KR20130032093A - Method for carbon dioxide solidification - Google Patents
Method for carbon dioxide solidification Download PDFInfo
- Publication number
- KR20130032093A KR20130032093A KR20110095789A KR20110095789A KR20130032093A KR 20130032093 A KR20130032093 A KR 20130032093A KR 20110095789 A KR20110095789 A KR 20110095789A KR 20110095789 A KR20110095789 A KR 20110095789A KR 20130032093 A KR20130032093 A KR 20130032093A
- Authority
- KR
- South Korea
- Prior art keywords
- carbon dioxide
- slag
- calcium
- carbonate
- solution
- Prior art date
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 56
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000007711 solidification Methods 0.000 title 1
- 230000008023 solidification Effects 0.000 title 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 62
- 239000002893 slag Substances 0.000 claims abstract description 46
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 45
- 239000011575 calcium Substances 0.000 claims abstract description 44
- 239000000243 solution Substances 0.000 claims abstract description 42
- 238000000605 extraction Methods 0.000 claims abstract description 35
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 30
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 26
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 26
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 25
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 24
- 239000002904 solvent Substances 0.000 claims abstract description 17
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 7
- 238000010979 pH adjustment Methods 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical group [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 20
- 235000019270 ammonium chloride Nutrition 0.000 claims description 10
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 6
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 6
- 239000005695 Ammonium acetate Substances 0.000 claims description 6
- 229940043376 ammonium acetate Drugs 0.000 claims description 6
- 235000019257 ammonium acetate Nutrition 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 6
- 239000003002 pH adjusting agent Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000013049 sediment Substances 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 abstract description 22
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 7
- 239000011707 mineral Substances 0.000 abstract description 7
- 239000002244 precipitate Substances 0.000 abstract description 6
- 239000007787 solid Substances 0.000 abstract description 2
- 238000003763 carbonization Methods 0.000 abstract 2
- 238000001914 filtration Methods 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 238000009628 steelmaking Methods 0.000 description 5
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/181—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
본 발명은 이산화탄소 탄산염 고정화 방법에 관한 것으로서, 더욱 상세하게는 철강슬래그에서 칼슘만을 선택적으로 용액상태로 추출하여 기체상 이산화탄소와 반응시켜 탄산염 침전물로 고정시키는 방법에 관한 것이다.
The present invention relates to a method of immobilizing carbon dioxide carbonate, and more particularly, to a method of extracting only calcium from steel slag in solution and reacting with gaseous carbon dioxide to fix the carbonate precipitate.
최근 지구온난화로 인해 이산화탄소 배출권 거래가격이 계속 상승하고 있어, 각국의 이산화탄소 감축에 많은 노력을 기울이고 있는 실정에 있고, 따라서 이산화탄소의 배출을 줄이고, 탄산염으로 고정하여 재사용 한다는 것은 자원효율성 측면에서 매우 중요하다 하겠다.Due to the recent global warming, the trading price of carbon dioxide emission rights continues to rise, and many countries are making efforts to reduce carbon dioxide. Therefore, reducing carbon dioxide emissions and fixing them with carbonates is very important in terms of resource efficiency. would.
기존의 철강슬래그 또는 자연광물을 이용한 이산화탄소 탄산염 고정방법은 칼슘(Ca) 등의 알칼리 금속 성분을 추출하기 위해 아세트산을 추출 용매로 사용하였는데, 아세트산의 Ca 추출율은 다른 용매와 비교시 99% 정도로 높기 때문에 전체 이산화탄소 고정량을 최대화할 수 있는 장점이 있지만, 대량 사용 시 후각 자극성이 강하여 다루기가 힘들고, Ca 성분 뿐만 아니라 슬래그의 기타 다른 성분까지 용출되어, 탄산염 전환 반응 시 많은 불순물도 함께 침전되는 문제가 있고, 또한 탄산염 전환반응을 위해 pH 4에서 pH 12 까지 올리는데 pH조정제로써 NaOH를 대량 첨가해야 함으로 추가비용이 소요되며, NaOH사용은 소석회(Ca(OH)2)를 과다 생성하여 부유물질이 발생하기 때문에 Ca의 CaCO3 로의 전환을 방해하고, 추가 정제작업이 많이 필요할 만큼 전환된 탄산칼슘의 순도도 낮아 경제성이 낮아지는 단점이 있다.In the conventional method of fixing carbon dioxide carbonate using steel slag or natural mineral, acetic acid was used as an extraction solvent to extract alkali metal components such as calcium (Ca). Since the Ca extraction rate of acetic acid is about 99% higher than that of other solvents, Although it has the advantage of maximizing the total amount of carbon dioxide fixed, it is difficult to handle due to strong olfactory irritation in large quantities, eluting not only Ca component but other components of slag, and also causing many impurities to precipitate together in the carbonate conversion reaction. In addition, additional cost is required to increase the pH from pH 4 to pH 12 for the carbonate conversion reaction, since NaOH must be added in a large amount, and the use of NaOH results in excessive generation of hydrated lime (Ca (OH) 2 ). the disturbance of the Ca conversion to CaCO 3 in and switch as an additional purification operations require a lot of carbonated knife There is also the disadvantage that pure economics are less low.
