KR20130074302A - Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet - Google Patents

Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet Download PDF

Info

Publication number
KR20130074302A
KR20130074302A KR1020110142300A KR20110142300A KR20130074302A KR 20130074302 A KR20130074302 A KR 20130074302A KR 1020110142300 A KR1020110142300 A KR 1020110142300A KR 20110142300 A KR20110142300 A KR 20110142300A KR 20130074302 A KR20130074302 A KR 20130074302A
Authority
KR
South Korea
Prior art keywords
heat transfer
temperature
coefficient
transfer learning
learning coefficient
Prior art date
Application number
KR1020110142300A
Other languages
Korean (ko)
Other versions
KR101442892B1 (en
Inventor
이상원
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110142300A priority Critical patent/KR101442892B1/en
Publication of KR20130074302A publication Critical patent/KR20130074302A/en
Application granted granted Critical
Publication of KR101442892B1 publication Critical patent/KR101442892B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: A hot-rolled steel sheet manufacturing method capable of improving accuracy in predicting temperature in a hot finish rolling section is provided to calibrate the heat transfer learning coefficient of a corresponding material with reflecting the heat transfer learning coefficients of a previous material and an existing material. CONSTITUTION: A hot-rolled steel sheet manufacturing method capable of improving accuracy in predicting temperature in a hot-finish rolling section includes: a first temperature measuring step (S10) of measuring temperature at the outlet of a rough rolling section; a first temperature calculating step (S20) of calculating temperature at the inlet of a finish rolling section using the measured temperature at the outlet of the rough rolling section and a prepared model equation; a second temperature calculating step (S30) of calculating temperature at the inlet of each stand in the finish rolling section and temperature at the outlet of the finish rolling section using the calculated temperature at the inlet of the finish rolling section and a previously calculated and stored heat transfer coefficient; a second temperature measuring step (S40) of measuring the temperature at the inlet and the outlet of the finish rolling section; a previous material heat transfer learning coefficient deriving step (S50) of searching the previously stored heat transfer learning coefficient of a previous material which is a material identical with a corresponding material and is rolled in a condition identical with a rolling condition for the corresponding material; and an existing material heat transfer learning coefficient deriving step (S60) of searching the previously stored heat transfer learning coefficient of an existing material which is the material identical with the corresponding material or is rolled in the condition identical with the rolling condition for the corresponding material. [Reference numerals] (S10) First temperature measuring step; (S20) First temperature calculating step; (S30) Second temperature calculating step; (S40) Second temperature measuring step; (S50) Previous material heat transfer learning coefficient deriving step; (S60) Existing material heat transfer learning coefficient deriving step; (S70) Heat transfer learning coefficient calibration step; α_i_+_1 =α_i ×ø+α _i_-_1× (1-ø); (S80) Heat transfer coefficient calibration step; The calibration Heat transfer coefficient of a material = the calculated calibration Heat transfer coefficient of a material × (1+α_i_+_1); (S90) Roll gap setting step

Description

열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법 {METHOD FOR MANUFACTURING HOT-ROLLED STEEL BY ACCURATELTY PREDICTING TEMPERATURE IN FINISH-ROLLING OF HOT STEEL SHEET}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a hot-rolled steel sheet manufacturing method and a hot-

본 발명은 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법에 관한 것으로서, 더 상세하게는 당해재와 동일 소재 내지 동일 압연 조건에서 작업되었던 직전재 및 기존재의 열전달 학습 계수값을 모두 반영하여 당해재의 열전달 학습계수를 산출, 당해재의 열전달계수를 보정함으로써, 열간 마무리 압연 구간의 온도를 더 정확히 예측 가능케 한, 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a hot-rolled steel sheet that improves the predicted temperature accuracy of a hot-finished rolling section, and more particularly, to a method of manufacturing a hot-rolled steel sheet that reflects the values of heat transfer learning coefficients To a method for manufacturing a hot-rolled steel sheet in which the temperature of the hot-finished rolling section is more accurately predicted by correcting the heat transfer coefficient of the ash by calculating the heat transfer learning coefficient of the ash.

열연 공정에서 마무리 압연시 압연 소재의 온도는 압연 제품의 품질에 영향을 미치는 중요한 인자이다.The temperature of the rolled material during finish rolling in the hot rolling process is an important factor affecting the quality of the rolled product.

따라서, 마무리 압연시에는 압연 소재의 온도를 예측하고, 이러한 예측된 온도를 기초로, 롤 갭을 설정하여야 한다.Therefore, at the time of finish rolling, the temperature of the rolled material should be predicted and the roll gap should be set based on the predicted temperature.

도 1을 참조로, 종래 열간 마무리 압연 구간에서 소재의 온도를 예측하는 방법을 소개한다.Referring to Fig. 1, a method of predicting the material temperature in the conventional hot finish rolling section will be described.

