KR20130014833A - Method of recycling cobalt from cobalt containing wastes - Google Patents

Method of recycling cobalt from cobalt containing wastes Download PDF

Info

Publication number
KR20130014833A
KR20130014833A KR20110076530A KR20110076530A KR20130014833A KR 20130014833 A KR20130014833 A KR 20130014833A KR 20110076530 A KR20110076530 A KR 20110076530A KR 20110076530 A KR20110076530 A KR 20110076530A KR 20130014833 A KR20130014833 A KR 20130014833A
Authority
KR
South Korea
Prior art keywords
cobalt
waste
malic acid
acid
leaching
Prior art date
Application number
KR20110076530A
Other languages
Korean (ko)
Other versions
KR101314635B1 (en
Inventor
손성호
김현종
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR20110076530A priority Critical patent/KR101314635B1/en
Publication of KR20130014833A publication Critical patent/KR20130014833A/en
Application granted granted Critical
Publication of KR101314635B1 publication Critical patent/KR101314635B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A cobalt collection method of cobalt contained in waste is provided to separate cobalt by extracting cobalt malate from cobalt in leach liquor through a process which injects additionally malic acid to the leach liquor, thereby simplifying the old separated process for the extraction of cobalt. CONSTITUTION: A cobalt collection method of cobalt contained in waste comprises a diffusion process of injecting crushed waste containing cobalt into the leach liquor including malic acid, formic acid and water, and pressurizing the leach liquor with the waste containing cobalt to be diffused. The concentration of the malic acid is 0.2-5M. The pressure of the diffusion process is 0.5-5.0 bar. The formic acid included in the leach liquor is 5-20v%(volume percent). The temperature of the diffusion process is 60-180°C. The step of extracting cobalt malate from malic acid is additionally included by adding malic acid to the leach liquor whose cobalt is extracted. The step of generating cobalt oxide with the heat treatment of cobalt malate is also included. The step of manufacturing LiCoO2 by mixing and heat-treated cobalt malate and LiCO2 is added. The amount of the malic acid additionally added is 5M or less. [Reference numerals] (AA) Cobalt extracting efficiency(%); (BB) Malic acid; (CC) Citric acid; (DD) No reductant; (EE) Formic acid; (FF) Formic acid + autoclave

Description

코발트 함유 폐기물의 코발트 회수방법 {METHOD OF RECYCLING COBALT FROM COBALT CONTAINING WASTES}Cobalt recovery method of cobalt containing waste {METHOD OF RECYCLING COBALT FROM COBALT CONTAINING WASTES}

본 발명은 폐리튬이온전지, 폐초경공구, 폐촉매와 같이, 고가의 코발트를 다량 포함하고 있는 폐기물로부터 코발트를 회수하는 방법에 관한 것으로, 보다 상세하게는 간소하면서도 회수효율이 우수하여 생산성이 향상될 수 있을 뿐 아니라 종래의 방법에 비해 친환경적이고 작업 위험도도 크게 낮출 수 있는 코발트 회수방법에 관한 것이다.
The present invention relates to a method for recovering cobalt from wastes containing a large amount of expensive cobalt, such as waste lithium ion batteries, waste cemented carbide tools, and waste catalysts. In addition, the present invention relates to a cobalt recovery method that can be environmentally friendly and significantly lower the risk of work compared to conventional methods.

리튬이온전지는 충전해서 사용할 수 있는 2차 전지로서, 가볍고, 무게 대비 에너지 밀도가 다른 어떤 전지보다도 크며, 자가방전에 의한 전력손실이 적고, 기억효과(memory effect)를 나타내지 않는 장점이 있어, 휴대전화, 노트북과 같은 전자 기기에 널리 사용되고 있다.Lithium-ion battery is a rechargeable battery that can be used as a rechargeable battery. It is lighter, has a higher energy density / weight ratio than any other battery, has a low power loss due to self-discharge, and does not exhibit a memory effect. It is widely used in electronic devices such as phones and laptops.

상용되고 있는 리튬이온전지는 양극활물질로 리튬산화물을 사용하는 양극과, 탄소를 사용하는 음극과, 상기 양극과 음극의 사이에 배치되는 전해질로 이루어진다.Commercially available lithium ion batteries include a positive electrode using lithium oxide as a positive electrode active material, a negative electrode using carbon, and an electrolyte disposed between the positive electrode and the negative electrode.

이중, 양극활물질로는 대표적으로 코발트산리튬(LiCoO2)이 사용되고 있는데, 코발트산리튬에 포함된 코발트는 고가의 희귀 금속이므로, 코발트를 회수하는 것은 자원의 효율적인 이용의 관점에서 매우 중요하다.Among them, lithium cobalt (LiCoO 2 ) is typically used as the positive electrode active material. Since cobalt contained in lithium cobalt is an expensive rare metal, recovery of cobalt is very important in view of efficient use of resources.

또한, 텅스텐탄화물과 코발트 금속으로 이루어지는 소위 초경합금(WC-Co)은 절삭공구용 재료로 널리 사용되는데, 폐절삭공구로부터 고가의 코발트를 효율적으로 회수하는 것도 중요하다.Further, a so-called cemented carbide (WC-Co) composed of tungsten carbide and cobalt metal is widely used as a material for cutting tools, and it is also important to efficiently recover cobalt from expensive pulverized tools.

한편, 코발트를 포함하는 폐기물로부터 코발트를 회수하는 대표적인 방법으로는 폐기물의 파쇄공정, 유가금속의 산 침출공정, 가성소다를 사용하여 침출액으로부터 수산화코발트로 분리해내는 분리공정을 포함하는 습식법이 많이 사용되고 있다.On the other hand, as a representative method for recovering cobalt from waste containing cobalt, a wet method including a waste crushing process, an acid leaching process of valuable metals, and a separation process using caustic soda to separate the cobalt hydroxide from the leachate is used. have.