즉, 종래에는 칼슘과 마그네슘 등의 알칼리 성분을 함유한 철강 슬래그에서 칼슘과 마그네슘을 용액상태로 추출하여 기체상 이산화탄소와 반응시켜 탄산칼슘(CaCO3), 탄산마그네슘(MgCO3) 등의 탄산염으로 고정시키는 방법에 있어서, 기존의 아세트산 사용시 추출용액의 pH 4에서 탄산염 전환시에 필요한 pH 12 로 조정하기 위해서 매우 많은 양의 NaOH 첨가가 필요하고, 이는 전체 이산화탄소 고정 비용의 50 % 이상을 차지하기 때문에 많은 비용소모가 발생하는 문제점이 있다.That is, in the related art, calcium and magnesium are extracted from a steel slag containing alkali components such as calcium and magnesium in a solution state and reacted with gaseous carbon dioxide and fixed with carbonates such as calcium carbonate (CaCO 3 ) and magnesium carbonate (MgCO 3 ). In the process, a very large amount of NaOH is added to adjust the pH of the extraction solution to pH 12 required for the conversion of carbonate using acetic acid, which accounts for more than 50% of the total carbon dioxide fixed cost. There is a problem that cost is generated.
종래기술의 일례로서, 미국 공개특허(20110139628A1)에는 부산물과 산업 폐기물을 이용한 탄산칼슘 제조방법으로서, 알칼리 산업폐기물 또는 부산물을 이용하여 탄산칼슘을 제조하면서 바나듐과 같은 유가 성분까지 순차적으로 추출하는 방법이 개시되어 있는 바, 슬래그를 암모늄염 종류를 사용하여 칼슘을 용해 추출하고, 탄산화 반응시켜 탄산칼슘을 얻거나, 또는 칼슘 추출 후 바나듐과 같은 원소의 재추출을 한 뒤 탄산화 반응을 하는 과정을 특징으로 하지만, 일반적으로 pH에 따라 탄산화 반응이 일어나는데 여기엔 반응 중 pH 변화에 대한 언급이 없으며, pH 조정과정이 없기 때문에 탄산칼슘 침전에 있어 반응 구간이 불분명한 문제점이 있다.As an example of the prior art, US Patent Publication (20110139628A1) discloses a method for producing calcium carbonate using by-products and industrial wastes, and a method of sequentially extracting valuable components such as vanadium while preparing calcium carbonate using alkaline industrial waste or by-products. As described above, the slag is characterized by a process of dissolving and extracting calcium using an ammonium salt type and carbonizing to obtain calcium carbonate, or carbonizing reaction after re-extracting an element such as vanadium after calcium extraction. In general, there is no mention of pH change during the reaction, and there is no clear reaction section for calcium carbonate precipitation because there is no mention of pH change during the reaction.
종래기술의 다른 예로서, 일본 공개특허(20050097072)에는 탄산 가스를 포함한 기체를 물과 알칼리토류 금속 함유 물질(천연 광물 또는 제철공정 또는 제강 공정 철강 슬래그)을 약염기와 강산의 염(염화암모늄 또는 질산암모늄)에 접촉시켜 알칼리 토류 금속의 탄산염을 생성시키는 탄산 가스의 고정화 방법이 개시되어 있는 바, 상온 및 상압에서의 공정이 아니며, 마찬가지로 과정 중 pH 에 대한 언급 및 pH 조정 과정이 없으며, pH 변화에 따른 탄산칼슘 회수를 위한 반응 구간이 불명확한 문제점이 있다.As another example of the prior art, Japanese Laid-Open Patent Publication (20050097072) discloses a gas containing carbonic acid gas as water and an alkaline earth metal-containing material (natural mineral or steelmaking or steelmaking steel slag) with a weak base and a salt of strong acid (ammonium chloride or nitric acid). Ammonium) is a method of immobilization of carbonic acid gas to produce carbonates of alkaline earth metals, which is not a process at room temperature and pressure, and likewise there is no mention of pH and pH adjustment during the process. There is an unclear problem in the reaction section for the recovery of calcium carbonate.
종래기술의 또 다른 예로서, 공개특허(10-2009-0033353)에는 석회계 부산물을 이용한 탄산칼슘 제조방법 즉, 제철공정에서 발생되는 석회계 부산물을 이용하여 대량 저가의 상용화 생산이 가능한 고품질의 침강성 탄산칼슘을 제조하는 방법에 관한 것으로, 석회계 부산물 100 중량부 기준 0.01~10.0 중량부의 칼슘이온 용출용 첨가제와 0.01~3.0 중량부의 침강제를 선택하여 pH 9 가 될 때까지 반응시키는 탄산화 과정과 이를 종료한 후 침강된 탄산칼슘을 수거하는 과정이 제안된 바 있지만, 원료로 사용된 석회계 부산물에 비해 첨가제로 사용된 염화 암모늄이 0.014 mol%로 비교적 저농도이기 때문에 Ca 추출율이 낮아 최종 회수되는 탄산칼슘의 양이 비교적 적다는 단점이 있고, 또한 pH 12~13에서 pH 9 로 떨어졌을 때 pH 유지를 위해 반응을 종료해야 하기 때문에, 회수되는 탄산칼슘 양이 제한적인 문제점이 있다.
As another example of the prior art, Korean Patent Publication (10-2009-0033353) discloses a method for producing calcium carbonate using lime-based by-products, that is, high-quality sedimentation, which enables commercialization and production at a low cost using a lime-based by-product generated in a steelmaking process. The present invention relates to a method for preparing calcium carbonate, wherein a carbonation process of selecting 0.01 to 10.0 parts by weight of calcium ion elution additive and 0.01 to 3.0 parts by weight of a precipitation agent based on 100 parts by weight of lime-based byproducts and reacting it to pH 9 and Although the process of collecting precipitated calcium carbonate after the completion of the process has been proposed, since the concentration of ammonium chloride used as an additive is relatively low at 0.014 mol%, compared to the lime-based by-product used as a raw material, the Ca extraction rate is low due to the low Ca extraction rate. There is a disadvantage in that the amount of is relatively small, and when the pH is dropped from pH 12 to 13 to 9, the reaction must be terminated to maintain the pH. There is a problem that the amount of calcium carbonate is limited.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 철강슬래그 또는 자연광물을 이용하여 이산화탄소를 광물상인 탄산염으로 안정하게 고정/전환시키는 방법에 있어서, 철강슬래그 등으로부터 칼슘만을 선택적으로 용액상태로 추출하여 기체상 이산화탄소와 반응시켜 탄산염 침전물로 고정시킴으로써, 제철 부산물 및 자연광물을 이용하여 이산화탄소를 저감시키는 동시에 침전물인 탄산칼슘을 효과적으로 생성할 수 있도록 한 이산화탄소 탄산염 고정화 방법을 제공하는데 그 목적이 있다.
The present invention has been made in view of the above, in a method for stably fixing / converting carbon dioxide to mineral carbonate using steel slag or natural mineral, selectively extracting only calcium from the steel slag in solution The present invention aims to provide a carbon dioxide carbonate immobilization method that can react with gaseous carbon dioxide and fix the carbonate precipitate, thereby effectively reducing the carbon dioxide by using seasonal by-products and natural minerals, and at the same time producing calcium carbonate as a precipitate.
상기한 목적을 달성하기 위한 본 발명은 원료 슬래그에 추출용매로서 암모늄 염 용매를 공급하되, 슬래그 100g 에 8~9 wt%의 농도인 고농도의 암모늄 염을 첨가하여, 슬래그로부터 알칼리 성분인 칼슘을 추출하는 제1단계와; 암모늄 염 첨가로 인하여 칼슘(Ca) 성분이 추출된 용액의 pH가 8~9가 되고, 추출 후 pH 8~9 의 용액을 바로 사용하거나, 또는 pH ~12 까지 올릴 수 있는 양 만큼 pH 조정제인 NaOH를 첨가하는 제2단계와; 탄산화 반응기(20)내에 칼슘 성분 추출용액을 공급하는 동시에 칼슘 성분 추출용액에 이산화탄소가 주입하여 이산화탄소와 칼슘 이온을 반응시킴으로써, 이산화탄소를 용존 탄산칼슘화하여 고순도의 탄산칼슘(CaCO3)을 얻는 제3단계; 를 포함하는 것을 특징으로 하는 이산화탄소 탄산염 고정화 방법을 제공한다.In order to achieve the above object, the present invention supplies an ammonium salt solvent as an extraction solvent to raw material slag, and adds a high concentration of ammonium salt in a concentration of 8-9 wt% to 100 g of slag, and extracts an alkaline calcium component from slag. A first step of doing; Due to the addition of ammonium salts, the pH of the solution from which the calcium (Ca) component is extracted becomes 8-9, and after the extraction, the pH 8-9 solution is used immediately, or the pH adjuster NaOH is added in an amount that can be raised to pH ~ 12. Adding a second step; The third step of supplying the calcium component extraction solution into the
바람직하게는, 상기 암모늄 염은 염화암모늄(Ammonium chloride), 질산암모늄(Ammonium Nitrate), 아세트산암모늄(Ammonium Acetate)중 선택된 어느 하나인 것을 특징으로 한다.Preferably, the ammonium salt is characterized in that any one selected from ammonium chloride (Ammonium chloride), ammonium nitrate (Ammonium Nitrate), ammonium acetate (Ammonium Acetate).
특히, 상기 제3단계에서, 탄산염이 분리된 추출용액의 pH는 6 ~ 7 이 되면, 이산화탄소 주입을 종료한 후, 침전물/용액 분리를 통한 고순도의 탄산칼슘(CaCO3)을 얻게 되는 것을 특징으로 한다.
Particularly, in the third step, when the pH of the extract solution from which the carbonate is separated is 6 to 7, after the injection of carbon dioxide is terminated, high purity calcium carbonate (CaCO 3 ) is obtained through sediment / solution separation. do.
상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above-mentioned means for solving the problems, the present invention provides the following effects.
본 발명에 다르면, 대상 슬래그 종류가 제강슬래그 뿐만 아니라 전기로 슬래그까지 포함하기 때문에 폐기 처리되는 전체 슬래그 종의 자원 재활용 효과가 있으며, 기존의 아세트산 용매 대신 암모늄 염을 용매로 이용하면 공정 중 추출 용액의 pH를 8 이상이 되어, pH 4 인 아세트산 공정에 비해 pH 조정과정에 있어서는 NaOH 사용량을 50% 이상 절감하고, NaOH의 반응 부산물인 소석회 (Ca(OH)2)의 생성으로 발생하는 부유물질을 없애 고순도의 탄산칼슘(CaCO3)을 얻기 때문에, NaOH 사용량 감소에 따른 비용절감과 추가의 후처리 및 정제작업 없이 향후 CaCO3 제품화가 용이하게 이루어질 수 있다.According to the present invention, since the target slag type includes not only steel slag but also electric furnace slag, there is a resource recycling effect of all slag species to be disposed of, and if an ammonium salt is used as a solvent instead of the conventional acetic acid solvent, When the pH is 8 or more, the amount of NaOH is reduced by 50% or more in the pH adjustment process compared to the acetic acid process having pH 4, and the suspended solids generated by the production of slaked lime (Ca (OH) 2 ), a byproduct of NaOH, is removed. Since high-purity calcium carbonate (CaCO 3 ) is obtained, it is possible to easily commercialize CaCO 3 in the future without reducing the cost of using NaOH and further post-treatment and purification.
또한, 기존의 암모늄염 사용 공정에 비해서는 고농도의 용매를 사용함에 따라, 저농도에 비해 Ca 추출율이 높고, 경우에 따라 추가적인 pH 조정으로 인한 탄산화 반응시 얻게 되는 탄산칼슘의 양이 많아 최종 이산화탄소 고정량이 40%이상 증대되는 효과와 함께 Ca 이용효율도 좋아져 궁극적으로 이산화탄소 탄산화 고정 방법의 경제성을 향상시킬 수 있다.
In addition, compared to the conventional process using ammonium salt, the higher concentration of solvent is used, the Ca extraction rate is higher than that of low concentration, and in some cases, the amount of calcium carbonate obtained during the carbonation reaction due to additional pH adjustment is high, so that the final amount of carbon dioxide fixed 40 With the effect of increasing more than%, Ca utilization efficiency is also improved, which can ultimately improve the economics of carbon dioxide carbonation fixing method.
도 1은 본 발명에 따른 이산화탄소 탄산염 고정화 방법을 설명하는 공정도.1 is a process chart illustrating a carbon dioxide carbonate immobilization method according to the present invention.
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 한정된 양의 철강 부산물인 슬래그(제철소에서 나오는 연간 슬래그 생산량과 슬래그 중 Ca는 고정)를 이용하여 양질의 탄산칼슘의 회수와 전체 이산화탄소 고정량 최대화를 위한 고농도 암모늄염을 사용한 이산화탄소 탄산염 고정방법에 관한 것으로서, 추출용액의 pH 증가효과에 따라 Ca 추출 후 추출용액의 pH가 8~9 가 되는데 아세트산에 비해 매우 적은양의 NaOH를 첨가하여 pH 12 이상으로 조정함으로써 최소의 NaOH 사용을 통해 효과적인 탄산염 전환반응이 일어날 수 있으므로 공정 비용절감 효과 및 다량의 고순도 탄산염을 얻는 탄산염 전환방법을 제공하고자 한 것이다.The present invention relates to a method for fixing carbon dioxide carbonate using a high concentration of ammonium salt for the recovery of high quality calcium carbonate and maximizing the total amount of carbon dioxide by using slag which is a limited amount of steel by-products (the annual slag output from steel mill and Ca is fixed in the slag). According to the effect of increasing the pH of the extraction solution, the pH of the extraction solution after extraction of Ca is 8 ~ 9, compared to acetic acid, the addition of very small amount of NaOH added to adjust the pH to 12 or more by effective conversion of carbonate through the use of minimal NaOH Since the reaction can occur, it is to provide a process for reducing the cost and carbonate conversion method to obtain a large amount of high purity carbonate.
먼저, 원료 슬래그에 추출용매로서 암모늄 염 용매를 알카리 성분 추출반응기(10)에 공급하되, 슬래그 100g 에 8~9 wt%의 농도인 고농도의 암모늄 염을 첨가하여, 슬래그로부터 알칼리 성분인 칼슘을 추출하는 제1단계가 진행된다.First, an ammonium salt solvent is supplied to the alkaline
이를 위해, 먼저 전기로 슬래그 중 LF 슬래그 100g을 반응기에 넣고, 추출용매로 염화 암모늄 (LF 슬래그 100 g 기준 93.5g / 1.74 mol%)을 물에 용해해 1L 의 용액을 만들어 반응기에 투입한다. To this end, first, 100 g of LF slag in an electric furnace slag is put in a reactor, and ammonium chloride (93.5 g / 1.74 mol% based on 100 g of LF slag) is dissolved in water as an extraction solvent, and a 1 L solution is added to the reactor.
이때, 암모늄 염(염화암모늄[Ammonium chloride], 질산암모늄[Ammonium Nitrate], 아세트산암모늄[Ammonium Acetate])의 경우 자체적으로 pH 6 수준을 가지므로, 용액의 pH는 6 정도가 된다.At this time, the ammonium salt (ammonium chloride [Ammonium chloride], ammonium nitrate [Ammonium Nitrate], ammonium acetate [Ammonium Acetate]) has its own pH 6 level, so the pH of the solution is about 6.
이어서, 반응기에서 임펠러를 이용해 150 RPM으로 30 분 동안 교반한 후, 필터를 사용하여 슬래그와 용출액을 분리하게 되면, 이때 Ca 추출용액의 pH는 8~9가 된다.Subsequently, after stirring for 30 minutes at 150 RPM using an impeller in a reactor, when the slag and the eluate are separated using a filter, the pH of the Ca extract solution is 8-9.
다음으로, 암모늄 염 첨가로 인하여 칼슘(Ca) 성분이 추출된 용액의 pH가 8~9가 되고, 추출 후 pH 8~9 의 용액을 바로 사용하기 위해 이산화탄소를 주입하는 단계로 진행하거나 또는 경우에 따라 pH ~12 까지 올릴 수 있는 양 만큼 pH 조정제인 NaOH를 첨가하는 단계가 진행된다.Next, the pH of the solution from which the calcium (Ca) component is extracted is 8-9 due to the addition of ammonium salt, and the extraction proceeds to the step of injecting carbon dioxide to immediately use the solution of pH 8-9 As a result, a step of adding NaOH, which is a pH adjuster, in an amount capable of raising pH to 12 is performed.
이때, 암모늄 염을 용매로 이용하면 공정 중 추출 용액의 pH를 8 이상이 되므로, 기존에 용매를 pH 4 인 아세트산를 이용하는 공정에 비해 pH 조정과정에 있어서는 NaOH 사용량을 50% 이상 절감할 수 있다.In this case, when the ammonium salt is used as the solvent, the pH of the extraction solution during the process becomes 8 or more, so that the amount of NaOH used may be reduced by 50% or more in the pH adjustment process as compared to the process using acetic acid having a pH of 4.