종래 열간 마무리 압연 구간에서의 압연 소재의 온도를 예측하는 방법은 마무리 압연 구간 수냉 온도 모델을 이용하여 각 압연 스탠드에서의 온도를 예측하였다.As a method for predicting the temperature of the rolled material in the conventional hot finish rolling section, the temperature in each rolling stand was predicted by using a water cooling temperature model of the finishing rolling section.

먼저, 조압연 구간의 출측 온도를 측정한다.First, the exit temperature of the rough rolling section is measured.

측정된 조압연 구간 출측 온도를 기초로, 미리 셋팅되어져 있는 수식을 이용하여 마무리 압연 구간 입측에서의 압연 소재 온도를 계산한다.Based on the measured output temperature of the rough rolling section, the rolling material temperature at the inlet side of the finishing rolling section is calculated using a preset formula.

이렇게 계산된 마무리 압연 구간 입측 온도와 미리 셋팅되어져 있는 마무리 압연 구간의 열전달계수를 이용하여, 각 압연 스탠드 입측 및 마무리 압연 구간 출측에서의 온도를 계산, 예측한다.The temperature at the inlet side of each rolling stand and the outlet side of the finish rolling section are calculated and predicted using the calculated inlet temperature of the finishing rolling section and the heat transfer coefficient of the finishing rolling section set in advance.

이러한 과정에 동시 또는 이시에 마무리 압연 구간 입측 및 출측 온도를 측정하는바, 실제 측정된 마무리 압연 구간 입측 및 출측 온도, 그리고, 각 압연 스탠드의 입, 출측 온도는, 계산하여 예측된 온도와 일정한 차이가 발생된다.In this process, the inlet and outlet temperatures of the finish rolling section at the same time or at the same time are measured. The actual measured inlet and outlet temperatures of the finish rolling section and the inlet and outlet temperatures of the respective rolling stands are calculated Is generated.

이러한 예측 온도와 실측 온도의 차이는, 롤 갭은 물론, 제품의 품질에 직접적인 영향을 미치는바, 계산되어 예측되는 온도는 실측 온도를 근접하게 보정되어야 하는 것이다.
The difference between the predicted temperature and the measured temperature directly affects the quality of the product as well as the roll gap, so that the calculated and predicted temperature should be corrected close to the measured temperature.

이와 같이, 예측 온도가 실측 온도에 근접할 수 있도록 그 정확도를 향상시키기 위하여, 마무리 압연 구간 출측 온도 계산시 사용되어진 열전달계수를 보정하여야 한다.Thus, in order to improve the accuracy so that the predicted temperature can be close to the actual temperature, the heat transfer coefficient used in calculating the exit temperature of the finish rolling section should be corrected.

더 정확하게는, 열전달계수 산출시 사용되는 열전달 학습계수가 보정되어야 하는 것이며, 이는 직전재 및 기존재의 열전달 학습계수를 불러와 마무리 압연 구간 압연 스탠드 입측 내지 출측, 마무리 압연 구간 출측 온도를 계산하는데 사용하고, 계산된 마무리 압연 구간 출측 온도와 실측된 마무리 압연 구간 출측 온도를 비교시 더 정확한 값으로 수정하는 과정을 통하여 보정되는 것이다. More precisely, the heat transfer learning coefficient used in the calculation of the heat transfer coefficient should be corrected, which is used to calculate the heat transfer learning coefficient of the direct current and the presence of the presence, and to calculate the exit temperature of the finishing rolling stand And correcting the calculated exit temperature of the finishing rolling section and the measured output temperature of the finishing rolling section to a more accurate value.

만약, 직전재와 당해재가 동일한 강종이고, 동일한 압연 조건에서 작업된 경우라면, 직전재에서 학습되었던 열전달 학습계수를 이용하여 마무리 압연 구간의 온도 예측 정확도를 향상시키고, 롤 갭을 조절하여 압연 하중을 조절할 수 있을 것이다.If the precursor and the ash are the same steel and work under the same rolling conditions, the temperature prediction accuracy of the finishing rolling section is improved by using the heat transfer learning coefficient learned in the precursor, and the rolling gap is controlled by adjusting the roll gap You will be able to control it.

그러나, 동일한 압연 소재라 하더라도 압연 조건이 바뀌는 경우, 당해재는 기존에 유사한 조건에서 작업하였던 기존재의 열전달 학습계수를 불러와 사용하여야만 하는바, 이러한 열전달 학습계수 사용시, 마무리 압연 구간의 압연 스탠드 입측 내지 출측 그리고, 마무리 압연 구간 출측 온도 계산값은 실제 측정값과 오차 범위가 더욱 확장되는 문제가 있다.However, when the rolling conditions are changed even if the same rolling material is used, the material must be used by recalling the heat transfer learning coefficient of the existing material that has been worked under similar conditions. When such a heat transfer learning coefficient is used, And the calculation value of the exit temperature of the finishing rolling section has a problem that the actual measured value and the error range are further expanded.

특히, 직전재 내지 기존재가 상당한 시간차를 두고 예전에 작업되었던 것이라면, 더더욱 온도 예측의 정확도가 저하되는바, 압연 소재의 두께, 폭 등의 형상 품질의 오차 및 통판성 저하 문제를 불러 일으키는 문제가 있었다.Particularly, if the pre-warp material or the existing material has been worked in a long time with a considerable time difference, the accuracy of the temperature prediction is further lowered, and there arises a problem of causing errors in shape quality such as thickness and width of the rolled material, .

상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as adhering to the prior art already known to those skilled in the art.

본 발명은 이러한 종래의 문제점을 해결하기 위해 직전재와 기존재의 열전달 학습계수를 모두 반영하여 당해재의 열전달 학습계수를 보정함으로써, 그 정확도를 향상시켜 마무리 압연 구간의 각각의 압연 스탠드 입측 온도 및 마무리 압연 구간 출측 온도를 정확하게 예측할 수 있는, 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법을 제공하는데 그 목적이 있다. In order to solve such a conventional problem, the present invention is to correct the heat transfer learning coefficient of the aspherical member and the existing heat transfer learning coefficient of the aspherical member to improve the accuracy thereof, And an object of the present invention is to provide a method for manufacturing a hot-rolled steel sheet, which can accurately predict the temperature at the rolling-zone output temperature, and which improves the predicted temperature accuracy of the hot rolling rolling section.

이러한 목적을 달성하기 위한 본 발명에 따른 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법은, 조압연 구간 출측 온도를 측정하는 제1온도측정과정; 측정된 조압연 구간 출측 온도를 기초로 마무리 압연 구간의 입측 온도를 계산하는 제1온도계산과정; 저장된 열전달계수와 계산된 마무리 압연 구간 입측 온도를 기초로, 마무리 압연 구간 각 스탠드 입측 온도 및 마무리 압연 구간 출측 온도를 계산하는 제2온도계산과정; 상기 마무리 압연 구간의 입측 온도 및 출측 온도를 측정하는 제2온도측정과정; 당해재와 동일 소재이면서 동일 압연 조건에서 작업된 직전재의 기저장된 열전달 학습계수를 서치하는 직전재 열전달 학습계수 도출과정; 당해재와 동일 소재 내지 동일 압연 조건에서 작업된 기존재의 기저장된 열전달 학습계수를 서치하는 기존재 열전달 학습계수 도출과정; 및 도출된 직전재 및 기존재의 열전달 학습계수를 조합하여 상기 당해재의 열전달 학습계수를 수정하는 열전달 학습계수 보정과정;을 포함한다.In order to achieve the above object, the present invention provides a method for manufacturing a hot-rolled steel sheet having improved predicted temperature accuracy of a hot-rolled section, the method comprising: a first temperature measuring step of measuring an outlet temperature of a rough rolling section; A first temperature calculation step of calculating an inlet temperature of the finishing rolling section based on the measured output temperature of the rough rolling section; A second temperature calculation step of calculating the temperatures of the stand-side temperature and the finish-rolling-section output temperature of the finishing rolling section based on the stored heat transfer coefficient and the calculated inlet temperature of the finishing rolling section; A second temperature measurement process of measuring an entrance temperature and an exit temperature of the finish rolling section; A process for deriving a direct transfer material heat transfer learning coefficient to search for a pre-stored heat transfer learning coefficient of the immediately preceding material which is the same material as that of the same material but under the same rolling condition; Derivation process of the existing material heat transfer learning coefficient for searching the pre-stored heat transfer learning coefficient of the existing material worked in the same material or the same rolling conditions as the material; And a heat transfer learning coefficient correcting step of correcting the heat transfer learning coefficient of the ashes by combining the derived direct current and the heat transfer learning coefficients of the presence.

상기 열전달 학습계수 보정과정을 통해 수정된 열전달 학습계수를 기초로 상기 당해재의 열전달계수를 도출하는 열전달계수 보정과정과, 보정된 열전달계수를 기초로 계산된 마무리 압연 구간 각 스탠드 입측 온도 및 마무리 압연 구간 출측 온도를 토대로 각 압연 스탠드의 압하율을 조절하는 롤갭 설정과정을 더 포함한다.A heat transfer coefficient correcting step of deriving the heat transfer coefficient of the ash based on the corrected heat transfer learning coefficient through the heat transfer learning coefficient correcting process; and a heat transfer coefficient correcting step of correcting the heat transfer coefficient of each of the stand temperature and the finish rolling section And a roll gap setting process of adjusting the reduction rate of each rolling stand based on the output temperature.

