 비례하여 상기 가중치를 설정하는 단계
    를 포함하는 도플러 스펙트럼 영상 제공 방법.
  25. 제14항에 있어서, 단계 c)는,
    상기 적어도 2개의 샘플볼륨 각각에 상이한 제1 연결정보를 설정하는 단계; 및
    상기 적어도 2개의 도플러 스펙트럼 영상 각각에 상기 제1 연결정보에 대응하는 제2 연결정보를 설정하는 단계
    를 포함하는 도플러 스펙트럼 영상 제공 방법.
  26. 제25항에 있어서, 상기 제1 연결정보는, 컬러, 도형, 수치, 텍스트 및 영상중 적어도 하나를 포함하는 도플러 스펙트럼 영상 제공 방법.
  27. 제25항에 있어서, 상기 제2 연결정보는, 컬러, 도형, 수치, 텍스트 및 영상중 적어도 하나를 포함하는 도플러 스펙트럼 영상 제공 방법.
KR1020110145659A 2011-12-29 2011-12-29 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법 KR101348772B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020110145659A KR101348772B1 (ko) 2011-12-29 2011-12-29 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법
EP12199548.4A EP2610635A3 (en) 2011-12-29 2012-12-27 Providing Doppler spectrum images corresponding to at least two sample volumes in ultrasound system
CN2012105771340A CN103181782A (zh) 2011-12-29 2012-12-27 超声系统和提供多普勒频谱图像的方法
JP2012285402A JP2013138866A (ja) 2011-12-29 2012-12-27 少なくとも2つのサンプルボリュームに対応するドップラースペクトル映像を提供する超音波システムおよび方法
US13/731,652 US20130172749A1 (en) 2011-12-29 2012-12-31 Providing doppler spectrum images corresponding to at least two sample volumes in ultrasound system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110145659A KR101348772B1 (ko) 2011-12-29 2011-12-29 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법

Publications (2)

Publication Number Publication Date
KR20130077118A true KR20130077118A (ko) 2013-07-09
KR101348772B1 KR101348772B1 (ko) 2014-01-07

Family

ID=47750380

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110145659A KR101348772B1 (ko) 2011-12-29 2011-12-29 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법

Country Status (5)

Country Link
US (1) US20130172749A1 (ko)
EP (1) EP2610635A3 (ko)
JP (1) JP2013138866A (ko)
KR (1) KR101348772B1 (ko)
CN (1) CN103181782A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877699B2 (en) 2012-03-26 2018-01-30 Teratech Corporation Tablet ultrasound system
US10667790B2 (en) 2012-03-26 2020-06-02 Teratech Corporation Tablet ultrasound system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110811686B (zh) * 2015-06-05 2022-08-12 深圳迈瑞生物医疗电子股份有限公司 超声流体成像方法及超声流体成像系统
US10575825B2 (en) 2015-07-27 2020-03-03 Siemens Medical Solutions Usa, Inc. Doppler imaging
CN112704516B (zh) * 2015-08-04 2023-05-26 深圳迈瑞生物医疗电子股份有限公司 三维超声流体成像方法及系统
EP3340887B1 (en) 2015-08-27 2020-06-17 Koninklijke Philips N.V. Spectral doppler processing with adaptive sample window size
EP3167810B1 (en) * 2015-11-10 2019-02-27 Samsung Medison Co., Ltd. Ultrasound imaging apparatus and method of operating the same
CN107949331B (zh) 2016-06-30 2021-04-13 深圳迈瑞生物医疗电子股份有限公司 超声流体频谱多普勒成像方法和系统
KR102158177B1 (ko) * 2018-11-15 2020-09-22 서강대학교산학협력단 2D 샘플볼륨 기반의 스펙트럴 도플러 영상에서 Neural Network를 이용하여 움직임을 추적하는 기법 및 이를 이용한 초음파 의료 영상 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403917B2 (ja) * 1997-05-26 2003-05-06 株式会社日立メディコ 超音波断層装置
US6450959B1 (en) * 2000-03-23 2002-09-17 Ge Medical Systems Global Technology Company Ultrasound B-mode and doppler flow imaging
US6592522B2 (en) * 2001-06-12 2003-07-15 Ge Medical Systems Global Technology Company, Llc Ultrasound display of displacement
JP2006520619A (ja) * 2003-02-13 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超音波カラーフロードプラ情報から合成されるフロースペクトログラム
EP1798573A3 (en) * 2005-12-16 2009-09-09 Medison Co., Ltd. Ultrasound diagnostic system and method for displaying doppler spectrum images of multiple sample volumes
KR20070121890A (ko) * 2006-06-23 2007-12-28 주식회사 메디슨 초음파 영상을 형성하는 초음파 시스템 및 방법
CN101116622B (zh) * 2006-08-02 2010-12-01 深圳迈瑞生物医疗电子股份有限公司 波束合成的接收变迹参数的实时计算方法及其装置
KR100874550B1 (ko) * 2006-11-24 2008-12-16 주식회사 메디슨 다수의 샘플볼륨의 도플러 스펙트럼을 제공하는 초음파시스템
KR20090042153A (ko) * 2007-10-25 2009-04-29 주식회사 메디슨 영상 움직임 추정 및 보상 장치와 그 방법
JP2009136680A (ja) * 2007-12-05 2009-06-25 Medison Co Ltd 超音波映像を形成する超音波システム及び方法
CN102421372B (zh) * 2009-05-13 2014-10-29 皇家飞利浦电子股份有限公司 具有音高偏移的超声血流多普勒音频
KR101231955B1 (ko) * 2010-12-17 2013-02-08 삼성메디슨 주식회사 샘플링 데이터 기반 빔 포밍 처리를 수행하는 초음파 시스템 및 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877699B2 (en) 2012-03-26 2018-01-30 Teratech Corporation Tablet ultrasound system
US10667790B2 (en) 2012-03-26 2020-06-02 Teratech Corporation Tablet ultrasound system
US11179138B2 (en) 2012-03-26 2021-11-23 Teratech Corporation Tablet ultrasound system
US11857363B2 (en) 2012-03-26 2024-01-02 Teratech Corporation Tablet ultrasound system

Also Published As

Publication number Publication date
CN103181782A (zh) 2013-07-03
US20130172749A1 (en) 2013-07-04
KR101348772B1 (ko) 2014-01-07
JP2013138866A (ja) 2013-07-18
EP2610635A2 (en) 2013-07-03
EP2610635A3 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
KR101348772B1 (ko) 적어도 2개의 샘플볼륨에 대응하는 도플러 스펙트럼 영상을 제공하는 초음파 시스템 및 방법
KR101323330B1 (ko) 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법
KR101364527B1 (ko) 대상체의 움직임 프로파일 정보를 제공하는 초음파 시스템 및 방법
US11406362B2 (en) Providing user interface in ultrasound system
KR101348773B1 (ko) 벡터 도플러를 이용하여 난류 정보를 제공하는 초음파 시스템 및 방법
KR101348770B1 (ko) 도플러 스펙트럼 영상의 합성 영상을 제공하는 초음파 시스템 및 방법
KR101406806B1 (ko) 초음파 영상을 제공하는 초음파 시스템 및 방법
KR101386099B1 (ko) 벡터 모션 모드 영상을 제공하는 초음파 시스템 및 방법
KR101398467B1 (ko) 벡터 도플러를 이용하여 벡터 정보를 검출하는 초음파 시스템 및 방법
KR20130076071A (ko) 벡터 도플러를 이용하여 파티클의 움직임을 추정하는 초음파 시스템 및 방법
US9078590B2 (en) Providing additional information corresponding to change of blood flow with a time in ultrasound system
KR101390187B1 (ko) 파티클 플로우 영상을 제공하는 초음파 시스템 및 방법
KR101231955B1 (ko) 샘플링 데이터 기반 빔 포밍 처리를 수행하는 초음파 시스템 및 방법
KR20120067535A (ko) 미드 포인트 알고리즘에 기초하여 hprf 도플러 영상을 제공하는 초음파 시스템 및 방법
KR101364528B1 (ko) 벡터 도플러를 이용하여 대상체의 움직임 정보를 제공하는 초음파 시스템 및 방법
KR20130075486A (ko) 송신 지연을 이용하여 벡터 정보를 검출하는 초음파 시스템 및 방법
KR20120045696A (ko) Pw 도플러 영상과 함께 컬러 m 모드 영상을 제공하는 초음파 시스템 및 방법
KR101117879B1 (ko) 컬러 재구성 영상을 제공하는 초음파 시스템 및 방법
KR20120056934A (ko) 스테레오 스캔에 기초하여 초음파 영상을 제공하는 초음파 시스템 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 7