KR20130008806A - An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent - Google Patents

An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent Download PDF

Info

Publication number
KR20130008806A
KR20130008806A KR1020110069403A KR20110069403A KR20130008806A KR 20130008806 A KR20130008806 A KR 20130008806A KR 1020110069403 A KR1020110069403 A KR 1020110069403A KR 20110069403 A KR20110069403 A KR 20110069403A KR 20130008806 A KR20130008806 A KR 20130008806A
Authority
KR
South Korea
Prior art keywords
adsorbent
group
metal
acid
desulfurization
Prior art date
Application number
KR1020110069403A
Other languages
Korean (ko)
Other versions
KR101328565B1 (en
Inventor
정성화
나쯔물아베딘칸
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020110069403A priority Critical patent/KR101328565B1/en
Publication of KR20130008806A publication Critical patent/KR20130008806A/en
Application granted granted Critical
Publication of KR101328565B1 publication Critical patent/KR101328565B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: An adsorbent for adsorption desulfurization and a manufacturing method of the adsorbent are provided to facilitate a manufacturing process since a sintering process at a high temperature is not necessary when an acidic salt is dissolved in an appropriate solvent and then supported by a solid support such as a metal-organic skeletal material. CONSTITUTION: An adsorbent for adsorption desulfurization is manufactured by supporting an acidic salt on a porous solid support. The porous solid support is a metal-organic skeletal material. An anion of the acidic salt is at least one selected from the group consisting of chloride(Cl^-), nitrate(NO_3^-), sulfate(SO_4^2-), iodide(I^-), fluoride(F^-), and perchlorate(ClO_4^-), and a cation of the acidic salt is a metal cation excluding alkali metals and alkali earth metals.

Description

흡착 탈황용 흡착제 및 이의 제조 방법 {An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent}An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent}

본 발명은 흡착 탈황 용 흡착제 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 다공성 지지체에 산성을 가지는 금속염을 지지한 흡착제 및 이의 용이한 제조 방법에 관한 것이다. The present invention relates to an adsorbent for adsorption desulfurization and a method for producing the same, and more particularly, to an adsorbent supporting an acid salt having an acid in a porous support and an easy method for producing the same.

환경의 중요성이 날로 증가할 뿐만 아니라 우수한 품질의 석유 자원의 고갈에 따라 이를 대체할 수 있는 석탄, 비투멘 및 오일샌드 등의 활용이 더욱 중요해 지고 있다. 이러한 저품질의 원료는 황, 질소 및 금속 등의 불순물의 함량이 매우 높으므로 에너지원, 특히 수송용 연료로 활용하기 위해서는 이러한 불순물을 반드시 제거하여야 한다. 디젤유, 등유 및 휘발유 같은 수송용 연료에 잔존하는 황화합물로는 benzothiophene (BT), dibenzothiophene (DBT), methyldibenzothiophene (MDBT), dimethyldibezothiophene (DMDBT) 등이 있으며 특히 DMDBT와 같이 복잡한 구조의 티오펜 화합물은 제거하기 힘든 고질적인 황화합물이다. The importance of the environment is increasing day by day, and the use of coal, bitumen, and oil sands, which can replace them, is becoming more important due to the depletion of high quality petroleum resources. These low quality raw materials have a very high content of impurities such as sulfur, nitrogen, and metals, so that these impurities must be removed in order to be used as an energy source, particularly as a fuel for transportation. Sulfur compounds remaining in transport fuels such as diesel oil, kerosene and gasoline include benzothiophene (BT), dibenzothiophene (DBT), methyldibenzothiophene (MDBT), dimethyldibezothiophene (DMDBT), and especially thiophene compounds with complex structures such as DMDBT. It is a hard sulfur compound that is difficult to do.

최근의 환경 규제는 수송용 디젤유의 경우 황 기준으로 15 ppm 수준 이하의 황을 허용하고 있으며 특히 연료전지의 경우 황 함량이 1ppm 이하(바람직하게는 60 ppb 이하)여야하고 (Catal. Sci. Technol., 1, 23-42, 2011) 이들을 위해 다양한 탈황 기술이 개발, 연구되고 있다. 가장 대표적인 것으로는 HDS (hydrodesulfurization) 기술이나 고온, 고압에서의 운전 외에 수소를 사용하고 특히 고질적인 황화합물의 제거에는 효과적이지 못한 단점이 있다. HDS 외에 산화 반응을 활용한 산화 탈황, 흡착을 활용한 흡착 탈황과 침전, 추출 등의 기술이 연구되고 있다. 흡착 기술을 이용한 흡착 탈황은 온화한 운전 조건 및 고질적인 황화합물 제거에 유리할 뿐만 아니라 유해한 황화수소가 발생하지 않고 소규모 운전이 가능하므로 (Catal. Sci. Technol., 1, 23-42, 2011) 활발히 연구되고 있는 기술이다(Catal. Rev. Sci. Eng. 52, 381-410, 2010). Recent environmental regulations allow less than 15 ppm of sulfur on the basis of sulfur for diesel fuels for transportation, and in particular for fuel cells, the sulfur content should be less than 1 ppm (preferably less than 60 ppb) (Catal. Sci. Technol. , 1, 23-42, 2011) Various desulfurization techniques have been developed and studied for them. Most notably, hydrogen is used in addition to HDS (hydrodesulfurization) technology or operation at high temperature and high pressure, and is particularly ineffective in removing the sulfur compounds. In addition to HDS, technologies such as oxidative desulfurization using oxidative reaction and adsorption desulfurization, precipitation and extraction using adsorption are being studied. Adsorption desulfurization using adsorption technology is not only favorable for mild operating conditions and removal of chronic sulfur compounds but also for small-scale operation without generating harmful hydrogen sulfide (Catal. Sci. Technol., 1, 23-42, 2011). Technology (Catal. Rev. Sci. Eng. 52, 381-410, 2010).

흡착 탈황을 위해 사용될 수 있는 다양한 흡착제가 연구되었다(Catal. Rev. Sci. Eng. 52, 381-410, 2010). 우선 은(Ag)이 가장 광범위하게 사용되었으며 Ag/titania, Ag/Al2O3, AgSO3-SBA-15, AgY (USP 7625429)와 같이 고체에 지지되거나 이온 교환된 흡착제가 연구되었다. Cu/Al2O3, Cu(I)-Y (Catal. Today, 2006, 116, 530; Science, 301, 79, 2003; USP 7053256)와 같은 구리 이온이 지지 혹은 이온 교환된 흡착제도 연구되었다. 연구 결과 흡착의 활성점은 1가의 은 혹은 구리로 밝혀졌다. 그 외 WP/TiO2-ZrO2와 NiP/TiO2-ZrO2 (USP 7935248), Ti, Si 등으로 구성된 분자체(USP 7842645), Ni-기반의 무정형 합금(USP 6875340) 등이 흡착 탈황을 위한 흡착제로 제안되었다. Various adsorbents that can be used for adsorptive desulfurization have been studied (Catal. Rev. Sci. Eng. 52, 381-410, 2010). First, silver (Ag) was the most widely used and solid adsorbents supported or ion exchanged such as Ag / titania, Ag / Al 2 O 3 , AgSO 3 -SBA-15, AgY (USP 7625429) were studied. Adsorbents supported or ion exchanged with copper ions such as Cu / Al 2 O 3 , Cu (I) -Y (Catal. Today, 2006, 116, 530; Science, 301, 79, 2003; USP 7053256) have also been studied. As a result, the active site of adsorption was found to be monovalent silver or copper. Molecular sieves composed of WP / TiO 2 -ZrO 2 and NiP / TiO 2 -ZrO 2 (USP 7935248), Ti, Si, etc. (USP 7842645), Ni-based amorphous alloys (USP 6875340), etc. It is proposed as an adsorbent.

대한민국 공개특허 제 2007-0044979호에는 염기성 금속염을 이용한 연료전지용 탈황 흡착제 및 이를 이용한 탈황 방법이 공지되어 있고, 대한민국 공개특허 제 2005-0033351호에는 전이금속을 제올라이트에 담지시켜 제조한 탈황용 흡착제에 대해 공지되어 있다.Korean Patent Publication No. 2007-0044979 discloses a desulfurization adsorbent for fuel cells using a basic metal salt and a desulfurization method using the same, and Korean Patent Publication No. 2005-0033351 discloses an adsorbent for desulfurization prepared by supporting a transition metal in zeolite. Known.

최근에는 높은 표면적을 갖는 금속-유기 골격물질(metal-organic frameworks)을 활용한 탈황도 보고된 바 있다 (J. Am. Chem. Soc., 131, 14538, 2009; J. Am. Chem. Soc., 130, 6938; Chem. Eng. Technol. 33, 275, 2010; Chem. Commun. 47, 1306, 2011). 금속-유기 골격물질은 중심금속 이온이 유기리간드와 결합하여 형성된 다공성 유무기 고분자 화합물로 정의될 수 있으며, 골격 구조내에 유기물과 무기물을 모두 포함하고 분자크기 또는 나노크기의 세공구조를 갖는 결정성 화합물을 의미한다. 금속-유기 골격물질은 보다 광범위한 의미의 다공성 유무기혼성체 (porous organic inorganic hybrid materials)(Chem. Commun., 4780, 2006) 및 다공성 배위고분자 (porous coordination polymers)(Angew. Chem. Intl. Ed., 43, 2334. 2004)등과 큰 구분 없이 사용되며 최근에 많은 연구가 이루어지고 있다 (Chem. Soc. Rev., 37, 191, 2008).Recently, desulfurization using metal-organic frameworks with high surface areas has also been reported (J. Am. Chem. Soc., 131, 14538, 2009; J. Am. Chem. Soc. , 130, 6938; Chem. Eng. Technol. 33, 275, 2010; Chem. Commun. 47, 1306, 2011). The metal-organic framework material may be defined as a porous organic-inorganic polymer compound formed by combining a central metal ion with an organic ligand, and a crystalline compound including both organic and inorganic materials in a skeleton structure and having molecular or nano-sized pore structure. Means. Metal-organic frameworks have broader meanings of porous organic inorganic hybrid materials (Chem. Commun., 4780, 2006) and porous coordination polymers (Angew. Chem. Intl. Ed., 43, 2334. 2004) and many others have been used recently (Chem. Soc. Rev., 37, 191, 2008).

그러나 그 어떤 흡착제라도 흡착 용량이 충분하지 못하였고 은은 물론이고 팔라듐 같은 매우 값비싼 원료를 사용하기도 하였다. However, any adsorbent did not have sufficient adsorption capacity and used very expensive raw materials such as silver and palladium.

본 발명자들은 흡착 용량이 우수한 흡착 탈황용 흡착제를 얻기 위해 다양한 방법으로 부단히 노력하던 중 다공성 물질과 산성염을 모두 함유한 흡착제를 사용하면 황의 흡착 용량을 크게 증가시킬 수 있다는 사실을 발견하여 본 발명을 완성할 수 있었다. 또한 이러한 흡착제를 제조하는 단순한 제조 방법을 개발하여 본 발명을 완성할 수 있었다. The present inventors completed the present invention by discovering that the adsorption agent containing both porous materials and acid salts can greatly increase the adsorption capacity of sulfur while trying to obtain an adsorbent for adsorption desulfurization having excellent adsorption capacity. Could. In addition, it was possible to complete the present invention by developing a simple manufacturing method for producing such an adsorbent.

이에 본 발명에서는 새로운 흡착 탈황용 흡착제 및 이의 용이한 제조방법으로서, 표면적이 높은 금속-유기 골격물질과 산성염을 동시에 함유한 흡착제 및 이의 용이한 제조 방법을 발명하게 되었다. 상기 금속-유기골격물질로는 예를 들면, 다공성 금속-테레프탈레이트 또는 금속-벤젠트리카복실레이트 등을 사용하는 경우 특히 물성 및 효과에서 우수하다. Accordingly, the present invention provides a novel adsorbent for desulfurization and an easy method for preparing the adsorbent and a method for preparing the adsorbent containing both a metal-organic framework and an acid salt having a high surface area. As the metal-organic framework, for example, porous metal-terephthalate or metal-benzenetricarboxylate or the like is particularly excellent in physical properties and effects.

이에 따라 본 발명에서는 흡착 탈황용 흡착제 및 이의 용이한 제조 방법을 제공하되 특히 흡착 제거 용량이 큰 탈황용 흡착제 및 이의 용이한 제조 방법을 제공하는 것이다. Accordingly, the present invention provides an adsorbent for adsorption desulfurization and an easy method for preparing the same, but particularly to provide a desulfurization adsorbent having a large adsorption removal capacity and an easy method for producing the adsorbent.

따라서 본 발명은 흡착 탈황 용도로 사용 가능한, 흡착 용량이 큰 흡착제 및 이들을 간편하게 제조하는 방법을 개발하는데 그 목적이 있다. Accordingly, an object of the present invention is to develop an adsorbent having a high adsorption capacity and a method for easily preparing the same, which can be used for adsorption desulfurization.

또한 본 발명은 간단한 공정으로 탈활효과가 큰 흡착제를 제공하는 것이 또 다른 목적이다.Another object of the present invention is to provide an adsorbent having a large deactivation effect in a simple process.

상기의 목적을 달성하기 위하여, 본 발명은 흡착 탈황용 흡착제의 효율적인 및 이의 제조 방법에 관한 것으로서, 본 발명에서 사용된 흡착 탈황 용 흡착제는 두 종류의 성분으로 구성된다. In order to achieve the above object, the present invention relates to an efficient and method for producing the adsorbent for adsorption desulfurization, the adsorbent for adsorption desulfurization used in the present invention is composed of two kinds of components.

본 발명의 성분 중 하나는 지지체로서, 주로 금속-유기 골격물질(metal-organic frameworks) 등의 표면적이 넓은 다공성 고체 물질이고 또 다른 하나의 성분은 산성을 가지는 금속염이다. One of the components of the present invention is a support, mainly a porous solid material having a large surface area such as metal-organic frameworks, and another component is a metal salt having an acid.

금속-유기 골격물질은 중심에 존재하는 금속 이온이 유기리간드와 결합하여 형성된 다공성 유무기 고분자 화합물로 정의될 수 있으며, 골격 구조 내에 유기물과 무기물을 모두 포함하고 분자크기 또는 나노크기의 세공구조를 갖는 결정성 화합물을 의미한다. 금속-유기 골격물질은 보다 광범위한 의미의 다공성 유무기혼성체 (porous organic inorganic hybrid materials)(Chem. Commun., 4780, 2006) 및 다공성 배위고분자 (porous coordination polymers)(Angew. Chem. Intl. Ed., 43, 2334. 2004)등과 큰 구분 없이 사용된다. The metal-organic framework material may be defined as a porous organic-inorganic polymer compound formed by combining metal ions in the center with an organic ligand, and include both organic and inorganic materials in the skeleton structure and have a molecular or nano-sized pore structure. It means a crystalline compound. Metal-organic frameworks have broader meanings of porous organic inorganic hybrid materials (Chem. Commun., 4780, 2006) and porous coordination polymers (Angew. Chem. Intl. Ed., 43, 2334. 2004).

본 발명의 금속-유기 골격물질은 어떠한 구조 혹은 조성이라도 적용 가능하다. 즉, 하나의 구성원소인 금속 물질은 어떠한 금속이라도 가능하며 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi 등이 대표적인 금속 물질이다. 특히 배위화합물을 잘 만드는 전이금속이 적당하고 전이금속 중에서도 크롬, 바나듐, 철, 니켈, 코발트, 구리, 아연, 티타늄 및 망간 등이 적당하다. 전이금속 외에도 배위화합물을 만드는 전형원소는 물론 란타늄 같은 금속도 가능하다. 전형원소 중에는 알루미늄 및 실리콘이 적당하며 란타늄 금속 중에는 세륨, 란타늄이 적당하다. 금속원으로는 금속 자체는 물론이고 금속의 어떠한 화합물도 사용할 수 있다.The metal-organic framework material of the present invention is applicable to any structure or composition. That is, the metal material which is one member may be any metal, and Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi, etc. This is a representative metal material. In particular, transition metals that make coordination compounds are suitable, and chromium, vanadium, iron, nickel, cobalt, copper, zinc, titanium, and manganese are suitable among transition metals. In addition to transition metals, metals such as lanthanum may be used as well as typical elements for making coordination compounds. Among the typical elements, aluminum and silicon are suitable, and among lanthanum metals, cerium and lanthanum are suitable. As the metal source, any compound of the metal may be used as well as the metal itself.

금속-유기 골격물질의 또 하나의 구성원소인 유기물은 링커 (linker)라고도 하며 배위할 수 있는 작용기를 가진 어떠한 유기물도 가능하며, 배위할 수 있는 작용기는 카본산기, 카본산 음이온기, 아미노기(-NH2), 이미노기(

Figure pat00001
), 아미드기(-CONH2), 술폰산기(-SO3H), 술폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 또는 피라진기 등이 예시될 수 있다. 보다 안정한 금속-유기 골격물질을 유도하기 위해서는 배위할 수 있는 자리가 2개 이상인, 예를 들면 바이덴테이트 또는 트리덴테이트인 유기물이 유리하다. 유기물로는 배위할 자리가 있다면 비피리딘, 피라진 등의 중성 유기물, 테레프탈레이트, 나프탈렌디카복실레이트, 벤젠트리카복실레이트, 글루타레이트, 숙신네이트 등으로 예시될 수 있는 카본산 음이온 등의 음이온성 유기물은 물론 양이온 물질도 가능하다. 카본산 음이온의 경우 예를 들면 테레프탈레이트 같은 방향족 링을 갖는 것 외에 포르메이트 같은 선형의 카본산의 음이온은 물론이고 시클로헥실디카보네이트와 같이 비방향족 링을 갖는 음이온 등 어느 것이라도 가능하다. 배위할 수 있는 자리를 가진 유기물은 물론이고 잠재적으로 배위할 자리를 가져 반응 조건에서 배위할 수 있게 변화되는 것도 가능하다. 즉, 테레프탈산 같은 유기산을 사용하여도 반응 후에는 테레프탈레이트로 금속 성분과 결합할 수 있다. 사용할 수 있는 유기물의 대표적인 예로는 벤젠디카르복실산, 나프탈렌디카복실산, 벤젠트리카복실산, 나프탈렌트리카복실산, 피리딘디카복실산, 비피리딜디카복실산, 포름산, 옥살산, 말론산, 숙신산, 글루타르산, 헥산다이오익산, 헵탄다이오익산, 또는 시클로헥실디카복실산에서 선택되는 유기산 및 그들의 음이온, 피라진, 비피리딘 등이다. 또한, 하나 이상의 유기물을 혼합하여 사용할 수도 있다.Organics, which are another member of the metal-organic framework, are also called linkers and can be any organic with coordinating functional groups. The coordinating functional groups are carboxylic acid groups, carboxylic acid anion groups, amino groups (-NH). 2 ), imino (
Figure pat00001
), Amide group (-CONH 2), a sulfonic acid group (-SO 3 H), a sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 - ), Pyridine group or pyrazine group and the like can be exemplified. In order to induce a more stable metal-organic framework, organic materials having two or more coordinating sites, for example, bidentate or tridentate, are advantageous. Organic materials include anionic organic materials such as carbonic anion, which can be exemplified by neutral organics such as bipyridine and pyrazine, terephthalate, naphthalenedicarboxylate, benzenetricarboxylate, glutarate, succinate, etc. Of course, cationic materials are also possible. In the case of the carbonic acid anion, for example, in addition to having an aromatic ring such as terephthalate, any of anions having a linear carbonic acid such as formate and an anion having a non-aromatic ring such as cyclohexyldicarbonate can be used. Organics with coordinating sites, as well as potentially coordinating sites, can also be changed to coordinate under reaction conditions. That is, even if an organic acid such as terephthalic acid is used, it can be combined with a metal component with terephthalate after the reaction. Representative examples of organic materials that can be used include benzenedicarboxylic acid, naphthalenedicarboxylic acid, benzenetricarboxylic acid, naphthalenetricarboxylic acid, pyridinedicarboxylic acid, bipyridyldicarboxylic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid and hexanedioo Organic acids selected from Ixic acid, heptanedioic acid, or cyclohexyldicarboxylic acid and their anions, pyrazine, bipyridine and the like. It is also possible to mix and use one or more organics.

이러한 금속-유기 골격물질들의 대표적인 예로는 크롬-테레프탈레이트 (MIL-101이라고 함; Science, 309, 2040, 2005), 철-벤젠트리카복실레이트(MIL-100 (Fe)이라고 함; Chem. Commun., 2820, 2007), 알루미늄-벤젠트리카복실레이트(MIL-100 (Al)이라고 함; Chem. Mater., 21, 5695, 2009), 크롬-벤젠트리카복실레이트(MIL-100 (Cr)이라고 함; Angew. Chem. Intl. Ed., 43, 6296, 2004), 구리-벤젠트리카복실레이트(Cu-BTC이라고 함; Science, 283, 1148, 1999), 바나듐-테레프탈레이트 (MIL-47이라고 함; Angew. Chem. Intl. Ed., 41, 281, 2002; Phys. Chem. Chem. Phys., 10, 2979, 2008), 알루미늄-테레프탈레이트 (MIL-53(Al)이라고 함; Chem. Eur. J., 10, 1373, 2004), 또 다른 크롬-테레프탈레이트 (MIL-53(Cr)이라고 함; J. Am. Chem. Soc., 124, 13519, 2002) 등이 있다. Representative examples of such metal-organic frameworks include chromium-terephthalate (called MIL-101; Science, 309, 2040, 2005), iron-benzenetricarboxylate (MIL-100 (Fe); Chem. Commun. , 2820, 2007), aluminum-benzenetricarboxylate (called MIL-100 (Al); Chem. Mater., 21, 5695, 2009), chromium-benzenetricarboxylate (MIL-100 (Cr)); Angew.Chem.Intl.Ed., 43, 6296, 2004), copper-benzenetricarboxylate (called Cu-BTC; Science, 283, 1148, 1999), vanadium-terephthalate (called MIL-47; Angew Chem. Intl. Ed., 41, 281, 2002; Phys. Chem. Chem. Phys., 10, 2979, 2008), aluminum-terephthalate (called MIL-53 (Al); Chem. Eur. J. , 10, 1373, 2004), and another chromium-terephthalate (called MIL-53 (Cr); J. Am. Chem. Soc., 124, 13519, 2002).

그러나 이외에도 매우 많은 금속-유기 골격물질이 존재하며 표면적이 100 m2/g 이상이면 흡착 탈황용 흡착제로 사용될 수 있다. 좋게는 100~5000m2/g의 표면적을 가지는 흡착제를 사용하는 것이 좋지만 이에 한정되는 것은 아니다. 또 다른 지지체로 사용되는 물질은 SBA-15, SBA-16, MCM-41, MCM-48 등의 메조세공 물질 및 ZSM-5, Na-Y, Beta, MCM-22 등의 제올라이트 같이 표면적과 세공부피가 큰 고체 물질 등이다. However, there are many metal-organic frameworks, and if the surface area is 100 m 2 / g or more, it can be used as an adsorbent for adsorption desulfurization. Preferably, it is preferable to use an adsorbent having a surface area of 100 to 5000 m 2 / g, but is not limited thereto. Other materials used for the support include surface area and pore volume, such as mesoporous materials such as SBA-15, SBA-16, MCM-41 and MCM-48 and zeolites such as ZSM-5, Na-Y, Beta and MCM-22. Is a large solid material.

산성염으로는 음이온이 chloride(Cl-), nitrate(NO3 -), sulfate(SO4 2 -), iodide(I-), fluoride(F-), perchlorate(ClO4 -) 중에서 선택된 하나 이상의 이온이고 양이온은 알칼리 금속 및 알칼리 토금속을 제외한 금속 이온으로 구성된 염이다. 예를 들자면 CuCl2, Cu(NO3)2, CuSO4, NiCl2, Ni(NO3)2, NiSO4 등이 있으나 이들로 제한되는 것은 아니다.Sanseongyeom the anion is chloride (Cl -), nitrate ( NO 3 -), sulfate (SO 4 2 -), iodide (I -), fluoride (F -), perchlorate (ClO 4 -) at least one ion selected from the group consisting of and Cations are salts composed of metal ions except alkali metals and alkaline earth metals. Examples include, but are not limited to, CuCl 2 , Cu (NO 3 ) 2 , CuSO 4 , NiCl 2 , Ni (NO 3 ) 2 , NiSO 4, and the like.

본 발명에 의한 흡착제의 제조 방법은 하기의 단계를 포함하고 특히 고온의 소성 단계 없이 용이하게 흡착제를 제조하는 방법을 제공한다.The method for preparing the adsorbent according to the present invention includes the following steps, and particularly provides a method for easily preparing the adsorbent without a high temperature firing step.

1) 산성염을 적당한 용매에 녹여 용액으로 만드는 단계; 및1) dissolving the acid salt in a suitable solvent to form a solution; And

2) 금속-유기 골격물질의 고체 지지체에 상기 용액을 가하는 단계; 및2) adding the solution to a solid support of a metal-organic framework; And

3) 현탁액을 건조하는 단계.3) drying the suspension.

본 발명에서 상기 용매로는 크게 제한되지 않지만, 예를 들면, 에탄올, 케톤, 알데히드, 에테르, 에스테르계 등의 용매를 사용할 수 있다. 예를 들면, 에탄올, 프로판올 혹은 메탄올등이 좋다. 상기 건조단계의 온도는 크게 제한되지 않지만, 통상적으로 상온에서 200℃, 좋게는 150℃이하에서 건조하는 것이 효과 면에서 좋다.In the present invention, the solvent is not particularly limited, and for example, solvents such as ethanol, ketone, aldehyde, ether, and ester may be used. For example, ethanol, propanol or methanol is preferable. Although the temperature of the drying step is not particularly limited, it is usually good to dry at room temperature below 200 ℃, preferably below 150 ℃ in terms of effects.

상술한 바와 같이, 본 발명에 따라 흡착 탈황용 흡착제의 제조에 있어서 산성 염을 적당한 용매에 용해 후 금속-유기 골격물질 같은 고체 지지체에 지지하는 경우 고온 소성 공정이 필요 없는 용이한 제조 방법이 될 수 있다. 또한 금속-유기 골격물질 같은 고체 지지체에 지지된 산성 염을 포함한 흡착제는 매우 높은 탈황 용량을 가지므로 휘발유, 등유, 경유 및 제트유 같은 수송용 연료 및 원유 등의 흡착 탈황에 활용될 수 있다.As described above, in the preparation of the adsorbent for adsorption desulfurization according to the present invention, when the acid salt is dissolved in a suitable solvent and supported on a solid support such as a metal-organic framework, it may be an easy manufacturing method that does not require a high temperature baking process. have. In addition, an adsorbent including an acid salt supported on a solid support such as a metal-organic framework has a very high desulfurization capacity and thus can be used for adsorptive desulfurization of fuels such as gasoline, kerosene, diesel and jet fuels and transportation fuels.

도 1은 본 발명의 CuCl2/MIL-47 흡착제를 사용한 벤조티오펜 흡착 등온선을 보여 주는 것이다.
도 2는 본 발명의 산성염/MIL-47 흡착제를 사용한 흡착 시간대별 벤조티오펜의 흡착량을 보여 주는 것이다.
도 3은 본 발명의 CuCl2/Cu-BTC 흡착제를 사용한 흡착 시간대별 벤조티오펜의 흡착량을 보여 주는 것이다.
Figure 1 shows the benzothiophene adsorption isotherm using the CuCl 2 / MIL-47 adsorbent of the present invention.
Figure 2 shows the adsorption amount of benzothiophene by adsorption time using the acid salt / MIL-47 adsorbent of the present invention.
Figure 3 shows the adsorption amount of benzothiophene by adsorption time using the CuCl 2 / Cu-BTC adsorbent of the present invention.

이하, 아래의 비제한적 실시예에서 본 발명을 보다 자세하게 설명한다.
Hereinafter, the present invention is described in more detail in the following non-limiting examples.

실시예Example 1 - 4  1 - 4

CuCl2 0.013 g을 2mL의 에탄올에 녹인 후 0.15 g의 정제된 MIL-47(바나듐-테레프탈레이트)을 가하였다. 30분간 잘 저어준 후 실온에서 에탄올을 증발 시킨 후 100℃에서 6시간 건조하였다. 이렇게 제조된 흡착제는 CuCl2(0.15)/MIL-47로 명명하였다. 0.15는 Cu/V(구리/바나듐원소)비 (mol/mol)를 의미한다.0.013 g of CuCl 2 was dissolved in 2 mL of ethanol and 0.15 g of purified MIL-47 (vanadium-terephthalate) was added. After stirring well for 30 minutes, ethanol was evaporated at room temperature and dried at 100 ° C. for 6 hours. The adsorbent thus prepared was named CuCl 2 (0.15) / MIL-47. 0.15 means Cu / V (copper / vanadium element) ratio (mol / mol).

또한 실시예 1과 동일한 방법으로 흡착제를 제조하되 CuCl2의 양을 감소시켜 실시예 2~4의 흡착제를 제조하였다. 실시예 2는 CuCl2(0.08)/MIL-4이고, 실시예 3은 CuCl2(0.05)/MIL-47, 실시예 4는 CuCl2(0.02)/MIL-47로 하였다.In addition, the adsorbent was prepared in the same manner as in Example 1, but the amount of CuCl 2 was decreased to prepare the adsorbents of Examples 2 to 4. Example 2 is CuCl 2 (0.08) / MIL-4, Example 3 is CuCl 2 (0.05) / MIL-47, and Example 4 is CuCl 2 (0.02) / MIL-47.

상기 제조한 흡착제의 흡착능력 실험을 다음과 같이 수행하였다. The adsorption capacity experiment of the prepared adsorbent was performed as follows.

n-octane에 벤조티오펜을 녹여 일정한 농도의 벤조티오펜의 용액이 되도록 하였다. 15.0 mL의 벤조티오펜 용액에 실시예 1 - 4로부터 얻어진 0.1 g의 흡착제를 가한 후 25℃에서 24시간 교반하며 벤조티오펜이 흡착되도록 하였다. 벤조티오펜 농도는 GC로 분석하였고 도 1과 같은 흡착등온선을 얻을 수 있었다. CuCl2가 존재하지 않은 MIL-47에 대비하여 CuCl2가 지지된 MIL-47은 모두 현저히 향상된 흡착 용량을 가짐을 알 수 있다. 도 1에서 x축은 벤조티오펜의 농도이고 y축은 흡착된 흡착량을 의미한다.Benzothiophene was dissolved in n- octane to obtain a solution of benzothiophene at a constant concentration. 0.1 g of the adsorbent obtained in Examples 1-4 was added to 15.0 mL of benzothiophene solution, followed by stirring at 25 ° C. for 24 hours to allow benzothiophene to be adsorbed. The benzothiophene concentration was analyzed by GC and adsorption isotherms as shown in FIG. 1 were obtained. Against the MIL-47 CuCl 2 did not exist CuCl 2 is supported MIL-47 can all be seen having a remarkably enhanced absorption capacity. In FIG. 1, the x axis represents the concentration of benzothiophene and the y axis represents the adsorption amount adsorbed.

도 2는 벤조티오펜의 초기 농도를 1000ppm으로 고정한 상태에서, 산성염의 종류에 따른 흡착능력을 나타낸 것이다. 산성염이 존재하지 않은 비교예 1의 MIL-47과 대비하여 동일 시간의 벤조티오펜 흡착량이 향상됨을 알 수 있었다.
Figure 2 shows the adsorption capacity according to the type of acid salt in a fixed state of 1000ppm initial concentration of benzothiophene. It was found that the adsorption amount of benzothiophene at the same time was improved compared to MIL-47 of Comparative Example 1 in which no acid salt was present.

실시예Example 5, 6  5, 6

실시예1과 동일하게 수행하되, CuCl2 대신에 다른 산성염(NiCl2 및 Cu(NO3)2)을 사용하였다. 실시예5는 Ni/V비가 0.05이고, 실시예6은 Cu/V의 mol/mol 비를 0.05가 되도록 산성염의 양을 조절 하여 제조한 것이다. 그 결과를 도 2에 수록하였다, 산성염을 사용하지 않은 비교예 1의 것에 비하여 동일 시간에 벤조티오펜의 흡착량이 매우 향상됨을 알 수 있었다.
The same procedure as in Example 1 was carried out except that other acid salts (NiCl 2 and Cu (NO 3 ) 2 ) were used instead of CuCl 2 . Example 5 was prepared by adjusting the amount of the acid salt so that the Ni / V ratio is 0.05, and Example 6 is a mol / mol ratio of Cu / V to 0.05. The result is shown in FIG. 2, and it turned out that the adsorption amount of the benzothiophene improves at the same time compared with the comparative example 1 which did not use the acid salt.

실시예Example 7, 8  7, 8

실시예 1과 동일한 방법으로 흡착제를 제조하되 MIL-47 대신에 Cu-BTC(구리-벤젠트리카복실레이트)를 사용하였고 CuCl2의 양을 변화하여 CuCl2(0.07)/Cu-BTC(실시예7) 및 CuCl2(0.04)/Cu-BTC(실시예 8)를 제조하였다. 0.07 및 0.04는 Cu(산성염)/Cu(MOF)의 mol/mol 비에 해당한다. 도 3에서 기재된 바와 같이, CuCl2가 존재하지 않은 Cu-BTC에 대비하여 CuCl2가 지지된 Cu-BTC는 동일 시간에서 벤조티오펜 흡착량이 향상됨을 알 수 있다.
Example 1 and prepared in the adsorbent in the same way MIL-47 Cu-BTC in place - was used (copper benzenetricarboxylic carboxylate) CuCl CuCl 2 by changing the amount of 2 (0.07) / Cu-BTC ( Example 7 ) And CuCl 2 (0.04) / Cu-BTC (Example 8) were prepared. 0.07 and 0.04 correspond to the mol / mol ratio of Cu (acid salt) / Cu (MOF). Also, in case of Cu-BTC CuCl 2 did not exist CuCl Cu-BTC a divalent support as described in 3, it can be seen that improvement in the amount of benzothiophene adsorbed at the same time.

비교예Comparative example 1 ( One ( MILMIL -47)-47)

실시예1과 동일하게 흡착실험을 수행하되 CuCl2가 존재하지 않은 MIL-47을 흡착제로 사용한 것 이외에는 동일하게 하였다. 도 1에서 보는 바와 같이 평형 흡착량이 매우 낮았다.
Adsorption experiment was performed in the same manner as in Example 1 except that MIL-47 without CuCl 2 was used as the adsorbent. As shown in FIG. 1, the equilibrium adsorption amount was very low.

비교예Comparative example 2 ( 2 ( CuCu -- BTCBTC ))

실시예7과 동일하게 흡착실험을 수행하되 CuCl2가 존재하지 않은 Cu-BTC을 흡착제로 사용하였다. 도 3에서 보는 바와 같이 동일 시간대의 흡착량이 매우 낮았다.
Adsorption experiment was performed in the same manner as in Example 7, but Cu-BTC without CuCl 2 was used as the adsorbent. As shown in Figure 3, the adsorption amount at the same time was very low.

비교예Comparative example 3 (고온 소성 효과) 3 (high temperature firing effect)

실시예1과 유사하게 흡착실험을 수행하되 실시예 3과 같이 제조된 흡착제를 750℃에서 5시간 소성 후 흡착실험을 진행하였다. 소성 후의 흡착제는 흑색이었으며 아마도 구리 산화물과 탄소로 구성된 것으로 보였다. 그 결과, 같은 소성하지 않은 실시예 3의 흡착제에 비하여 매우 낮은 (<5%) 흡착능을 나타내어 본 발명과 같이 산성염을 흡착체에 지지 후 소성을 진행하지 않은 흡착제가 매우 우수한 성능을 나타냄을 알 수 있었다. Adsorption experiment was performed similarly to Example 1, but the adsorption experiment was performed after firing the adsorbent prepared in Example 3 at 750 ° C. for 5 hours. The adsorbent after firing was black and probably consisted of copper oxide and carbon. As a result, it showed that the adsorption capacity was very low (<5%) compared to the adsorbent of Example 3, which was not calcined, and thus, the adsorbent which did not undergo firing after supporting the acid salt in the adsorbent as in the present invention showed very excellent performance. there was.

상기의 실시예와 비교예에서 살핀 바와 같이, 실시예와 비교예의 결과로부터 본 발명에 따른 흡착 탈황용 흡착제와 이의 제조 방법은 낮은 온도에서 흡착 탈황용 흡착제를 제조할 수 있는 경제적이고 효과적인 방법임을 알 수 있다. 또한 제조된 흡착제는 매우 높은 흡착 용량을 가져 흡착 탈황에 효과적으로 사용될 수 있음을 알 수 있다.As shown in the above Examples and Comparative Examples, it is understood from the results of the Examples and Comparative Examples that the adsorbent for adsorption desulfurization and the method for producing the adsorbent for desulfurization at low temperature are an economical and effective method for producing the adsorbent for adsorption desulfurization at low temperature. Can be. In addition, it can be seen that the prepared adsorbent has a very high adsorption capacity and can be effectively used for adsorption desulfurization.

Claims (10)

다공성 고체 지지체에 산성염을 지지하여 제조한 흡착 탈황용 흡착제.
Adsorbent for adsorption desulfurization prepared by supporting acid salt on a porous solid support.
제 1항에 있어서
상기 다공성 고체 지지체는 금속-유기 골격물질인 흡착 탈황용 흡착제.
The method of claim 1, wherein
The porous solid support is an adsorbent for desulfurization, which is a metal-organic framework.
제 1항에 있어서
상기 산성염은 음이온이 chloride(Cl-), nitrate(NO3 -), sulfate(SO4 2 -), iodide(I-), fluoride(F-), perchlorate(ClO4 -) 중에서 선택된 하나 이상의 음이온이고 양이온은 알칼리 금속 및 알칼리 토금속을 제외한 금속 양이온으로 구성된 염인 것을 특징으로 하는 흡착제.
The method of claim 1, wherein
The sanseongyeom the anion is chloride (Cl -), nitrate ( NO 3 -), sulfate (SO 4 2 -), iodide (I -), fluoride (F -), perchlorate (ClO 4 -) at least one anion selected from the group consisting of and Adsorbent, characterized in that the cation is a salt consisting of a metal cation except alkali metal and alkaline earth metal.
제 3항에 있어서
상기 산성염은 CuCl2, Cu(NO3)2, CuSO4, NiCl2, Ni(NO3)2, NiSO4 중에서 선택된 하나 이상의 염인 것을 특징으로 하는 흡착제.
The method of claim 3, wherein
The acid salt is an adsorbent, characterized in that at least one salt selected from CuCl 2 , Cu (NO 3 ) 2 , CuSO 4 , NiCl 2 , Ni (NO 3 ) 2 , NiSO 4 .
제 2항에 있어서
상기 금속-유기 골격다공성 고체 지지체는 유기링커로서, 카본산기, 카본산 음이온기, 아미노기(-NH2), 이미노기(
Figure pat00002
), 아미드기(-CONH2), 술폰산기(-SO3H), 술폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 또는 피라진기산성염으로는 CuCl2, Cu(NO3)2, CuSO4, NiCl2, Ni(NO3)2, NiSO4 중에서 선택된 하나 이상의 링커가 금속과 결합되어 있는 것인 흡착제.
The method according to claim 2, wherein
The metal-organic skeletal porous solid support is an organic linker, and includes a carboxylic acid group, a carboxylic acid anion group, an amino group (-NH 2 ), and an imino group (
Figure pat00002
), Amide group (-CONH 2), a sulfonic acid group (-SO 3 H), a sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 - ), A pyridine group or a pyrazine group acid salt is an adsorbent in which at least one linker selected from CuCl 2 , Cu (NO 3 ) 2 , CuSO 4 , NiCl 2 , Ni (NO 3 ) 2 , and NiSO 4 is combined with a metal.
제 1항에 있어서
상기 다공성 고체 지지체는 바나듐-벤젠디카복실레이트이고 산성염은 염화구리인 것을 특징으로 하는 흡착 탈황용 흡착제.
The method of claim 1, wherein
The porous solid support is vanadium-benzenedicarboxylate and the acid salt is copper chloride, characterized in that the adsorbent for desulfurization.
1) 산성염을 용매에 녹여 용액으로 만드는 단계; 및
2) 금속-유기 골격물질에 상기 용액을 가하는 단계; 및
3) 건조하는 단계;를 가지는 흡착제의 제조 방법.
1) dissolving the acid salt in a solvent to make a solution; And
2) adding the solution to a metal-organic framework; And
3) drying the adsorbent.
제 7항에 있어서,
상기 흡착제의 제조 방법은 고온의 소성 단계를 포함하지 않는 흡착제의 제조 방법.
8. The method of claim 7,
The manufacturing method of the adsorbent does not include a high temperature baking step.
제 7항에 있어서,
상기 용매는 알코올, 케톤, 에테르, 알데히드또는 에스테르계 용매인 흡착제의 제조 방법.
8. The method of claim 7,
The solvent is an alcohol, ketone, ether, aldehyde or ester solvent manufacturing method of the adsorbent.
제 9항에 있어서,
상기 용매는 에탄올, 프로판올 혹은 메탄올인 것을 특징으로 하는 흡착제의 제조 방법.
The method of claim 9,
The solvent is a method for producing an adsorbent, characterized in that ethanol, propanol or methanol.
KR1020110069403A 2011-07-13 2011-07-13 An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent KR101328565B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110069403A KR101328565B1 (en) 2011-07-13 2011-07-13 An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110069403A KR101328565B1 (en) 2011-07-13 2011-07-13 An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent

Publications (2)

Publication Number Publication Date
KR20130008806A true KR20130008806A (en) 2013-01-23
KR101328565B1 KR101328565B1 (en) 2013-11-13

Family

ID=47838702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110069403A KR101328565B1 (en) 2011-07-13 2011-07-13 An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent

Country Status (1)

Country Link
KR (1) KR101328565B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074094A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Covalent organic framework for adsorbing so2 gas and method for preparing the same
CN114682223A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Metal-loaded modified Cu-BTC material and preparation method thereof
CN114797751A (en) * 2022-04-20 2022-07-29 华东理工大学 Core-shell structure sulfide adsorption material with moisture resistance function and preparation method and application thereof
CN115805062A (en) * 2022-11-29 2023-03-17 四川轻化工大学 Double-ligand Met-MIL-101 physical adsorbent and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579041A (en) * 1978-12-12 1980-06-14 Chiyoda Chem Eng & Constr Co Ltd Catalyst for reducing sulfur dioxide
KR100819927B1 (en) * 2007-01-08 2008-04-08 한국에너지기술연구원 Deep desulfurization of light oil by using nickel metal particle carried in mesopore silica

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074094A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Covalent organic framework for adsorbing so2 gas and method for preparing the same
CN114682223A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Metal-loaded modified Cu-BTC material and preparation method thereof
CN114797751A (en) * 2022-04-20 2022-07-29 华东理工大学 Core-shell structure sulfide adsorption material with moisture resistance function and preparation method and application thereof
CN114797751B (en) * 2022-04-20 2023-09-26 华东理工大学 Core-shell structure sulfide adsorption material with moisture resistance function, and preparation method and application thereof
CN115805062A (en) * 2022-11-29 2023-03-17 四川轻化工大学 Double-ligand Met-MIL-101 physical adsorbent and preparation method and application thereof
CN115805062B (en) * 2022-11-29 2024-04-26 四川轻化工大学 Double-ligand Met-MIL-101 physical adsorbent and preparation method and application thereof

Also Published As

Publication number Publication date
KR101328565B1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
Khan et al. Adsorptive removal and separation of chemicals with metal-organic frameworks: contribution of π-complexation
Khan et al. Adsorptive desulfurization using Cu–Ce/metal–organic framework: Improved performance based on synergy between Cu and Ce
Ahmed et al. Adsorptive desulfurization and denitrogenation using metal-organic frameworks
Wang et al. Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal
Trickett et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion
Ding et al. Carbon capture and conversion using metal–organic frameworks and MOF-based materials
Ahmed et al. Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion
Abdelhameed et al. Applicable strategy for removing liquid fuel nitrogenated contaminants using MIL-53-NH2@ natural fabric composites
Lu et al. Tuning the structure and function of metal–organic frameworks via linker design
KR101582786B1 (en) An adsorbent for adsorptive removal of sulfur compounds or nitrogen compounds
Bosch et al. Increasing the stability of metal-organic frameworks
Ahmed et al. MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization
Corma et al. Engineering metal organic frameworks for heterogeneous catalysis
Khan et al. Polyaniline-encapsulated metal–organic framework MIL-101: adsorbent with record-high adsorption capacity for the removal of both basic quinoline and neutral indole from liquid fuel
Dietrich et al. Metal–organic gels based on a bisamide tetracarboxyl ligand for carbon dioxide, sulfur dioxide, and selective dye uptake
KR101328565B1 (en) An adsorbent for adsorptive removal of sulfur compounds and purification method of the adsorbent
JP2017512637A (en) Mesoscopic materials containing ordered superlattices of microporous metal-organic framework
JP2014507431A (en) Production of metal catecholate framework
JP2017509607A (en) Acid resistance, solvent resistance, and heat resistance metal-organic framework
Jin et al. Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material
Khan et al. Scandium-triflate/metal–organic frameworks: remarkable adsorbents for desulfurization and denitrogenation
Xing et al. Tungstovanadate-based ionic liquid catalyst [C2 (MIM) 2] 2VW12O40 used in deep desulfurization for ultraclean fuel with simultaneous recovery of the sulfone product
Wang et al. Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals
Marrett et al. Supercritical carbon dioxide enables rapid, clean, and scalable conversion of a metal oxide into zeolitic metal–organic frameworks
Yang et al. The high performance and mechanism of metal–organic frameworks and their composites in adsorptive desulfurization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161017

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191022

Year of fee payment: 7