상기 열전달 학습계수 보정과정은, 상기 직전재 열전달 학습계수 및 기존재 열전달 학습계수의 가중치를 결정하는 웨이팅 팩터(weighting factor)를 이용하여 하기의 수식에 진행되고, The heat transfer learning coefficient correction process proceeds to the following equation using a weighting factor that determines a weight of the direct current material heat transfer learning coefficient and the existing heat transfer learning coefficient,

αi+1 = αi * Φ + αi-1*(1-Φ)α i + 1 = α i * Φ + α i-1 * (1-Φ)

상기 열전달계수 보정과정은, 당해재의 열전달계수는 하기의 수식에 의해 보정되는 것을 특징으로 한다.The heat transfer coefficient correction process is characterized in that the heat transfer coefficient of the ash is corrected by the following equation.

당해재의 보정 열전달계수 = 당해재의 계산된 열전달계수 * (1+αi+1)Corrected heat transfer coefficient of the material = calculated heat transfer coefficient of the material * (1 + α i + 1 )

i+1 는 당해재의 열전달 학습계수, αi 는 직전재의 열전달 학습계수, αi-1 는 기존재의 열전달 학습계수, Φ는 웨이팅 팩터)i + 1 is the heat transfer learning coefficient of the reed, α i is the heat transfer learning coefficient of the previous material, α i-1 is the heat transfer learning coefficient of the presence, and Φ is the weighting factor)

상기 압연 조건은, 압연재의 두께차, 폭차, 동일 디스케일러 사용 유무를 포함하는 것을 특징으로 한다.
The rolling conditions include a difference in thickness of the rolled material, a difference in thickness, and whether or not the same descaler is used.

본 발명은 상기한 기술적 구성으로 인해 더 정확하게 열전달 학습계수 및 열전단계수를 도출해냄으로써, 마무리 압연 구간의 각 압연 스탠드 입측 온도 및 마무리 압연 구간의 출측 온도를 정확하게 예측할 있는 이점이 있다.The present invention has an advantage in that the heat transfer learning coefficient and the number of thermoelectric steps are derived more accurately due to the above-described technical construction, thereby accurately predicting the temperature on the inlet side of the rolling stand and the temperature on the exit of the finish rolling section in the finishing rolling section.

또한, 정확하게 도출된 온도를 이용하여, 롤 갭을 정확하게 조절함으로써 양질의 품질을 갖는 제품을 생산할 수 있다.Further, by using the accurately derived temperature, the roll gap can be precisely controlled to produce a product of good quality.

도 1은 종래 열전달 학습계수 보정 과정을 나타낸 도면,
도 2는 본 발명의 순서도,
도 3은 본 발명의 일요부를 나타낸 도면,
도 4는 종래 및 본 발명의 표준 편차를 비교한 도표이다.
1 is a view showing a conventional heat transfer learning coefficient correction process,
2 is a flow chart of the present invention,
3 is a view showing a flat part of the present invention,
4 is a chart comparing the standard deviation of the conventional and the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법을 설명한다.Hereinafter, a method of manufacturing a hot-rolled steel sheet according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, which improves the predicted temperature accuracy of a hot-finished rolling section.

도 2 및 도 3에 도시된 바와 같이, 본 발명의 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법은, 당해재와 동일 압연 소재 내지 동일 압연 조건에서 작업된 직전재 및 기존재에서 사용된 열전달 학습계수를 모두 반영하여 당해재의 열전달 학습계수를 보정하고, 이를 이용하여 열간 마무리 압연 구간의 각 스탠드 입측 및 열간 마무리 압연 구간의 출측 온도를 예측하는 것을 특징으로 한다. As shown in Figs. 2 and 3, the hot-rolled steel sheet manufacturing method of the present invention, which improves the predicted temperature accuracy of the hot-rolled rolling section of the present invention, is used in the presence of the rolled steel sheet and iron- The heat transfer learning coefficient of the ash is reflected by reflecting all of the heat transfer learning coefficients of the hot finishing rolling coefficient of the hot finishing rolling section, and the temperature of the exit of each stand-side and hot finishing rolling section of the hot finishing rolling section is predicted.

상술한 동일 압연 조건이란, 완전 동일 압연 조건을 물론, 두께차 내지 폭차가 일정 범위 이하인 것을 포함한다.The above-mentioned same rolling conditions include not only the same rolling conditions but also the thickness difference and the difference in width are within a certain range.

예를 들여 당해재와 직전재의 두께차는 50%까지 허용되며, 폭차 역시 50%까지 허용된다.For example, the difference in thickness between the ash and the pre-ash is allowed up to 50%, and the tolerance is also allowed up to 50%.

이러한 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법은, 제1온도측정과정(S10), 제1온도계산과정(S20), 제2온도계산과정(S30), 제2온도측정과정(S40), 직전재 열전달 학습계수 도출과정(S50), 기존재 열전달 학습계수 도출과정(S60) 및 열전달 학습계수 보정과정(S70)을 포함하는 것이 바람직하다.The method for manufacturing a hot-rolled steel sheet which improves the predicted temperature accuracy of a hot rolling rolling section includes a first temperature measuring step S10, a first temperature calculating step S20, a second temperature calculating step S30, S40), the direct-current heat transfer learning coefficient derivation process S50, the presence heat transfer learning coefficient derivation process S60, and the heat transfer learning coefficient correction process S70.

