KR20130037955A - Self-fluorescent polymeric nano-complex, contrast agent composition containing the same and method for preparing the same - Google Patents

Self-fluorescent polymeric nano-complex, contrast agent composition containing the same and method for preparing the same Download PDF

Info

Publication number
KR20130037955A
KR20130037955A KR1020110102541A KR20110102541A KR20130037955A KR 20130037955 A KR20130037955 A KR 20130037955A KR 1020110102541 A KR1020110102541 A KR 1020110102541A KR 20110102541 A KR20110102541 A KR 20110102541A KR 20130037955 A KR20130037955 A KR 20130037955A
Authority
KR
South Korea
Prior art keywords
polymer
self
fluorescence
poly
sulfate
Prior art date
Application number
KR1020110102541A
Other languages
Korean (ko)
Other versions
KR101316288B1 (en
Inventor
임용택
김현민
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020110102541A priority Critical patent/KR101316288B1/en
Publication of KR20130037955A publication Critical patent/KR20130037955A/en
Application granted granted Critical
Publication of KR101316288B1 publication Critical patent/KR101316288B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0045Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent agent being a peptide or protein used for imaging or diagnosis in vivo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE: A self-fluorescent polymeric nanocomposite, a contrast composition containing the same, and a method for manufacturing the same are provided to minimize particle instability and toxicity in vivo. CONSTITUTION: A self-fluorescent polymeric nanocomposite has a self-fluorescent property by crosslinking of a polymeric nanocomposite with a crosslinking agent containing an aldehyde group. The polymeric nanocomposite is prepared by ion bonding of a cationic polymer and an anionic polymer. The anionic polymer is selected from the group consisting of polyglutamic acid, polyacrylic acid, alginate, carrageenan, hyaluronic acid, poly[styrene sulfonate, carboxymethylcellulose, cellulose sulfate, dextran sulfate, heparin], heparin sulfate, poly[methylene-co-guanidine], condroitin sulfate, and a mixture thereof.

Description

자가형광성을 갖는 고분자 나노복합체, 이를 포함하는 조영제 조성물 및 이의 제조방법{Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same}Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same}

본 발명은 자가형광(self-fluorescence) 특성을 갖고 음이온성 및 양이온성 고분자로 이루어진 고분자 나노복합체, 이를 포함하는 조영제 조성물 및 이의 제조방법에 관한 것으로, 이온결합에 의해 제조된 고분자 이온복합체를 알데하이드기를 포함하는 가교제(crosslinker)에 의해 반응함으로써 제조한 나노 복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a polymer nanocomposite having self-fluorescence properties and consisting of anionic and cationic polymers, a contrast agent composition comprising the same, and a method for preparing the same. It relates to a nanocomposite prepared by reacting with a crosslinker comprising and a method for producing the same.

분자영상 (Molecular Imaging)이란 생체 내에서 일어나는 다양한 현상들을 분자수준의 관점에서 영상화 하는 기법으로 질병 치료 및 생체 내 대사과정의 중요한 단서를 제공해주기 때문에 최근 급속하게 발전하고 있는 기술 분야이다. 분자영상의 가장 큰 장점은 연구하고자 하는 대상이 살아있는 상태에서 세포 또는 분자 수준에서 일어나는 현상들을 영상을 통하여 바로 확인이 가능하며 또 정량적인 분석이 가능하다는 점이다. 이러한 분자영상의 종류에는 크게 가시영역과 적외선 영역대의 광자를 이용한 광학영상 (Optical imaging), 방사선 반응에 의해 발생하는 광자를 이용하는 핵의학영상 (Nuclear imaging), 자기장 속에 놓여있는 원자핵에서 발생하는 자기공명신호를 영상화하는 자기공명영상 (Magnetic resonance imaging; MRI), 그리고 X-선을 투사하여 얻은 정보를 영상화 하는 컴퓨터단층촬영영상 (CT) 등이 있다. 이 중 분자/세포생물학 분야에서 오래 전부터 사용된 광학영상 기법은 이미지의 민감도(sensitivity)가 가장 뛰어나며 방사능 노출 없이 신속하게 이미지를 얻을 수 있다는 점에서 그 활용범위가 가장 넓다고 할 수 있겠다. Molecular imaging is a technique for imaging various phenomena occurring in vivo from the molecular level, and it is a rapidly developing technology field because it provides important clues for disease treatment and metabolic processes in vivo. The biggest advantage of molecular imaging is that the phenomenon that occurs at the cellular or molecular level in the living state of the subject to be studied can be immediately identified through the image and quantitatively analyzed. These types of molecular images include optical imaging using photons in the visible and infrared regions, nuclear imaging using photons generated by radiation reactions, and magnetic resonance generated from the atomic nucleus in the magnetic field. Magnetic resonance imaging (MRI) for imaging signals, and computed tomography (CT) for imaging information obtained by X-ray projection. Among these, optical imaging techniques, which have been used for a long time in the field of molecular / cell biology, are the most versatile in that they have the highest sensitivity of images and can be obtained quickly without exposure to radiation.

광학영상은 크게 생물발광영상 (bioluminescence imaging)과 형광영상 (fluorescence imaging)으로 나눌 수 있다. 발광영상은 생체 내에서 일어나는 대사과정에 의해 화학적으로 합성되는 빛을 영상화하는 것으로 반딧불이에서 발견된 luciferase가 대표적으로 쓰이고 있다. 형광영상은 외부에서 특정 파장의 빛을 흡수하여 더 긴 파장의 빛을 방출하는 형광 물질을 세포, 조직 또는 생체 내에 표지하여 영상화 하는 방법이다. 형광분자영상은 생체조직에서 일어나는 빛의 흡수, 산란, 그리고 자가형광 등이 최소화가 되는 근적외선 영역에서 가장 효율적인 영상신호를 방출하는 특성이 있다. 혈관에 다량 존재하는 헤모글로빈은 가시광선 영역의 빛을 흡수하고 생체 내 물과 지방은 적외선 영역에서 주로 빛을 흡수하기 때문이다. 따라서 근적외선 형광 물질을 광학영상에 응용할 시에 조직 투과력이 가장 뛰어나며 배우 잡신호가 최소화가 된다. Optical images can be classified into bioluminescence imaging and fluorescence imaging. Luminescent images are images of light chemically synthesized by metabolic processes occurring in vivo, and luciferase found in fireflies is used. Fluorescent imaging is a method of labeling and imaging a fluorescent material that absorbs light of a specific wavelength from the outside and emits light of a longer wavelength in a cell, tissue, or living body. Fluorescent molecular images emit the most efficient image signals in the near-infrared region where the absorption of light, scattering, and autofluorescence in living tissues is minimized. Hemoglobin, which is present in large amounts in blood vessels, absorbs light in the visible region, while water and fat in the body absorb light mainly in the infrared region. Therefore, the application of near-infrared fluorescent substance to optical image has the best tissue penetrating power and minimizes actor miscellaneous signal.

형광 영상 기기의 발전과 함께 다양한 형광물질의 개발도 이루어지고 있는데 그 종류는 크게 유기형광 염료와 무기형광 입자로 구분된다. 유기형광 염료는 이미 전반적인 산업 분야 및 분자/세포 생물학 연구 분야에서 널리 이용되고 있는 형광 물질이다. 이들 유기 염료는 여기 파장대 및 방출되는 형광 파장대별로 종류가 다양하여 필요에 의해 선택적으로 사용이 가능하다. 또한 화학적 결합을 통해 다른 물질이나 생물 분자에 접착이 용이하기 때문에 표적형 형광 프로브로써 응용이 기대된다. 하지만 대부분의 유기 염료는 낮은 광안정성으로 인해 장시간 관찰이 어려울 뿐 만 아니라 소수성 성질을 띠기 때문에 수용액 상에서 낮은 용해도를 보이며 생체에 독성을 초래할 수 있다. With the development of fluorescent imaging equipment, various fluorescent materials are being developed. The types are classified into organic fluorescent dyes and inorganic fluorescent particles. Organofluorescent dyes are already fluorescent materials that are widely used in the overall industrial field and molecular / cell biology research. These organic dyes can be selectively used as necessary because the organic dyes vary depending on the excitation wavelength band and the fluorescence wavelength band emitted. In addition, it is expected to be applied as a targeted fluorescent probe because it is easy to adhere to other materials or biological molecules through chemical bonding. However, most organic dyes are not only difficult to observe for a long time due to low light stability but also have hydrophobic properties, so they may show low solubility in aqueous solution and may be toxic to the living body.

최근에는 이러한 유기염료를 생체친화적인 생물 분자나 생분해성 고분자 물질과 결합시켜 생체 내로 주입시키는 연구가 진행되고 있으나, 이 또한 생체 적합성 및 결합 불안정성으로 인한 부작용이 문제가 되고 있다. 무기형광 입자는 흔히 양자점(quantum dots)이라 불리는 반도체와 유사한 성질을 지닌 나노 크기의 입자를 말하는데 우수한 광안정성으로 인해 최근 광학영상 분야에서 주목받고 있는 물질이다. 장시간 빛에 노출되어도 안정한 형광을 방출하기 때문에 특정 세포의 분화과정이나 생체 내 대사 과정을 관찰하는데 특히 유리하다. 이 양자점은 입자의 크기에 따라 다양한 색의 형광을 방출하며 넓은 파장 영역에서 빛을 여기 시키는 특성이 있다. 따라서 다양한 크기의 양자점을 각기 다른 부위로 전달하여 동시에 관찰할 수 있는 다중색상 이미징이 가능하다. 양자점의 단점은 유기용매 상에서 합성되기 때문에 생체 내에 적용하려면 반드시 수용성 물질로 표면개질이 필요하며 이 과정에서 입자가 뭉치는 현상이 일어난다. 또한 유기염료에 비해 입자 크기가 상당하기 때문에 세포 내로 전달이 어렵고 양자점의 핵이 카드뮴(Cd)이나 셀레늄(Se)과 같은 중금속으로 이루어져 있기 때문에 생체 안정성 또한 확인되지 않았다. 최근에는 양자점을 이루는 중금속 대신 생체에 비교적 안정적은 금속을 이용한 합성이나 양자점의 세포투과력을 높이기 위한 시도들이 진행되고 있다. 하지만 현재 사용되고 있는 형광 물질들은 생체 적합성이나 입자의 안정성 측면에서 많은 문제점을 내포하고 있다.Recently, studies have been conducted to combine such organic dyes with biocompatible biomolecules or biodegradable polymeric materials, but also have side effects due to biocompatibility and binding instability. Inorganic fluorescent particles refer to nano-sized particles having properties similar to semiconductors, commonly called quantum dots, and are recently attracting attention in the field of optical imaging due to their excellent light stability. Since it emits stable fluorescence even after prolonged exposure to light, it is particularly advantageous for observing the differentiation of specific cells or metabolic processes in vivo. These quantum dots emit fluorescence of various colors depending on the size of the particles and have the property of exciting light in a wide wavelength range. Therefore, multi-color imaging that can be observed simultaneously by delivering quantum dots of various sizes to different sites is possible. The disadvantage of quantum dots is that they are synthesized on organic solvents, so they must be surface-modified with a water-soluble substance to be applied in vivo. In addition, since the particle size is larger than that of organic dyes, it is difficult to transfer into cells, and bio stability has not been confirmed since the nuclei of quantum dots are made of heavy metals such as cadmium (Cd) and selenium (Se). Recently, attempts have been made to increase the cell permeability of quantum dots or synthesis using relatively stable metals in vivo instead of heavy metals forming quantum dots. However, currently used fluorescent materials have many problems in terms of biocompatibility or particle stability.

또한, 최근에는 자가형광 특성을 갖는 고분자 마이크로비드(microbeads)에 대한 제조(미국공개특허 US20100143259, Wei Wei. et al . Advanced functional materials; 17:3153-3158, 2007) 기술이 보고된 바 있으나, 이 특허에서는 고분자 마이크로비드를 Shirase Porous Glass membrane emulsification technique 이라는 특수한 기법을 이용하여 제조하였으며 입자의 크기 또한 0.2-2 ㎛ 정도로 그 활용분야가 제한적일 수밖에 없다.
In addition, recently prepared for the production of polymer microbeads (microbeads) having self-fluorescence properties (US Patent Publication No. US20100143259, Wei Wei. Et al . Advanced functional materials; 17: 3153-3158, 2007), but the technology has been reported in this patent, the polymer microbeads are prepared using a special technique called Shirase Porous Glass membrane emulsification technique, and the particle size is limited to 0.2-2 ㎛. There is no choice but to.

이에 본 발명의 목적은 형광염료를 사용하지 않으면서, 세포 및 조직을 효과적으로 염색할 수 있는 자가형광특성을 갖는 나노입자 복합체 및 그 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a nanoparticle composite having autofluorescence characteristics and a method for producing the same, which can effectively dye cells and tissues without using a fluorescent dye.

본 발명자들은 기존에 널리 사용되었던 무기형광물질이나 유기형광물질을 전혀 사용하지 않는 자가형광특성을 나타내는 나노조영제를 개발하였다. 또한, 나노크기 수준에서 자가형광특성을 나타내며, 세포라벨링 및 기타 약물을 로딩할 수 있는 다기능성 특성을 갖춘 나노복합체를 보다 쉽고 재현성 있게 제조하는 방법을 개발하고, 세포 및 조직(tissue)에서 효과적으로 형광특성을 나타내는 것을 확인하고, 본 발명을 완성하였다. The present inventors have developed a nano contrast agent that exhibits a self-fluorescence property using no inorganic or organic fluorescent material widely used in the past. In addition, we have developed a method to make nanocomposites that exhibit autofluorescence at the nanoscale level and have multifunctional properties capable of loading cell labeling and other drugs, and to fluoresce effectively in cells and tissues. It confirmed that the characteristic was shown and completed this invention.

본 발명은 음이온성 고분자와 양이온성 고분자가 이온결합된 고분자 나노복합체들이 알데하이드기를 포함하는 가교제에 의해 가교되어 자가형광 특성을 나타내는, 자가형광성을 갖는 고분자 나노복합체를 제공한다. The present invention provides a polymer nanocomposite having self-fluorescence, wherein the polymer nanocomposites in which the anionic polymer and the cationic polymer are ionically bonded are crosslinked by a crosslinking agent including an aldehyde group to exhibit self-fluorescence characteristics.

본 발명은 또한, 상기 자가형광성을 갖는 고분자 나노복합체 및 약제학적으로 허용되는 담체를 포함하는 조영제 조성물을 제공한다. The present invention also provides a contrast agent composition comprising the polymer nanocomposite having the autofluorescence and a pharmaceutically acceptable carrier.

본 발명은 또한, (a) 음이온성 고분자가 함유된 용액과 양이온성 고분자가 함유된 용액을 혼합하여, 고분자 나노복합체를 수득하는 단계; 및 (b) 상기 수득된 고분자 나노복합체에 알데하이드기를 포함하는 가교제를 첨가하여 반응함으로써, 자가형광성을 갖는 고분자 나노복합체를 수득하는 단계를 포함하는 자가형광 고분자 나노복합체의 제조방법을 제공한다.
The present invention also comprises the steps of (a) mixing a solution containing an anionic polymer and a solution containing a cationic polymer, to obtain a polymer nanocomposite; And (b) adding a crosslinking agent containing an aldehyde group to the obtained polymer nanocomposite to react, thereby obtaining a polymer nanocomposite having self-fluorescence.

본 발명에 따른 고분자 나노복합체는 음이온성 고분자와 양이온성 고분자를 이용한 이온성 조립을 통해 손쉽고 재현성 있게 제조할 수 있으며, 알데하이드를 포함하는 가교제에 의해 고분자 나노복합체는 안정성 및 자가형광특성을 갖는다. 이에, 본 발명의 자가형광성을 갖는 고분자 나노복합체는 신개념의 나노조영제로서 이용될 수 있고, 나노 표지자 (probe) 및 약물 또는 유전자 전달체로서 이용될 수도 있다.
The polymer nanocomposite according to the present invention can be produced easily and reproducibly through ionic assembly using an anionic polymer and a cationic polymer, and the polymer nanocomposite has stability and self-fluorescence properties by a crosslinking agent containing aldehyde. Thus, the polymer nanocomposite having self-fluorescence of the present invention can be used as a new concept of nanocontrast, and can also be used as nanoprobe and drug or gene carrier.

도 1은 자가형광 특성을 지닌 고분자이온 복합체를 합성하는 방법에 관한 그림이다.
도 2는 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체의 A) 입자크기를 DLS로 측정한 그림; B) SEM을 통해 관찰한 입자의 형태 및 크기 균질도를 보여주는 그림이다.
도 3은 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체를 형광스펙트로미터를 이용하여 다양한 파장대의 빛으로 여기시킨후 살펴본 형광방출스펙트럼을 보여주는 그림이다.
도 4 는 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체와 여타의 나노 크기의 다른 고분자입자를 CCD 카메라를 이용하여 형광이미지를 관찰한 그림이다.
도 5는 A) 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체에 수소화 붕소 나트륨(NaBH4) 가하기 전과 가한 후의 형광 스펙트럼을 관찰한 그림; B) 수소화 붕소 나트륨에 의해 시프염기가 환원되는 과정을 설명하는 그림이다.
도 6는 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체를 암세포인 헬라세포(HeLa cell)에 처리하여 세포 내 입자전달 여부를 A) 형광현미경으로 관찰한 그림; B) FACS 분석 그림이다.
1 is a diagram illustrating a method for synthesizing a polymer ion composite having self-fluorescence characteristics.
Figure 2 is a figure measuring the A) particle size of polygammaglutamic acid (γPGA) / polylysine (PLL) ionic binding complex by DLS; B) It shows the shape and size homogeneity of the particles observed through SEM.
3 is a diagram showing the fluorescence emission spectrum of the poly gamma glutamic acid (γPGA) / poly lysine (PLL) ionic complex after excitation with light of various wavelengths using a fluorescence spectrometer.
4 is a fluorescence image of a polygamma glutamic acid (γPGA) / polylysine (PLL) ionic binding complex and other nano-sized polymer particles using a CCD camera.
FIG. 5 is a diagram observing fluorescence spectra before and after addition of sodium borohydride (NaBH 4 ) to a polygammaglutamic acid (γPGA) / polylysine (PLL) ionic bond complex. FIG. B) Figure shows the process of reducing the base base by sodium borohydride.
Figure 6 is a polygamma glutamic acid (γPGA) / polyElysine (PLL) ionic complexes treated with HeLa cells (HeLa cells) cancer cells to determine whether the intracellular delivery of particles by fluorescence microscope; B) FACS analysis picture.

달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.

자가형광성을Self-fluorescence 갖는 고분자 복합체 Having polymer composite

일 관점에서, 본 발명은 음이온성 고분자와 양이온성 고분자가 이온결합된 고분자 나노복합체들이 알데하이드기를 포함하는 가교제에 의해 가교되어 자가형광 특성을 나타내는 자가형광성을 갖는 고분자 나노복합체에 관한 것이다 (도 1). In one aspect, the present invention relates to a polymer nanocomposite having self-fluorescence properties in which anionic polymers and cationic polymers are ion-bonded polymer nanocomposites crosslinked by a crosslinking agent including an aldehyde group (FIG. 1). .

상기 음이온성 고분자는 분자 중에 음이온을 갖는 것이라면 제한되지 않으며 구체적으로 생체친화적이고 해리되었을 때 음이온을 띠는 히드록시기(-OH), 카르복실기(-COOH), 황산기(-O3SOH, -SH), 또는 인산기(-O3POH)를 가지는 화합물일 수 있다. 예를 들어, 폴리글루탐산(Polyglutamic acid), 폴리아크릴산(Polyacrylic acid), 알긴산(Alginate), 카라기난(Carrageenan), 히알루론산(Hyaluronic acid), 폴리스타이렌술폰산염(Poly(styrene sulfonate)), 카복시메틸셀룰로스(Carboxymethylcellulose), 셀룰로오스황산염(Cellulose sulfate), 덱스트란황산염(Dextran sulfate), 헤파린(Heparin), 헤파린황산염(Heparin sulfate), 폴리메틸렌코구아니딘(Poly(methylene-co-guanidine)), 콘드로이틴황산염(Condroitin sulfate) 및 이들의 복합체에서 선택되는 것을 단독 또는 2종 이상 사용할 수 있다. The anionic polymer is not limited as long as it has an anion in a molecule, and is specifically biocompatible and dissociated with an anionic hydroxyl group (-OH), a carboxyl group (-COOH), a sulfate group (-O 3 SOH, -SH), or It may be a compound having a phosphoric acid group (—O 3 POH). For example, polyglutamic acid, polyacrylic acid, alginate, carrageenan, hyaluronic acid, polystyrene sulfonate, carboxymethylcellulose Carboxymethylcellulose, Cellulose Sulfate, Dextran Sulfate, Heparin, Heparin Sulfate, Polymethylene-co-guanidine, Condroitin Sulfate ) And complexes thereof may be used alone or in combination of two or more thereof.

본 발명의 실시예에서는 음이온성 고분자로서 폴리감마글루탐산(γPGA)을 사용하고 있다. 폴리감마글루탐산은 우리나라 청국장에서 유래된 바실러스균(Bacillus subtilis)에 의해 생합성된 초고분자량의 천연 아미노산 고분자 물질로써, 뛰어난 생체적합성과 생분해 능력을 지니고 있다. 구성 아미노산인 글루탐산에 존재하는 다량의 카르복실기에 의해 음이온성 고분자로 분류되며 양이온성 미네랄과 반응성이 뛰어나 식품 첨가제 및 건강기능식품, 화장품, 의약품으로의 다양한 응용이 기대된다. 특히 소수성 약물이나 유용단백질 및 항원을 봉입하는 효과가 뛰어나 약물전달시스템(drug delivery system)에 활용하려는 연구가 활발히 진행되고 있는데 이때 봉입물의 안정성을 확보하기 위해 양이온성 고분자인 키토산과 이온성 자기 조립을 유도하여 젤화(gelation)시킨 나노입자를 형성할 수 있다.In the embodiment of the present invention, poly gamma glutamic acid (γPGA) is used as the anionic polymer. Polygamma glutamic acid is an ultra high molecular weight natural amino acid polymer material biosynthesized by Bacillus subtilis derived from Cheonggukjang, Korea, and has excellent biocompatibility and biodegradability. It is classified as an anionic polymer by a large amount of carboxyl groups present in the constituent amino acid glutamic acid, and is highly reactive with cationic minerals. Therefore, various applications to food additives, health functional foods, cosmetics, and pharmaceuticals are expected. In particular, researches are being actively conducted to apply the drug to the drug delivery system due to its excellent effect of encapsulating hydrophobic drugs, useful proteins and antigens. Induction can form gelled nanoparticles.

상기 양이온성 고분자는 분자 중에 양이온을 갖는 것이라면 제한되지 않으며 구체적으로 생체친화적이고 해리되었을 때 양이온을 띠는 아민기(-NH2)를 갖는 화합물일 수 있다. 구체적인 예에서, 키토산(Chitosan), 폴리에틸렌이민(Poly(ethylenimine), 폴리엘라이신(Poly(L-lysine)), 폴리알릴아민(Poly(allylamine)), 폴리오르니틴(Poly-ornithine), 폴리비닐아민염산염(Poly(vinylamine)hydrochloride), 폴리아미도아마인(Poly(amido amine)), 덴드리머(dendrimer), 젤라틴(Gelatin) 및 이들의 복합체에서 선택되는 것을 단독 또는 2종 이상 사용할 수 있다. The cationic polymer is not limited as long as it has a cation in the molecule, and may specifically be a compound having an amine group (-NH 2) that is biocompatible and has a cation when dissociated. In specific examples, chitosan, polyiminemine, poly (L-lysine), polyallylamine, poly-ornithine, polyvinyl Poly (vinylamine) hydrochloride, polyamido amine (Poly (amido amine), dendrimer (dendrimer), gelatin (Gelatin) and a combination thereof may be used alone or two or more.

본 발명의 실시예에서는 양이온성 고분자로서 폴리엘라이신(poly(L-lysine))을 사용하고 있는 바, 이 고분자는 필수 아미노산인 라이신으로 이루어진 생체친화성 양이온성 물질이다. 최근에서 폴리엘라이신의 양이온성 성질에 의해 세포내 전달이 용이하다는 특성을 이용하여 유전자 및 펩타이드를 세포 내로 전달하는 수송체로 응용하는 연구가 활발히 진행되고 있다. In the embodiment of the present invention, polylysine (poly (L-lysine)) is used as the cationic polymer, and the polymer is a biocompatible cationic material composed of lysine which is an essential amino acid. In recent years, research has been actively conducted to apply genes and peptides as transporters for intracellular delivery by using the characteristics that the intracellular delivery is easy due to the cationic nature of polylysine.

상기 알데하이드기를 포함하는 가교제는 글루타르알데하이드, 글리옥살(glyoxal), 말론알데하이드(malonaldehyde), 숙신다이알데하이드(succindialdehyde), 테레프탈알데하이드(terephthalaldehyde), 포름알데하이드(formadehyde), 아세트알데하이드(acetaldehyde), 프로피온알데하이드(propionaldehyde), 부틸알데하이드(butyraldehyde), 벤즈알데하이드(benzaldehyde), 시남알데하이드(cinnamaldehyde), 4-메틸벤즈알데하이드(4-Methylbenzaldehyde), 푸르푸랄(furfural) 계열의 물질, 아민기를 포함하는 양이온성 고분자와 시프염기(C=N) 결합을 유도할 수 있는 반응기를 포함하는 물질 및 이들의 복합체에서 선택되는 것을 단독 또는 2종 이상 사용할 수 있다. The cross-linking agent including the aldehyde group, glutaraldehyde, glyoxal, malonaldehyde, mal aldehyde, succindialdehyde, terephthalaldehyde, formaldehyde, acetaldehyde, propionaldehyde (propionaldehyde), butylaldehyde (butyraldehyde), benzaldehyde (benzaldehyde), cinnamicaldehyde (cinnamaldehyde), 4-methylbenzaldehyde (4-Methylbenzaldehyde), furfural-based material, cationic polymer containing an amine group and One or two or more selected from materials including a reactor capable of inducing seed base (C = N) bonds and complexes thereof may be used.

알데하이드기를 포함하는 가교제는 조직을 고정화(fixation)하여 광학 현미경이나 전자현미경으로 그 구조를 관찰하는 생물조직분야에서 널리 사용되어 왔다. 이들은 단백질에 존재하는 라이신(lysine)의 아민기(amine group) 사이에 화학적 결합을 형성하여 조직 구조를 안정화시키고 고정하는 역할을 한다. 이러한 반응 과정의 결과물로 시프염기(schiff’s base)가 형성되는데 이때 탄소-질소 이중결합의 전자전이(electron transition)에 의해 자가형광이 나타나는 특성이 있다. 본 발명에서 형광 메커니즘은 이러한 시프염기(Schiff‘s base) 결합 및 탄소-수소 이중결합의 전자전이이다. Crosslinking agents containing aldehyde groups have been widely used in the field of biological tissues in which the structure is fixed and the structure is observed by an optical microscope or an electron microscope. They form chemical bonds between the amine groups of lysine present in the protein to stabilize and fix the tissue structure. As a result of the reaction process, a Schiff's base is formed, in which autofluorescence is generated by an electron transition of a carbon-nitrogen double bond. In the present invention, the fluorescence mechanism is the electron transition of the Schiff's base bond and the carbon-hydrogen double bond.

본 발명의 일 양태에서, 상기 음이온성 고분자는 폴리글루탐산(Polyglutamic acid), 폴리아크릴산(Polyacrylic acid), 알긴산(Alginate), 카라기난(Carrageenan), 히알루론산(Hyaluronic acid), 폴리스타이렌술폰산염(Poly(styrene sulfonate)), 카복시메틸셀룰로스(Carboxymethylcellulose), 셀룰로오스황산염(Cellulose sulfate), 덱스트란황산염(Dextran sulfate), 헤파린(Heparin), 헤파린황산염(Heparin sulfate), 폴리메틸렌코구아니딘(Poly(methylene-co-guanidine)) 및 콘드로이틴황산염(Condroitin sulfate)으로 구성된 군에서 선택될 수 있으며, In one embodiment of the present invention, the anionic polymer is polyglutamic acid, polyacrylic acid, alginate, carrageenan, hyaluronic acid, polystyrene sulfonate, polystyrene sulfonate), Carboxymethylcellulose, Cellulose sulfate, Dextran sulfate, Heparin, Heparin sulfate, Polymethylenecoguanidine (Poly (methylene-co-guanidine sulfonate) )) And Condroitin sulfate, and

상기 양이온성 고분자는 키토산(Chitosan), 폴리에틸렌이민(Poly(ethylenimine), 폴리엘라이신(Poly(L-lysine)), 폴리알릴아민(Poly(allylamine)), 폴리오르니틴(Poly-ornithine), 폴리비닐아민염산염(Poly(vinylamine)hydrochloride), 폴리아미도아마인(Poly(amido amine)), 덴드리머(dendrimer) 및 젤라틴(Gelatin)으로 구성된 군에서 선택될 수 있으며, The cationic polymer is chitosan, polyethyleneimine, polylysine, polyallylamine, poly-ornithine, poly-ornithine, poly It may be selected from the group consisting of poly (vinylamine) hydrochloride, polyamido amine, dendrimer, and gelatin.

상기 가교제는 글루타르알데하이드, 글리옥살(glyoxal), 말론알데하이드(malonaldehyde), 숙신다이알데하이드(succindialdehyde), 테레프탈알데하이드(terephthalaldehyde), 포름알데하이드(formadehyde), 아세트알데하이드(acetaldehyde), 프로피온알데하이드(propionaldehyde), 부틸알데하이드(butyraldehyde), 벤즈알데하이드(benzaldehyde), 시남알데하이드(cinnamaldehyde), 4-메틸벤즈알데하이드(4-Methylbenzaldehyde), 푸르푸랄(furfural) 계열의 물질 및 아민기를 포함하는 양이온성 고분자와 시프염기(C=N) 결합을 유도할 수 있는 반응기를 포함하는 물질에서 선택할 수 있음은 당업자에 있어서 자명한 일이다. (Wei Wei. et al . Advanced functional materials; 17:3153-3158, 2007)The crosslinking agent is glutaraldehyde, glyoxal, malonaldehyde, malonaldehyde, succindialdehyde, terephthalaldehyde, formaldehyde, acetaldehyde, propionaldehyde, propionaldehyde, and the like. Butylaldehyde, benzaldehyde, benzaldehyde, cinnamaldehyde, 4-methylbenzaldehyde, furfural material And it is apparent to those skilled in the art that it can be selected from a material comprising a cationic polymer comprising an amine group and a reactor capable of inducing a bond base (C = N) bond. Wei Wei. Et al . Advanced functional materials; 17: 3153-3158, 2007)

본 발명에서“나노복합체” 또는 “나노입자(nanoparticles)”는 직경이 1nm~1000nm, 바람직하게는 100nm~200nm인 입자일 수 있고, 입자분포가 ± 50nm 일 수 있다. 또한, 본 발명의 나노복합체는 폴리에틸렌 글리콜로 페길화될 수 있다. 페길화에 의해 혈중 체류시간이 향상되고 간으로의 축적이 감소된다.In the present invention, "nanocomposites" or "nanoparticles" may be particles having a diameter of 1 nm to 1000 nm, preferably 100 nm to 200 nm, and a particle distribution of ± 50 nm. In addition, the nanocomposites of the present invention may be PEGylated with polyethylene glycol. PEGylation improves blood residence time and reduces accumulation in the liver.

본 발명의 고분자 나노복합체는 생체친화적인 고분자전해질의 이온성 자기조립 성질을 이용하는 바, 광학 분자영상에서 널리 사용되고 기존의 형광 물질에 비해 물에 대한 용해도가 뛰어나고 생체친화적이라는 장점이 있다. 또한 알데하이드기를 포함하는 가교제를 통해 자가형광(self-fluorescence) 특성을 나타냄으로써 세포라벨링 기능을 수행할 수 있어 기존의 유/무기 형광물질로 이루어진 조영제를 대체할 수 있다. 뿐만 아니라 약물 등을 로딩할 수 있으며 인체적합성을 가지므로 의약품, 식품, 화장품 등에 이용될 수 있다.
The polymer nanocomposite of the present invention uses the ionic self-assembly of the biocompatible polymer electrolyte, which is widely used in optical molecular imaging, and has an advantage of being excellent in solubility in water and biocompatible compared to conventional fluorescent materials. In addition, the cell labeling function can be performed by exhibiting self-fluorescence characteristics through a crosslinking agent including an aldehyde group, thereby replacing a contrast agent composed of existing organic / inorganic fluorescent materials. In addition, it can be loaded with drugs, etc., because it has a human compatibility can be used in medicine, food, cosmetics and the like.

조영제 조성물Contrast Composition

다른 관점에서, 본 발명은 상기 자가형광성을 갖는 나노복합체 및 약제학적으로 허용되는 담체를 포함하는 조영제 조성물에 관한 것이다. In another aspect, the present invention relates to a contrast agent composition comprising the nanocomposite having the above autofluorescence and a pharmaceutically acceptable carrier.

본 발명의 자가형광성을 갖는 나노복합체는 기존에 널리 사용되었던 무기형광물질이나 유기형광물질을 전혀 사용하지 않는 자가형광특성을 나타내는 나노조영제이다. 또한, 세포에 대한 독성을 나타내지 않으며 고민감도의 조영효과를 나타내므로 안전하면서도 조영 효과가 우수한 조영제로서 상용화될 수 있다. The nanocomposite having self-fluorescence of the present invention is a nanocontrast that exhibits autofluorescence properties without using inorganic or organic fluorescent materials. In addition, it does not exhibit toxicity to cells and exhibits a contrasting effect of anxiety, so it may be commercialized as a safe and excellent contrasting agent.

본 발명에 따른 조영제 조성물에 사용되는 담체는 의약 분야에서 통상 사용되는 담체 및 비히클을 포함하며, 구체적으로 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 각종 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소캄륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 또는 양모지 등을 포함하나 이에 제한되지 않는다. 본 발명의 조영제 조성물은 또한 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 또는 보존제 등을 추가로 포함할 수 있다.Carriers used in the contrast agent composition according to the present invention include carriers and vehicles commonly used in the pharmaceutical field, and specifically, ion exchange resins, alumina, aluminum stearate, lecithin, serum proteins (eg, human serum albumin), buffer materials (E.g. partial glyceride mixtures of various phosphates, glycine, sorbic acid, potassium sorbate, saturated vegetable fatty acids), water, salts or electrolytes (e.g. protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride and zinc salts) , Colloidal silica, magnesium trisilicate, polyvinylpyrrolidone, cellulose based substrates, polyethylene glycol, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene glycols or wool, and the like. The contrast agent compositions of the present invention may also further comprise lubricants, wetting agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.

한 양태로서, 본 발명에 따른 조영제 조성물은 비경구 투여를 위한 수용성 용액으로 제조할 수 있으며, 바람직하게는 한스 용액(Hank’s solution), 링거 용액(Ringer’s solution) 또는 물리적으로 완충된 염수와 같은 완충 용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카르복시메틸셀룰로즈, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다.In one embodiment, the contrast agent composition according to the present invention may be prepared as an aqueous solution for parenteral administration, preferably a buffered solution such as Hanks' solution, Ringer's solution or physically buffered saline. Can be used. Aqueous injection suspensions may contain a substrate capable of increasing the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran.

본 발명의 조영제 조성물의 다른 바람직한 양태는 멸균 주사용 수성 또는 유성 현탁액의 멸균 주사용 제제의 형태일 수 있다. 이러한 현탁액은 적합한 분산제 또는 습윤제(예를 들면 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형화할 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사 용액 또는 현탁액(예를 들면 1,3-부탄디올 중의 용액)일 수 있다. 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링거 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 비휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 비휘발성 오일은 그 어느 것도 사용할 수 있다.Another preferred embodiment of the contrast agent composition of the present invention may be in the form of a sterile injectable preparation of a sterile injectable aqueous or oleaginous suspension. Such suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents (e. G., Tween 80) and suspending agents. Sterile injectable preparations may also be sterile injectable solutions or suspensions (eg solutions in 1,3-butanediol) in nontoxic parenterally acceptable diluents or solvents. Vehicles and solvents that may be used include mannitol, water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, nonvolatile oils are conventionally used as a solvent or suspending medium. For this purpose, any non-volatile oil including synthetic mono or diglycerides and less irritant may be used.

본 발명에 따른 조영제 조성물을 생체 또는 시료에 투여하고, 상기 생체 또는 시료로부터 자가형광성을 갖는 고분자 나노복합체에 의해 발산되는 신호를 감지하여 영상을 수득할 수 있다. The contrast agent composition according to the present invention may be administered to a living body or a sample, and an image may be obtained by sensing a signal emitted by the polymer nanocomposite having self-fluorescence from the living body or the sample.

상기에서 사용된 용어 “시료”는 진단하고자 하는 대상으로부터 분리한 조직 또는 세포를 의미한다. 또한 상기 조영제 조성물을 생체 또는 시료에 주입하는 단계는 의약 분야에서 통상적으로 이용되는 경로를 통해 투여될 수 있으며, 비경구 투여가 바람직하고 예를 들어 정맥내, 복강내, 근육내, 피하 또는 국부 경로를 통하여 투여할 수 있다.
The term "sample" as used above refers to tissue or cells isolated from a subject to be diagnosed. In addition, the step of injecting the contrast agent composition into a living body or a sample may be administered via a route commonly used in the pharmaceutical field, parenteral administration is preferred, for example, intravenous, intraperitoneal, intramuscular, subcutaneous or topical route. It can be administered through.

기타 용도Other uses

본 발명에 따른 자가형광성을 갖는 고분자 복합체는 생체 분자의 분리, 진단 또는 치료 등의 나노 표지자 (probe) 및 약물 또는 유전자 전달체 (delivery vehicle)등에 이용될 수 있다. The polymer complex having self-fluorescence according to the present invention can be used for nano-probe and drug or delivery vehicle such as separation, diagnosis or treatment of biological molecules.

예를 들어 본 발명의 고분자 나노복합체에 약제학적 활성성분이 결합 또는 봉입될 수 있다. 상기 약제학적 활성성분은 예를 들어, 항암제, 항생제, 호르몬, 호르몬길항제, 인터루킨, 인터페론, 성장 인자, 종양 괴사 인자, 엔도톡신, 림포톡시, 유로키나제, 스트렙토키나제, 조직 플라스미노겐 활성제, 프로테아제 저해제, 알킬포스포콜린, 방사선 동위원소로 표지된 성분, 심혈관계 약물, 위장관계 약물, 신경계 약물 등을 들 수 있으나 이에 제한되지 않음은 물론이다.
For example, a pharmaceutically active ingredient may be bound or encapsulated in the polymer nanocomposite of the present invention. The pharmaceutical active ingredient may be, for example, an anticancer agent, an antibiotic, a hormone, an antagonist, an interleukin, an interferon, a growth factor, a tumor necrosis factor, an endotoxin, a lymphokoxy, a urokinase, a streptokinase, a tissue plasminogen activator, a protease inhibitor, an alkyl. Phosphocholine, radioisotope labeled components, cardiovascular drugs, gastrointestinal drugs, nervous system drugs, and the like, but are not limited thereto.

자가형광성을Self-fluorescence 갖는 고분자 나노복합체의 제조방법 Method for producing a polymer nanocomposite having

다른 관점에서, 본 발명은 다음의 단계를 포함하는, 자가형광성을 나타내는 고분자 복합체의 제조방법을 제공한다(도 1). In another aspect, the present invention provides a method for producing a polymer composite exhibiting self-fluorescence, comprising the following steps (FIG. 1).

(a) 음이온성 고분자가 함유된 용액과 양이온성 고분자가 함유된 용액을 혼합하여, 고분자 나노복합체를 수득하는 단계; 및 (a) mixing a solution containing an anionic polymer and a solution containing a cationic polymer to obtain a polymer nanocomposite; And

(b) 상기 수득된 고분자 복합체에 알데하이드기를 포함하는 가교제를 첨가하여 반응함으로써, 자가형광성을 갖는 고분자 나노복합체를 수득하는 단계.(b) obtaining a polymer nanocomposite having self-fluorescence by adding and reacting a crosslinking agent including an aldehyde group to the obtained polymer composite.

앞서 설명한 바와 같이 기존 특허(US 20100143259)는 입자의 제조방법에 있어서 “Shirase Porous Glass membrane emulsification technique”이라는 특수한 기법을 이용하여 제조하였으며 입자의 크기 또한 0.2-2 ㎛ 정도로 그 활용분야가 제한적일 수밖에 없었다. As described above, the existing patent (US 20100143259) was manufactured by using a special technique called “Shirase Porous Glass membrane emulsification technique” in the method of preparing the particles, and the size of the particles was also limited to 0.2-2 μm.

그러나, 본 발명에 따르면 자가형광성을 나타내는 고분자 복합체를 양이온성 고분자와 음이온성 고분자를 이용하여 보다 쉽고 재현성 있게 제조할 수 있다. 또한, 본 발명은 이온성 고분자의 이온성 자기조립을 통해 수용액상에서 입자형성을 유도하기 때문에 100-200nm 크기의 비교적 균일한 입자를 손쉽게 얻을 수 있다는 장점이 있다.However, according to the present invention, a polymer composite showing self-fluorescence can be prepared more easily and reproducibly using a cationic polymer and an anionic polymer. In addition, the present invention has the advantage that it is easy to obtain a relatively uniform particles of 100-200nm size induce particle formation in the aqueous solution through ionic self-assembly of the ionic polymer.

상기 (a) 단계에서 고분자 나노복합체는 양 고분자간의 정전기적 인력을 이용하여 분자 사이를 응집시키는 것이므로 음이온성 고분자와 양이온성 고분자를 각각 포함하는 용액을 상호 혼합함으로써 용이하게 제조될 수 있다. 반응 조건은 특별히 제한되지 않으며, 고분자의 종류에 따라 적절히 조절할 수 있다. 반응은 실온의 온도에서 형성될 수 있으며 고분자용액을 교반하면서 혼합하는 것이 바람직하다.In the step (a), since the polymer nanocomposite aggregates between molecules by using electrostatic attraction between both polymers, the polymer nanocomposite may be easily prepared by mutually mixing a solution containing an anionic polymer and a cationic polymer, respectively. The reaction conditions are not particularly limited and may be appropriately adjusted depending on the type of polymer. The reaction can be formed at room temperature and it is preferable to mix the polymer solution with stirring.

상기 (b) 단계의 반응조건에 따라 균일한 크기 및 형상의 나노입자를 형성할 수 있다. 이때 음이온성 고분자와 양이온성 고분자 물질의 양은 1:1.8 의 무게비율로 양이온성 고분자 물질이 과량 들어가는 것이 바람직하며 이때 입자의 크기는 100-200nm 정도로 균일한 입자가 제조된다. According to the reaction conditions of step (b) it can form a nanoparticle of a uniform size and shape. In this case, the amount of the anionic polymer and the cationic polymer is preferably 1: 1.8 by weight, and the cationic polymer is contained in an excessive amount. At this time, the particles have a uniform size of about 100-200 nm.

상기 b) 단계에서 제조된 나노입자는 생체 환경에 적용하기 위해서 폴리에틸렌글리콜로 페길화(PEGylation)될 수 있다. 폴리에틸렌 글리콜로 고분자 나노복합체를 페길화함으로써 나노 입자의 표면의 친수성이 증가되며 병원균, 노폐물 및 외부 유입 물질을 포식하고 소화시키는 인체 내 탐식세포(macrophage) 등을 포함하는 면역 기능으로부터의 인식을 방지하는 소위 스텔스 효과(stealth effect)에 의한 신체 내에서의 빠른 분해가 방지될 수 있다. 따라서 상기 페길화에 의하여 혈중 체류시간이 향상될 수 있다. 또한, 상기와 같이 폴리에틸렌 글리콜로 페길화된 고분자 나노복합체의 경우, 기존의 폴리에틸렌 글리콜로 페길화되지 않은 나노 입자와는 달리 간으로의 축적이 감소된다는 이점이 있어, 항암제 등을 봉입하여 약물 전달 조성물로 사용할 수 있다는 장점이 있다. 페길화는 당 업계에 공지된 방법으로 수행할 수 있다. 사용되는 폴리에틸렌 글리콜은 바람직하게는 100 내지 5,000사이의 분자량을 가지며, 선형 혹은 가지형 등의 다양한 구조를 가질 수 있다.
The nanoparticles prepared in step b) may be PEGylated (PEGylation) with polyethylene glycol for application to the living environment. PEGylating the polymer nanocomposites with polyethylene glycol increases the hydrophilicity of the surface of the nanoparticles and prevents recognition from immune functions, including macrophage in the human body that preys and digests pathogens, waste products and foreign influx. Rapid decomposition in the body by the so-called stealth effect can be prevented. Therefore, the retention time in the blood can be improved by the PEGylation. In addition, the polymer nanocomposite PEGylated with polyethylene glycol as described above, unlike the conventional nanoparticles not PEGylated with polyethylene glycol has the advantage that the accumulation in the liver is reduced, the drug delivery composition by enclosing an anticancer agent, etc. It can be used as an advantage. PEGylation can be carried out by methods known in the art. The polyethylene glycol used preferably has a molecular weight between 100 and 5,000, and may have various structures such as linear or branched.

본 발명에서 제조된 나노복합체는 당 업계에 공지된 수단을 통하여 분리 및 정제할 수 있다. 상기 방법의 예로는 일반적으로 침전물로 생성되는 나노복합체를 원심분리 또는 여과를 이용하여 분리하는 방법을 들 수 있다.
Nanocomposites prepared in the present invention can be separated and purified by means known in the art. An example of the method may be a method of separating the nanocomposites generally produced as precipitates by centrifugation or filtration.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

재료 및 시약Materials and reagents

분자량이 500kDa의 폴리감마글루탐산(γPGA)((주)바이오리더스, 한국), 분자량 15-30kDa의 폴리엘라이신(Sigma-aldrich, 미국), 50% 글루타르알데하이드 (Sigma-aldrich, 미국), PEG-NHS((주)선바이오, 한국)을 준비하였다.
Polygamma glutamic acid (γPGA) with a molecular weight of 500 kDa (Bio Leaders, Korea), polylysine (Sigma-aldrich, USA) with a molecular weight of 15-30 kDa, 50% glutaraldehyde (Sigma-aldrich, USA), PEG -NHS (Sunbio, Korea) was prepared.

<1-1> 폴리감마글루탐산 PGA )/ 폴리엘라이신 ( PLL ) 이온성 결합 복합체 형성 <1-1> Polygammaglutamic Acid PGA ) / Polylysine ( PLL ) Ionic Binding Complex Formation

폴리감마글루탐산은 10㎎/㎖ 농도로 물에 녹인다. 폴리엘라이신은 18㎎/㎖ 농도로 물 10㎖에 녹인 후, 이를 600rpm속도로 교반하면서 파이펫을 이용하여 실시예 1-2에서 준비한 폴리글루탐산 용액 1㎖를 빠르게 첨가한 후, 2시간 동안 교반한다. 교반 후, 10㎕의 글루타르알데히드(glutaraldehyde)를 첨가하여 1시간 동안 더 교반하였다.
Polygamma glutamic acid is dissolved in water at a concentration of 10 mg / ml. Polylysine was dissolved in 10 ml of water at a concentration of 18 mg / ml, and then rapidly added 1 ml of the polyglutamic acid solution prepared in Example 1-2 using a pipette while stirring at 600 rpm, followed by stirring for 2 hours. do. After stirring, 10 μl of glutaraldehyde was added and the mixture was further stirred for 1 hour.

<1-2> <1-2> 폴리감마글루탐산Polygamma Glutamic Acid PGAPGA )/) / 폴리엘라이신Polylysine (( PLLPLL ) 이온성 결합 복합체의 PEGlyation 및 ) PEGlyation of ionic binding complexes crosslinkingcrosslinking

상기 실시예 1-2에서 준비한 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합 복합체 용액에 10㎕의 글루타르알데히드(glutaraldehyde)를 첨가하여 12시간 동안 더 교반한 후, 0.8㎛ 필터로 걸러낸다. 상기 실시예 1-3에서 준비한 가교된 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합 복합체 용액 10㎖에 PEG-NHS를 250㎎ 첨가하고 600rpm 속도로 12시간 교반하였다. 반응하지 않은 고분자 물질과 NHS를 제거하기 위하여, 5000rpm으로 15분 정도 원심분리하고, 상층액을 버리고 침전물을 3차 증류수에 재분산 시킨 뒤, 한 번 더 원심분리하여 정제하였다. 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합 복합체의 크기는 DLS와 SEM으로 관찰하였고 그 결과를 도 2에 나타내었다. 10 μl of glutaraldehyde was added to the polygammaglutamic acid (γPGA) / polylysine (PLL) ionic binding complex solution prepared in Example 1-2, followed by further stirring for 12 hours, followed by a 0.8 μm filter. Filter it out. 250 mg of PEG-NHS was added to 10 ml of the crosslinked polygammaglutamic acid (γPGA) / polylysine (PLL) ionic binding complex solution prepared in Example 1-3 and stirred at 600 rpm for 12 hours. In order to remove the unreacted polymer material and NHS, centrifugation was performed at 5000 rpm for about 15 minutes, the supernatant was discarded, the precipitate was redispersed in tertiary distilled water, and then purified once more by centrifugation. The size of the polygammaglutamic acid (γPGA) / polyElysine (PLL) ionic binding complex was observed by DLS and SEM and the results are shown in FIG.

도 2에서 DLS로 측정한 입자의 크기는 100~200㎚의 분포도를 나타내고 있음을 확인할 수 있었다 (도 2a). SEM을 통해 입자의 표면 형상과 크기를 관찰한 결과, DLS에서 측정된 크기와 비슷한 100~200㎚정도의 구형의 입자를 관찰할 수 있었다 (도 2b). 이는 인체 내에 주입시켰을 때 EPR(enhanced permeation and retention) 효과에 적합한 크기로 비정상 조직으로의 표적지향적인 특성을 지닌다.
It was confirmed that the size of the particles measured by DLS in Figure 2 shows a distribution of 100 ~ 200nm (Fig. 2a). As a result of observing the surface shape and size of the particles through the SEM, it was possible to observe the spherical particles of about 100 ~ 200nm similar to the size measured in the DLS (Fig. 2b). When injected into the body, it has a target-oriented characteristic to abnormal tissue in a size suitable for the enhanced permeation and retention (EPR) effect.

폴리감마글루탐산Polygamma Glutamic Acid PGAPGA )/) / 폴리엘라이신Polylysine (( PLLPLL ) 이온성 결합 복합체의 활성 측정) Determination of Activity of Ionic Binding Complexes

<2-1> <2-1> 폴리감마글루탐산Polygamma Glutamic Acid PGAPGA )/) / 폴리엘라이신Polylysine (( PLLPLL ) 이온성 결합 복합체의 ) Of ionic binding complex 자가형광Autofluorescence 특성 characteristic

상기의 실시예 1-2에서 준비한 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체 용액의 형광특성을 형광스펙트로미터와 CCD 카메라를 이용하여 관찰해보았다(도 3 및 도 4). 또한 실시예 1-2에서 준비한 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합 복합체 용액의 pH를 9로 올린 후, NaBH4 powder를 질량비로 10% 첨가하여 12시간 교반시킨 후 다시 형광을 측정해 보았다(도 5).The fluorescence characteristics of the polygammaglutamic acid (γPGA) / polylysine (PLL) ionic complex conjugate solution prepared in Example 1-2 were observed using a fluorescence spectrometer and a CCD camera (FIGS. 3 and 4). . In addition, after raising the pH of the polygamma glutamic acid (γPGA) / polylysine (PLL) ionic binding complex solution prepared in Example 1-2 to 9, NaBH 4 powder was added by 10% by mass ratio and stirred for 12 hours. Fluorescence was measured (FIG. 5).

도 3에서 자가형광 고분자 나노입자 복합체를 형광스펙트로미터로 분석했을 때, 다양한 파장의 빛으로 여기시켰을 때 530nm에서 최대값을 가지는 형광 방출 스펙트럼을 관찰할 수 있었다.In FIG. 3, when the autofluorescent polymer nanoparticle composite was analyzed with a fluorescence spectrometer, the fluorescence emission spectrum having a maximum value at 530 nm was observed when excited with light of various wavelengths.

도 4에서 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체를 PLGA나 폴리스타이렌 나노입자들과 비교하여 특수 카메라로 형광이미지를 살펴본 결과 다양한 파장대의 빛을 흡수하여 넓은 파장범위에서 형광이미지를 관찰할 수 있었다. In FIG. 4, when comparing the polygamma glutamic acid (γPGA) / polylysine (PLL) ionic complex with PLGA or polystyrene nanoparticles, the fluorescence image was examined with a special camera and absorbed light in various wavelengths, thereby fluorescence in a wide wavelength range. The image could be observed.

도 5에서 NaBH4 와 반응 후에는 대부분의 Schiff’s base가 환원되어 형광 세기가 급격하게 줄어드는 것을 확인할 수 있다. NaBH4은 시프염기를 환원시켜 자가형광을 억제시키는 물질로 알려져 있다. (P. Tagliaferro. et al , Journal of Neuroscience Methods; 77:191-197, Wei Wei. et al . Advanced functional materials; 17:3153-3158, 2007)
After the reaction with NaBH 4 in Figure 5 it can be seen that most of the Schiff's base is reduced to decrease the fluorescence intensity rapidly. NaBH 4 is known as a substance that suppresses autofluorescence by reducing the base base. (P. Tagliaferro. Et al , Journal of Neuroscience Methods ; 77: 191-197, Wei Wei. meat al . Advanced functional materials ; 17: 3153-3158, 2007)

<2-2> <2-2> 폴리감마글루탐산Polygamma Glutamic Acid PGAPGA )/) / 폴리엘라이신Polylysine (( PLLPLL ) 나노입자 복합체 세포 ) Nanoparticle Complex Cell 라벨링Labeling 특성 characteristic

실시예 1-2에서 제조한 나노입자 복합체를 암세포인 HeLa 세포내로 전달하는 실험을 실시하였다. 입자는 36㎍/㎖ 농도로 처리한 후, 형광 현미경으로 세포 라벨링 정도를 관찰하였다. 또한 입자를 다양한 농도(2.25, 9, 36㎍/㎖)로 처리한 후 FACS 분석을 통해 라벨링 효율도 분석하였다.An experiment was carried out to deliver the nanoparticle complex prepared in Example 1-2 into HeLa cells, which are cancer cells. Particles were treated at a concentration of 36 μg / ml, and the degree of cell labeling was observed under a fluorescence microscope. In addition, the particles were treated at various concentrations (2.25, 9, 36 ㎍ / ㎖) and the labeling efficiency was analyzed by FACS analysis.

도 6에서 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체를 세포에 처리하여 형광이미지를 관찰한 결과, 효과적으로 세포를 표지하여 다양한 파장대에서 형광이 관찰되었다 (도 6a). 이렇게 표지된 세포를 FACS로 분석한 결과 처리해 준 폴리감마글루탐산(γPGA)/폴리엘라이신(PLL) 이온성 결합복합체의 농도가 증가함에 따라 형광세기가 증가하는 경향을 확인하였다.
In FIG. 6, the cells were treated with polygammaglutamic acid (γPGA) / polylysine (PLL) ionic binding complexes to observe fluorescence images. As a result, the cells were effectively labeled with fluorescence at various wavelengths (FIG. 6A). As a result of analyzing the labeled cells by FACS, it was confirmed that the fluorescence intensity tended to increase as the concentration of the treated polygamma glutamic acid (γPGA) / polylysine (PLL) ionic complex was increased.

이상으로, 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present disclosure have been described in detail, and for those skilled in the art, these specific descriptions are merely preferred embodiments, and the scope of the present disclosure is not limited thereto. Will be obvious. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (7)