그리고 유가금속의 침출에는 적절한 농도의 염산(HCl), 황산(H2SO4) 또는 질산(HNO3)에 과산화수소수(H2O2)를 첨가한 침출액이 우수한 침출효율을 나타내므로 폐리튬이온전지로부터 코발트를 용해하는데 널리 사용되고 있다.In addition, the leachate containing hydrogen peroxide (H 2 O 2 ) added to hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ) or nitric acid (HNO 3 ) And is widely used for dissolving cobalt from batteries.

그러나 침출액에 포함된 염산, 황산 또는 질산 등은 독성이 매우 강해 작업 위험도가 높은데, 여기에 통상 침출효율을 보다 향상시키기 위해 환원제인 과산화수소를 첨가할 경우 작업 위험도는 한층 높아질 뿐 아니라, 침출공정에서 다량의 환경오염 물질이 배출되는 문제점이 있다.However, hydrochloric acid, sulfuric acid or nitric acid contained in the leach solution is very toxic, and the operation risk is high. In addition, when the hydrogen peroxide which is a reducing agent is added to improve the leaching efficiency, the risk of the operation is further increased, There is a problem in that environmental pollutants are discharged.

또한, 가성소다를 사용하여 코발트 침출액으로부터 수산화코발트를 분리해내는 코발트 추출공정도 공정을 복잡하게 하여 생산성을 저하시키는 요인이 된다.
In addition, a cobalt extraction process in which cobalt hydroxide is separated from the cobalt leach liquor using caustic soda may also complicate the process and reduce productivity.

본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 폐리튬이온전지, 폐초경합금, 폐촉매로부터 코발트를 회수함에 있어서 친환경적이고 작업 위험도가 낮으면서도 황산침출액과 비교하여 동등 이상 수준의 침출효율을 얻을 수 있는 코발트 회수방법을 제공하는 것을 해결하려는 과제로 한다.The present invention is to solve the problems of the prior art described above, in the recovery of cobalt from the waste lithium ion battery, waste cemented carbide, waste catalyst, environmentally friendly and low operating risks, while the leaching efficiency of the equivalent level or more compared to sulfuric acid leaching solution The problem to be solved is to provide a cobalt recovery method that can be obtained.

또한, 본 발명의 다른 과제는 코발트 침출액으로부터 간소하면서도 우수한 양극활물질 전구체를 제조할 수 있는 코발트 회수방법을 제공하는 것이다.
In addition, another object of the present invention is to provide a cobalt recovery method that can produce a simple yet excellent cathode active material precursor from the cobalt leach solution.

상기 과제를 해결하기 위한 수단으로 본 발명은, 말산, 포름산 및 물을 포함하는 침출액에 코발트를 포함하는 분쇄된 폐기물을 투입한 후, 코발트를 가압침출하는 침출공정을 포함하는 코발트 회수방법을 제공한다.As a means for solving the above problems, the present invention provides a cobalt recovery method comprising a leaching step of injecting cobalt to the leachate containing malic acid, formic acid and water, and then pressurized cobalt. .

또한 본 발명에 따른 방법에 있어서, 상기 말산의 농도는 0.2 ~ 5M인 것이 바람직한데, 이는 말산의 농도가 0.2M 미만일 경우 침출효율이 낮고, 5M을 초과할 경우 유기산이 충분히 용해되지 않고, 더 이상 침출효율이 향상되지 않기 때문이다.In addition, in the method according to the invention, the concentration of the malic acid is preferably 0.2 ~ 5M, which is low leaching efficiency when the concentration of malic acid is less than 0.2M, the organic acid is not sufficiently dissolved when more than 5M, This is because the leaching efficiency does not improve.

또한 본 발명에 따른 방법에 있어서, 상기 침출공정의 압력은 0.5 ~ 5 bar인 것이 바람직하다.In the method according to the invention, the leaching pressure is preferably 0.5 to 5 bar.

또한 본 발명에 따른 방법에 있어서, 상기 포름산은 상기 침출액에 부피%로 5 ~ 20% 포함되는 것이 바람직한데, 이는 상기 포름산의 농도가 5% 미만일 경우에는 침출효율이 낮고, 20% 이상에서는 더 이상 침출효율이 향상되지 않고 그대로 유지되기 때문이다.In addition, in the method according to the present invention, the formic acid is preferably contained in the leaching solution by 5 to 20% by volume, which is low when the concentration of the formic acid is less than 5%, more than 20% This is because the leaching efficiency does not improve and remains as it is.

또한 본 발명에 따른 방법에 있어서, 상기 침출공정의 온도는 60 ~ 180℃ 인 것이 바람직하다.In addition, in the method according to the invention, the temperature of the leaching step is preferably 60 ~ 180 ℃.

또한 본 발명에 따른 방법은 코발트를 추출한 침출액을 그대로 방치하거나 또는 말산을 추가로 첨가함으로써 코발트 말산염을 석출시키는 단계를 더 포함할 수 있다. 그리고 말산의 추가 첨가량은 최종적으로 5M까지인 것이 바람직한데, 이는 5M을 초과할 경우 말산이 더 이상 용해되지 않기 때문이다.In addition, the method according to the present invention may further include the step of precipitating cobalt malate by leaving the leachate from which cobalt is extracted as it is or by additionally adding malic acid. And it is preferable that the additional amount of malic acid is finally up to 5M, because when it exceeds 5M, malic acid is no longer dissolved.

또한 본 발명에 따른 방법은 상기 코발트 말산염을 열처리하여 코발트 산화물을 생성하는 단계를 더 포함할 수 있다.In addition, the method according to the invention may further comprise the step of heat-treating the cobalt malate to produce cobalt oxide.

또한 본 발명에 따른 방법에 있어서, 상기 코발트 말산염과 LiCO2를 혼합하여 열처리함으로써 LiCoO2를 제조하는 단계를 더 포함할 수 있다.In addition, the method according to the present invention may further comprise the step of preparing LiCoO 2 by heat treatment by mixing the cobalt malate and LiCO 2 .

또한 본 발명에 따른 방법에 사용된 폐기물은 폐리튬이온전지, 폐초경합금 또는 폐촉매 등을 포함할 수 있다.
In addition, the waste used in the method according to the present invention may include a waste lithium ion battery, waste cemented carbide or waste catalyst.

본 발명에 의한 코발트 회수방법은 천연 유기산인 말산과 환원제로서 약간의 포름산을 포함하는 침출액을 사용하는 침출공정을 적용함으로써, 강한 독성을 갖는 황산을 주성분으로 하는 침출액을 사용하는 종래의 방법에 비해 동등 이상의 침출효율을 얻으면서 작업 위험도를 낮출 수 있고 환경오염도 줄일 수 있다.The cobalt recovery method according to the present invention is equivalent to the conventional method using a leaching solution containing sulfuric acid having a strong toxicity as a main component by applying a leaching step using a leaching solution containing malic acid which is a natural organic acid and some formic acid as a reducing agent. With the above leaching efficiency, the working risk can be lowered and environmental pollution can be reduced.

또한, 본 발명에 의한 코발트 회수방법에 사용하는 코발트 침출액은 코발트와 선택적으로 반응하는 경향이 클 뿐 아니라 침출액에 추가로 말산을 투입하는 공정을 통해 침출액의 코발트를 코발트 말산염으로 석출하여 분리해 낼 수 있기 때문에, 종래 별도의 코발트 추출공정을 통해 코발트를 분리하는 공정이 상당히 간소화되어 생산성을 높이고 회수비용을 줄일 수 있게 된다.In addition, the cobalt leachate used in the cobalt recovery method according to the present invention has a high tendency to selectively react with cobalt, and precipitates and separates cobalt of the leachate with cobalt malic acid through a step of adding malic acid to the leachate. Because of this, the process of separating the cobalt through the conventional separate cobalt extraction process is significantly simplified to increase the productivity and reduce the recovery cost.

또한, 본 발명에 의한 코발트 회수방법에 의해 생성된 코발트 말산염은 간단한 열처리를 통해, 우수한 특성을 갖는 양극활물질로 제조할 수 있다.
In addition, the cobalt malate produced by the cobalt recovery method according to the present invention can be produced as a positive electrode active material having excellent characteristics through a simple heat treatment.

도 1은 폐리튬이온전지로부터 코발트를 회수하는 공정을 설명하는 공정도이다.
도 2는 본 발명의 실시예에 사용한 폐리튬이온전지와, 이 폐리튬이온전지로부터 폐양극활물질을 분리한 상태를 보여주는 사진이다.
도 3은 폐양극활물질 분말의 주사전자현미경 사진이다.
도 4는 폐양극활물질 분말의 XRD 분석결과를 보여주는 도면이다.
도 5는 황산과 각종 유기산을 침출액으로 사용하였을 때 침출효율을 측정한 결과를 나타내는 그래프이다.
도 6은 환원제인 H2O2의 첨가량에 따른 침출효율의 차이를 보여주는 그래프이다.
도 7은 환원제를 사용하지 않고 침출한 경우, 환원제로 포름산을 사용한 경우, 환원제로 포름산을 사용하고 오토클레이브에서 침출한 경우, 말산과 시트르산의 침출효율을 보여주는 그래프이다.
도 8은 말산침출액으로 코발트를 침출한 후의 침출액, 1시간 경과 후의 침출액, 6시간 시간 경과 후의 침출액, 말산을 추가로 첨가하여 석출된 석출물의 사진이다.
도 9는 코말트 말산염을 대기 중에서 가열분해한 후의 XRD 분석결과를 보여주는 것이다.
도 10은 본 발명의 실시예 1, 2, 3 및 상용 LiCoO2의 XRD 분석결과를 보여주는 것이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is process drawing explaining the process of collect | recovering cobalt from a waste lithium ion battery.
FIG. 2 is a photograph showing a waste lithium ion battery used in an embodiment of the present invention and a state in which the waste cathode active material is separated from the waste lithium ion battery.
3 is a scanning electron micrograph of the pulmonary anode active material powder.
Figure 4 is a view showing the XRD analysis of the waste positive electrode active material powder.
5 is a graph showing the results of measuring leaching efficiency when sulfuric acid and various organic acids are used as a leaching solution.
6 is a graph showing a difference in leaching efficiency according to the amount of H 2 O 2 added as a reducing agent.
7 is a graph showing the leaching efficiency of malic acid and citric acid when leaching without using a reducing agent, when using formic acid as a reducing agent, using formic acid as a reducing agent and leaching in an autoclave.
Fig. 8 is a photograph of a precipitate obtained by further adding cobalt as a malic acid leaching solution, a leaching liquid after 1 hour, a leaching liquid after 6 hours, and malic acid.
9 shows the results of XRD analysis after pyrolysis of comal malate in the atmosphere.
Figure 10 shows the results of XRD analysis of Examples 1, 2, 3 and commercial LiCoO 2 of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

또한 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자들은 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있으며 본 발명의 범위가 다음에 기술하는 실시예에 한정되는 것은 아니다.It should also be understood that the terms or words used in the present specification and claims should not be construed in a conventional and dictionary sense and that the inventors may properly define the concept of the term to best describe its invention And should be construed in accordance with the principles and meanings and concepts consistent with the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various equivalents that may be substituted for them at the time of the present application There may be modified examples and the scope of the present invention is not limited to the embodiments described below.

또한, 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공된 것이다.
In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

폐양극활물질Waste Bipolar Active Material 분말 제조 Powder manufacturing

도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 코발트 회수방법은 크게, 폐리튬이온전지의 전처리공정(S100)과 침출공정(S200) 및 코발트분리공정(S300)으로 나누어지며, 폐리튬이온전지의 전처리공정(S100)은 다시, 폐리튬이온전지의 1차 열처리공정(S110), 절단 및 선별공정(S120), 2차 열처리공정(S130), 하소공정(S140)으로 나누어진다.As shown in Figure 1, the cobalt recovery method according to an embodiment of the present invention is largely divided into a pre-treatment step (S100), leaching step (S200) and cobalt separation step (S300) of the waste lithium ion battery, The pre-treatment step (S100) of the ion battery is further divided into a first heat treatment step (S110), a cutting and sorting step (S120), a second heat treatment step (S130), and a calcining step (S140) of the waste lithium ion battery.

상기 폐리튬이온전지의 1차 열처리공정(S110)은 합성수지로 이루어진 케이스 내에 접착제로 고정되어 있는 단위전지를 대기 중에서 일정한 온도로 가열하여 상기 접착제의 접착성분을 휘발시켜 접착력을 감소시킴으로써 단위전지를 케이스로부터 용이하게 분리되게 하는 공정이다. 이때 가열조건은 100 ~ 200℃ 온도에서 1시간 이상 유지하는 것이 바람직하며, 도 2의 좌측사진은 케이스로부터 전지를 분리한 상태를 보여준다.In the first heat treatment step (S110) of the waste lithium ion battery, the unit cell is fixed by heating the unit cell fixed in the case made of synthetic resin to a constant temperature in the air to volatilize the adhesive component of the adhesive, thereby reducing the adhesive force. To be easily separated from the process. At this time, the heating conditions are preferably maintained for 1 hour or more at 100 ~ 200 ℃ temperature, the left picture of Figure 2 shows a state in which the battery is separated from the case.

상기 절단 및 선별공정(S120)은 케이스로부터 분리한 단위전지를 해체하여 양극활물질을 분리해내기 위한 전단계 공정으로써, 절단기를 사용하여 일정한 크기로 절단한 후, 분말형태의 양극활물질을 체질을 통해 다른 물질로부터 분리해내는 공정이다. 한편, 이상 환원으로 발생하는 금속 리튬에 의한 급격한 산화반응은 1차 저온 가열과 절단공정 시 가해지는 제습 분위기를 통해 완화될 수 있다.The cutting and sorting process (S120) is a pre-step process for disassembling the unit cell separated from the case to separate the positive electrode active material. The cutting and sorting process is performed by cutting a predetermined size using a cutter, and then pulverizing the positive electrode active material in a powder form. It is a process of separating it from the material. On the other hand, the rapid oxidation reaction by the metal lithium generated by the abnormal reduction can be alleviated through the dehumidification atmosphere applied during the first low temperature heating and cutting process.

상기 2차 열처리공정(S130)은 500℃ 정도로 절단된 폐기물을 열처리하는 공정으로서, 2차 열처리를 통해, 분리막과 전해액을 휘발 제거시킬 수 있으며, 금속판으로부터 비교적 접착력이 약한 양극활물질을 쉽게 분리할 수 있게 한다.The second heat treatment step (S130) is a step of heat treating waste cut to about 500 ℃, through the second heat treatment, the separation membrane and the electrolyte can be removed by the volatilization, it is possible to easily separate the positive electrode active material of relatively weak adhesion from the metal plate To be.

상기 하소공정(S140)은, 양극활물질인 LiCoO2, 탄소 및 유기물질로 구성되어 있는 전극물질을 공기 또는 산소 분위기 하에서 대략 900℃ 정도의 온도로 가열하는 공정으로서, 전극물질에 포함된 유기물과, 탄소성분을 CO, CO2 등으로 변환시켜 제거하는 공정이다.The calcination step (S140) is a step of heating the electrode material consisting of LiCoO 2 , carbon and organic materials as the cathode active material to a temperature of approximately 900 ℃ in the air or oxygen atmosphere, the organic material contained in the electrode material, CO, CO 2 It is a process of converting and removing them.

이상과 같은 공정을 통해, 도 2의 우측에 보여지는 것과 같은 폐양극활물질 분말을 얻었다. 도 3과 4는 도 2의 폐양극활물질 분말에 대한 주사전자현미경 사진과 XRD 분석결과를 보여주는 것으로, 열처리 전, 후에 결정구조에 변화가 없고, 폐양극활물질 분말의 평균입도는 10㎛ 미만이며, 성분 분석결과 폐양극활물질 분말의 성분은 하기 표 1과 같음을 확인하였다.Through the above process, the waste positive electrode active material powder as shown on the right side of FIG. 2 was obtained. 3 and 4 show the scanning electron micrograph and the XRD analysis results of the waste cathode active material powder of FIG. 2, there is no change in crystal structure before and after heat treatment, and the average particle size of the waste cathode active material powder is less than 10 μm. As a result of component analysis, the components of the powder of the positive electrode active material were confirmed to be as shown in Table 1 below.

폐양극활물질 분말의 금속성분 분석 결과 (%는 질량%)The analysis results of the metal components of the pulverulent cathode active material powder (% by mass%) CoCo NiNi MnMn LiLi FeFe CuCu AlAl 48.51%48.51% 1.81%1.81% 1.06%1.06% 6.68%6.68% 0.03%0.03% 0.002%0.002% 0.28%0.28%

상기 표 1에서 확인되는 바와 같이, 본 발명의 실시예에 따라 준비한 폐양극활물질 분말에는 약 48.51질량%의 Co가 함유되어 있다.As confirmed in Table 1, about 48.51% by mass of Co is contained in the waste positive electrode active material powder prepared according to the embodiment of the present invention.

한편, 폐리튬이온전지로부터 LiCoO2를 농축된 양극활물질 분말상의 형태로 얻을 수 있는 방법이라면, 본 발명의 실시예와 상이한 어떠한 방법을 사용하여도 무방하다.
On the other hand, any method different from the embodiment of the present invention may be used as long as it is possible to obtain LiCoO 2 in the form of a concentrated positive electrode active material powder form a spent lithium ion battery.

코발트 침출액의 제조Preparation of Cobalt Leachate

상기와 같이 얻어진 폐양극활물질 분말 중에 포함된 코발트를 용해하기 위한 침출액으로 본 발명자들은 황산 또는 질산과 같은 독성이 강한 물질을 사용하지 않고, 과일이나 식물 등에 포함된 천연성분으로 친환경적이면서 인체에 대한 독성이 없는 유기산을 주성분으로 하는 침출액을 고려하였다.As the leachate for dissolving cobalt contained in the waste positive electrode active material powder obtained as described above, the present inventors do not use highly toxic substances such as sulfuric acid or nitric acid, and are eco-friendly and toxic to human body with natural ingredients included in fruits or plants. A leaching liquid containing no organic acid as a main component was considered.

한편, 유기산으로는 말산, 시트르산, 말론산, 글리콜산, 젖산, 아스코르브산, 아크릴산, 글루타르산, 타르타르산 등이 사용될 수 있으나, 도 5에 보여진 바와 같이 유기산의 농도 2M, 환원제로 H2O2 5부피%를 첨가한 유기산 침출액을 사용하여 80℃의 온도에서 폐양극활물질을 침출한 결과, 황산(95.8%)에 비해서는 낮지만 말산과 시트르산의 침출효율이 각각 86.7% 및 89.9%로 비교적 높은 수준을 나타내었으나, 다른 유기산의 침출효율은 상대적으로 낮은 수준을 나타냄을 확인하였다.On the other hand, the organic acid include malic acid, citric acid, malonic acid, with glycolic acid, lactic acid, ascorbic acid, acrylic acid, glutaric acid, tartaric acid, etc. may be used. However, the concentration 2M, a reducing agent of an organic acid, as shown in Fig. 5 H 2 O 2 As a result of leaching the waste cathode active material at the temperature of 80 ° C using an organic acid leaching solution added with 5% by volume, the leaching efficiency of malic acid and citric acid was 86.7% and 89.9%, respectively, lower than that of sulfuric acid (95.8%). Although the level was shown, the leaching efficiency of other organic acids was found to be relatively low.

그리고, 환원제인 H2O2의 함량에 따른 침출효율의 차이를 확인한 결과, 도 6에 보여지는 바와 같이, H2O2의 함량을 10%로 하였을 때 말산과 시트르산의 침출효율은 각각 92.0%와 91.9%였고, H2O2의 함량을 15%일 때 말산과 시트르산의 침출효율은 각각 95.9%와 94.3%로 상당한 수준까지 침출효율을 높일 수 있으나, 여전히 황산에 비해서는 침출효율이 다소 낮음을 알 수 있다.And, as a result of confirming the difference in the leaching efficiency according to the content of H 2 O 2 reducing agent, as shown in Figure 6, when the content of H 2 O 2 to 10%, the leaching efficiency of malic acid and citric acid is 92.0%, respectively And the leaching efficiency of malic acid and citric acid is 95.9% and 94.3%, respectively, when the H 2 O 2 content is 15%, but the leaching efficiency is still lower than that of sulfuric acid. It can be seen.

본 발명자들은 말산 또는 시트르산의 침출효율을 좀더 높이기 위해, 독성은 있으나 희석하여 사용할 경우 인체에 대한 유해성이 거의 없는 포름산(formic acid)을 환원제로 고려하였으며, 포름산의 효과를 확인하기 위하여, 하기 표 2와 같은 조건으로 침출공정을 수행하였다. The present inventors considered formic acid (formic acid) which is toxic but little harmful to the human body when diluted to increase the leaching efficiency of malic acid or citric acid as a reducing agent, in order to confirm the effect of formic acid, Table 2 The leaching process was performed under the same conditions.

종류Kinds 침출액성분Leachate Components 침출조건Leaching condition 산 종류Mountain type 농도
(M)
density
(M)
포름산
(부피%)
Formic acid
(volume%)
온도
(℃)
Temperature
(℃)
교반속도
(rpm)
Stirring speed
(rpm)
반응시간
(H)
Reaction time
(H)
침출방법Leaching Method
비교예 1Comparative Example 1 말산Malian 22 -- 8080 300300 22 리플럭스Reflux 비교예 2Comparative Example 2 시트르산Citric acid 22 -- 8080 300300 22 리플럭스Reflux 비교예 3Comparative Example 3 말산Malian 22 1010 8080 300300 22 리플럭스Reflux 비교예 4Comparative Example 4 시트르산Citric acid 22 1010 8080 300300 22 리플럭스Reflux 비교예 5Comparative Example 5 시트르산Citric acid 22 1010 120120 -- 22 오토클레이브Autoclave 실시예Example 말산Malian 22 1010 120120 -- 22 오토클레이브Autoclave

도 7에서 확인되는 바와 같이, 말산과 시트르산을 환원제를 사용하지 않고 침출한 결과 침출효율은 각각 44.1%와 57.6%에 불과하였으나, 포름산을 10부피% 첨가할 경우 말산과 시트르산의 침출효율은 각각 70.5%, 62.9%로 향상되었으며, 특히 오토클레이브에서 고온, 가압 환경으로 침출할 경우, 말산의 경우 99.9%로 침출효율이 황산에 비해서도 높은 수준으로 증가함에 비해, 시트르산의 경우 19.9%로 고온, 가압 침출이 오히려 침출효율을 저하시킴을 확인하였다.As confirmed in FIG. 7, the leaching efficiency of malic acid and citric acid without using a reducing agent was only 44.1% and 57.6%, respectively, but the addition of formic acid at 10% by volume of leaching efficiency of malic acid and citric acid was 70.5, respectively. %, 62.9%, especially when leaching from autoclave to high temperature and pressurized environment, the leaching efficiency increased to 99.9% for malic acid compared to sulfuric acid, while the leaching efficiency was 19.9% for citric acid. On the contrary, it was confirmed that the leaching efficiency was lowered.

즉, 본 발명의 실시예에 따른 침출액을 사용하여 고온, 가압 침출을 하게 되면, 환경오염을 줄이고 동시에 작업 위험도를 현저하게 낮추면서도 황산 침출액과 동등하거나 그보다 나은 수준의 코발트 침출이 가능하게 된다.
That is, when the leaching liquid according to the embodiment of the present invention is used for high temperature and pressure leaching, it is possible to reduce the environmental pollution and at the same time significantly reduce the work risk, while cobalt leaching of sulfuric acid leaching liquid is equivalent to or better than that.

코발트 성분의 분리Isolation of Cobalt Components

한편, 도 8에서 보여지는 바와 같이 본 발명의 실시예에 따라 생성된 코발트 침출액을 방치할 경우, 말산이 코발트 성분과 결합하여 적색계열의 코발트화합물을 형성하는데, 여기에 말산을 추가로 첨가할 경우 코발트화합물의 형성이 촉진되어, 도 8의 우측에 보여지는 바와 같은 석출물을 생성한다.Meanwhile, as shown in FIG. 8, when the cobalt leachate produced according to the embodiment of the present invention is left, malic acid combines with a cobalt component to form a red series cobalt compound, and when malic acid is further added thereto, Formation of the cobalt compound is promoted, producing a precipitate as shown on the right side of FIG.

이 석출물의 성분을 분석한 결과, 코발트 성분을 70.3질량% 함유하고 극히 미량의 타 금속성분을 포함하고 있음을 확인하였다. 즉, 본 발명의 실시예에 따른 침출액에 추가로 말산을 첨가함으로써, 코발트 성분을 쉽게 분리해낼 수 있으며, 종래와 같이 별도의 코발트 분리공정을 수행할 필요가 없게 된다.As a result of analyzing the components of this precipitate, it was confirmed that the cobalt component contained 70.3% by mass and contained a very small amount of other metal components. That is, by adding malic acid to the leachate according to the embodiment of the present invention, the cobalt component can be easily separated, and there is no need to perform a separate cobalt separation process as in the prior art.

한편, 본 발명의 실시예에서는 침출액에 추가한 말산의 양은 3M이었으며, 최초 침출액의 2M과 더하여 최종적으로 5M이 되도록 하였다.On the other hand, in the embodiment of the present invention, the amount of malic acid added to the leach solution was 3M, in addition to 2M of the initial leach solution was finally to 5M.

또한, 석출물을 XRD와 FT-IR을 통해 구체적으로 분석한 결과, 석출물은 코발트 말산염인 Co(C4H6O5)2 4H2O로 분석되었다.
In addition, as a result of analyzing the precipitate in detail through XRD and FT-IR, the precipitate was analyzed as Co (C 4 H 6 O 5 ) 2 4H 2 O, which is cobalt maleate.

LiCoOLiCoO 22 의 제조Manufacturing

상기 단계에서 제조된 코발트 말산염으로 LiCoO2를 제조하기 위해 본 발명의 실시예에서는 2가지 방법을 사용하였다.Two methods were used in the examples of the present invention to prepare LiCoO 2 with the cobalt maleate prepared in the above step.

먼저, 코발트 말산염을 대기 중에서 각각 300℃, 500℃, 700℃ 및 900℃의 온도에서 7 시간 동안 열처리를 함으로써, 코발트 산화물 즉 Co3O4가 형성되도록 하였다. 도 9는 상기 각 온도로 열처리한 시료를 XRD로 분석한 결과를 나타낸 것인데, 도 9에서 확인되는 바와 같이, 약 500℃부터는 유기성분이 완전히 제거된 코발트 산화물이 형성됨을 확인하였다. 이중, 700℃에서 제조한 Co3O4 3.7g과 Li2CO3 20.8g을 혼합한 후 800℃에서 열처리하여 LiCoO2(실시예 1)를 제조하였고, 또한 900℃에서 제조한 Co3O4 3.7g과 Li2CO3 20.8g을 혼합한 후 800℃에서 열처리하여 LiCoO2(실시예 2)를 제조하였다.First, cobalt malate was heat-treated in the air at a temperature of 300 ° C., 500 ° C., 700 ° C. and 900 ° C. for 7 hours, thereby forming cobalt oxide, that is, Co 3 O 4 . Figure 9 shows the results of XRD analysis of the samples heat-treated at each temperature, as confirmed in Figure 9, from about 500 ℃ it was confirmed that the cobalt oxide is completely removed from the organic component is formed. Among them, 3.7 g of Co 3 O 4 prepared at 700 ° C. and 20.8 g of Li 2 CO 3 were mixed, followed by heat treatment at 800 ° C. to prepare LiCoO 2 (Example 1), and Co 3 O 4 prepared at 900 ° C. LiCoO 2 (Example 2) was prepared by mixing 3.7 g and 20.8 g of Li 2 CO 3 , followed by heat treatment at 800 ° C.