제1온도측정과정(S10)은 조압연 구간 출측 온도를 측정하는 과정이다.The first temperature measurement step S10 is a step of measuring the temperature at the rough rolling section.

제1온도계산과정(S20)에서는, 측정된 조압연 구간 출측 온도 및 미리 준비된 모델 수식을 이용하여, 마무리 압연 구간의 입측 온도를 계산한다. In the first temperature calculation step (S20), the inlet temperature of the finish rolling section is calculated by using the measured output temperature of the rough rolling section and the prepared model formula.

또한, 제2온도계산과정(S30)에서는, 계산된 마무리 압연 구간의 입측 온도와, 미리 계산, 저장되어 있는 열전달계수를 이용하여, 마무리 압연 구간 각 스탠드 입측 온도 및 마무리 압연 구간 출측 온도를 계산한다.In the second temperature calculation step (S30), the stand-in temperature and the finish rolling section output temperature of each finishing rolling section are calculated using the calculated inlet temperature of the finishing rolling section and the previously calculated heat transfer coefficient .

미리 계산, 저장되어 있는 열전달계수는 후술할 열전달계수 보정과정(S80)을 통하여 수정되는바, 지속적으로 더 정확한 값으로 업데이트된다.The heat transfer coefficient that has been calculated and stored in advance is updated through a heat transfer coefficient correction process (S80), which will be described later, and is continuously updated to a more accurate value.

제2온도측정과정(S40)은, 마무리 압연 구간의 입측 및 출측 온도를 측정하는 과정이다. 마무리 압연 구간의 입측 온도의 측정값과 계산값은 각각의 압연 스탠드에서의 롤갭 조절을 통한 압하율 조절에 필요한 인자이다.The second temperature measurement process (S40) is a process of measuring the temperature at the entrance and exit of the finish rolling section. The measured and calculated values of the inlet temperature of the finish rolling section are the factors necessary to control the rolling reduction by controlling the roll gap in each rolling stand.

또한, 마무리 압연 구간의 출측 온도 측정값과 출측 온도 계산값은 향후 열전달계수 내지 열전달 학습계수 보정시 필요한 인자이다.In addition, the output temperature measurement value and the exit temperature calculation value of the finishing rolling section are necessary factors for future heat transfer coefficient or heat transfer learning coefficient correction.

직전재 열전달 학습계수 도출과정(S50)은, 당해재와 동일 소재이면서 동일 압연 조건에서 작업된 직전재의 기저장된 열전달 학습계수를 서치, 불러오는 과정이다.The direct heat transfer learning coefficient derivation process (S50) is a process of searching and retrieving the pre-stored heat transfer learning coefficients of the immediately preceding material which is the same material as the material but under the same rolling condition.

기존재 열전달 학습계수 도출과정(S60)은, 당해재와 동일 소재 내지 동일 조건에서 작업된 기존재의 기저장된 열전달 학습계수를 서치, 불러오는 과정이다.The process of deriving the existing heat transfer learning coefficient (S60) is a process of searching for and storing the previously stored heat transfer learning coefficients of the existing materials that are the same material as the material or under the same conditions.

직전재와 기존재의 열전달 학습계수가 각각 도출되면, 이러한 각각의 값들을 모두 반영, 조합하여, 상술한 열간 마무리 압연 구간의 각 스탠드 입측 및 열간 마무리 압연 구간의 출측 온도 계산시 이용되었던 열전달 학습계수를 보정하는, 열전달 학습계수 보정과정(S70)이 진행된다.When each of the values of the heat transfer learning coefficients of the preform and the presence is derived, the values of the heat transfer learning coefficients used in the calculation of the exit temperature of each stand and hot finish rolling section of the hot finishing rolling section described above, The heat transfer learning coefficient correction process S70 is performed.

열전달 학습계수 보정과정(S70)이 진행된 후에는, 보정된 열전달 학습계수를 이용하여 상술한 열간 마무리 압연 구간의 각 스탠드 입측 및 열간 마무리 압연 구간의 출측 온도 계산시 사용되었던 열전달계수를 보정하는, 열전달계수 보정과정(S80)이 진행된다.After the heat transfer learning coefficient correcting process S70 proceeds, the corrected heat transfer learning coefficient is used to correct the heat transfer coefficient used in calculating the exit temperature of each of the stand-side and hot finish rolling sections of the above-described hot finish rolling section, The coefficient correction process S80 proceeds.

보정된 열전달계수를 이용하여, 마무리 압연 구간의 각 압연 스탠트 입측 및 마무리 압연 구간의 출측 온도를 계산하면, 더 정확한 계산값을 얻을 수 있으며, 롤갭 설정과정(S90)에서는, 이러한 더 정확한 온도값을 기초로 롤 갭을 조절함으로써, 고품질의 제품을 제조할 수 있는 것이다.
More precisely calculated values can be obtained by calculating the temperature at the entrance of each of the rolling stands and the finish rolling section using the corrected heat transfer coefficient in the finishing rolling section. In the roll gap setting process (S90) A high quality product can be manufactured by controlling the roll gap based on the roll gap.

열전달 학습계수 보정과정(S70)에서는, 직전재 및 기존재의 열전달 학습계수의 가중치를 결정하는 웨이팅 팩터(weighting factor)를 이용하여 하기의 수식 ①을 이용하여, 열전달 학습계수를 보정하게 된다.
In the heat transfer learning coefficient correction process (S70), the heat transfer learning coefficient is corrected using the following equation (1) using a weighting factor for determining the weight of the heat transfer learning coefficients of the direct current and the presence.

αi+1 = αi * Φ + αi-1*(1-Φ)---------------------①
α i + 1 = α i * Φ + α i-1 * (1-Φ) -

i+1 는 당해재의 열전달 학습계수, αi 는 직전재의 열전달 학습계수, αi-1 는 기존재의 열전달 학습계수, Φ는 웨이팅 팩터)
i + 1 is the heat transfer learning coefficient of the reed, α i is the heat transfer learning coefficient of the previous material, α i-1 is the heat transfer learning coefficient of the presence, and Φ is the weighting factor)

웨이팅 팩터인 Φ값은, 0.1에서 1 사이의 값을 갖는바, 그것이 1이라면 보정된 열전달 학습계수는 직전재의 열전달 학습계수를 그래도 불러와서 사용한 것인바, 이는 직전재가 당해재와 완전 동일 강종이고, 완전 동일 압연 조건하에서 압연이 진행되었음을 의미한다.The value of the weighting factor, [phi], has a value between 0.1 and 1, and if it is equal to 1, the corrected heat transfer learning coefficient is used by recalling the heat transfer learning coefficient of the immediately preceding material, Which means that the rolling has proceeded under completely identical rolling conditions.

반면, 당해재와 직전재의 압연 조건 중 두께 차이 내지 폭 차이에 따라 웨이팅 팩터값은 조절되며, 상술한 두께 차이 내지 폭 차이가 증가할 수록 Φ값은 감소하여, 기존재의 열전달계수 학습값의 가중치가 증가한다. On the other hand, the weighting factor value is controlled according to the thickness difference or the width difference among the rolling conditions of the ash and the immediately preceding material, and as the thickness difference to width difference increases, the value of Φ decreases and the weight of the heat transfer coefficient learning value .

보정된 열전달 학습계수가 도출되면, 이 값을 이용하여 열전달계수를 수정하는 열전달계수 보정과정(S80)이 하기의 수식 ②에 따라 진행된다.
When the corrected heat transfer learning coefficient is derived, a heat transfer coefficient correction process (S80) for correcting the heat transfer coefficient using this value is performed according to the following equation (2).

당해재의 보정 열전달계수 = 당해재의 계산된 열전달계수 * (1+αi+1)-----②
Correct heat transfer coefficient of the ash = calculated heat transfer coefficient of the ash * (1 + α i + 1 ) ----- (2)

도 4에 도시되 바와 같이, 본 발명의 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법을 검증하였다.As shown in FIG. 4, the method of manufacturing a hot-rolled steel sheet in which the predicted temperature accuracy of the hot-finished rolling section of the present invention is improved is verified.

고탄소강에 대하여 직전재와 당해재의 소재가 동일하고, 직전재와 당해재의 두께 차이는 10% 이하이며, 당해재의 최종 코일 두께가 4mm 이하, 디스케일링 작업 조건이 동일한 경우에 대하여, 마무리 압연 구간 출측 측정 온도를 기준으로, 예측 온도의 정확성을 검증하였다.The difference in thickness between the rolls and the material is equal to or less than 10% and the thickness of the final coil of the roll is equal to or smaller than 4 mm and the descaling operation conditions are the same. Based on the measured temperature, the accuracy of the predicted temperature was verified.

본 발명이 적용되기 전에는 마무리 압연 구간의 출측에서의 측정온도와 예측 온도 차이가 ±20℃에 있을 σ 수준은 2.62였으나, 본 발명 적용 후 2.86 ~ 2.97까지 증가하였는바, σ 수준으로, 약 9.2% ~ 13.4% 까지 증가되었는바, 그 정확도가 크게 향상되었다.Before the present invention was applied, the σ level at which the difference between the measured temperature and the predicted temperature at the exit of the finish rolling section was ± 20 ° C. was 2.62, but it increased to 2.86 ~ 2.97 after the present invention, It increased to 13.4%, and its accuracy was greatly improved.

또한, 측정온도와 예측 온도 차이가 ±40℃에 있을 σ 수준은 3.61이었으나, 본 발명이 적용된 후, 4.03 ~ 4.94로 증가하였는바,σ 수준으로 약 11.6% ~ 36.8%까지 증가되었는바, 그 정확도는 현저하게 향상되었다.In addition, the σ level at which the difference between the measured temperature and the predicted temperature was ± 40 ° C. was 3.61, but after the present invention was applied, it increased from 4.03 to 4.94, which was increased to about σ from 11.6% to 36.8% Was significantly improved.

본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

S10 : 제1온도측정과정 S20 : 제1온도계산과정
S30 : 제2온도계산과정 S40 : 제2온도측정과정
S50 : 직전재 열전달 학습계수 도출과정
S60 : 기존재 열전달 학습계수 도출과정
S70 : 열전달 학습계수 보정과정
S80 : 열전달계수 보정과정 S90 : 롤갭 설정과정
S10: First temperature measurement process S20: First temperature calculation process
S30: second temperature calculation process S40: second temperature measurement process
S50: Derivation process of direct heat transfer learning coefficient
S60: Process of deriving existing existence heat transfer learning coefficient
S70: Heat transfer learning coefficient correction process
S80: Heat transfer coefficient correction process S90: Roll gap setting process

Claims (4)

조압연 구간 출측 온도를 측정하는 제1온도측정과정;
측정된 조압연 구간 출측 온도를 기초로 마무리 압연 구간의 입측 온도를 계산하는 제1온도계산과정;
저장된 열전달계수와 계산된 마무리 압연 구간 입측 온도를 기초로, 마무리 압연 구간 각 스탠드 입측 온도 및 마무리 압연 구간 출측 온도를 계산하는 제2온도계산과정;
상기 마무리 압연 구간의 입측 온도 및 출측 온도를 측정하는 제2온도측정과정;
당해재와 동일 소재이면서 동일 압연 조건에서 작업된 직전재의 기저장된 열전달 학습계수를 서치하는 직전재 열전달 학습계수 도출과정;
당해재와 동일 소재 내지 동일 압연 조건에서 작업된 기존재의 기저장된 열전달 학습계수를 서치하는 기존재 열전달 학습계수 도출과정; 및
도출된 직전재 및 기존재의 열전달 학습계수를 조합하여 상기 당해재의 열전달 학습계수를 수정하는 열전달 학습계수 보정과정;을 포함하는, 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법.
A first temperature measuring step of measuring an output temperature of the rough rolling section;
A first temperature calculation step of calculating an inlet temperature of the finishing rolling section based on the measured output temperature of the rough rolling section;
A second temperature calculation step of calculating the temperatures of the stand-side temperature and the finish-rolling-section output temperature of the finishing rolling section based on the stored heat transfer coefficient and the calculated inlet temperature of the finishing rolling section;
A second temperature measurement process of measuring an entrance temperature and an exit temperature of the finish rolling section;
A process for deriving a direct transfer material heat transfer learning coefficient to search for a pre-stored heat transfer learning coefficient of the immediately preceding material which is the same material as that of the same material but under the same rolling condition;
Derivation process of the existing material heat transfer learning coefficient for searching the pre-stored heat transfer learning coefficient of the existing material worked in the same material to the same rolling conditions as the material; And
And a heat transfer learning coefficient correcting step of correcting the heat transfer learning coefficient of the ash by combining the derived direct current and the heat transfer learning coefficient of the existing existence.
청구항 1에 있어서,
상기 열전달 학습계수 보정과정을 통해 수정된 열전달 학습계수를 기초로 상기 당해재의 열전달계수를 도출하는 열전달계수 보정과정과, 보정된 열전달계수를 기초로 계산된 마무리 압연 구간 각 스탠드 입측 온도 및 마무리 압연 구간 출측 온도를 토대로 각 압연 스탠드의 압하율을 조절하는 롤갭 설정과정을 더 포함하는 것을 특징으로 하는, 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법.
The method according to claim 1,
A heat transfer coefficient correcting step of deriving the heat transfer coefficient of the ash based on the corrected heat transfer learning coefficient through the heat transfer learning coefficient correcting process; and a heat transfer coefficient correcting step of correcting the heat transfer coefficient of each of the stand temperature and the finish rolling section Further comprising a roll gap setting step of adjusting a rolling reduction ratio of each of the rolling stands based on an output temperature of the rolling mill.
청구항 1에 있어서,
상기 열전달 학습계수 보정과정은, 상기 직전재 열전달 학습계수 및 기존재 열전달 학습계수의 가중치를 결정하는 웨이팅 팩터(weighting factor)를 이용하여 하기의 수식에 진행되고,

αi+1 = αi * Φ + αi-1*(1-Φ)

상기 열전달계수 보정과정은, 당해재의 열전달계수는 하기의 수식에 의해 보정되는 것을 특징으로 하는, 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법.