음이온성 고분자와 양이온성 고분자가 이온결합된 고분자 나노복합체들이 알데하이드기를 포함하는 가교제에 의해 가교되어 자가형광 특성을 나타내는, 자가형광성을 갖는 고분자 나노복합체.A polymer nanocomposite having self-fluorescence, wherein the polymer nanocomposites in which anionic polymers and cationic polymers are ion-bonded are crosslinked by a crosslinking agent containing an aldehyde group to exhibit self-fluorescence characteristics. 제1항에 있어서,
상기 음이온성 고분자는 폴리글루탐산(Polyglutamic acid), 폴리아크릴산(Polyacrylic acid), 알긴산(Alginate), 카라기난(Carrageenan), 히알루론산(Hyaluronic acid), 폴리스타이렌술폰산염(Poly(styrene sulfonate)), 카복시메틸셀룰로스(Carboxymethylcellulose), 셀룰로오스황산염(Cellulose sulfate), 덱스트란황산염(Dextran sulfate), 헤파린(Heparin), 헤파린황산염(Heparin sulfate), 폴리메틸렌코구아니딘(Poly(methylene-co-guanidine)), 콘드로이틴황산염(Condroitin sulfate) 및 이들의 복합체로 구성된 군에서 선택되는 1 또는 2종 이상인 것을 특징으로 하는, 자가형광성을 갖는 고분자 나노복합체.
The method of claim 1,
The anionic polymer is polyglutamic acid, polyacrylic acid, alginate, carrageenan, hyaluronic acid, polystyrene sulfonate, carboxymethylcellulose (Carboxymethylcellulose), cellulose sulfate, dextran sulfate, heparin, heparin sulfate, polymethylene-co-guanidine, condroitin sulfate sulfate) and one or two or more kinds selected from the group consisting of these complexes, the polymer nanocomposite having self-fluorescence.
제1항에 있어서,
상기 양이온성 고분자는 키토산(Chitosan), 폴리에틸렌이민(Poly(ethylenimine), 폴리엘라이신(Poly(L-lysine)), 폴리알릴아민(Poly(allylamine)), 폴리오르니틴(Poly-ornithine), 폴리비닐아민염산염(Poly(vinylamine)hydrochloride), 폴리아미도아마인(Poly(amido amine)), 덴드리머(dendrimer), 젤라틴(Gelatin) 및 이들의 복합체로 구성된 군에서 선택되는 1 또는 2종 이상인 것을 특징으로 하는, 자가형광성을 갖는 고분자 나노복합체.
The method of claim 1,
The cationic polymer is chitosan, polyethyleneimine, polylysine, polyallylamine, poly-ornithine, poly-ornithine, poly It is characterized in that one or more selected from the group consisting of poly (vinylamine) hydrochloride, poly (amido amine), dendrimer (dendrimer), gelatin (Gelatin) and a complex thereof A polymer nanocomposite having self fluorescence.
제1항에 있어서,
상기 알데하이드기를 포함하는 가교제는 글루타르알데하이드, 글리옥살(glyoxal), 말론알데하이드(malonaldehyde), 숙신다이알데하이드(succindialdehyde), 테레프탈알데하이드(terephthalaldehyde), 포름알데하이드(formadehyde), 아세트알데하이드(acetaldehyde), 프로피온알데하이드(propionaldehyde), 부틸알데하이드(butyraldehyde), 벤즈알데하이드(benzaldehyde), 시남알데하이드(cinnamaldehyde), 4-메틸벤즈알데하이드(4-Methylbenzaldehyde), 푸르푸랄(furfural) 계열의 물질, 아민기를 포함하는 양이온성 고분자와 Schiff base(C=N) 결합을 유도할 수 있는 반응기를 포함하는 물질, 및 이들의 복합체로 구성된 군에서 선택되는 1 또는 2종 이상인 것을 특징으로 하는, 자가형광성을 갖는 고분자 나노복합체.
The method of claim 1,
The cross-linking agent including the aldehyde group, glutaraldehyde, glyoxal, malonaldehyde, mal aldehyde, succindialdehyde, terephthalaldehyde, formaldehyde, acetaldehyde, propionaldehyde (propionaldehyde), butylaldehyde (butyraldehyde), benzaldehyde (benzaldehyde), cinnamaldehyde (cinnamaldehyde), 4-methylbenzaldehyde (4-Methylbenzaldehyde), furfural-based materials, cationic polymer containing an amine group and A material comprising a reactor capable of inducing Schiff base (C = N) bonds, and polymer nanocomposites having one or two or more selected from the group consisting of these.
제1항에 있어서,
입자 크기가 100-200nm이고, 페길화(PEGylation)된 것을 특징으로 하는, 자가형광성을 갖는 고분자 나노복합체.
The method of claim 1,
Particle size is 100-200nm, PEGylated (PEGylation), characterized in that the self-fluorescence polymer nanocomposite.
제1항 내지 제5항 중 어느 한 항에 따른 자가형광성을 갖는 고분자 나노복합체 및 약제학적으로 허용되는 담체를 포함하는 조영제 조성물.A contrast agent composition comprising a polymer nanocomposite having self-fluorescence according to any one of claims 1 to 5 and a pharmaceutically acceptable carrier. 다음의 단계를 포함하는, 제1항에 따른 자가형광성을 나타내는 고분자 복합체의 제조방법:
(a) 음이온성 고분자가 함유된 용액과 양이온성 고분자가 함유된 용액을 혼합하여, 고분자 나노복합체를 수득하는 단계; 및
(b) 상기 수득된 고분자 나노복합체에 알데하이드기를 포함하는 가교제를 첨가하여 반응함으로써, 자가형광성을 갖는 고분자 나노복합체를 수득하는 단계.
A method for producing a polymer composite exhibiting autofluorescence according to claim 1 comprising the following steps:
(a) mixing a solution containing an anionic polymer and a solution containing a cationic polymer to obtain a polymer nanocomposite; And
(b) obtaining a polymer nanocomposite having self-fluorescence by adding a crosslinking agent including an aldehyde group to the obtained polymer nanocomposite.
KR1020110102541A 2011-10-07 2011-10-07 Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same KR101316288B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110102541A KR101316288B1 (en) 2011-10-07 2011-10-07 Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110102541A KR101316288B1 (en) 2011-10-07 2011-10-07 Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20130037955A true KR20130037955A (en) 2013-04-17
KR101316288B1 KR101316288B1 (en) 2013-10-08

Family

ID=48438776

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110102541A KR101316288B1 (en) 2011-10-07 2011-10-07 Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR101316288B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027577A (en) * 2014-09-01 2016-03-10 한국교통대학교산학협력단 Fluorescent nanoparticle using dehydration of oranicpolymer and method for preparing the fluorescent nanoparticle
KR20180105474A (en) * 2017-03-15 2018-09-28 전북대학교산학협력단 Hybrid anticancer prodrug for creating cinnamaldehyde or cinnamic acid, and method for preparing the same
CN115040495A (en) * 2019-11-04 2022-09-13 四川大学 Oral nano drug delivery system mediated by small molecular nutrient substances

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148511B (en) 2006-09-18 2010-10-20 中国科学院过程工程研究所 Method for preparing fluorescent chitosan micro-sphere and application of the same in tracer field
KR100862973B1 (en) 2007-06-28 2008-10-13 연세대학교 산학협력단 Cationic magnetic nanocomposite for magnetic targeted drug delivery and contrast agent
KR101074026B1 (en) * 2008-10-01 2011-10-17 한국과학기술연구원 A constrast medium comprising amphiphilic hyaluronic acid-based nanoparticles binded a near-infrared fluorochrome for diagnosing tumor
KR101127402B1 (en) * 2009-04-30 2012-06-12 한국과학기술연구원 Pegylated amphiphilic polymeric nanoparticles abd uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027577A (en) * 2014-09-01 2016-03-10 한국교통대학교산학협력단 Fluorescent nanoparticle using dehydration of oranicpolymer and method for preparing the fluorescent nanoparticle
KR20180105474A (en) * 2017-03-15 2018-09-28 전북대학교산학협력단 Hybrid anticancer prodrug for creating cinnamaldehyde or cinnamic acid, and method for preparing the same
CN115040495A (en) * 2019-11-04 2022-09-13 四川大学 Oral nano drug delivery system mediated by small molecular nutrient substances
CN115040495B (en) * 2019-11-04 2024-03-15 四川大学 Oral nanometer drug delivery system mediated by small molecule nutrient substances

Also Published As

Publication number Publication date
KR101316288B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
Yang et al. Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules
Zhang et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging
Yao et al. Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy
JP4920056B2 (en) Protein complex excellent in cancer targeting and method for producing the same
US20110158901A1 (en) Chitosan-based nanoparticles and methods for making and using the same
US20080171351A1 (en) Probes for anionic cell surface detection
Gong et al. Bioapplications of renal-clearable luminescent metal nanoparticles
US20130108552A1 (en) Near-ir indocyanine green doped multimodal silica nanoparticles and methods for making the same
US20150258219A1 (en) Electrostatic-bonding-type vesicle including metal microparticles
Liu et al. Microwave-assisted one-step rapid synthesis of near-infrared gold nanoclusters for NIRF/CT dual-modal bioimaging
AU2015205350B2 (en) Magnetic nanoparticles functionalized with cathecol, production and use thereof
Wei et al. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging
KR101316288B1 (en) Self-fluorescent Polymeric Nano-Complex, Contrast Agent Composition Containing the Same and Method for Preparing the Same
CN110559454B (en) Nano composite medicine for diagnosing and treating Alzheimer&#39;s disease
KR101177173B1 (en) ICG Doped Silica Nanoparticles for Biological Imaging and Production Method Thereof
KR101717010B1 (en) Nanoparticle sensitive to bioenvironment comprising poly(amino acid) for early diagnosis or treatment of cancers
Ramalingam et al. Green light-emitting BSA-conjugated dye supported silica nanoparticles for bio-imaging applications
Cui et al. Biodistribution of arctigenin-loaded nanoparticles designed for multimodal imaging
Yao et al. Multifunctional ferritin nanocages for bimodal imaging and targeted delivery of doxorubicin into cancer cells
Gulati et al. Nanomedicine: Potential devices for diagnostics
CN111687428A (en) Amphiphilic polymer mediated gold nanoparticle controllable assembly and preparation and application thereof
Cheng et al. Biotin-Conjugated Upconversion KMnF3/Yb/Er Nanoparticles for Metabolic Magnetic Resonance Imaging of the Invasive Margin of Glioblastoma
CN109679093B (en) Compound, preparation method and application thereof
Sabouri et al. Recent advances of aggregation-induced emission nanoparticles (AIE-NPs) in biomedical applications
Prabha et al. Inorganic Nanoparticles for Bioimaging Applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180921

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190926

Year of fee payment: 7