다음으로, 코발트 말산염 4.0g과 Li2CO3 0.35g을 혼합한 후, 800℃에서 열처리함으로써, 코발트 산화물을 형성하는 단계를 거치지 않고 곧바로 LiCoO2(실시예 3)를 제조하였다.Next, 4.0 g of cobalt malate and 0.35 g of Li 2 CO 3 were mixed and then heat-treated at 800 ° C., thereby directly preparing LiCoO 2 (Example 3) without undergoing a step of forming cobalt oxide.

실시예 1, 실시예 2 및 실시예 3의 LiCoO2를 분석한 결과, 도 10에서 확인되는 바와 같이, 산화물로 만든 후 코발트산리튬으로 만든 실시예 1 및 2가 결정성 및 오더링(ordering) 측면에서 실시예 3에 비해 우수하였다.
As a result of analyzing LiCoO 2 of Example 1, Example 2 and Example 3, crystallization and ordering aspects of Examples 1 and 2 made of oxide and then made of lithium cobalt as shown in FIG. In comparison to Example 3.

하이브리드hybrid 캐패시터의Capacitor 제조 Produce

하기 표 3은 본 발명의 실시예 1, 2 및 3에 따라 제조된 LiCoO2의 특성을 평가하기 위하여, 하이브리드 캐패시터를 제조하여, 20mm의 코인셀 시험을 실시한 결과를 나타낸 것이다.Table 3 below shows the results of conducting a 20 mm coin cell test to prepare a hybrid capacitor in order to evaluate the properties of LiCoO 2 prepared according to Examples 1, 2 and 3 of the present invention.

음극cathode 양극anode 전압
(V)
Voltage
(V)
D.C.
(F/g)
DC
(F / g)
PD
(W/kg)
PD
(W / kg)
ED
(Wh/kg)
ED
(Wh / kg)
PpyCNTPpyCNT 상용 LiCoO2 Commercial LiCoO 2 1.51.5 66.8766.87 7575 20.9020.90 PpyCNTPpyCNT LiCoO2
(실시예 3)
LiCoO 2
(Example 3)
1.51.5 92.1492.14 75.175.1 28.8728.87
PpyCNTPpyCNT LiCoO2
(실시예 1)
LiCoO 2
(Example 1)
1.51.5 80.3980.39 75.2575.25 25.2925.29
PpyCNTPpyCNT LiCoO2
(실시예 2)
LiCoO 2
(Example 2)
1.51.5 50.9650.96 75.2575.25 16.0316.03

상기 표 3에서 확인되는 바와 같이, 본 발명의 실시예 2 및 3의 경우, 상용 LiCoO2(제조사 Johnson Matthey Company) 제품에 비해 우수한 특성을 나타내며, 특히 코발트 말산염과 Li2CO3를 혼합한 열처리하여 생성한 실시예 3의 경우에는 상용 LiCoO2는 물론 실시예 1에 비해서도 우수한 특성을 나타내므로, 리튬이차전지의 양극활물질 전구체로서 적합하게 사용될 수 있음을 알 수 있다.
As confirmed in Table 3, in Examples 2 and 3 of the present invention, it exhibits excellent properties compared to commercial LiCoO 2 (manufacturer Johnson Matthey Company) products, in particular, heat treatment in which cobalt malate and Li 2 CO 3 are mixed In the case of Example 3 produced by the present invention exhibits superior characteristics as compared to Example 1, as well as commercial LiCoO 2 , it can be seen that can be suitably used as a cathode active material precursor of a lithium secondary battery.

Claims (10)

말산, 포름산 및 물을 포함하는 침출액에 코발트를 포함하는 분쇄된 폐기물을 투입하고, 가압침출하는 침출공정을 포함하는 폐기물의 코발트 회수방법.A cobalt recovery method comprising a leaching step of injecting pulverized waste containing cobalt into a leachate containing malic acid, formic acid and water, and pressurizing. 제 1 항에 있어서,
상기 말산의 농도는 0.2 ~ 5M인 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method of claim 1,
The concentration of malic acid is 0.2 ~ 5M cobalt recovery method of the waste, characterized in that.
제 1 항에 있어서,
상기 침출공정의 압력은 0.5 ~ 5.0 bar인 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method of claim 1,
The cobalt recovery method of the waste, characterized in that the pressure of the leaching process is 0.5 ~ 5.0 bar.
제 1 항에 있어서,
상기 포름산은 상기 침출액에 부피%로 5 ~ 20% 포함되는 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method of claim 1,
The formic acid is cobalt recovery method of the waste, characterized in that 5 to 20% by volume contained in the leachate.
제 1 항에 있어서,
상기 침출공정의 온도는 60 ~ 180℃ 인 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method of claim 1,
Cobalt recovery method of the waste, characterized in that the temperature of the leaching process is 60 ~ 180 ℃.
제 1 항에 있어서,
코발트를 추출한 침출액에 말산을 추가로 첨가함으로써 코발트말산염을 석출시키는 단계를 더 포함하는 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method of claim 1,
Cobalt recovery method of the waste further comprising the step of precipitating cobalt malate by further adding malic acid to the cobalt extracted leachate.
제 6 항에 있어서,
상기 코발트말산염을 열처리하여 코발트 산화물을 생성하는 단계를 더 포함하는 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method according to claim 6,
Cobalt recovery method of the waste, characterized in that further comprising the step of heat-treating the cobalt maleate to produce cobalt oxide.
제 6 항에 있어서,
상기 코발트말산염과 LiCO2를 혼합하여 열처리함으로써 LiCoO2를 제조하는 단계를 더 포함하는 것을 특징으로 하는 코발트 회수방법.
The method according to claim 6,
Cobalt recovery method further comprises the step of preparing LiCoO 2 by heat treatment by mixing the cobalt maleate and LiCO 2 .
제 6 항에 있어서,
상기 말산의 추가 첨가량은 5M 이하인 것을 특징으로 하는 폐기물의 코발트 회수방법.
The method according to claim 6,
The additional amount of malic acid is 5M or less cobalt recovery method, characterized in that.
제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
상기 폐기물은 폐리튬이온전지, 폐초경합금 또는 폐촉매인 것을 특징으로 하는 코발트 회수방법.
The method according to any one of claims 1 to 8,
The waste is a cobalt recovery method, characterized in that the waste lithium ion battery, waste cemented carbide or waste catalyst.
KR20110076530A 2011-08-01 2011-08-01 Method of recycling cobalt from cobalt containing wastes KR101314635B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20110076530A KR101314635B1 (en) 2011-08-01 2011-08-01 Method of recycling cobalt from cobalt containing wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110076530A KR101314635B1 (en) 2011-08-01 2011-08-01 Method of recycling cobalt from cobalt containing wastes

Publications (2)

Publication Number Publication Date
KR20130014833A true KR20130014833A (en) 2013-02-12
KR101314635B1 KR101314635B1 (en) 2013-10-04

Family

ID=47894778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110076530A KR101314635B1 (en) 2011-08-01 2011-08-01 Method of recycling cobalt from cobalt containing wastes

Country Status (1)

Country Link
KR (1) KR101314635B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497921B1 (en) * 2013-06-28 2015-03-03 한국생산기술연구원 Recycling methdo of ncm type cathode active material from waste lithium ion battery and ncm type cathode active material recycled by the same
KR101708149B1 (en) * 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
CN111593201A (en) * 2020-05-11 2020-08-28 陕西科技大学 Method for short-distance separation of manganese and lithium in waste lithium manganate battery and preparation of functional adsorption material
CN115784324A (en) * 2022-11-29 2023-03-14 四川蜀矿环锂科技有限公司 Method for recycling and preparing ternary cathode material precursor by using waste ternary lithium battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960010812B1 (en) * 1994-03-16 1996-08-09 문영환 Recovering method of cobalt
KR100448273B1 (en) * 2002-02-25 2004-09-10 한국지질자원연구원 Recovery Method of Cobalt from spent lithium ion battery
CA2720992A1 (en) 2008-04-11 2009-10-15 The University Of Sydney Leaching process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497921B1 (en) * 2013-06-28 2015-03-03 한국생산기술연구원 Recycling methdo of ncm type cathode active material from waste lithium ion battery and ncm type cathode active material recycled by the same
KR101708149B1 (en) * 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
CN111593201A (en) * 2020-05-11 2020-08-28 陕西科技大学 Method for short-distance separation of manganese and lithium in waste lithium manganate battery and preparation of functional adsorption material
CN115784324A (en) * 2022-11-29 2023-03-14 四川蜀矿环锂科技有限公司 Method for recycling and preparing ternary cathode material precursor by using waste ternary lithium battery
CN115784324B (en) * 2022-11-29 2024-04-12 四川蜀矿环锂科技有限公司 Method for recycling and preparing ternary positive electrode material precursor by using waste ternary lithium battery

Also Published As

Publication number Publication date
KR101314635B1 (en) 2013-10-04

Similar Documents

Publication Publication Date Title
CN106848471B (en) Mixed acid leaching and recovery method of waste lithium ion battery anode material
CN107196007B (en) Lithium battery recycling method
KR101497921B1 (en) Recycling methdo of ncm type cathode active material from waste lithium ion battery and ncm type cathode active material recycled by the same
KR102354730B1 (en) A method for dissolving a lithium compound, a method for manufacturing lithium carbonate, and a method for recovering lithium from scrap of a lithium ion secondary battery
KR101220149B1 (en) Method for making sulfate solution of valuable metal from used battery and for making cathode active material
KR101271669B1 (en) Method for reusing valuable metal of used battery
CN102390863B (en) Method for regenerating lithium titanate serving as anode material of waste lithium ion battery
KR101621312B1 (en) Method Of Recycling Resource for lithium ion secondary battery
KR101325176B1 (en) Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
CN107978814A (en) A kind of method of Selective Separation lithium in material from waste lithium ion cell anode
CN111082043A (en) Recycling method of waste nickel cobalt lithium manganate ternary battery positive electrode material
KR20120128913A (en) Leaching solution for recovering valuable metal from wastes and leaching method using the same
CN108123186B (en) Method for preparing electro-Fenton cathode by recovering graphite from lithium ion battery cathode
KR20210075502A (en) Method for recovering valuable metals from cathodic active material of used lithium battery
CN105244561B (en) The method that high voltage multicomponent material is prepared as raw material using waste and old polynary dynamic lithium battery
WO2016129732A1 (en) Method for regenerating waste precursor for positive electrode active material for lithium secondary battery by means of ball mill
KR101314635B1 (en) Method of recycling cobalt from cobalt containing wastes
CN106169624B (en) A kind of lithium ion battery ternary material recovery method
CN112267023B (en) Two-stage defluorination method for fluorine-containing material
CN113415813A (en) Method for recovering lithium nickel cobalt manganese from waste ternary battery material
CN114335781A (en) Method for extracting precious metal from waste lithium battery
KR101396918B1 (en) Cobalt laeching solution for cobalt containing wastes and recycling method for cobalt using the same
CN115304059A (en) Recycling treatment method for retired battery carbon slag
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
KR101372622B1 (en) Method for preparing nmc(ni-co-mn) hydroxide from ni ore

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 7