당해재의 보정 열전달계수 = 당해재의 계산된 열전달계수 * (1+αi+1)

i+1 는 당해재의 열전달 학습계수, αi 는 직전재의 열전달 학습계수, αi-1 는 기존재의 열전달 학습계수, Φ는 웨이팅 팩터)
The method according to claim 1,
The heat transfer learning coefficient correction process proceeds to the following equation using a weighting factor that determines a weight of the direct current material heat transfer learning coefficient and the existing heat transfer learning coefficient,

α i + 1 = α i * Φ + α i-1 * (1-Φ)

Wherein the heat transfer coefficient correction process is such that the heat transfer coefficient of the ash is corrected by the following equation.

Corrected heat transfer coefficient of the material = calculated heat transfer coefficient of the material * (1 + α i + 1 )

i + 1 is the heat transfer learning coefficient of the reed, α i is the heat transfer learning coefficient of the previous material, α i-1 is the heat transfer learning coefficient of the presence, and Φ is the weighting factor)
청구항 1에 있어서,
상기 압연 조건은, 압연재의 두께차, 폭차, 동일 디스케일러 사용 유무를 포함하는 것을 특징으로 하는, 열간 마무리 압연 구간 예측 온도 정확성을 개선한 열연 강판 제조방법.
The method according to claim 1,
Wherein the rolling condition includes a difference in thickness of the rolled material, a difference in thickness, and whether or not the same descaler is used.
KR1020110142300A 2011-12-26 2011-12-26 Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet KR101442892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110142300A KR101442892B1 (en) 2011-12-26 2011-12-26 Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110142300A KR101442892B1 (en) 2011-12-26 2011-12-26 Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet

Publications (2)

Publication Number Publication Date
KR20130074302A true KR20130074302A (en) 2013-07-04
KR101442892B1 KR101442892B1 (en) 2014-09-22

Family

ID=48988432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110142300A KR101442892B1 (en) 2011-12-26 2011-12-26 Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet

Country Status (1)

Country Link
KR (1) KR101442892B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108237148A (en) * 2017-10-16 2018-07-03 首钢集团有限公司 A kind of method for eliminating target steel burr chain defect
TWI785975B (en) * 2022-01-26 2022-12-01 中國鋼鐵股份有限公司 Method for controlling temperature of finishing mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105363794B (en) * 2014-08-21 2017-06-23 宝山钢铁股份有限公司 A kind of finish rolling energy-saving control method based on mechanical properties forecast and required power model

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775231B1 (en) 2006-09-01 2007-11-12 주식회사 포스코 Apparatus and method for controlling warp of rolled heavy plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108237148A (en) * 2017-10-16 2018-07-03 首钢集团有限公司 A kind of method for eliminating target steel burr chain defect
TWI785975B (en) * 2022-01-26 2022-12-01 中國鋼鐵股份有限公司 Method for controlling temperature of finishing mill

Also Published As

Publication number Publication date
KR101442892B1 (en) 2014-09-22

Similar Documents

Publication Publication Date Title
CN110479776B (en) Closed-loop cooling control system and control method for rolled hot-rolled rod and wire
JP5685208B2 (en) Control device for hot rolling mill for thin plate and control method for hot rolling mill for thin plate
TWI458572B (en) Control device and control method
RU2008139906A (en) METHOD AND INSTALLATION FOR INTEGRATED MONITORING AND CONTROL OF THE STRIP OF THE STRIP AND THE STRIP PROFILE
KR101442892B1 (en) Method for manufacturing hot-rolled steel by accuratelty predicting temperature in finish-rolling of hot steel sheet
TW201641171A (en) Method for producing metal strips
JP4598586B2 (en) Cooling control method, apparatus, and computer program
KR100643373B1 (en) Method of controlling longitudinal direction temperature of thick hot-rolled steel plate
EP2133159B1 (en) Method of manufacturing a seamless pipe or tube
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP5293405B2 (en) Roll gap setup method in reverse rolling
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
JP2001252709A (en) Method for temperature on outlet side of finishing mill for hot rolling
JP2006177779A (en) Quality determination method of steel product
JP2006272386A (en) Thickness control method of deformed steel plate
CN105195523A (en) Method for improving calculation precision of temperature of intermediate billet in hot rolling
JP2012081493A (en) Metal plate thickness control method and metal plate manufacturing method
JP5544345B2 (en) Temperature estimation device, temperature estimation method, rolling mill control device
KR101879085B1 (en) Apparatus and method for endless hot rolling
Washikita et al. Strip walking control technology in hot strip rolling
JP2016179487A (en) Rolling control method in rolling machine
JPS6224809A (en) Method for controlling sheet width in hot rolling
TWI747774B (en) Method for estimating an outlet temperature of a finishing mill
TWI786580B (en) Method for estimating an outlet temperature of a finishing mill
KR101322048B1 (en) Method for controlling width of rolling material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant