KR20130057052A - In wheel motor system and abs operation method thereof - Google Patents

In wheel motor system and abs operation method thereof Download PDF

Info

Publication number
KR20130057052A
KR20130057052A KR1020110122782A KR20110122782A KR20130057052A KR 20130057052 A KR20130057052 A KR 20130057052A KR 1020110122782 A KR1020110122782 A KR 1020110122782A KR 20110122782 A KR20110122782 A KR 20110122782A KR 20130057052 A KR20130057052 A KR 20130057052A
Authority
KR
South Korea
Prior art keywords
braking
wheel
abs
brake
wheel motor
Prior art date
Application number
KR1020110122782A
Other languages
Korean (ko)
Other versions
KR101714084B1 (en
Inventor
최영설
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110122782A priority Critical patent/KR101714084B1/en
Publication of KR20130057052A publication Critical patent/KR20130057052A/en
Application granted granted Critical
Publication of KR101714084B1 publication Critical patent/KR101714084B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/303Speed sensors
    • B60Y2400/3032Wheel speed sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE: An in-wheel motor system and an ABS operation method thereof are provided to simultaneously control a wheel motor and ABS braking using a wheel motor controlling inverter without an ABS ECU. CONSTITUTION: An in-wheel motor system comprises an inverter(2) and a pressure control valve(4). The inverter comprises motor driving logic for controlling a wheel motor(1) and ABS braking logic for preventing the lock of a wheel(10) when braking or driving. The pressure control valve controls braking pressure supplied to a brake by the control of the inverter when operating a brake pedal(20).

Description

인휠 구동시스템 및 에이비에스 제동방법{In Wheel Motor System and ABS Operation Method thereof} In Wheel Motor System and ABS Operation Method

본 발명은 휠모터를 적용한 인휠 구동시스템에 관한 것으로, 특히 ABS ECU 없이 휠 모터 제어용 인버터(MCU) 만으로 제동시 휠 락(Wheel Lock)을 예방하는 인휠 구동시스템 및 에이비에스 제동방법에 관한 것이다.The present invention relates to an in-wheel driving system using a wheel motor, and more particularly, to an in-wheel driving system and an ABS braking method for preventing a wheel lock during braking with only a wheel motor control inverter (MCU) without an ABS ECU.

일반적으로 하이브리드 차량 또는 전기 차량에 적용된 인휠 구동시스템은 휠의 안쪽에서 브레이크와 함께 장착되어진 모터와 감속기 및 인버터를 구비한다.In-wheel drive systems generally applied to hybrid vehicles or electric vehicles include motors, reducers and inverters mounted with brakes on the inside of the wheel.

상기와 같은 인휠 구동 시스템을 이용한 차량은 제동시 리젠을 통해 배터리를 충전시켜야 하므로, 휠 모터를 통한 제동시 바퀴에 걸린 락(Lock)으로 슬립(Slip)이 발생되는 상황으로 빠지지 않는 것이 절대적으로 요구된다.Since the vehicle using the in-wheel drive system needs to charge the battery through the regeneration during braking, it is absolutely required not to fall into a situation where slip occurs due to a lock on the wheel when braking through the wheel motor. do.

그러므로, 인휠 구동 시스템을 이용한 차량에는 반드시 ABS(Anti-Lock Brake System)타입 제동시스템이 장착되어진다.Therefore, an anti-lock brake system (ABS) type braking system must be mounted on the vehicle using the in-wheel drive system.

도 6은 인휠 구동 시스템에 적용된 ABS 제동장치의 예로서, 이는 에어(또는 유압)를 매개체로 작동됨을 나타낸다.6 shows an example of an ABS brake system applied to an in-wheel drive system, which shows that it is operated by means of air (or hydraulic).

도시된 바와 같이, ABS 제동장치는 제동시 휠모터 락과 바퀴 슬립을 방지하는 제어로직을 구현하는 ABS ECU(100)와, 바퀴속도를 검출해 ABS ECU(100)로 제공하는 휠속도센서(200)와, 브레이크페달(500)의 조작시 ABS ECU(100)의 제어를 받아 에어(또는 유압)압력을 조절하는 압력조절밸브(300)와, 압력조절밸브(300)로부터 공급된 에어(또는 유압)압력으로 휠모터로 구동되는 바퀴를 제동하는 브레이크(400)로 구성된다.As shown in the figure, the ABS braking device includes an ABS ECU 100 that implements a control logic to prevent wheel motor lock and wheel slip during braking, and a wheel speed sensor 200 that detects the wheel speed and provides the ABS ECU 100 to the wheel. ), A pressure regulating valve 300 for controlling air (or hydraulic pressure) under the control of the ABS ECU 100 when the brake pedal 500 is operated, and air (or hydraulic pressure supplied from the pressure regulating valve 300). It consists of a brake 400 for braking the wheels driven by the wheel motor with pressure.

상기와 같이 구성된 ABS 제동장치를 이용함으로써 브레이크(400)가 브레이크페달(500)의 조작에 따라 압력조절밸브(300)를 통한 제동이 이루어질 때, ABS ECU(100)는 휠속도센서(200)의 신호를 바탕으로 압력조절밸브(300)의 에어(또는 유압)압력을 조절하여 준다.When the brake 400 is braked through the pressure regulating valve 300 according to the operation of the brake pedal 500 by using the ABS brake device configured as described above, the ABS ECU 100 is configured to control the wheel speed sensor 200. The air (or hydraulic) pressure of the pressure control valve 300 is adjusted based on the signal.

이로 인해, ABS 제동장치는 제동시 슬립(Slip)을 일으키는 휠 락(Wheel Lock)을 방지하면서 제동을 구현할 수 있게 된다.As a result, the ABS braking device may implement braking while preventing a wheel lock that causes slip during braking.

국내특허공개 10-2009-0062321(2009.06.17)은 인 휠 드라이브 전기자동차의 독립구동 주행시스템과 그 제어방법에 관한 것이며, 이는 도 3 및 도 7내지 도 10 참조.Korean Patent Publication No. 10-2009-0062321 (2009.06.17) relates to the independent driving system of the in-wheel drive electric vehicle and its control method, see Figs.

상기와 같이 ABS 제동시 슬립(Slip)을 일으키는 휠 락(Wheel Lock)을 방지하도록 ABS 제동장치에는 휠속도센서(200)의 신호를 이용하는 ABS ECU(100)가 반드시 적용될 수밖에 없다.As described above, the ABS ECU 100 using the signal of the wheel speed sensor 200 is inevitably applied to the ABS braking device so as to prevent a wheel lock that causes slip during ABS braking.

또한, 인휠 구동 시스템은 휠 모터의 적용으로 차동기어없이 바퀴를 구동함으로써 선회시 좌우 바퀴의 속도 차로 슬립상황에 직면할 수밖에 없고, 이를 방지하기 위해 휠모터 제어용 인버터에도 휠속도센서로 검출된 각 바퀴의 속도 정보로 각 바퀴의 휠 락을 방지하는 기능이 포함된다.In addition, the in-wheel drive system drives a wheel without a differential gear by applying a wheel motor, so that the wheel may face a slip situation due to a difference in speed between left and right wheels. The speed information of each wheel is included to prevent the wheel lock.

이와 같이 인휠 구동 시스템에는 슬립(Slip)을 일으키는 휠 락(Wheel Lock)이 방지되도록 동일한 기능을 구현하는 ABS ECU(100)와 인버터를 필수 구성요소로 갖추게 된다.In this way, the in-wheel drive system is equipped with an ABS ECU 100 and an inverter that implement the same function as essential components to prevent a wheel lock that causes slip.

하지만, 서로 제어대상은 다르지만 그 일부 기능이 동일한 ABS ECU(100)와 인버터를 함께 갖추게 됨으로써 기기간 전기배선등으로 복잡함에 더해 기기 자체의 중복으로 인한 비용증가도 가져올 수밖에 없다.
However, since the control targets are different from each other, but some functions are equipped with the same ABS ECU 100 and an inverter together, it is inevitable to increase the cost due to the duplication of the devices themselves in addition to the complicated wiring of the devices.

이에 상기와 같은 점을 감안하여 발명된 본 발명은 ABS ECU의 제동시 휠 락 제어 기능을 인버터의 휠 모터를 이용한 휠 락 제어 기능으로 대체해줌으로써, ABS ECU 없이 휠 모터제어용 인버터만으로 휠 모터 제어와 ABS 제동 제어를 함께 구현할 수 있는 인휠 구동시스템 및 에이비에스 제동방법을 제공하는데 목적이 있다.
Accordingly, the present invention in view of the above point replaces the wheel lock control function when the ABS ECU is braked with the wheel lock control function using the wheel motor of the inverter, and the wheel motor control and only the wheel motor control inverter without the ABS ECU. It is an object of the present invention to provide an in-wheel drive system and an ABS braking method that can implement ABS braking control together.

상기와 같은 목적을 달성하기 위한 본 발명의 인휠 구동시스템은 주행동력을 발생시키는 휠모터를 제어하는 모터구동로직을 기본으로 하고, 휠속도센서에 의해 검출된 바퀴 속도를 이용하여 상기 휠모터를 이용한 회생제동과 브레이크를 이용한 마찰제동을 함께 구현하며, 제동시 상기 바퀴의 휠락의 방지를 위한 슬립을 제어하는 ABS제동로직이 더 구비된 인버터와; In-wheel drive system of the present invention for achieving the above object is based on the motor drive logic to control the wheel motor for generating driving power, using the wheel motor using the wheel speed detected by the wheel speed sensor An inverter having both an regenerative braking and friction braking using a brake, wherein the inverter further includes an ABS braking logic for controlling slip for preventing wheel lock of the wheel during braking;

브레이크페달의 조작시 상기 인버터의 제어를 받아 상기 브레이크로 공급되는 제동압력을 조절하는 압력조절밸브; 로 이루어진 ABS 휠모터 구동장치가 더 포함되어 구성된 것을 특징으로 한다.A pressure regulating valve configured to adjust a braking pressure supplied to the brake under the control of the inverter when the brake pedal is operated; ABS wheel motor driving device made of a further characterized in that it is configured to include.

또한, 상기와 같은 목적을 달성하기 위한 본 발명의 인휠 구동시스템 에이비에스 제동방법은 휠모터를 제어하는 인버터가 브레이크페달의 조작신호를 인식함과 동시에 배터리SOC(State Of Charge)의 설정기준 충족여부를 체크하는 제동인식단계;In addition, the in-wheel drive system ABS braking method of the present invention for achieving the above object is that the inverter controlling the wheel motor recognizes the operation signal of the brake pedal and at the same time meets the criteria of setting the battery SOC (State Of Charge) Braking recognition step of checking;

상기 배터리SOC의 설정기준 충족시 상기 휠모터를 이용한 회생제동비율과 브레이크를 이용한 마찰제동비율을 산출하는 제동준비단계;A braking preparation step of calculating a regenerative braking ratio using the wheel motor and a friction braking ratio using a brake when the set criteria of the battery SOC are satisfied;

상기 회생제동비율과 상기 마찰제동비율이 결정되면, 상기 바퀴의 휠속도를 기본으로 상기 바퀴의 휠락이 방지되어 슬립을 일으키지 않는 최적 슬립비(Optimize Slip Ratio)를 산출하는 제동실행단계;A braking execution step of calculating an optimum slip ratio that prevents wheel lock of the wheels based on the wheel speed of the wheels and thus does not cause slipping when the regenerative braking ratio and the friction braking ratio are determined;

상기 최적 슬립비가 결정되면, 이에 맞춘 타겟 제동력으로 상기 휠모터를 구동제어하고 동시에 상기 브레이크로 공급되는 압력조절밸브의 압력을 제어하며, 이를 제동구간을 통해 반복 수행하는 제동완료단계;When the optimum slip ratio is determined, the braking completion step of controlling the driving of the wheel motor with the target braking force according to the control and at the same time to control the pressure of the pressure regulating valve supplied to the brake, iteratively repeats through the braking section;

를 포함해 구현되는 것을 특징으로 한다.It characterized in that it is implemented to include.

상기 제동인식단계에서 상기 배터리SOC의 설정기준 충족여부는 배터리SOC <80%로 판단된다.In the braking recognition step, it is determined whether the battery SOC meets the setting criteria.

상기 제동준비단계에서 회생제동이 갖는 전체 제동력 대비 담당비율은 상기 휠모터의 최대 파워선도로부터 산출되고, 상기 마찰제동이 갖는 전체 제동력 대비 담당비율은 출력과 온도 및 제동횟수 선도로부터 산출되며, 상기 최적 슬립비는 타이어-노면 점착 선도로부터 산출된다. The ratio of the charge to the total braking force of the regenerative braking in the braking preparation step is calculated from the maximum power diagram of the wheel motor, and the ratio of charge to the total braking force of the friction braking is calculated from the output, the temperature and the number of braking cycles. The slip ratio is calculated from the tire-road adhesion diagram.

상기 제동준비단계에서 상기 배터리SOC의 설정기준 미 충족시 모든 제동력을 상기 브레이크를 이용한 마찰력제동을 구현한다. In the braking preparation step, when the set criteria of the battery SOC are not met, all the braking force is implemented using the braking force using the brake.

상기 마찰력제동은 상기 바퀴의 휠속도를 기본으로 상기 바퀴의 휠락이 방지되어 슬립을 일으키지 않는 최적 슬립비(Optimize Slip Ratio)를 산출한 후, 이에 맞춘 타겟 제동력으로 상기 브레이크로 공급되는 압력조절밸브의 압력을 제어하며, 이를 제동구간을 통해 반복 수행하는 방식으로 구현된다. The frictional force braking is based on the wheel speed of the wheel to calculate the optimum slip ratio (Optimize Slip Ratio) that is prevented from slipping the wheel locks of the wheel, and according to the target braking force of the pressure control valve supplied It is implemented by controlling the pressure and repeating it through the braking section.

상기 마찰제동력은 출력과 온도 및 제동횟수 선도로부터 산출된다.
The friction braking force is calculated from the output, temperature and braking frequency diagram.

이러한 본 발명은 휠 모터제어용 인버터로 제동시 휠락 방지를 위한 ABS 기능도 함께 구현됨으로써, ABS ECU삭제로 인한 전기배선 축소와 비용 저감은 물론 인휠 구동시스템의 구성도 보다 단순화되는 효과가 있다.The present invention is implemented with an ABS function for preventing wheel locks when braking as an inverter for controlling a wheel motor, thereby reducing electrical wiring and reducing costs due to the deletion of the ABS ECU, and also simplifying the configuration of the in-wheel driving system.

또한, 본 발명은 제동시 휠락 방지를 위한 ABS 기능을 휠 모터제어용 인버터로 구현함으로써, 배터리SOC(State Of Charge)를 근거한 리젠(Regen)활용에 따른 배터리SOC의 회수로 연비 향상도 얻을 수 있는 효과도 있다.In addition, the present invention implements an ABS function for preventing wheel lock during braking as an inverter for controlling a wheel motor, thereby improving fuel economy by recovering battery SOC based on the use of Regen based on battery SOC (State Of Charge). There is also.

또한, 본 발명은 제동시 휠락 방지를 위한 ABS 기능을 구현하는 휠 모터제어용 인버터의 상대적으로 빠른 명령처리 기능을 활용함으로써, 빠르고 정확한 토크 응답성(최적 슬립률 유지)으로 상품성을 크게 높일 수 있는 효과도 있다.
In addition, the present invention utilizes a relatively fast command processing function of the inverter for controlling the wheel motor that implements the ABS function to prevent wheel lock during braking, thereby greatly improving the merchandise with fast and accurate torque response (maintaining the slip ratio). There is also.

도 1은 본 발명에 따른 인휠 구동시스템에 적용된 ABS 휠모터 구동장치의 구성도이고, 도 2내지 도 5는 본 발명에 따른 인휠 구동시스템의 ABS 휠모터 구동장치를 이용한 에이비에스 제동로직이며. 도 6은 종래에 따른 인휠 구동시스템에 적용된 ABS 제동장치의 구성도이다.1 is a configuration diagram of an ABS wheel motor driving device applied to an in-wheel driving system according to the present invention, Figures 2 to 5 is the ABS brake logic using the ABS wheel motor driving device of the in-wheel driving system according to the present invention. 6 is a configuration diagram of an ABS braking device applied to an in-wheel driving system according to the related art.

이하 본 발명의 실시예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which illustrate exemplary embodiments of the present invention. The present invention is not limited to these embodiments.

도 1은 본 실시예에 따른 인휠 구동시스템에 적용된 ABS 휠모터 구동장치의 구성을 나타낸다.1 shows a configuration of an ABS wheel motor driving device applied to an in-wheel driving system according to the present embodiment.

도시된 바와 같이, ABS 휠모터 구동장치는 주행동력을 발생시키는 휠모터(1)를 제어하는 인버터(2)와, 바퀴(10)의 속도를 검출하여 인버터(2)로 전송하는 휠속도센서(3)와, 브레이크페달(20)의 조작시 인버터(2)의 제어를 받아 에어(또는 유압)압력을 조절하는 압력조절밸브(4)와, 압력조절밸브(4)로부터 공급된 에어(또는 유압)압력으로 휠모터(1)로 구동되는 바퀴(10)를 제동하는 브레이크(5)로 구성된다.As illustrated, the ABS wheel motor driving apparatus includes an inverter 2 for controlling the wheel motor 1 that generates driving power, and a wheel speed sensor for detecting the speed of the wheel 10 and transmitting the speed to the inverter 2. 3), a pressure regulating valve 4 for adjusting the air (or hydraulic pressure) under the control of the inverter 2 during operation of the brake pedal 20, and air (or hydraulic pressure supplied from the pressure regulating valve 4). It consists of a brake (5) for braking the wheel (10) driven by the wheel motor (1) with pressure.

상기 인버터(2)는 휠모터(1)를 구동하기 위해 DC 전원을 3상 전원으로 변환하는 타입이 적용된다.The inverter 2 is a type for converting the DC power into a three-phase power source for driving the wheel motor (1).

또한, 상기 인버터(2)는 약 125μsec 주기로 휠모터(1)에 토크 지령을 내려 휠모터(1)를 제어하기 위한 모터구동로직을 기본으로 하고, 휠속도센서(3)의 신호를 기반으로 구동중인 휠모터(1)의 제어로 바퀴(10)의 휠락을 방지하고 더불어 제동시에도 동일하게 바퀴(10)의 휠락을 방지하는 ABS제동로직을 더 포함한다.In addition, the inverter 2 is based on a motor drive logic for controlling the wheel motor 1 by giving a torque command to the wheel motor 1 at a cycle of about 125 μsec, and driven based on a signal of the wheel speed sensor 3. It further includes an ABS braking logic that prevents the wheel lock of the wheel 10 by the control of the wheel motor 1 in addition, and also prevents the wheel lock of the wheel 10 during braking.

이로 인해, 상기 ABS 휠모터 구동장치는 차량의 운행중일 때나 차량 제동시에도 별도의 ABSECU 없이 인버터(2)만 이용하더라도 바퀴(10)의 슬립(Slip)을 일으키는 휠 락(Wheel Lock)을 방지하게 된다.Accordingly, the ABS wheel motor driving device prevents a wheel lock that causes slippage of the wheel 10 even when the inverter 2 is used without a separate ABSECU even when the vehicle is in operation or when braking the vehicle. do.

이에 더해, 인버터(2)가 휠모터(1)의 제어를 기본으로 함에 따라 ABS제동로직에는 제동시 배터리SOC(State Of Charge)를 근거한 리젠(Regen)활용을 손쉽게 구현함으로써 배터리SOC의 회수로 연비도 향상하게 된다.In addition, as the inverter 2 is based on the control of the wheel motor 1, the ABS braking logic can easily realize the use of Regen based on battery SOC (State Of Charge) when braking, thereby reducing fuel consumption. It will also improve.

여기서, 리젠(Regen)은 회생제동으로서 그 한 예로서 커스트 리젠(Coast Regen)제동토크를 들 수 있는데, 커스트 리젠(Coast Regen)제동토크란 전기차와 연료전지차 및 하이브리드차와 같이 모터구동차양에서 가속페달을 떼었을 때 ICE와 같은 감속을 유지하도록 모터에 네가티브 토크(Negative Torque)를 제어함으로써, 제동시 부드러운 감속감을 느낄 수 있는 방식을 의미한다.Here, as an example of regenerative braking, a regenerative braking torque may be used. The brazen regen braking torque may be accelerated in a motor driving shade such as an electric vehicle, a fuel cell vehicle, and a hybrid vehicle. When the pedal is released, it controls the negative torque of the motor to maintain the same deceleration as the ICE, which means a smooth deceleration feeling when braking.

도 2는 본 실시예에 따른 인휠 구동시스템이 제동될 때, ABS 휠모터 구동장치를 이용한 에이비에스 제동로직을 나타낸다.Figure 2 shows the ABS brake logic using the ABS wheel motor drive, when the in-wheel drive system according to the present embodiment is braked.

단계S10과 같이 브레이크페달(20)의 조작으로 제동이 시작되면, 브레이크페달(20)의 조작신호를 인식함과 동시에 단계S20과 같이 배터리SOC(State Of Charge)를 체크하여 준다.When the braking is started by the operation of the brake pedal 20 as in step S10, the control signal of the brake pedal 20 is recognized and the battery SOC (State Of Charge) is checked as in step S20.

단계S20의 배터리SOC(State Of Charge)체크는 제동력을 분배하기 위한 것으로서, 이를 통해 휠모터(1)에서 분담하는 제동력은 배터리 중천을 위한 회생제동으로 전환됨을 의미한다. The battery SOC (State Of Charge) check of step S20 is for distributing the braking force, which means that the braking force shared by the wheel motor 1 is converted to regenerative braking for battery power.

이를 위해, 배터리SOC <80%가 적용된다.To this end, battery SOC <80% is applied.

단계S20의 체크로 배터리SOC <80%가 만족되지 않으면, 단계S50으로 넘어가 모든 제동력을 브레이크(5)를 통해 구현하는 노말제동방식이 적용되는데, 이는 이후 기술되는 단계에 따른 인버터(2)의 제어로 이루어진다.If the battery SOC <80% is not satisfied by the check in step S20, the normal braking method is applied to step S50 to implement all the braking force through the brake 5, which is controlled by the inverter 2 according to the steps described later. Is made of.

반면, 단계S20의 체크로 배터리SOC <80%가 만족되면, 단계S30으로 넘어가 전체 제동력중 휠모터(1)를 이용한 회생제동영역(S40)과 브레이크(5)를 이용한 노말제동영역(S50)으로 구분하고, 이에 대한 담당비율을 산출하여 준다.On the other hand, if the battery SOC <80% is satisfied with the check in step S20, the process proceeds to step S30 to the regenerative braking area S40 using the wheel motor 1 and the normal braking area S50 using the brake 5 of the total braking force. Classify and calculate the ratio of charges.

도 3은 단계S40의 회생제동영역이 갖는 전체 제동력 대비 담당비율을 산출하기 위한 일례로, 도시된 바와 같이 휠모터(1)의 최대 파워와 이에 대한 제동 파워 선도를 적용하고, 이로부터 적정한 비율로 산정되어진다.3 is an example for calculating the ratio of the charge to the total braking force of the regenerative braking area of step S40. As shown in FIG. 3, the maximum power of the wheel motor 1 and the braking power diagram for the braking power are applied to the braking power. It is calculated.

단계S41은 단계S40에서 산출된 회생제동영역의 담당비율에 따라 휠모터(1)를 제어하면서 배터리SOC를 충전하는 회생제동을 의미한다.Step S41 means regenerative braking which charges the battery SOC while controlling the wheel motor 1 according to the charge ratio of the regenerative braking area calculated in step S40.

더불어 도 4는 단계S50의 노말제동영역이 갖는 전체 제동력 대비 담당비율을 산출하기 위한 일례로, 도시된 바와 같이 출력과 온도 및 제동횟수 선도를 적용하고, 이로부터 적정한 비율로 산정되어진다.In addition, Figure 4 is an example for calculating the ratio of the charge to the total braking force of the normal braking area of step S50, as shown in the output, temperature and braking frequency diagram is applied, it is calculated from the appropriate ratio.

단계S51은 단계S50에서 산출된 노말제동영역의 담당비율에 따라 휠모터(1)를 제어하면서 배터리SOC를 충전하는 마찰제동을 의미한다.Step S51 means friction braking which charges the battery SOC while controlling the wheel motor 1 according to the charge ratio of the normal braking area calculated in step S50.

상기와 같이 단계S40과 단계S50이 수행되어 각각에 대한 회생제동영역비율과 노말제동영역비율이 정해지면, 단계S70으로 넘어가 각각의 제동이 구현될 때 바퀴(10)의 휠락이 방지되어 슬립을 일으키지 않는 최적 슬립비(Optimize Slip Ratio)를 산출하며, 이를 위해 인버터(2)는 단계S60의 휠속도센서(3)를 통해 검출된 현재 바퀴(10)의 휠속도를 이용한다.If step S40 and step S50 are performed as described above, and the regenerative braking area ratio and the normal braking area ratio for each are determined, the process proceeds to step S70 and the wheel lock of the wheel 10 is prevented when slipping is implemented to prevent slipping. The optimum slip ratio is calculated, and the inverter 2 uses the wheel speed of the current wheel 10 detected through the wheel speed sensor 3 of step S60.

도 5는 단계S70의 최적 슬립비(Optimize Slip Ratio)를 결정하기 위한 일례로, 도시된 바와 같이 타이어-노면 점착 선도를 적용함으로써 타이어-노면 조건(상태)별로 최적 슬립비(Optimize Slip Ratio)가 산출됨을 알 수 있다.FIG. 5 is an example for determining an optimal slip ratio of step S70. As shown in FIG. 5, an optimum slip ratio is applied for each tire-road condition (state) by applying a tire-road adhesion diagram. It can be seen that it is calculated.

단계S70의 최적 슬립비(Optimize Slip Ratio)가 산출되면, 단계S80과 같이 이를 이용하여 인버터(2)는 휠모터(1)를 타겟 제동력에 맞춰 구동제어하고 동시에 브레이크(5)로 공급되는 압력조절밸브(4)의 에어(또는 유압)압력을 타겟 제동력에 맞춰 제어하여 준다.When the optimum slip ratio of step S70 is calculated, the inverter 2 drives the wheel motor 1 in accordance with the target braking force and adjusts the pressure supplied to the brake 5 using the same as in step S80. The air (or hydraulic) pressure of the valve 4 is controlled according to the target braking force.

이러한 제어는 인버터(2)가 휠속도센서(3)를 통해 검출된 현재 바퀴(10)의 속도를 근거로 휠락이 일어나지 않는 제동력을 산출한 후, 이를 이용해 압력조절밸브(4)의 에어(또는 유압)압력을 조절하여 브레이크(5)로 공급하여 실제적인 제동을 수행한 다음, 제동 주기동안 이를 반복적으로 지속하는 방식이고, 이는 방식은 통상의 ABS 제동방식과 동일하다.This control is performed by the inverter 2 based on the speed of the current wheel 10 detected by the wheel speed sensor 3 to calculate the braking force for which no wheel lock occurs, and then use the air of the pressure regulating valve 4 (or The hydraulic pressure is adjusted to supply the brake 5 to perform actual braking, and then it is continuously maintained during the braking cycle, which is the same as the conventional ABS braking.

전술된 바와 같이, 본 실시예에 따른 인휠 구동시스템에는 휠모터(1)를 구동제어하는 인버터(2)가 모터구동로직에 더해 휠속도센서(3)의 신호를 기반으로 구동중인 휠모터(1)의 제어로 바퀴(10)의 휠락을 방지하고 더불어 제동시에도 동일하게 바퀴(10)의 휠락을 방지하는 ABS제동로직을 더 포함함으로써, 제동시 휠 모터(1)를 이용한 회생제동과 브레이크(5)를 이용한 마찰제동을 구현하여 배터리SOC 충전은 물론 ABS ECU없이도 ABS 기능을 구현할 수 있게 된다.
As described above, in the in-wheel drive system according to the present embodiment, an inverter 2 for driving and controlling the wheel motor 1 is driven based on a signal of the wheel speed sensor 3 in addition to the motor driving logic. By further controlling the wheel lock of the wheel 10 by the control of the same, and at the same time during braking further includes an ABS braking logic to prevent the wheel lock of the wheel 10, regenerative braking and brake using the wheel motor (1) during braking ( By implementing friction braking using 5), ABS function can be realized without battery SOC charging and ABS ECU.

1 : 휠모터 2 : 인버터
3 : 휠속도센서 4 : 압력조절밸브
5 : 브레이크 10 : 바퀴
20 : 브레이크페달
1: wheel motor 2: inverter
3: wheel speed sensor 4: pressure control valve
5: brake 10: wheels
20: brake pedal

Claims (7)

주행동력을 발생시키는 휠모터를 제어하는 모터구동로직을 기본으로 하고, 휠속도센서에 의해 검출된 바퀴 속도를 이용하여 상기 휠모터를 이용한 회생제동과 브레이크를 이용한 마찰제동을 함께 구현하며, 제동시 상기 바퀴의 휠락의 방지를 위한 슬립을 제어하는 ABS제동로직이 더 구비된 인버터와;
브레이크페달의 조작시 상기 인버터의 제어를 받아 상기 브레이크로 공급되는 제동압력을 조절하는 압력조절밸브; 로 이루어진 ABS 휠모터 구동장치가
더 포함되어 구성된 것을 특징으로 하는 인휠 구동시스템.
It is based on the motor driving logic that controls the wheel motor that generates the driving power, and implements the regenerative braking using the wheel motor and the friction braking using the brake by using the wheel speed detected by the wheel speed sensor. An inverter further provided with an ABS brake logic for controlling slip for preventing wheel lock of the wheel;
A pressure regulating valve configured to adjust a braking pressure supplied to the brake under the control of the inverter when the brake pedal is operated; ABS wheel motor drive
In-wheel drive system, characterized in that further comprises.
휠모터를 제어하는 인버터가 브레이크페달의 조작신호를 인식함과 동시에 배터리SOC(State Of Charge)의 설정기준 충족여부를 체크하는 제동인식단계;
상기 배터리SOC의 설정기준 충족시 상기 휠모터를 이용한 회생제동비율과 브레이크를 이용한 마찰제동비율을 산출하는 제동준비단계;
상기 회생제동비율과 상기 마찰제동비율이 결정되면, 상기 바퀴의 휠속도를 기본으로 상기 바퀴의 휠락이 방지되어 슬립을 일으키지 않는 최적 슬립비(Optimize Slip Ratio)를 산출하는 제동실행단계;
상기 최적 슬립비가 결정되면, 이에 맞춘 타겟 제동력으로 상기 휠모터를 구동제어하고 동시에 상기 브레이크로 공급되는 압력조절밸브의 압력을 제어하며, 이를 제동구간을 통해 반복 수행하는 제동완료단계;
를 포함해 구현되는 것을 특징으로 하는 인휠 구동시스템 에이비에스 제동방법.
A braking recognition step in which an inverter controlling the wheel motor recognizes an operation signal of a brake pedal and checks whether a condition of setting of a battery SOC (State Of Charge) is satisfied;
A braking preparation step of calculating a regenerative braking ratio using the wheel motor and a friction braking ratio using a brake when the set criteria of the battery SOC are satisfied;
A braking execution step of calculating an optimum slip ratio that prevents wheel lock of the wheels based on the wheel speed of the wheels and thus does not cause slipping when the regenerative braking ratio and the friction braking ratio are determined;
When the optimum slip ratio is determined, the braking completion step of controlling the driving of the wheel motor with the target braking force according to the control and at the same time to control the pressure of the pressure regulating valve supplied to the brake, the braking completion step repeatedly performed through the braking section;
In-wheel drive system ABS braking method characterized in that it is implemented.
청구항 2에 있어서, 상기 제동인식단계에서 상기 배터리SOC의 설정기준 충족여부는 배터리SOC <80%로 판단되는 것을 특징으로 하는 인휠 구동시스템 에이비에스 제동방법.
The method of claim 2, wherein in the braking recognition step, whether or not the set criteria of the battery SOC is satisfied is determined as battery SOC <80%.
청구항 2에 있어서, 상기 제동준비단계에서 회생제동이 갖는 전체 제동력 대비 담당비율은 상기 휠모터의 최대 파워선도로부터 산출되고, 상기 마찰제동이 갖는 전체 제동력 대비 담당비율은 출력과 온도 및 제동횟수 선도로부터 산출되며, 상기 최적 슬립비는 타이어-노면 점착 선도로부터 산출되는 것을 특징으로 하는 인휠 구동시스템 에이비에스 제동방법.
The method of claim 2, wherein the ratio of the charge to the total braking force of the regenerative braking in the braking preparation step is calculated from the maximum power diagram of the wheel motor, the ratio of the charge to the total braking force of the friction braking from the output and temperature and the number of braking frequency And the optimum slip ratio is calculated from a tire-road adhesion diagram.
청구항 2에 있어서, 상기 제동준비단계에서 상기 배터리SOC의 설정기준 미 충족시 모든 제동력을 상기 브레이크를 이용한 마찰력제동을 구현하는 것을 특징으로 하는 인휠 구동시스템 에이비에스 제동방법.
The method of claim 2, wherein in the braking preparation step, the braking force braking using all of the braking force when the set criteria of the battery SOC is not satisfied is implemented.
청구항 5에 있어서, 상기 마찰력제동은 상기 바퀴의 휠속도를 기본으로 상기 바퀴의 휠락이 방지되어 슬립을 일으키지 않는 최적 슬립비(Optimize Slip Ratio)를 산출한 후, 이에 맞춘 타겟 제동력으로 상기 브레이크로 공급되는 압력조절밸브의 압력을 제어하며, 이를 제동구간을 통해 반복 수행하는 방식으로 구현되는 것을 특징으로 하는 인휠 구동시스템 에이비에스 제동방법.
The method of claim 5, wherein the friction braking is based on the wheel speed of the wheel to calculate the optimal slip ratio (Optimize Slip Ratio) that is prevented from slipping the wheel lock of the wheel and then supplied to the brake according to the target braking force In-wheel drive system ABS braking method characterized in that the control of the pressure control valve to be carried out, it is implemented in a repeated manner through the braking section.
청구항 6에 있어서, 상기 마찰제동력은 출력과 온도 및 제동횟수 선도로부터 산출되는 것을 특징으로 하는 인휠 구동시스템 에이비에스 제동방법. The in-wheel drive system ABS braking method according to claim 6, wherein the friction braking force is calculated from an output, a temperature and a braking frequency diagram.
KR1020110122782A 2011-11-23 2011-11-23 In Wheel Motor System and ABS Operation Method thereof KR101714084B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110122782A KR101714084B1 (en) 2011-11-23 2011-11-23 In Wheel Motor System and ABS Operation Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110122782A KR101714084B1 (en) 2011-11-23 2011-11-23 In Wheel Motor System and ABS Operation Method thereof

Publications (2)

Publication Number Publication Date
KR20130057052A true KR20130057052A (en) 2013-05-31
KR101714084B1 KR101714084B1 (en) 2017-03-22

Family

ID=48664875

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110122782A KR101714084B1 (en) 2011-11-23 2011-11-23 In Wheel Motor System and ABS Operation Method thereof

Country Status (1)

Country Link
KR (1) KR101714084B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190090309A (en) * 2018-01-24 2019-08-01 현대모비스 주식회사 Apparatus for operating in-wheel motor of in-wheel system and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055639U (en) * 1991-07-04 1993-01-26 日野自動車工業株式会社 Vehicle braking device and start acceleration device
JP2004328991A (en) * 2003-04-09 2004-11-18 Nissan Motor Co Ltd Left and right wheel driving device for vehicle
JP2006341626A (en) * 2005-06-07 2006-12-21 Kaido Ikeda In-wheel motor filled with driving part in pressurizing chamber of high atmospheric pressure
KR20090062321A (en) 2007-12-12 2009-06-17 현대자동차주식회사 Control technology for independent in wheel drive system for future vehicles
KR20090089513A (en) * 2008-02-19 2009-08-24 현대로템 주식회사 Brake system for in-wheel motor using eddy current brake and controlling method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055639U (en) * 1991-07-04 1993-01-26 日野自動車工業株式会社 Vehicle braking device and start acceleration device
JP2004328991A (en) * 2003-04-09 2004-11-18 Nissan Motor Co Ltd Left and right wheel driving device for vehicle
JP2006341626A (en) * 2005-06-07 2006-12-21 Kaido Ikeda In-wheel motor filled with driving part in pressurizing chamber of high atmospheric pressure
KR20090062321A (en) 2007-12-12 2009-06-17 현대자동차주식회사 Control technology for independent in wheel drive system for future vehicles
KR20090089513A (en) * 2008-02-19 2009-08-24 현대로템 주식회사 Brake system for in-wheel motor using eddy current brake and controlling method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190090309A (en) * 2018-01-24 2019-08-01 현대모비스 주식회사 Apparatus for operating in-wheel motor of in-wheel system and control method thereof

Also Published As

Publication number Publication date
KR101714084B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5325370B2 (en) Method for braking and stopping a vehicle having an electric drive
EP3369633B1 (en) Active safety control system and method for vehicle
KR101404087B1 (en) Control method of regenerative brake system for vehicle
JP5983885B2 (en) Vehicle regenerative braking control device
WO2016006687A1 (en) Vehicle control device and vehicle control method
WO2017129092A1 (en) Auxiliary braking system for electric automobile and control method thereof, and electric automobile
KR101428253B1 (en) Method for controlling braking of vehicle
KR102353346B1 (en) Braking control apparatus and method for vehicle
KR20150071568A (en) System and method for autonomous emergency braking
US9981554B2 (en) System and method for controlling braking of electric vehicle
US11590944B2 (en) Braking control device
JP6120010B2 (en) vehicle
JP6124123B2 (en) Regenerative brake control system
KR20130057052A (en) In wheel motor system and abs operation method thereof
JP6291460B2 (en) Electric vehicle
JP5598103B2 (en) Electric vehicle motor lock countermeasure control device
JP6996658B2 (en) Vehicle control system
KR100534796B1 (en) Braking control method for 4 wheel hybrid electric vehicle
KR20170079022A (en) The application of Vehicle Decelerate and stop Function by Using Regenerative breaking system for Autonomous Electric Vehicles
JP6153875B2 (en) Electric vehicle braking control device
JP2020147078A (en) Vehicular control apparatus
JP2020069817A (en) Braking force control apparatus
JP2016037225A (en) Vehicular braking system
CN109808501A (en) A kind of method and its system of braking energy of electric automobiles recycling
KR20160097587A (en) Regenerative brake apparatus of hybrid vehicle and method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200227

Year of fee payment: 4