KR20130070238A - Ultra low carbon cold rolled steel sheet and method for manufacturing the same - Google Patents

Ultra low carbon cold rolled steel sheet and method for manufacturing the same Download PDF

Info

Publication number
KR20130070238A
KR20130070238A KR1020110137469A KR20110137469A KR20130070238A KR 20130070238 A KR20130070238 A KR 20130070238A KR 1020110137469 A KR1020110137469 A KR 1020110137469A KR 20110137469 A KR20110137469 A KR 20110137469A KR 20130070238 A KR20130070238 A KR 20130070238A
Authority
KR
South Korea
Prior art keywords
steel sheet
rolled steel
cold rolled
less
steel
Prior art date
Application number
KR1020110137469A
Other languages
Korean (ko)
Other versions
KR101360559B1 (en
Inventor
권세웅
이희관
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110137469A priority Critical patent/KR101360559B1/en
Publication of KR20130070238A publication Critical patent/KR20130070238A/en
Application granted granted Critical
Publication of KR101360559B1 publication Critical patent/KR101360559B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: An extra low carbon cold rolled steel sheet capable of improving machinability and a manufacturing method thereof are provided to have the occupied area of crystal grain with 10μm in grain size which covers 40-70% of the entire crystal grain occupied area ratio, and to supply precipitates with less than 3.5 of aspect ratio which covers 80% of the number of the entire precipitates. CONSTITUTION: An extra low carbon cold rolled steel sheet is composed of, in wt%: C: 0.0016-0.0025; Si: 0.003-0.007; Mn: 0.1-0.2; Al: 0.02-0.05; Nb: 0.04-0.14; N: 0.001-0.005; P: 0.008 or less; S: 0.008 or less; and the remainder Fe and inevitable impurities. The average grain size of a micro-structure crystal grain is 7-11μm; the occupied area ratio of the crystal grain with more than 10μm in grain size is 40-70% of the entire crystal grain; and the number of precipitates with 3.5 of aspect ratio is more than 80% of the number of the entire precipitates.

Description

극저탄소 냉연강판 및 그 제조방법{ULTRA LOW CARBON COLD ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}Ultra low carbon cold rolled steel sheet and its manufacturing method {ULTRA LOW CARBON COLD ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 자동차, 가전제품 등의 소재로 사용되는 냉연강판 및 그 제조방법에 관한 것이다. The present invention relates to a cold-rolled steel sheet used as a material for automobiles, home appliances, and the like, and a manufacturing method thereof.

최근 자동차, 가전제품 등에 사용되는 냉연강판은 강도와 더불어 우수한 성형성이 요구된다. 종래, 자동차 차체의 경량화 및 승객 안정성 확보를 위해 높은 인장강도를 가진 고강도 강판 채용에 적극적이며, 이러한 고강도 강판은 자동차 안전 규제법, 연비 규제법, 배기가스 규제법 등 자동차 산업을 둘러싼 각종 법률 규제 등과 밀접한 관계를 가지면서 개발되어 왔으며, 고유가에 의한 연비 규제가 강화되어 자동차의 경량화가 자동차 업계의 주요 관심사로 부각되면서 연구 개발이 한정 가속화되어 많은 종류의 고강도 강판이 개발되어 왔다.
Recently, cold rolled steel sheets used in automobiles, home appliances, and the like are required to have excellent formability with strength. In the past, high strength steel plates with high tensile strength have been actively used to lighten the weight of automobile bodies and ensure passenger stability. Such high strength steel plates are closely related to various legal regulations surrounding the automobile industry such as automobile safety regulation law, fuel efficiency regulation law, And the fuel economy regulation by the high oil price has been strengthened, and weight reduction of automobiles has become a main concern of the automobile industry, so research and development have been accelerated and many types of high strength steel plates have been developed.

그리고, 가공성이 요구되는 강판에서는 P첨가 Al 킬드(kiilled)강과 심가공용 고장력강이 있다. 상기 Al 킬드강은 상소둔을 행하여 제조되는 바, 상소둔은 소둔시간이 길고, 생산성이 낮고 부위별로 재질편차가 심하다는 단점이 있다.
In the case of a steel sheet requiring workability, there are P-containing Al killed and high tensile strength steel for deep drawing. Since the Al-killed steel is manufactured by subjecting the Al-killed steel to an annealing, the annealing time is long, the productivity is low, and the material variation is large in each part.

따라서, 강력한 탄, 질화물 형성 원소를 첨가하여 연속소둔의 방법으로 가공성을 향상시킨 고장력강인 IF(Interstitial Free Steel)강에 대한 연구 개발이 활발히 진행되고 있다.Therefore, research and development of IF (Interstitial Free Steel) steel, which is a high tensile strength steel, which has improved workability by continuous annealing by adding strong carbon and nitride forming elements, is actively progressing.

이러한, IF강을 제조하기 위해서는 강력한 탄, 질화물 형성원소인 Ti, Nb등을 첨가하는데 이들 원소는 재결정온도를 상승시키므로, 고온에서 소둔해야 하며 이에 따라 바람직한 인장강도와 연신율 확보가 곤란하다는 문제가 있었다.
In order to manufacture such IF steel, strong carbon and nitride forming elements such as Ti and Nb are added. However, these elements increase the recrystallization temperature, so they have to be annealed at a high temperature, thereby making it difficult to obtain desirable tensile strength and elongation. .

또한, Ti, Nb을 첨가하지 않으면서도 CuS 석출물들을 이용한 극저탄소강도 제안 되고 있으나, 시효현상등에 의한 재질불량이 다량 발생하는 문제가 있다.In addition, ultra-low carbon steel using CuS precipitates without Ti and Nb has been proposed, but there is a problem that a large amount of material defects are generated due to aging.

본 발명은 극저탄소강 냉연강판 및 그 제조방법을 제공하고자 하는 것이다. The present invention is to provide an ultra-low carbon steel cold rolled steel sheet and a method of manufacturing the same.

본 발명의 일 측면인 극저탄소강 냉연강판은 중량%로, C: 0.0016~ 0.0025%, Si: 0.003~0.007%, Mn: 0.1~0.2%, Al: 0.02~0.05%, Nb: 0.04~0.14%, N: 0.001~0.005%, P: 0.008%이하, S: 0.008%이하 나머지는 Fe 및 불가피한 불순물을 포함하고 미세조직 결정립의 평균입도는 7~11㎛이고, 입도가 10㎛ 이상인 결정립의 점유 면적율이 전체 결정립 점유면적율의 40~70%이고, 종횡비(aspect ratio)가 3.5이하인 석출물의 개수가 전체 석출물의 개수의 80% 이상을 포함한다.
Ultra-low carbon steel cold rolled steel sheet is an aspect of the present invention by weight, C: 0.0016 ~ 0.0025%, Si: 0.003 ~ 0.007%, Mn: 0.1 ~ 0.2%, Al: 0.02 ~ 0.05%, Nb: 0.04 ~ 0.14% , N: 0.001-0.005%, P: 0.008% or less, S: 0.008% or less The remainder contains Fe and unavoidable impurities, and the average grain size of the microstructure grains is 7-11 μm, and the occupancy rate of the grains having a particle size of 10 μm or more 40 to 70% of the total grain occupancy and the number of precipitates having an aspect ratio of 3.5 or less include 80% or more of the total precipitates.

본 발명의 다른 일 측면인 극저탄소강 냉연강판의 제조방법은 중량%로, C: 0.0016~ 0.0025%, Si: 0.003~0.007%, Mn: 0.1~0.2%, Al: 0.02~0.05%, Nb: 0.04~0.14%, N: 0.001~0.005%, P: 0.006~0.015%, S: 0.008%이하 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1100℃ 이상으로 재가열하는 단계, 상기 재가열된 강 슬라브를 열간압연하고, Ar3 이상의 온도에서 마무리 열간압연하여 열연강판을 제조하는 단계, 상기 열연강판을 670~730℃의 온도에서 권취하는 단계, 상기 권취 후 50~90%의 압하율로 상기 열연강판을 냉간압연하여 냉연강판을 제조하는 단계 및 상기 냉연강판을 810~880℃의 온도에서 소둔하는 단계를 포함한다. Another aspect of the present invention is a method for producing an ultra low carbon steel cold rolled steel sheet in weight%, C: 0.0016 ~ 0.0025%, Si: 0.003 ~ 0.007%, Mn: 0.1 ~ 0.2%, Al: 0.02 ~ 0.05%, Nb: 0.04 ~ 0.14%, N: 0.001 ~ 0.005%, P: 0.006 ~ 0.015%, S: 0.008% or less Reheating the steel slab containing Fe and unavoidable impurities to 1100 ° C. or more, the reheated steel slab Hot rolling and manufacturing hot rolled steel sheet by finishing hot rolling at a temperature of Ar3 or higher, winding the hot rolled steel sheet at a temperature of 670 to 730 ° C, and cold rolling the hot rolled steel sheet at a rolling reduction ratio of 50 to 90% after the winding. Rolling to produce a cold rolled steel sheet and annealing the cold rolled steel sheet at a temperature of 810 ~ 880 ℃.

본 발명에 의하면, 본 발명 기술을 통해 강판의 미세조직 결정립의 평균입도는 7~11㎛이고, 입도가 10㎛이상인 결정립의 점유 면적율이 전체 결정립 점유면적율의 40~70%이고, 종횡비(aspect ratio)가 3.5이하인 석출물이 전체 석출물의 개수의 80% 이상을 제공할 수 있다. 이와 같은 조직강의 제조를 통해 TS × El이 11,000MPa% 이상을 갖는 가공성이 우수한 냉연강판을 제공할 수 있다. According to the present invention, the average grain size of the microstructure grains of the steel sheet through the present technology is 7 ~ 11㎛, the occupancy area ratio of the grains having a particle size of 10㎛ or more is 40 ~ 70% of the total grain occupancy area, aspect ratio (aspect ratio Precipitates with a maximum of 3.5 may provide more than 80% of the total number of precipitates. Through the production of such a structured steel can provide a cold rolled steel sheet having excellent workability having TS × El 11,000 MPa% or more.

본 발명자들은 가공성 특성을 갖는 냉연강판을 도출해 내기 위하여 연구를 거듭한 결과, 강판의 성분계와 압연 후 냉각방법을 적절히 제어하여, 강판의 미세조직을 페라이트로 제어함으로써 우수한 가공성 및 우수한 재질균일성을 동시에 갖는 냉연강판을 생산할 수 있음을 확인하고 본 발명에 이르게 되었다.
The present inventors have conducted extensive research to derive a cold rolled steel sheet having workability characteristics. As a result, by appropriately controlling the component system of the steel sheet and the cooling method after rolling, the microstructure of the steel sheet is controlled by ferrite, thereby providing excellent workability and excellent material uniformity. It has been confirmed that the cold rolled steel sheet having can be produced, which has led to the present invention.

이하, 본 발명의 일 측면인 냉연강판에 대하여 상세히 설명한다.
Hereinafter, a cold-rolled steel sheet as one aspect of the present invention will be described in detail.

탄소(C): 0.0016~0.0025 중량%Carbon (C): 0.0016 to 0.0025 wt%

탄소는 강을 강화시키는데 가장 효과적인 원소이나 다량 첨가되는 경우 용접성 및 저온 인성을 저하시키는 원소이다. 탄소의 함량이 0.0015% 미만인 경우에는 열연판의 결정립이 조대하여 강도가 낮아지고 면내이방성이 높아진다. 반면에, 탄소의 함량이 0.0025%를 초과하는 경우에는 강중 고용탄소의 양이 많아 내시효성의 확보가 곤란하고, 소둔 판의 결 정립이 미세하게 되어 연성이 크게 낮아진다. 따라서, 상기 C의 함량은 0.0016~0.0025%로 하는 것이 바람직하다.
Carbon is the most effective element for reinforcing steel but, when added in large amounts, it degrades weldability and low temperature toughness. When the carbon content is less than 0.0015%, the grains of the hot rolled sheet are coarse to lower the strength and to increase the in-plane anisotropy. On the other hand, when the carbon content exceeds 0.0025%, the amount of solid carbon in steel is high, making it difficult to secure aging resistance, and the grain size of the annealed plate becomes fine, resulting in significantly lower ductility. Therefore, the content of C is preferably set to 0.0016 to 0.0025%.

실리콘(Si): 0.003~0.007 중량%Silicon (Si): 0.003-0.007 wt%

실리콘은 고용강화 원소로서, 강도향상 측면에서 유리하다. 본 발명에서는 이러한 효과를 나타내기 위하여 0.003 중량% 이상 포함되는 것이 바람직하다. 그러나, 실리콘의 함량이 0.007 중량%를 초과하는 경우에는 소둔시 표면에 Si계 산화물이 용출되어 표면특성을 열화시킬 수 있다. 따라서, 상기 실리콘은 0.003~0.007 중량%로 포함되는 것이 바람직하다.
Silicon is a solid solution strengthening element, and is advantageous in terms of strength improvement. In the present invention, it is preferable that 0.003% by weight or more is included to exhibit such an effect. However, when the content of silicon exceeds 0.007% by weight, the Si-based oxide may be eluted on the surface during annealing to deteriorate the surface properties. Therefore, the silicon is preferably included in 0.003 ~ 0.007% by weight.

망간(Mn): 0.1~0.2 중량%Manganese (Mn): 0.1-0.2 wt%

망간은 강 중 고용황을 MnS로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하는 원소이다. 본 발명에서는 Mn과 S의 함량을 적절하게 함 으로써, 미세한 MnS가 석출되어 내시효성을 확보하면서 항복강도, 면내이방성을 얻는다. 본 발명에서는 이러한 효과를 나타내기 위하여, 상기 Mn의 함량이 0.1% 이상 포함되는 것이 바람직하다. 이를 통하여, 미세한 MnS 석출물을 확보할 있다. 그러나, 0.2%를 초과하는 경우에는 Mn의 함량이 높아 조대한 MnS가 석출되어 내시효성이 열악해 질 수 있다. 따라서, 상기 Mn은 0.1~0.2중량%로 포함되는 것이 바람직하다.
Manganese is an element that prevents hot shortness caused by solid solution sulfur by precipitation of solid solution sulfur in steel as MnS. In the present invention, by properly adjusting the content of Mn and S, fine MnS is precipitated to obtain yield strength and in-plane anisotropy while securing aging resistance. In the present invention, in order to exhibit such an effect, it is preferable that the content of Mn is included 0.1% or more. Through this, it is possible to secure a fine MnS precipitate. However, if the content exceeds 0.2%, the high Mn content may cause coarse MnS to precipitate, resulting in poor aging resistance. Therefore, the Mn is preferably included in 0.1 to 0.2% by weight.

알루미늄(Al): 0.02~0.05 중량%Aluminum (Al): 0.02-0.05 wt%

알루미늄은 탈산제로 참가되며, 강 중 질소를 석출하여 고용질소에 의한 시효를 방지하는 효과가 있다. 상기 Al의 함량이 0.02% 미만에서는 고용질소의 양이 많아 시효 현상을 방지할 수 없고, 0.05%를 초과하는 경우에는 고용 상태로 존재하는 알루미늄의 양이 많아 연성이 저하된다. 따라서, 상기 Al은 0.02~0.05 중량%로 포함되는 것이 바람직하다.
Aluminum participates as a deoxidizer and has the effect of preventing aging by solid nitrogen by precipitating nitrogen in steel. When the Al content is less than 0.02%, the amount of solid solution nitrogen is high so that aging may not be prevented. When the amount of Al is more than 0.05%, the amount of aluminum present in the solid solution state is high and the ductility decreases. Therefore, it is preferable that Al is contained in 0.02-0.05 weight%.

니오븀(Nb): 0.04~0.14 중량%Niobium (Nb): 0.04 to 0.14 wt%

니오늄은 석출물을 형성하여, 미세조직의 입계 및 입내에 위치하여 결정립의 성장을 억제하여 결정립을 미세화시킴으로써, 가공성을 향상시키는 원소이다. NbC 석출 효과를 향상시키는 역할을 하기 때문에 적어도 0.04 중량% 이상을 첨가하는 것이 바람직하다. 그러나, Nb의 함량이 0.14 중량%을 초과하는 경우에는 경제적으로 불리할 뿐만 아니라, 도금시 도금성을 저하시킬 수 있다. 따라서, 상기 니오븀은 0.04~0.14 중량%로 포함되는 것이 바람직하다.
Nionium is an element that forms precipitates, is located in the grain boundaries and in the grains of the microstructure, thereby inhibiting the growth of grains and making grains finer, thereby improving workability. It is preferable to add at least 0.04% by weight or more because it serves to improve the NbC precipitation effect. However, when the content of Nb exceeds 0.14% by weight, not only is it economically disadvantageous, but also the plating property may be reduced during plating. Therefore, the niobium is preferably contained in 0.04 ~ 0.14% by weight.

질소(N): 0.001~0.005 중량%Nitrogen (N): 0.001-0.005 wt%

질소는 제강 중 불가피하게 함유되는 원소이다. 강 중에 질소가 많으면 많을수록 인성은 크게 저하하는 것으로 알려져 있어 가능한 한 질소 함유량을 감소시키려는 것이 일반적인 추세이다. 본 발명에서는 질소의 함량을 0.005 중량% 이하로 제한하는 것이 바람직하며, 질소의 함량이 0.005 중량%를 초과하는 경우에는 시효지수가 높아지고, 성형성 및 가공성이 저하시킬 수 있다. 한편, 질소함량은 가능하면 낮을수록 좋지만, 제강비용 등을 고려하여 그 하한을 0.001 중량%로 제한하는 것이 바람직하다.
Nitrogen is an element inevitably contained in steelmaking. It is known that the more nitrogen in steel, the toughness is greatly reduced, and it is a general trend to reduce nitrogen content as much as possible. In the present invention, it is preferable to limit the content of nitrogen to 0.005% by weight or less. When the content of nitrogen exceeds 0.005% by weight, the aging index is high, and moldability and processability may be reduced. On the other hand, the nitrogen content is as low as possible, but the lower limit is preferably 0.001% by weight in consideration of steelmaking cost.

인(P): 0.008 중량% 이하Phosphorus (P): 0.008 wt% or less

인의 함량이 0.008 중량%를 초과하는 경우에는 연성 및 성형성이 저하 되므로, 상기 인은 0.008 중량% 이하로 제한하는 것이 바람직하다.
When the content of phosphorus exceeds 0.008% by weight, ductility and moldability are lowered, so the phosphorus is preferably limited to 0.008% by weight or less.

황(S): 0.008 중량% 이하Sulfur (S): 0.008 wt% or less

황의 함량이 0.008 중량%를 초과하는 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열 취성의 우려가 있기 때문에, 상기 황은 0.008 중량% 이하로 제한하는 것이 바람직하다.
When the content of sulfur exceeds 0.008% by weight, the content of solid solution of sulfur is largely lowered in ductility and formability, and there is a fear of red brittleness, so the sulfur is preferably limited to 0.008% by weight or less.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지 않는다.
The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.

본 발명의 일 측면에 따르면, 상기 성분계를 만족함으로써, 재질균일성 및 가공성이 매우 우수한 강판을 제공할 수 있다. 한편, 본 발명의 효과를 더욱 향상시키기 위하여, Cu, Cr, Mo 및 Ni로 이루어진 그룹에서 선택된 1종 이상을 더 포함할 수 있다.
According to an aspect of the present invention, by satisfying the component system, it is possible to provide a steel sheet excellent in material uniformity and workability. On the other hand, in order to further improve the effect of the present invention, Cu, Cr, Mo and Ni may further include one or more selected from the group consisting of.

구리(Cu): 0.01~0.03 중량%Copper (Cu): 0.01-0.03 wt%

구리는 고용강화 원소로 작용하여 강도 상승에 기여한다. 본 발명에서는 이러한 효과를 나타내기 위하여 0.01 중량% 이상 포함하는 것이 바람직하다. 그러나, 구리의 함량이 0.03 중량%를 초과하는 경우에는 열간압연시 저융점상을 형성하여 표면결함이 생기는 문제가 있다. 따라서, 상기 구리는 0.01~0.03 중량%로 포함되는 것이 바람직하다.
Copper acts as a solid solution element, contributing to the increase in strength. In the present invention, it is preferable to include 0.01% by weight or more in order to exhibit such an effect. However, when the content of copper exceeds 0.03% by weight, there is a problem that a surface defect occurs by forming a low melting point phase during hot rolling. Therefore, the copper is preferably contained in 0.01 to 0.03% by weight.

크롬(Cr): 0.01~0.03 중량% Chromium (Cr): 0.01-0.03 wt%

크롬은 강도를 확보하는데 효과적인 원소이다. 본 발명에서는 이러한 효과를 나타내기 위하여 0.01 중량% 이상 포함되는 것이 바람직하다. 그러나, 크롬의 함량이 0.03 중량%을 초과하는 경우에는 성형성 및 가공성을 저하시킨다. 따라서, 상기 크롬은 0.01~0.03 중량%로 포함되는 것이 바람직하다.
Chromium is an effective element in securing strength. In the present invention, it is preferable to include 0.01% by weight or more in order to exhibit such an effect. However, when the content of chromium exceeds 0.03% by weight, moldability and processability are lowered. Therefore, the chromium is preferably contained in 0.01 to 0.03% by weight.

몰리브덴(Mo): 0.001~0.005 중량%Molybdenum (Mo): 0.001 to 0.005 wt%

몰리브덴은 Cr과 마찬가지로 강도를 확보하는데 효과적인 원소이다. 본 발명에서는 이러한 효과를 나타내기 위하여 0.001 중량% 이상 포함되는 것이 바람직하다. 그러나, 몰리브덴의 함량이 0.005 중량%를 초과하는 경우에는 열간압연시에 γ영역(오스테나이트 영역)에서의 재결정을 지연시켜 압연부하를 증가시킨다. 따라서 상기 몰리브덴은 0.001~0.005 중량%로 포함되는 것이 바람직하다.
Molybdenum, like Cr, is an effective element in securing strength. In order to exhibit such an effect, it is preferable that 0.001% by weight or more is contained in the present invention. However, when the content of molybdenum exceeds 0.005 wt%, the recrystallization in the gamma region (austenite region) is delayed during hot rolling to increase the rolling load. Therefore, the molybdenum is preferably contained in an amount of 0.001 to 0.005% by weight.

니켈(Ni): 0.001~0.03 중량%Nickel (Ni): 0.001-0.03 wt%

니켈은 강도와 인성을 동시에 향상시키는데 효과적인 원소이다. 본 발명에서는 고용강화효과를 나타내기 위하여 0.001 중량% 이상 포함되는 것이 바람직하다. 그러나, 니켈의 함량이 0.03 중량%을 초과하는 경우에는 변태점이 크게 저하하고, 열간압연시에 저온변태상이 나타나는 문제가 있다. 따라서, 상기 니켈은 0.001~0.03 중량%로 포함되는 것이 바람직하다.
Nickel is an effective element for simultaneously improving strength and toughness. In the present invention, it is preferable that 0.001% by weight or more is contained in order to exhibit the solid solution strengthening effect. However, when the content of nickel is more than 0.03% by weight, there is a problem that the transformation point greatly decreases and a low-temperature transformation phase appears at the time of hot rolling. Accordingly, the amount of the nickel is preferably 0.001 to 0.03% by weight.

본 발명의 일 측면에 따르면, 상기 성분계를 만족함으로써, 가공성이 우수한 냉연강판을 제공할 수 있다. 본 발명은 C의 함량이 16~25ppm 인 극저탄소강에 해당되므로, 미세조직은 페라이트 단상조직으로 이루어진다. 상기 페라이트 단상 조직은 불가피하게 생성된 다른 조직을 포함할 수도 있다.
According to an aspect of the present invention, by satisfying the above component system, it is possible to provide a cold rolled steel sheet excellent in workability. Since the present invention corresponds to ultra low carbon steel having a C content of 16 to 25 ppm, the microstructure is composed of a ferrite single phase structure. The ferrite single phase tissue may include other tissues inevitably generated.

또한, 냉연강판의 미세조직 결정립의 평균입도는 7~11㎛인 것이 바람직하다.Moreover, it is preferable that the average particle size of the microstructure grain of a cold rolled steel sheet is 7-11 micrometers.

미세조직은 10㎛ 이상의 결정입도를 갖는 결정립의 점유면적율이 전체 결정립 점유면적율의 40~70%인 것이 바람직하다.
The microstructure preferably has an area ratio of the grains having a grain size of 10 µm or more of 40 to 70% of the total grain area.

상기 미세조직의 평균 결정입도가 7㎛ 미만에서는 조직의 미세화에 의한 강도 향상은 있으나, 가공성 측면에서 불리하고, 11㎛을 초과하는 경우에는 조대한 결정립에 의해서 원하는 강도를 확보하는 것이 어렵다. 따라서, 냉연강판의 미세조직 결정립의 평균입도는 7~11㎛인 것이 바람직하다.
If the average grain size of the microstructure is less than 7 μm, there is an improvement in strength due to the refinement of the structure, but it is disadvantageous in terms of processability, and if it exceeds 11 μm, it is difficult to secure desired strength by coarse grains. Therefore, it is preferable that the average particle size of the microstructure grains of a cold rolled steel sheet is 7-11 micrometers.

상기 평균 결정입도가 7~11㎛을 만족하는 동시에, 결정립 중 10㎛ 이상의 결정 입도를 갖는 결정립의 점유면적율이 40~70%인 것이 바람직하다. 즉, 10㎛ 이상의 미세한 결정립이 40% 미만인 경우에는 전체적인 조직이 너무 미세하여 요구되는 연신율을 확보하는 것이 어렵고, 70%를 초과하면, 전체 조직이 조대하여 원하는 강도 확보가 어렵다. 따라서, 냉연강판의 결정립이 10㎛ 이상의 결정입도가 점유면적율로 40~70%인 것이 바람직하다.
It is preferable that the said average grain size satisfy | fills 7-11 micrometers, and the occupancy area ratio of the crystal grains which have a crystal grain size of 10 micrometers or more in a crystal grain is 40 to 70%. That is, when the fine grains of 10 µm or more are less than 40%, the overall structure is too fine to secure the required elongation, and when it exceeds 70%, the entire structure is coarse to secure the desired strength. Therefore, it is preferable that the grain size of a cold rolled steel sheet is 40 to 70% of the occupancy area ratio of 10 micrometers or more.

또한, 본 발명의 냉연강판은 석출물을 포함한다. 상기 석출물은 종횡비 (aspect ratio)가 3.5 이하인 석출물의 개수가 전체 석출물 개수의 80% 이상인 것이 바람직하다. 종횡비가 3.5을 초과하는 경우에는 석출물 미세조직의 성장시에 결정립계에 위치되어 오히려 결정립의 성장을 촉진시켜 결정립의 조대화를 도모 한다. 따라서, 석출물의 종횡비는 3.5 이하인 것이 바람직하다.
Further, the cold-rolled steel sheet of the present invention includes a precipitate. It is preferable that the number of precipitates having an aspect ratio of 3.5 or less is 80% or more of the total number of precipitates. If the aspect ratio exceeds 3.5, it is located in the grain boundary at the time of growth of the precipitate microstructure, and rather, promotes grain growth, thereby coarsening the grains. Therefore, the aspect ratio of the precipitate is preferably 3.5 or less.

석출물은 소지강판에 석출강화 효과가 있는데 즉, 상기 석출물이 결정립의 성장을 억제시키는 피닝(pinning)효과를 통해 강도를 향상시킨다. 본 발명에서 의도하고자 하는 석출강화 효과를 얻기 위해서는 석출물의 종횡비가 3.5이하인 석출물이 전체 석출물 개수의 80% 이상인 것이 바람직하다. 또한 상기 석출물은 NbC인 것이 보다 바람직하다.
The precipitate has a precipitation strengthening effect on the base steel sheet, that is, the precipitate improves the strength through pinning effect which suppresses the growth of the crystal grains. In order to obtain the precipitation strengthening effect intended in the present invention, it is preferable that the precipitate having an aspect ratio of the precipitate of 3.5 or less is 80% or more of the total number of precipitates. It is more preferable that the precipitate is NbC.

또한, 본 발명의 냉연강판은 인장강도(TS)와 연신율(El)의 곱이 TS × El이 11,000MPa% 이상인 것이 바람직하다.
In the cold rolled steel sheet of the present invention, it is preferable that the product of tensile strength TS and elongation El is 11,000 MPa% or more.

이하, 본 발명의 일 측면인 냉연강판의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method of manufacturing a cold rolled steel sheet which is an aspect of the present invention will be described in detail.

가열단계Heating stage

상술한 성분계를 만족하는 강 슬라브를 가열함으로써, 가공성을 가지면서 재질균일성을 갖는 페라이트를 구현한다. 본 발명에서는 이러한 효과를 나타내기 위하여 강 슬라브를 1100℃이상으로 가열하는 것이 바람직하다.
By heating the steel slab satisfying the above-described component system, a ferrite having workability and material uniformity is realized. In the present invention, in order to exhibit such an effect, it is preferable to heat the steel slab to 1100 ° C or more.

열간압연Hot rolling

상기와 같이 가열된 강 슬라브를 열간압연을 실시한다. 이때, 열간 마무리 압연은 Ar3 이상의 온도에서 행하는 것이 바람직하다. 상기 마무리 압연이 Ar3 미만의 온도에서 행해지면 열간 변형 저항이 급격히 증가될 가능성이 높으며, 고온 취성에 따른 미세크랙이 발생할 가능성이 높은 문제가 있다.
The steel slab heated as above is hot rolled. At this time, it is preferable to perform hot finishing rolling at the temperature of Ar3 or more. If the finish rolling is carried out at a temperature below Ar3, there is a high possibility that the hot deformation resistance is sharply increased, and there is a high possibility of microcracks due to high temperature brittleness.

권취Coiling

상기와 같이 열간 압연하여 제조된 열연강판은 권취 된다. 이때, 권취 온도는 670~730℃인 것이 바람직하다. 상기 권취온도가 670℃ 미만인 경우에는, 열연강판의 결정립이 권취 후의 냉각과정에서 충분히 성장하지 않기 때문에 강의 가공성을 저하시킨다. 반면에, 상기 권취온도가 730℃을 초과하는 경우에는, 석출물이 너무 조대하게 성장하여 가공성을 저하시키고, 강판 표면에 스케일이 다량 발생하여 산세과정에서 산세 불량의 요인이 된다. 따라서, 권취온도는 670~730℃인 것이 바람직하다.
The hot-rolled steel sheet produced by hot rolling as described above is wound. At this time, it is preferable that winding temperature is 670-730 degreeC. When the coiling temperature is less than 670 ° C, since the grains of the hot rolled steel sheet do not sufficiently grow in the cooling process after the coiling, the workability of the steel is lowered. On the other hand, when the coiling temperature exceeds 730 ℃, precipitates grow too coarse to reduce workability, a large amount of scale on the surface of the steel sheet is a factor of poor pickling in the pickling process. Therefore, it is preferable that a coiling temperature is 670-730 degreeC.

냉간압연Cold rolling

상기와 같이 권취한 열연강판을 냉간압연한다. 이때, 냉간압연의 압하율은 50~90%로 하는 것이 바람직하다. 상기 냉간압연의 압하율이 50% 미만인 경우에는 소둔재결정 핵생성 양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 가공성이 저하된다. 반면에, 냉간압연의 압하율이 90%를 초과하는 경우에는 가공성은 향상되지만 핵생성 양이 너무 많아 소둔 재결정립은 오히려 너무 미세하여 연성을 저하한다. 따라서, 냉간압연의 압하율은 50~90%인 것이 바람직하다.
The hot rolled steel sheet thus wound is cold-rolled. At this time, it is preferable to make the rolling reduction rate of cold rolling into 50 to 90%. When the reduction ratio of the cold rolling is less than 50%, since the annealing recrystallization nucleation amount is small, the grains grow too large during annealing, resulting in a decrease in strength and workability due to coarsening of the annealing recrystallization grains. On the other hand, when the reduction ratio of the cold rolling exceeds 90%, the workability is improved, but the nucleation amount is too large, the annealing recrystallized grain is too fine to decrease the ductility. Therefore, it is preferable that the rolling reduction ratio of cold rolling is 50 to 90%.

소둔Annealing

상기와 같이 냉간압연된 냉연강판은 소둔된다. 이때, 소둔 온도는 810~880℃의 온도로 제한하는 것이 바람직하다. 상기 소둔의 온도가 810℃ 미만인 경우에는 재결정이 완료되지 않아 목표로 하는 연성 값을 확보할 수 없다. 반면에, 소둔 온도가 880℃을 초과하는 경우에는 재결정립의 조대화로 강도가 저하된다. 따라서, 소둔 온도는 810~880℃인 것이 바람직하다.
The cold-rolled steel sheet as described above is annealed. At this time, the annealing temperature is preferably limited to a temperature of 810 ~ 880 ℃. When the temperature of the annealing is less than 810 ° C., recrystallization is not completed, so that a target ductility value cannot be secured. On the other hand, when the annealing temperature exceeds 880 DEG C, the strength is lowered due to coarsening of the recrystallized grains. Therefore, the annealing temperature is preferably 810 to 880 ° C.

또한, 냉연강판의 소둔은 재결정이 완료되도록 유지하는 것이 바람직하며, 이 때, 소둔 시간은 10초~30분으로 제한하는 것이 바람직하다.
The annealing of the cold-rolled steel sheet is preferably carried out so that the recrystallization is completed. In this case, the annealing time is preferably limited to 10 seconds to 30 minutes.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.

(실시예)(Example)

하기 표 1의 조성을 갖는 강 슬라브를 제조하고, 상기 강 슬라브를 1200℃로 재가열하여 열간 마무리 압연하고, 700℃로 권취한 후, 70%으로 냉간압연을 행하고, 840℃로 연속 소둔을 실시하여 냉연강판을 제조하였다.
To prepare a steel slab having the composition shown in Table 1, after reheating the steel slab to 1200 ℃ hot-rolled and rolled up to 700 ℃, cold rolling to 70%, followed by continuous annealing at 840 ℃ cold rolling Steel sheet was prepared.

상기 방법으로 제조된 냉연강판에 대하여, 인장강도(tensile strength), 연신율을 측정하고, 미세조직을 관찰하여 그 결과를 하기 표 2에 나타내었다. 하기 표 2에서 인장강도는 220~270MPa, 연신율(%)은 41%이상 그리고 TS×El은 11,000 Mpa%이상을 기준으로 하여, 세가지를 모두 만족하는 경우에는 ◎, 셋 중 둘을 만족하는 경우에는 ○, 셋중 한가지 라도 만족하면 △, 어느 하나도 만족하지 못하는 경우에는 ×로 표기하였다.For the cold-rolled steel sheet produced by the above method, tensile strength (tensile strength), elongation was measured, the microstructure was observed and the results are shown in Table 2 below. In Table 2, the tensile strength is based on 220 ~ 270MPa, elongation (%) of 41% or more and TS × El 11,000 Mpa% or more, ◎ when all three are satisfied, ◎, if two of the three ○, if any one of the three is satisfied △, if none is satisfied, it is indicated by ×.

구분division CC MnMn PP SS SiSi AlAl NbNb CuCu CrCr MoMo NN NiNi 발명강1Inventive Steel 1 0.00160.0016 0.150.15 0.00490.0049 0.00210.0021 0.00400.0040 0.0270.027 0.110.11 0.0190.019 0.0290.029 -- 0.00210.0021 -- 발명강2Invention river 2 0.00170.0017 0.190.19 0.00770.0077 0.00340.0034 0.00480.0048 0.0390.039 0.090.09 0.0260.026 0.0110.011 -- 0.00290.0029 -- 발명강3Invention steel 3 0.00250.0025 0.150.15 0.00760.0076 0.00510.0051 0.00390.0039 0.0380.038 0.080.08 0.0130.013 0.0180.018 -- 0.00280.0028 -- 발명강4Inventive Steel 4 0.00210.0021 0.170.17 0.00690.0069 0.00290.0029 0.00380.0038 0.0270.027 0.040.04 0.0180.018 0.0140.014 -- 0.00170.0017 -- 발명강5Invention steel 5 0.00210.0021 0.100.10 0.00510.0051 0.00760.0076 0.00510.0051 0.0210.021 0.080.08 0.0290.029 0.0240.024 -- 0.00270.0027 -- 발명강6Invention steel 6 0.00220.0022 0.180.18 0.00640.0064 0.00790.0079 0.00620.0062 0.0220.022 0.120.12 0.0150.015 0.0210.021 0.0010.001 0.00300.0030 -- 발명강7Invention steel 7 0.00240.0024 0.190.19 0.00440.0044 0.00670.0067 0.00470.0047 0.0290.029 0.130.13 0.0190.019 0.0170.017 0.0020.002 0.00230.0023 -- 발명강8Inventive Steel 8 0.00220.0022 0.110.11 0.00330.0033 0.00540.0054 0.00420.0042 0.0370.037 0.110.11 0.0170.017 -- 0.0030.003 0.00210.0021 0.0290.029 발명강9Invention river 9 0.00250.0025 0.130.13 0.00310.0031 0.00720.0072 0.00420.0042 0.0360.036 0.090.09 0.0180.018 -- 0.0040.004 0.00180.0018 0.0170.017 발명강10Invented Steel 10 0.00210.0021 0.160.16 0.00390.0039 0.00670.0067 0.00390.0039 0.0390.039 0.110.11 0.0140.014 -- 0.0050.005 0.00280.0028 0.0180.018 발명강11Invention steel 11 0.00190.0019 0.190.19 0.00620.0062 0.00610.0061 0.00530.0053 0.0310.031 0.140.14 0.0140.014 -- 0.00130.0013 0.0110.011 발명강12Invention steel 12 0.00180.0018 0.140.14 0.00490.0049 0.00570.0057 0.00510.0051 0.0290.029 0.090.09 0.0170.017 -- 0.00250.0025 0.0210.021 발명강13Invention steel 13 0.00160.0016 0.110.11 0.00690.0069 0.00540.0054 0.00480.0048 0.0220.022 0.040.04 0.0130.013 0.00210.0021 0.0160.016 발명강14Invented Steel 14 0.00190.0019 0.160.16 0.00770.0077 0.00450.0045 0.00370.0037 0.0330.033 0.110.11 0.0290.029 0.00290.0029 0.0270.027 발명강15Invented Steel 15 0.00170.0017 0.150.15 0.00710.0071 0.00610.0061 0.00350.0035 0.0370.037 0.130.13 0.0220.022 -- 0.00220.0022 0.0190.019 비교예1Comparative Example 1 0.00130.0013 0.100.10 0.00810.0081 0.00590.0059 0.00380.0038 0.0340.034 -- -- -- -- 0.00330.0033 -- 비교예2Comparative Example 2 0.00140.0014 0.090.09 0.00910.0091 0.00670.0067 0.00400.0040 0.0370.037 -- -- -- -- 0.00240.0024 -- 비교예3Comparative Example 3 0.00130.0013 0.060.06 0.00960.0096 0.00610.0061 0.00620.0062 0.0210.021 -- -- -- -- 0.00250.0025 -- 비교예4Comparative Example 4 0.00290.0029 0.130.13 0.00810.0081 0.00790.0079 0.00580.0058 0.0240.024 -- -- -- -- 0.00340.0034 -- 비교예5Comparative Example 5 0.00300.0030 0.120.12 0.00980.0098 0.00610.0061 0.00620.0062 0.0310.031 -- -- -- -- 0.00260.0026 -- 비교예6Comparative Example 6 0.00340.0034 0.140.14 0.01120.0112 0.00720.0072 0.00380.0038 0.0380.038 -- -- -- -- 0.00280.0028 -- 비교예7Comparative Example 7 0.00280.0028 0.130.13 0.00970.0097 0.00610.0061 0.00480.0048 0.0240.024 -- -- -- -- 0.00370.0037 -- 비교예8Comparative Example 8 0.00260.0026 0.060.06 0.01020.0102 0.00540.0054 0.00490.0049 0.0370.037 -- -- -- -- 0.00190.0019 -- 비교예9Comparative Example 9 0.00120.0012 0.100.10 0.00970.0097 0.00450.0045 0.00380.0038 0.0280.028 -- -- -- -- 0.00230.0023 -- 비교예10Comparative Example 10 0.00290.0029 0.160.16 0.00870.0087 0.00620.0062 0.00520.0052 0.0210.021 -- -- -- -- 0.00250.0025 -- 비교예11Comparative Example 11 0.00310.0031 0.140.14 0.00510.0051 0.00570.0057 0.00530.0053 0.0270.027 -- -- -- -- 0.00320.0032 -- 비교예12Comparative Example 12 0.00320.0032 0.160.16 0.01060.0106 0.00760.0076 0.00510.0051 0.0260.026 -- -- -- -- 0.00360.0036 -- 비교예13Comparative Example 13 0.00280.0028 0.140.14 0.00880.0088 0.00760.0076 0.00490.0049 0.0290.029 -- -- -- -- 0.00210.0021 -- 비교예14Comparative Example 14 0.00290.0029 0.050.05 0.00990.0099 0.00770.0077 0.00620.0062 0.0390.039 -- -- -- -- 0.00390.0039 -- 비교예15Comparative Example 15 0.00140.0014 0.070.07 0.00810.0081 0.00790.0079 0.00380.0038 0.0370.037 -- -- -- -- 0.00270.0027 --

구분division TS(Mpa)TS (Mpa) El(%)El (%) TS×El(Mpa%)TS X El (Mpa%) 결정립㎛(평균)Grain size (average) ≥10㎛ 결정립 면적율(%)≥10㎛ grain area percentage (%) Aspect ratio≤3.5
점유율(%)
Aspect ratio≤3.5
Share(%)
TS, El, TS×El 평가TS, El, TS × El evaluation
발명강1Inventive Steel 1 221221 5050 1105011050 10.910.9 6767 9191 발명강2Invention river 2 225225 4949 1102511025 7.17.1 4141 9898 발명강3Invention steel 3 261261 4343 1122311223 9.59.5 5959 8282 발명강4Inventive Steel 4 250250 4444 1100011000 9.89.8 5858 8787 발명강5Invention steel 5 254254 4545 1143011430 8.48.4 4949 9494 발명강6Invention steel 6 265265 4242 1113011130 8.88.8 4848 9292 발명강7Invention steel 7 270270 4141 1107011070 7.77.7 5757 8585 발명강8Inventive Steel 8 259259 4343 1113711137 7.17.1 5858 8282 발명강9Invention river 9 269269 4141 1102911029 10.210.2 6868 8787 발명강10Invented Steel 10 261261 4343 1122311223 9.49.4 6060 9191 발명강11Invention steel 11 254254 4444 1117611176 10.510.5 6969 9797 발명강12Invention steel 12 239239 4747 1123311233 9.19.1 6060 8181 발명강13Invention steel 13 226226 4949 1107411074 9.59.5 6565 8383 발명강14Invented Steel 14 247247 4545 1111511115 10.110.1 6666 9898 발명강15Invented Steel 15 257257 4444 1130811308 9.79.7 6262 8585 비교예1Comparative Example 1 171171 5151 87218721 11.111.1 7171 8989 비교예2Comparative Example 2 176176 5151 89768976 11.411.4 7272 8787 비교예3Comparative Example 3 175175 5151 89258925 11.611.6 7373 7878 비교예4Comparative Example 4 267267 3939 1041310413 6.36.3 2626 8989 비교예5Comparative Example 5 265265 4141 1086510865 6.16.1 2323 9191 비교예6Comparative Example 6 260260 3939 1014010140 6.96.9 2828 9292 ×× 비교예7Comparative Example 7 288288 3636 1036810368 6.76.7 2424 8484 ×× 비교예8Comparative Example 8 261261 4141 1070110701 6.66.6 2222 9191 비교예9Comparative Example 9 176176 5252 91529152 11.611.6 7373 8282 비교예10Comparative Example 10 284284 3838 1079210792 6.76.7 3636 8686 비교예11Comparative Example 11 275275 3939 1072510725 5.65.6 3939 9494 비교예12Comparative Example 12 290290 3535 1015010150 6.56.5 4040 8282 비교예13Comparative Example 13 283283 3636 1018810188 5.55.5 2121 9696 ×× 비교예14Comparative Example 14 288288 3535 1008010080 6.46.4 2828 8787 ×× 비교예15Comparative Example 15 211211 4242 88628862 12.312.3 7979 9696 ××

상기 표 2에 나타난 바와 같이, 본 발명의 조성을 만족하는 발명예에서는 인장강도, 연신율 및 인장강도와 연신율 곱의 평가가 양호한 것으로 나타났다.
As shown in Table 2, in the invention examples satisfying the composition of the present invention, the evaluation of tensile strength, elongation, and product of tensile strength and elongation was good.

이에 비해, 비교예 1 내지 3은 C의 함량이 너무 적어, 조대한 결정립이 다수 생성되어 강도가 낮은 것을 확인할 수 있었다. 비교예 4 내지 8의 경우에는 결정립이 너무 미세하여, 강도는 우수하지만 연신율이 본 발명에 미치지 못하는 문제가 있었다. 비교예 9 및 15는 결정립의 분포는 적절하나, 평균 결정립이 너무 크기 때문에 강도가 낮은 문제가 있고, 비교예 10 내지 14는 너무 미세한 결정립이 많아, 적절한 연신을 확보하는 것이 곤란한 어려움이 있었다.On the other hand, Comparative Examples 1 to 3 was too small in the content of C, it was confirmed that a large number of coarse grains are produced, the strength is low. In the case of Comparative Examples 4 to 8, the crystal grains were too fine, so there was a problem that the strength was excellent but the elongation did not reach the present invention. Comparative Examples 9 and 15 had a proper distribution of crystal grains, but had a problem of low strength because the average grain size was too large.

Claims (7)

중량%로, C: 0.0016~0.0025%, Si: 0.003~0.007%, Mn: 0.1~0.2%, Al: 0.02~0.05%, Nb: 0.04~0.14%, N: 0.001~0.005%, P: 0.008%이하, S: 0.008%이하 나머지는 Fe 및 불가피한 불순물을 포함하고,
미세조직 결정립의 평균입도는 7~11㎛이고, 입도가 10㎛이상인 결정립의 점유 면적율이 전체 결정립 점유면적율의 40~70%이고, 종횡비(aspect ratio)가 3.5이하인 석출물의 개수가 전체 석출물의 개수의 80% 이상인 냉연강판.
By weight, C: 0.0016-0.0025%, Si: 0.003-0.007%, Mn: 0.1-0.2%, Al: 0.02-0.05%, Nb: 0.04-0.14%, N: 0.001-0.005%, P: 0.008% Or less, S: 0.008% or less, the remainder includes Fe and unavoidable impurities,
The average grain size of the microstructure grains is 7-11 μm, the occupancy area ratio of the grains having a particle size of 10 μm or more is 40-70% of the total grain area ratio, and the number of precipitates having an aspect ratio of 3.5 or less is the total number of precipitates. More than 80% of cold rolled steel.
제 1항에 있어서,
상기 냉연강판은 Cu: 0.01~0.03%, Cr: 0.01~0.03%, Mo: 0.001~0.005%, 및 Ni: 0.001~0.03%로 이루어진 그룹에서 선택된 1종 이상을 더 포함하는 냉연강판.
The method of claim 1,
The cold rolled steel sheet further comprises at least one selected from the group consisting of Cu: 0.01 to 0.03%, Cr: 0.01 to 0.03%, Mo: 0.001 to 0.005%, and Ni: 0.001 to 0.03%.
제 1항 또는 2항에 있어서,
상기 냉연강판의 미세조직은 페라이트인 냉연강판.
3. The method according to claim 1 or 2,
The microstructure of the cold rolled steel sheet is a cold rolled steel sheet.
제 1항 내지 3항 중 어느 한 항에 있어서,
상기 냉연강판은 인장강도(TS)와 연신율(El)의 곱이 TS × El이 11,000MPa% 이상인 냉연강판.
The method according to any one of claims 1 to 3,
The cold rolled steel sheet is a product of tensile strength (TS) and elongation (El) is a cold rolled steel sheet of TS × El is 11,000MPa% or more.
중량%로, C: 0.0016~0.0025%, Si: 0.003~0.007%, Mn: 0.1~0.2%, Al: 0.02~0.05%, Nb: 0.04~0.14%, N: 0.001~0.005%, P: 0.008%이하, S: 0.008%이하 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1100℃ 이상으로 재가열하는 단계;
상기 재가열된 강 슬라브를 열간압연하고, Ar3 이상의 온도에서 마무리 열간압연하여 열연강판을 제조하는 단계;
상기 열연강판을 650~730℃의 온도에서 권취하는 단계;
상기 권취 후 50~90%의 압하율로 열연강판을 냉간압연하여 냉연강판을 제조하는 단계; 및
상기 냉연강판을 810~880℃의 온도에서 소둔하는 단계를 포함하는 냉연강판의 제조방법.
By weight, C: 0.0016-0.0025%, Si: 0.003-0.007%, Mn: 0.1-0.2%, Al: 0.02-0.05%, Nb: 0.04-0.14%, N: 0.001-0.005%, P: 0.008% S: 0.008% or less Re-heating the steel slab containing Fe and unavoidable impurities to 1100 ° C. or more;
Hot rolling the reheated steel slab and finishing hot rolling at a temperature of Ar3 or higher to produce a hot rolled steel sheet;
Winding the hot rolled steel sheet at a temperature of 650˜730 ° C .;
Manufacturing a cold rolled steel sheet by cold rolling the hot rolled steel sheet at a reduction ratio of 50 to 90% after the winding; And
The cold rolled steel sheet manufacturing method comprising the step of annealing at a temperature of 810 ~ 880 ℃.
제 5항에 있어서,
상기 강 슬라브는 Cu: 0.01~0.03%, Cr: 0.01~0.03%, Mo: 0.001~0.005% 및 Ni: 0.001~0.03%로 이루어진 그룹에서 선택된 1종 이상을 더 포함하는 냉연강판의 제조방법.
6. The method of claim 5,
The steel slab is Cu: 0.01 ~ 0.03%, Cr: 0.01 ~ 0.03%, Mo: 0.001 ~ 0.005% and Ni: 0.001 ~ 0.03% The method for producing a cold rolled steel sheet further comprising one or more selected from the group consisting of.
제 5항 또는 제 6항에 있어서,
상기 소둔은 연속소둔 방법으로 행하고, 10초~30분 동안 행하는 냉연강판의 제조방법.
The method according to claim 5 or 6,
The annealing is carried out by a continuous annealing method, a method of producing a cold rolled steel sheet for 10 seconds to 30 minutes.
KR1020110137469A 2011-12-19 2011-12-19 Ultra low carbon cold rolled steel sheet and method for manufacturing the same KR101360559B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110137469A KR101360559B1 (en) 2011-12-19 2011-12-19 Ultra low carbon cold rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110137469A KR101360559B1 (en) 2011-12-19 2011-12-19 Ultra low carbon cold rolled steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20130070238A true KR20130070238A (en) 2013-06-27
KR101360559B1 KR101360559B1 (en) 2014-02-11

Family

ID=48865083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110137469A KR101360559B1 (en) 2011-12-19 2011-12-19 Ultra low carbon cold rolled steel sheet and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101360559B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013505B2 (en) * 2000-11-27 2007-11-28 住友金属工業株式会社 Ultra-low carbon steel sheet and manufacturing method thereof
JP2008231447A (en) 2007-03-16 2008-10-02 Nippon Steel Corp Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor

Also Published As

Publication number Publication date
KR101360559B1 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
KR101253885B1 (en) Steel sheet fir formed member, formed member having excellent ductility and method for manufacturing the same
KR100742955B1 (en) Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR101747034B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
KR101304808B1 (en) Ultra low carbon cold rolled steel sheet having excellent uniformity and workability and method for manufacturing the same
KR20150050001A (en) Composite structure steel sheet with superior workability, and its manufacturing method
KR101449135B1 (en) Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same
KR101360559B1 (en) Ultra low carbon cold rolled steel sheet and method for manufacturing the same
KR101304703B1 (en) Ultra low carbon cold rolled steel sheet having excellent workability and method for manufacturing the same
KR20120137931A (en) Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
KR101439609B1 (en) Baking hardening type cold rolled steel sheet having excellent formability and process for producing the same
KR101329923B1 (en) Ultra low carbon cold rolled steel sheet having excellent workability and method for amnufacturing the same
KR101271819B1 (en) Low carbon cold rolled steel sheet having excellent workability and method for amnufacturing the same
KR20100047009A (en) Cold-rolled steel sheet having good galvanizing property and secondary working embrittlement resistance, and method for producing the same
KR20230093650A (en) High-strength cold-rolled steel sheet for home appliances with excellent aging resistance and method of manufacturing thereof
KR101329948B1 (en) Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
KR20130050438A (en) Galvannealed steel sheet and process for production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 6