다음으로, 탄산화 반응기(20)내에 칼슘 성분 추출용액을 공급하는 동시에 칼슘 성분 추출용액에 이산화탄소가 주입하여 이산화탄소와 칼슘 이온을 반응시킴으로써, 이산화탄소를 용존 탄산칼슘화하여 고순도의 탄산칼슘(CaCO3)을 얻는 단계가 진행된다.Next, while supplying a calcium component extraction solution into the
즉, pH 조정제인 NaOH의 첨가로 pH~12까지 올리는 과정을 지난 다음, 탄산화 반응기(20)에 이산화탄소 공급수단(30)로부터의 기체상 이산화탄소를 2L/min 의 유량으로 직접 주입하여 이산화탄소와 칼슘 이온을 반응시켜 탄산화 반응을 유도함으로써, 반응기 내부에 탄산칼슘 침전물이 형성된다.That is, after the process of raising the pH to 12 by the addition of NaOH, which is a pH adjuster, the gaseous carbon dioxide from the carbon dioxide supply means 30 is directly injected into the
이때, 이산화탄소를 용존 탄산칼슘화하여 고순도의 탄산칼슘(CaCO3)을 얻는 단계가 진행되는 중, 탄산염이 분리된 추출용액의 pH는 6 ~ 7 이 되면, 이산화탄소 주입을 종료한 후, 침전물/용액 분리를 통한 고순도의 탄산칼슘(CaCO3)을 얻게 된다.At this time, during the step of obtaining the high purity calcium carbonate (CaCO 3 ) by dissolving carbon dioxide dissolved carbon dioxide, when the pH of the extract solution separated from the carbonate reaches 6-7, after the injection of carbon dioxide, the precipitate / solution High purity calcium carbonate (CaCO 3 ) is obtained through separation.
이와 같은 본 발명의 실시예에 의하면, 아래의 표 1에 나타낸 바와 같이 전기로 슬래그 중 LF 슬래그 100g에 염화 암모늄 93.5g을 물에 용해해 용액/ 슬래그 비는 10/1이 되도록 한 후, pH 8~9인 칼슘(Ca) 성분이 추출된 용액을 바로 탄산화 반응기(20)로 보내어 이산화탄소와 반응시켜 탄산칼슘을 얻는방법 또는 칼슘성분이 추출된 용액의 pH를 8~9에서 pH ~12 까지 올리는 과정을 거치게 한 다음, 탄산화 반응기(20)내에 칼슘 성분 추출용액을 공급하는 동시에 칼슘 성분 추출용액에 이산화탄소가 주입하여 ~93%의 고순도의 탄산칼슘(CaCO3)을 얻을 수 있다.According to the embodiment of the present invention, as shown in Table 1 below, after dissolving 93.5 g of ammonium chloride in water to 100 g of LF slag in the furnace slag, the solution / slag ratio is 10/1, and then pH 8 Method of obtaining calcium carbonate by directing the solution extracted with calcium component of ˜9 to
이상과 같이, 본 발명은 칼슘(Ca), 마그네슘(Mg)등의 알칼리 성분을 함유한 제강슬래그 및 전기로 슬래그를 이용하여 이산화탄소를 고정화 시키는 방법에 있어서, 고농도의 암모늄 염을 이용하여 칼슘이온을 추출하고, pH 8 이상의 추출용액을 얻는 과정과 pH 조정제의 소량첨가로 인한 pH 조정과정, 추출 용액에 이산화탄소 주입을 통한 효과적인 탄산염 전환 과정을 통하여, 고농도의 암모늄 염 사용에 따른 슬래그 중 Ca의 선택적 추출율을 높일 수 있고, 추출용액의 pH 증가 효과로 인해 효율적인 탄산염 전환 반응을 유도하여 제철공정에서 발생하는 이산화탄소 배출량 감소 및 폐기 처리되는 슬래그 재사용을 통한 자원 재활용 뿐만 아니라, 부차적으로 고순도의 탄산칼슘 회수를 도모할 수 있다.As described above, the present invention provides a method for immobilizing carbon dioxide using steelmaking slag containing an alkaline component such as calcium (Ca) and magnesium (Mg) and an electric furnace slag, wherein calcium ions are formed using a high concentration of ammonium salt. Selective extraction rate of Ca in slag according to the use of high concentration ammonium salts through the extraction process, the process of obtaining an extraction solution of pH 8 or more, the pH adjustment process by adding a small amount of pH adjuster, and the effective carbonate conversion process by injecting carbon dioxide into the extraction solution. Increasing the pH of the extract solution induces an efficient carbonate conversion reaction, thereby reducing carbon dioxide emissions from the steelmaking process and recycling resources through reusing slag that is disposed of, as well as recovering high-purity calcium carbonate. can do.
또한, 본 발명은 대상 슬래그 종류가 제강슬래그 뿐만 아니라 전기로 슬래그까지 포함하기 때문에 기존 폐기 처리되는 전 슬래그의 재활용 효과가 있고, 상온 및 상압에서 이루어지는 공정이며, 암모늄염의 농도 또한 80g/L로 고농도의 암모늄염을 추출용매로 사용하기 때문에 기존에 비하여 Ca 추출율이 높은 장점이 있으며, 여기에 pH 조절제를 소량 첨가하여 pH 12로 올린 후, 이산화탄소 탄산화 과정을 유도하므로 침전되는 탄산칼슘의 양이 많아 최종적으로 이산화탄소 고정량 증대를 극대화할 수 있다.
In addition, the present invention has a recycling effect of all the slag to be disposed of existing waste slag because the target slag includes not only steel slag but also electric furnace slag, is a process made at room temperature and atmospheric pressure, the concentration of ammonium salt is also high concentration of 80g / L Since the ammonium salt is used as the extraction solvent, the Ca extraction rate is higher than the conventional one, and after adding a small amount of the pH regulator to the pH 12, the carbon dioxide carbonation process is induced. The fixed amount increase can be maximized.
10 : 알카리 성분 추출반응기
20 : 탄산화 반응기
30 : 이산화탄소 공급수단10: alkali component extraction reactor
20: carbonation reactor
30: carbon dioxide supply means
Claims (4)
암모늄 염 첨가로 인하여 칼슘(Ca) 성분이 추출된 용액의 pH가 8~9가 되고, 추출 후 pH 8~9 의 용액을 pH ~12 까지 올릴 수 있는 양 만큼 pH 조정제인 NaOH를 첨가하는 제2단계와;
탄산화 반응기(20)내에 칼슘 성분 추출용액을 공급하는 동시에 칼슘 성분 추출용액에 이산화탄소가 주입하여 이산화탄소와 칼슘 이온을 반응시킴으로써, 이산화탄소를 용존 탄산칼슘화하여 고순도의 탄산칼슘(CaCO3)을 얻는 제3단계;
를 포함하는 것을 특징으로 하는 이산화탄소 탄산염 고정화 방법.
Supplying an ammonium salt solvent to the raw material slag as an extraction solvent, and adding an ammonium salt having a concentration of 8 to 9 wt% to 100 g of the slag, and extracting an alkali component calcium from the slag;
The pH of the solution from which the calcium (Ca) component is extracted becomes 8-9 due to the addition of ammonium salt, and after the extraction, a second amount of NaOH, which is a pH adjuster, is added in an amount capable of raising the solution of pH 8-9 to pH ~ 12. Steps;
Supplying a calcium component extraction solution into the carbonation reactor 20 and simultaneously injecting carbon dioxide into the calcium component extraction solution to react carbon dioxide and calcium ions, thereby dissolving carbon dioxide to obtain high purity calcium carbonate (CaCO 3 ). step;
Carbon dioxide carbonate immobilization method comprising a.
상기 암모늄 염은 염화암모늄(Ammonium chloride), 질산암모늄(Ammonium Nitrate), 아세트산암모늄(Ammonium Acetate)중 선택된 어느 하나인 것을 특징으로 하는 이산화탄소 탄산염 고정화 방법.
The method according to claim 1,
The ammonium salt is ammonium chloride (Ammonium chloride), ammonium nitrate (Ammonium Nitrate), ammonium acetate (Ammonium Acetate) characterized in that any one selected from carbon dioxide carbonate immobilization method.
상기 제2단계에서, 용매로 사용된 암모늄염의 농도가 슬래그 100g 에 대하여 9wt% 정도로 고농도를 사용하기 때문에, pH ~12로 올리는 pH 조정 과정이 경우에 따라 생략 가능한 것을 특징으로 하는 이산화탄소 탄산염 고정화 방법.
The method according to claim 1,
In the second step, since the concentration of ammonium salt used as the solvent is about 9wt% with respect to 100g of slag, the pH adjustment process to raise the pH to 12 can be omitted in some cases, carbon dioxide carbonate immobilization method.
상기 제3단계에서, 탄산염이 분리된 추출용액의 pH는 6 ~ 7 이 되면, 이산화탄소 주입을 종료한 후, 침전물/용액 분리를 통한 고순도의 탄산칼슘(CaCO3)을 얻게 되는 것을 특징으로 하는 이산화탄소 탄산염 고정화 방법.The method according to claim 1,
In the third step, when the pH of the carbonate separated extract solution is 6 ~ 7, carbon dioxide characterized in that after obtaining the carbon dioxide injection, high purity calcium carbonate (CaCO 3 ) through the sediment / solution separation Carbonate Immobilization Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110095789A KR20130032093A (en) | 2011-09-22 | 2011-09-22 | Method for carbon dioxide solidification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110095789A KR20130032093A (en) | 2011-09-22 | 2011-09-22 | Method for carbon dioxide solidification |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130032093A true KR20130032093A (en) | 2013-04-01 |
Family
ID=48435077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20110095789A KR20130032093A (en) | 2011-09-22 | 2011-09-22 | Method for carbon dioxide solidification |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130032093A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160096512A (en) * | 2015-02-05 | 2016-08-16 | 한국해양대학교 산학협력단 | A storage method of carbon dioxide using indirect carbonation of paper sludge ash |
KR20180029940A (en) * | 2016-09-13 | 2018-03-21 | 재단법인 포항산업과학연구원 | Manufacture method and equipment for sodium hydrogen carbonate and calcium carbonate |
WO2018052220A1 (en) * | 2016-09-13 | 2018-03-22 | 재단법인 포항산업과학연구원 | Method and facility for preparing sodium bicarbonate and calcium carbonate |
KR20190071423A (en) * | 2017-12-14 | 2019-06-24 | 재단법인 포항산업과학연구원 | Method and manufacture equipment for calcium carbonate and sodium hydrogen carbonate |
CN116159563A (en) * | 2022-12-27 | 2023-05-26 | 沈阳三聚凯特催化剂有限公司 | Desulfurizing and dechlorinating agent, and preparation method and application thereof |
CN116282116A (en) * | 2023-03-09 | 2023-06-23 | 原初科技(北京)有限公司 | Circulation process for mineralizing carbon dioxide by magnesium slag |
-
2011
- 2011-09-22 KR KR20110095789A patent/KR20130032093A/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160096512A (en) * | 2015-02-05 | 2016-08-16 | 한국해양대학교 산학협력단 | A storage method of carbon dioxide using indirect carbonation of paper sludge ash |
KR20180029940A (en) * | 2016-09-13 | 2018-03-21 | 재단법인 포항산업과학연구원 | Manufacture method and equipment for sodium hydrogen carbonate and calcium carbonate |
WO2018052220A1 (en) * | 2016-09-13 | 2018-03-22 | 재단법인 포항산업과학연구원 | Method and facility for preparing sodium bicarbonate and calcium carbonate |
KR20190071423A (en) * | 2017-12-14 | 2019-06-24 | 재단법인 포항산업과학연구원 | Method and manufacture equipment for calcium carbonate and sodium hydrogen carbonate |
CN116159563A (en) * | 2022-12-27 | 2023-05-26 | 沈阳三聚凯特催化剂有限公司 | Desulfurizing and dechlorinating agent, and preparation method and application thereof |
CN116282116A (en) * | 2023-03-09 | 2023-06-23 | 原初科技(北京)有限公司 | Circulation process for mineralizing carbon dioxide by magnesium slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9051189B2 (en) | System and method for carbon dioxide solidification | |
KR20130032093A (en) | Method for carbon dioxide solidification | |
KR101304945B1 (en) | Method for carbon dioxide solidification | |
CN102114383B (en) | Ammonia-chemical-chain-cycle-based carbon dioxide capture and conversion method | |
EP2294233B1 (en) | Method of producing calcium carbonate from waste and byproducts | |
CN108754138B (en) | Method for circularly leaching rare earth sulfate roasted ore by magnesium chloride solution | |
AU2016203453A1 (en) | Hydrometallurgy and separation method of rare earth ores | |
KR101936809B1 (en) | A method for producing high purity calcium carbonate using indirect carbonation of alkaline industrial by-products and seawater | |
CN113684368A (en) | Method for co-processing arsenic sulfide slag and arsenic-containing smoke dust in copper smelting | |
EP2333895B1 (en) | Method for desulphurization of battery paste | |
KR101816677B1 (en) | Mineral carbonation method using seawater desalination concentrates | |
CN111549239B (en) | Resourceful treatment method of magnesium-containing raw material | |
AU2018227891A1 (en) | Method for producing lithium hydroxide from lithium-containing ore | |
KR20120069366A (en) | Method for producing calcium carbonate | |
EP4157795A1 (en) | A two stages extraction method for synthesizing precipitated calcium carbonate | |
AU2016315207A1 (en) | Scandium oxide manufacturing method | |
CN113564372B (en) | Comprehensive recovery method of sulfur, copper and rhenium in arsenic sulfide slag | |
CN106148733B (en) | A kind of method for decomposing scheelite | |
KR101826057B1 (en) | MAGNESIUM CARBONATION METHOD USING Ph SWING PROCESS | |
KR101361045B1 (en) | Method for separating individual Ca and Mg from solutions containing Ca and Mg, CaC2O4 and MgC2O4 produced thereby, and CaO and MgO prepared thereby | |
CN115466854B (en) | Comprehensive extraction method of lithium ore | |
CN111100996A (en) | Method for preparing vanadium oxide from acidic low-concentration vanadium liquid | |
KR101856959B1 (en) | Manufacture method and equipment for sodium hydrogen carbonate and calcium carbonate | |
CN111592042B (en) | Method for preparing high-purity vanadium pentoxide by ammonium-free vanadium precipitation of vanadium liquid | |
KR20110004288A (en) | Method for manufacturing manganese carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |