KR20120131361A - Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage - Google Patents

Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage Download PDF

Info

Publication number
KR20120131361A
KR20120131361A KR1020110049467A KR20110049467A KR20120131361A KR 20120131361 A KR20120131361 A KR 20120131361A KR 1020110049467 A KR1020110049467 A KR 1020110049467A KR 20110049467 A KR20110049467 A KR 20110049467A KR 20120131361 A KR20120131361 A KR 20120131361A
Authority
KR
South Korea
Prior art keywords
graphite powder
graphite
hydrogen storage
solution
surface modification
Prior art date
Application number
KR1020110049467A
Other languages
Korean (ko)
Other versions
KR101250518B1 (en
Inventor
박수진
김병주
이슬이
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020110049467A priority Critical patent/KR101250518B1/en
Publication of KR20120131361A publication Critical patent/KR20120131361A/en
Application granted granted Critical
Publication of KR101250518B1 publication Critical patent/KR101250518B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE: A surface modification method of graphite powder, the graphite-powder, and graphite powder-based adsorbent for hydrogen storage including the same are provided to modify the surface of graphite powder by using the chemical impregnation of phosphoric acid. CONSTITUTION: A surface modification method of graphite powder includes the following steps: graphite powder is washed; the washed graphite powder is treated with strong acid at room temperature, and an oxidizer is added into the treated graphite powder to be modified; and the surface of the graphite powder is functionalized by chemical impregnation of phosphoric acid. The concentration of phosphoric acid solution for the chemical impregnation of the phosphoric acid is in a range between 0.01 and 20M. The strong acid is selected from a group including sulfuric acid, nitric acid, and hydrochloric acid. [Reference numerals] (AA) Comparative example 1; (BB) Example 3; (CC,DD) Intensity(cps); (EE,FF) Binding energy(eV)

Description

인산첨착을 이용한 흑연분말의 표면개질방법 및 상기 흑연분말을 이용한 고효율 수소저장용 흡착제 제조방법 {Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage}Surface modification method of graphite powder using phosphate impregnation and manufacturing method of adsorbent for high efficiency hydrogen storage using the graphite powder {Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage}

본 발명은 흑연분말 표면 개질 방법 및 이에 의해 표면 개질된 흑연분말에 관한 것으로서, 더욱 상세하게는 진한 산과 산화제 용액을 이용하여 흑연분말을 개질하고, 상기 개질된 흑연분말을 인산용액으로 화학적 첨착 처리하는 흑연분말 표면 개질 방법 및 이에 의해 표면 개질된 무게가 매우 가볍고 수소친화점이 다량 함유한 흑연분말에 관한 것이다.The present invention relates to a graphite powder surface modification method and to a surface-modified graphite powder, and more particularly, to modify the graphite powder using a concentrated acid and oxidant solution, and chemically impregnating the modified graphite powder with a phosphate solution. The present invention relates to a graphite powder surface modification method and to a graphite powder having a very light weight and a high hydrogen affinity point.

산업이 급속도로 발전함에 따라 전 세계적으로 고갈되어 가는 화석 연료를 대체하기 위해 차세대 에너지원의 개발에 대한 선진국들의 관심이 폭발적으로 증가하고 있다. 또한, 이산화탄소가스, 메탄가스 등이 온실가스의 배출로 인한 오존층파괴, 지구온난화, 산성비 등의 지구환경문제가 대두되면서 청정의 재생에너지원 개발이 시급한 실정이다.As the industry develops rapidly, the interests of developed countries in the development of next-generation energy sources are exploding in an attempt to replace fossil fuels that are depleted worldwide. In addition, the development of clean renewable energy sources is urgent as carbon dioxide gas, methane gas and the like cause global environmental problems such as ozone layer destruction, global warming, and acid rain caused by greenhouse gas emissions.

차세대 에너지원으로서 풍력, 조력, 지열, 수소 에너지, 태양 에너지 등이 큰 관심을 받고 있는데, 그 중에서도 수소 에너지는 지구상에 풍부하게 존재하는 물을 원료로 얻을 수 있고 연소 후 다시 물로 재순환됨으로 고갈의 가능성이 거의 없는 무한한 청정자원이다. 또한, 수소는 환경 문제 및 화석연료의 가격상승이나 고갈을 예상할 때 궁극적인 미래의 대체에너지원 또는 에너지 매체(Energy Carrier)로 부상하고 있다.As a next-generation energy source, wind, tidal, geothermal, hydrogen, and solar energy are receiving great attention. Among them, hydrogen energy can be depleted by obtaining abundant water present on the earth as a raw material and being recycled back to water after combustion. There is almost no endless clean resources. In addition, hydrogen is emerging as the ultimate alternative energy source or energy carrier in the future when anticipating environmental problems and rising or depleting fossil fuel prices.

이러한, 수소는 직접 연소시켜 에너지를 얻을 수도 있고, 연료전지 등의 연료로서도 사용이 간편하여 산업용의 기초 소재로부터 일반 연료, 수소자동차, 수소비행기 및 연료전지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에서 이용될 수 있는 기능성을 지니고 있다.The hydrogen can be directly burned to obtain energy, and it is also easy to use as a fuel such as a fuel cell. Therefore, almost all fields used in current energy systems such as general fuels, hydrogen vehicles, hydrogen airplanes, and fuel cells can be used. It has functionality that can be used in.

그러나, 미래의 에너지원으로 실용화되기 위해서는 수소의 제조, 저장, 응용의 3 단계로 분류되는 기술이 요구되고 있으며, 현재 수소제조기술은 어느 정도 목표치를 달성하였으나 수소저장기술은 아직 미국 에너지성(US DOE)에서 제시한 목표량을 달성하지 못하고 있는 실정이다. 2009년 US DOE에서는 차량용 수소저장량에 대한 기술적 목표를 대대적으로 수정하였는데 수소저장기술에 대한 목표값은 5.5 wt.%(상온, 100 bar)이다. 특히, 휘발유나 경유 등을 쓰는 각종 차량이 수소에너지 차량으로 전환되려면 많은 양의 수소를 안전하고 편리하게 저장하여 차에 탑재하여야 하므로 3 단계의 기술 중에서 수소저장기술은 앞으로 이루어질 연구에 있어 절대적인 핵심 기술이라고 할 수 있다.However, to be put into practical use as a future energy source, technology that is classified into three stages of hydrogen production, storage, and application is required. The target amount suggested by the DOE has not been achieved. In 2009, the US DOE revised its technical target for automotive hydrogen storage significantly, with a target of 5.5 wt.% (100 bar). In particular, in order to convert various vehicles using gasoline or diesel into hydrogen energy vehicles, a large amount of hydrogen must be safely and conveniently stored and mounted in a vehicle. It can be said.

현재까지 개발된 수소저장 방법으로는 수소저장합금, 액체수소저장법 및 기체수소저장법이 있는데, 수소저장합금의 형태로 저장하는 방법은 상온에서 20 ~ 40 atm 이하의 압력으로 수소를 안전하게 저장할 수 있지만, 무게가 무겁고 가격이 비싸며 수소저장능력에서도 가솔린이나 디젤보다 떨어진다는 문제점이 있다. 또한, 기체수소저장법이나 액체수소저장법은 수소저장량이 적고 상온에서 폭발 위험성이 있다. Hydrogen storage alloys, liquid hydrogen storage, and gaseous hydrogen storage have been developed so far, but hydrogen storage alloys can be stored safely at pressures of 20 to 40 atm at room temperature. There is a problem that the weight is heavy, the price is expensive, and even in the hydrogen storage capacity is lower than gasoline or diesel. In addition, the gaseous hydrogen storage method or the liquid hydrogen storage method has a small hydrogen storage amount and there is a risk of explosion at room temperature.

상기와 같은 문제점으로 인해 최근에는 탄소재료를 이용한 수소저장 방법이 크게 연구되기 시작하였다. 탄소재료를 수소저장체로 사용하는 시도는 1970 년대에 흑연에 알칼리 금속을 도핑하면 수소저장량이 크게 증가한다는 사실이 발표되면서부터이다. 그러나 수소저장합금에 비해 저장량이 매우 작았기 때문에 그 후로 많은 연구가 진행되지 못하였다. 따라서, 가볍고 안전성을 가지는 새로운 수소 저장체 개발에 대한 모색이 꾸준히 이루어지고 있으며, 특히 탄소재료를 이용한 연구들이 다양하게 진행되어 오고 있는 실정이다.
Recently, the hydrogen storage method using a carbon material has been greatly studied due to the above problems. Attempts to use carbonaceous materials as hydrogen storages began in the 1970s when doping alkali metals into graphite significantly increased hydrogen storage. However, since the amount of storage is very small compared to hydrogen storage alloy, much research has not been conducted since then. Therefore, the search for the development of a new light and safe hydrogen storage has been made steadily, and in particular, studies using carbon materials have been variously conducted.

최근에는 자연에 풍부하게 존재하는 물질로서 각 층이 약한 반데르발스(van der Waals) 힘으로 결합되어 있는 층상구조의 흑연이 고효율 수소저장매체로서 연구되기 시작하였다. 층상 구조를 특징으로 하는 흑연은 다양한 원자, 분자 및 이온이 층간에 삽입될 수 있어 층상화합물을 쉽게 생성할 수 있으며, 층상화합물의 빠른 열처리는 향상된 층상구조, 분산성 및 반응 비표면적을 가지게 되는 특성이 있다. In recent years, graphite having a layered structure in which each layer is bound by weak van der Waals force as abundant material in nature has been studied as a high-efficiency hydrogen storage medium. Graphite, which is characterized by its layered structure, can easily form layered compounds because various atoms, molecules, and ions can be intercalated, and rapid heat treatment of layered compounds has improved layered structure, dispersibility, and reaction specific surface area. There is this.

이에 따라, 흑연분말은 전자정보통신, 환경, 에너지 및 의약 분야에서 응용이 기대되는 소재이며, 특히, 수소저장매체로서 흑연분말은 고압수소 및 액화수소저장에 비해 안전할 뿐만 아니라 반응이 가역적이기 때문에 반영구적으로 사용할 수 있다는 장점을 가진다. Accordingly, graphite powder is a material that is expected to be applied in the fields of electronic information communication, environment, energy, and medicine. In particular, graphite powder as a hydrogen storage medium is safer than the high pressure hydrogen and liquefied hydrogen storage, and the reaction is reversible. It can be used semi-permanently.

따라서, 이에 본 발명자들은 기존의 흑연분말을 기반으로 하는 혁신적 수소 저장재료를 개발하기 위해 고효율 수소저장용 최적의 기능화 조건을 찾고자 예의 노력한 결과, 인산용액을 이용한 화학적 첨착처리를 통해 흑연분말의 표면 및 구조를 기능화 시키는 것을 확인하고 본 발명을 완성하였다.Therefore, the present inventors have made diligent efforts to find the optimal functionalization conditions for high efficiency hydrogen storage in order to develop innovative hydrogen storage materials based on the existing graphite powder. As a result, the surface of the graphite powder through chemical impregnation using phosphoric acid solution and The functionalization of the structure was confirmed and the present invention was completed.

본 발명의 목적은, 고효율 수소저장용 흑연분말을 제조하기 위해 인산용액으로 화학적 첨착 처리하는 흑연분말 표면 개질 방법 및 상기 표면 개질방법으로 개질된 수소친화점이 다량 함유한 고효율 수소저장용 흑연분말을 제공함에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a graphite powder surface modification method for chemically impregnating a phosphoric acid solution to produce a graphite powder for high efficiency hydrogen storage and a high efficiency hydrogen storage graphite powder containing a large amount of hydrogen affinity points modified by the surface modification method. Is in.

그리고 본 발명은, 상기 흑연분말을 포함하는 수소저장량이 향상된 수소저장용 흑연분말 기반 흡착제를 제공함에도 목적이 있다.Another object of the present invention is to provide a graphite powder-based adsorbent for hydrogen storage having an improved hydrogen storage amount including the graphite powder.

상기 목적을 달성하기 위하여, 본 발명은 인산용액으로 화학적 첨착 처리하는 흑연분말 표면 개질 방법 및 상기 표면 개질방법으로 개질된 무게가 매우 가볍고 수소친화점이 다량 함유한 고효율 수소저장적합용 흑연분말을 제공한다.In order to achieve the above object, the present invention provides a graphite powder surface modification method of chemically impregnated with a phosphate solution and a high-efficiency hydrogen storage suitable graphite powder modified by the surface modification method containing a large amount of hydrogen affinity point. .

본 발명은 또한 상기 방법에 따라 제조된 흑연분말을 포함하는 수소저장량이 향상된 수소저장용 흑연분말 기반 흡착제를 제공한다.The present invention also provides a graphite powder-based adsorbent for improving hydrogen storage amount including the graphite powder prepared according to the above method.

상기와 같은 본 발명에 따르면, 종래 상용화된 흑연분말에 비해, 인산용액을 이용한 화학적 첨착처리를 통한 흑연분말의 표면 및 구조를 기능화 함으로써, 수소친화점을 다량으로 제공하여 수소저장능력이 대폭 향상된 고효율 수소저장용 흑연분말 기반 흡착제를 제공하는 효과가 있다. According to the present invention as described above, by functionalizing the surface and structure of the graphite powder through the chemical impregnation process using a phosphoric acid solution, compared to the conventional commercially available graphite powder, by providing a large amount of hydrogen affinity point, the hydrogen storage capacity is greatly improved It is effective to provide graphite powder-based adsorbent for hydrogen storage.

본 발명에 의할 경우 수소저장매체의 수소저장능력을 대폭 향상시킬 수 있다.According to the present invention can greatly improve the hydrogen storage capacity of the hydrogen storage medium.

또한, 본 발명에 따라 제조된 수소저장용 고기능성 흑연분말을 포함하는 전기화학소자의 전극재료용 활물질 및 반도체 등에 이용될 수 있다.In addition, it can be used in the active material for the electrode material and semiconductor of the electrochemical device including the high-performance graphite powder for hydrogen storage prepared according to the present invention.

도 1은 본 발명에서 제조한 고효율 수소저장용 흑연분말 기반 흡착제의 X-ray 광전자 분광 분석 그래프이다.1 is an X-ray photoelectron spectroscopy graph of a high efficiency hydrogen storage graphite powder-based adsorbent prepared in the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 진한산과 산화제 용액을 이용하여 구조개질된 흑연분말에 인산용액으로 화학적 첨착 처리하는 흑연분말 표면 개질 방법을 제공한다.The present invention provides a graphite powder surface modification method for chemically impregnating a structure-modified graphite powder with a phosphoric acid solution using a concentrated acid and an oxidant solution.

구체적으로, 본 발명은 (1) 흑연분말을 세척하는 단계; (2) 상기 세척된 흑연분말을 상온에서 진한 산 처리 후, 산화제 수용액을 첨가하여 개질하는 단계; 및 (3) 상기 구조개질된 흑연분말에 화학적 인산첨착을 통해 흑연분말의 표면을 기능화하는 단계; 를 포함하는 것을 특징으로 한다.Specifically, the present invention comprises the steps of (1) washing the graphite powder; (2) modifying the washed graphite powder by adding an oxidizing agent solution after the concentrated acid treatment at room temperature; And (3) functionalizing the surface of the graphite powder through chemical phosphoric acid deposition on the structure-modified graphite powder; Characterized in that it comprises a.

본 발명에 있어서, 상기 (1) 단계에서 흑연분말은 천연 인상 흑연(Natural Crystalline Graphite), 인조 흑연(Synthetic Graphite), 토상 흑연(Amorphous Graphite), 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 및 탄소나노튜브(Carbon nanotube)에서 선택되는 1종 이상을 사용하는 것이 바람직하다.In the present invention, the graphite powder in step (1) is natural crystal graphite (Natural Crystalline Graphite), artificial graphite (Synthetic Graphite), soil graphite (Amorphous Graphite), activated carbon, activated carbon fibers, pitch-based nanofibers It is preferable to use at least one selected from, and carbon nanotubes (Carbon nanotube).

또한, 상기 (1) 단계에서 세척과정은 증류수 및 에탄올 200 mL에 12 내지 24 시간동안 3 회 이상 교반하는 것이 바람직하다.In addition, the washing process in the step (1) is preferably stirred at least three times for 12 to 24 hours in 200 mL of distilled water and ethanol.

또한, 상기 (2) 단계에서 진한 산 처리는 황산(H2SO4), 질산(HNO3) 및 염산(HCl) 용액으로 이루어진 군에서 선택되는 1 이상으로부터 1 내지 5 시간 첨착하는 것이 바람직하다.In addition, the concentrated acid treatment in step (2) is preferably impregnated for 1 to 5 hours from one or more selected from the group consisting of sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ) and hydrochloric acid (HCl) solution. .

또한, 상기 (2) 단계에서 산화제 수용액은 과산화수소수(H2O2?nH2O), 과망간산칼륨 수용액(KMnO4?nH2O), 싸이오황산칼륨수용액(K2S2O8?nH2O), 이산화염소수(Cl2O?nH2O), 및 하이포염소산 나트륨 수용액(NaClO (aq))으로 이루어진 군에서 선택된 1 이상인 것으로 첨가하는 것이 바람직하며, 진한 산에 첨착된 흑연분말에 산화제 수용액을 첨가함으로써 흑연의 구조가 제어된 흑연분말을 제조하는 것을 특징으로 한다.In addition, in the step (2), the oxidizing agent solution is hydrogen peroxide solution (H 2 O 2 ? NH 2 O), potassium permanganate solution (KMnO 4 ? NH 2 O), aqueous potassium thiosulfate solution (K 2 S 2 O 8 ? NH 2 O), can be a chlorine dioxide (Cl 2 O? nH 2 O ), and hypophosphorous acid aqueous solution of sodium (NaClO (aq), is preferred to add to more than one selected from the group consisting of a), and the graphite powder impregnated in concentrated acid The graphite powder having the structure of graphite is controlled by adding an oxidizing agent aqueous solution.

상기 진한 산 처리와 산화제 수용액을 이용한 흑연분말의 표면개질 과정은 층간 간격을 조절하는 전처리 과정이다. 그러나 과다한 표면처리는 흑연분말의 구조를 붕괴시키므로 바람직하지 않다. The surface modification process of the graphite powder using the concentrated acid treatment and the oxidizing agent solution is a pretreatment process for controlling the interlayer spacing. However, excessive surface treatment is not preferable because it disrupts the structure of the graphite powder.

또한, 개질된 흑연분말은 증류수로 수차례 중성이 될 때까지 세척하여 80℃ 이상에서 6 내지 24 시간, 바람직하게는 12 시간 동안 완전히 건조시키는 과정을 더 포함하는 것을 특징이 있다. 이러한 세척과정은 흑연분말에 존재하는 유기휘발성 물질 및 비정질 탄소 등을 완전히 제거하기 위한 것이다.In addition, the modified graphite powder is characterized in that it further comprises a process of washing with distilled water several times until it is neutral and completely dried at 80 ℃ or more for 6 to 24 hours, preferably 12 hours. This washing process is to completely remove the organic volatiles and amorphous carbon and the like present in the graphite powder.

또한, 상기 (3) 단계는 상온에서 교반상태에서 이루어지는 것을 특징으로 한다.In addition, the step (3) is characterized in that the made in a stirred state at room temperature.

또한, 상기 (3) 단계의 화학적 인산첨착처리에서 인산용액의 농도는 0.01 내지 20 M 인 것이 바람직하고, 더욱 바람직하게는 0.1 내지 10 M인 것이 바람직하다. 극히 저농도의 인산용액은 흑연분말의 표면에 도입되는 관능기의 양이 너무 적어서 흑연분말 기반 흡착제 내에서 수소분자 친화작용기의 효과가 미미하고, 극히 고농도의 인산용액은 흑연분말 기반 흡착제의 층간 구조를 붕괴하여 흡착제 기공 안으로의 수소분자의 유도를 저해하므로 바람직하지 않다. In addition, the concentration of the phosphate solution in the chemical phosphate impregnation treatment of step (3) is preferably 0.01 to 20 M, more preferably 0.1 to 10 M. The extremely low concentration of phosphate solution has too little functional group introduced on the surface of the graphite powder, so the effect of hydrogen-molecule affinity group in the graphite powder-based adsorbent is insignificant. This is undesirable because it inhibits the induction of hydrogen molecules into the adsorbent pores.

또한, 본 발명은 상기 표면 개질방법으로 개질된 수소친화점이 다량 함유한 고효율 수소저장적합용 흑연분말을 제공한다.The present invention also provides a graphite powder for high efficiency hydrogen storage containing a large amount of hydrogen affinity point modified by the surface modification method.

본 발명은 또한 상기 방법에 따라 제조된 흑연분말을 포함하는 수소저장량이 향상된 수소저장용 흑연분말 기반 흡착제를 제공한다.The present invention also provides a graphite powder-based adsorbent for improving hydrogen storage amount including the graphite powder prepared according to the above method.

상기 수소저장량이 대폭 향상된 수소저장용 흑연분말 기반 흡착제는 처리조건에 따라, 산소관능기의 도입량이 흑연분말의 중량비에 대하여 15 내지 50.0 wt.% 를 가지는 것을 특징으로 한다. The graphite powder-based adsorbent for hydrogen storage, which has greatly improved hydrogen storage amount, is characterized in that the amount of oxygen functional group is introduced in an amount of 15 to 50.0 wt.% Based on the weight ratio of the graphite powder.

또한, 수소저장량이 대폭 향상된 수소저장용 흑연분말 기반 흡착제는 3 내지 10.0 wt.% 의 수소저장 흡착 값을 가지는 것을 특징으로 한다.
In addition, the hydrogen storage graphite powder-based adsorbent significantly improved hydrogen storage is characterized in that it has a hydrogen storage adsorption value of 3 to 10.0 wt.%.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예 1. 표면 개질된 흑연분말의 표면관능기 측정Measurement Example 1. Measurement of the surface functional group of the surface-modified graphite powder

본 발명에 따라 인산용액의 농도별 화학적 첨착처리를 통하여 표면 개질된 흑연분말을 포함하는 수소저장용 흑연분말 기반 흡착제의 표면관능기 변화는 X-선 광전자 분광법(XPS, X-ray photoelectron spectroscopy, ESCALAB MK-Ⅱ)을 이용하여 분석하였다.
According to the present invention, the surface functional group change of the graphite powder-based adsorbent for hydrogen storage including the surface-modified graphite powder through chemical impregnation of the phosphoric acid solution was measured by X-ray photoelectron spectroscopy (ESPALAB MK). -II).

측정예 2. 표면 개질된 흑연분말의 수소저장량 측정Measurement Example 2 Measurement of Hydrogen Storage of Surface-Modified Graphite Powder

제조된 흑연분말의 수소저장량 측정을 위해 각 시료를 373 K에서 잔류 압력을 10-3 torr 이하로 유지하면서 6시간 동안 탈기시킨 후, BEL-HP(BEL Japan)을 이용하여 298 K, 100 기압 조건에서 수소저장량을 측정하였다. 수소저장측정방식은 step-by-step 방식을 사용하였으며, 1 회 평균 시료량은 0.1 g 으로 하였다.
In order to measure the hydrogen storage of the prepared graphite powder, each sample was degassed for 6 hours while maintaining the residual pressure at 3 -3 K at 10 -3 torr or lower, and then subjected to 298 K, 100 atm using BEL-HP (BEL Japan). The hydrogen storage amount was measured at. The hydrogen storage measurement method was a step-by-step method, and the average sample volume was 0.1 g.

실시예Example 1. One.

흑연분말 1 g을 상온에서 증류수 및 에탄올 용액에 12시간 교반한 후, 80℃ 에서 12시간 완전 진공 건조하였다. 상기와 같은 과정을 3 회 반복하여 제조하였다. 세척된 흑연분말은 상온에서 황산(H3PO4)에 1 시간 첨착시킨 후, 과산화수소(H2O2)를 첨가하여 24 시간동안 첨착 시키고, 1~2회 세척 및 여과하여, 120℃에서 24 시간 완전 건조하여 흑연의 구조가 개질된 흑연분말을 제조하였다. 또한, 제조된 구조개질된 흑연분말을 인산(H3PO4)용액 1 M에 첨착 시킨 후 12 시간동안 교반하였다. 그 다음 증류수에서 1~2회 세척하여 120℃에서 12 시간 이상 완전 건조하여 산소관능기가 도입된 표면 기능화된 흑연분말을 제조하였다. After stirring 1 g of graphite powder in distilled water and ethanol solution at room temperature for 12 hours, vacuum drying was carried out at 80 ° C for 12 hours. The same procedure was repeated three times. The washed graphite powder was impregnated with sulfuric acid (H 3 PO 4 ) at room temperature for 1 hour, hydrogenated peroxide (H 2 O 2 ), and then impregnated for 24 hours, washed and filtered once or twice, and then at 120 ° C. for 24 hours. After drying completely, a graphite powder having a modified structure of graphite was prepared. In addition, the prepared structure-modified graphite powder was impregnated with 1 M phosphoric acid (H 3 PO 4 ) solution and stirred for 12 hours. Then, washed 1-2 times in distilled water and completely dried at 120 ℃ for more than 12 hours to prepare a surface functionalized graphite powder introduced oxygen functional group.

상기 인산용액의 농도별 화학적 첨착처리를 통하여 산소관능기를 도입된 수소저장량이 대폭 향상된 수소저장용 흑연분말 기반 흡착제의 제조 전 과정은 상온, 교반 하에서 실시하였다.
The entire process of preparing the graphite powder-based adsorbent for hydrogen storage, in which the hydrogen storage amount introduced with the oxygen functional group was significantly improved by chemically impregnating the phosphoric acid solution by concentration, was performed at room temperature and under stirring.

실시예Example 2. 2.

흑연분말 1 g을 상온에서 증류수 및 에탄올 용액에 12시간 교반한 후, 80℃ 에서 12시간 완전 진공 건조하였다. 상기와 같은 과정을 3 회 반복하여 제조하였다. 세척된 흑연분말은 상온에서 황산(H3PO4)에 1 시간 첨착시킨 후, 과산화수소(H2O2)를 첨가하여 24 시간동안 첨착 시키고, 1~2회 세척 및 여과하여, 120℃에서 24 시간 완전 건조하여 흑연의 구조가 개질된 흑연분말을 제조하였다. 또한, 제조된 구조개질된 흑연분말을 인산(H3PO4)용액 2 M에 첨착 시킨 후 12 시간동안 교반하였다. 그 다음 증류수에서 1~2회 세척하여 120℃에서 12 시간 이상 완전 건조하여 산소관능기가 도입된 표면 기능화된 흑연분말을 제조하였다. After stirring 1 g of graphite powder in distilled water and ethanol solution at room temperature for 12 hours, vacuum drying was carried out at 80 ° C for 12 hours. The same procedure was repeated three times. The washed graphite powder was impregnated with sulfuric acid (H 3 PO 4 ) at room temperature for 1 hour, hydrogenated peroxide (H 2 O 2 ), and then impregnated for 24 hours, washed and filtered once or twice, and then at 120 ° C. for 24 hours. After drying completely, a graphite powder having a modified structure of graphite was prepared. In addition, the prepared structure-modified graphite powder was impregnated with 2M phosphoric acid (H 3 PO 4 ) solution and stirred for 12 hours. Then, washed 1-2 times in distilled water and completely dried at 120 ℃ for more than 12 hours to prepare a surface functionalized graphite powder introduced oxygen functional group.

상기 인산용액의 농도별 화학적 첨착처리를 통하여 산소관능기를 도입된 수소저장량이 대폭 향상된 수소저장용 흑연분말 기반 흡착제의 제조 전 과정은 상온, 교반 하에서 실시하였다.
The entire process of preparing the graphite powder-based adsorbent for hydrogen storage, in which the hydrogen storage amount introduced with the oxygen functional group was significantly improved by chemically impregnating the phosphoric acid solution by concentration, was performed at room temperature and under stirring.

실시예Example 3. 3.

흑연분말 1g을 상온에서 증류수 및 에탄올 용액에 12시간 교반한 후, 80℃ 에서 12시간 완전 진공 건조하였다. 상기와 같은 과정을 3 회 반복하여 제조하였다. 세척된 흑연분말은 상온에서 황산(H3PO4)에 1 시간 첨착시킨 후, 과산화수소(H2O2)를 첨가하여 24 시간동안 첨착 시키고, 1~2회 세척 및 여과하여, 120℃에서 24 시간 완전 건조하여 흑연의 구조가 개질된 흑연분말을 제조하였다. 또한, 제조된 구조개질된 흑연분말을 인산(H3PO4)용액 5 M에 첨착 시킨 후 12 시간동안 교반하였다. 그 다음 증류수에서 1~2회 세척하여 120℃에서 12 시간 이상 완전 건조하여 산소관능기가 도입된 표면 기능화된 흑연분말을 제조하였다.After stirring 1 g of graphite powder in distilled water and ethanol solution at room temperature for 12 hours, vacuum drying was carried out at 80 ° C for 12 hours. The same procedure was repeated three times. The washed graphite powder was impregnated with sulfuric acid (H 3 PO 4 ) at room temperature for 1 hour, hydrogenated peroxide (H 2 O 2 ), and then impregnated for 24 hours, washed and filtered once or twice, and then at 120 ° C. for 24 hours. After drying completely, a graphite powder having a modified structure of graphite was prepared. In addition, the prepared structure-modified graphite powder was impregnated with 5M phosphoric acid (H 3 PO 4 ) solution and stirred for 12 hours. Then, washed 1-2 times in distilled water and completely dried at 120 ℃ for more than 12 hours to prepare a surface functionalized graphite powder introduced oxygen functional group.

상기 인산용액의 농도별 화학적 첨착처리를 통하여 산소관능기를 도입된 수소저장량이 대폭 향상된 수소저장용 흑연분말 기반 흡착제의 제조 전 과정은 상온, 교반 하에서 실시하였다.
The entire process of preparing the graphite powder-based adsorbent for hydrogen storage, in which the hydrogen storage amount introduced with the oxygen functional group was significantly improved by chemically impregnating the phosphoric acid solution by concentration, was performed at room temperature and under stirring.

실시예Example 4. 4.

흑연분말 1g을 상온에서 증류수 및 에탄올 용액에 12시간 교반한 후, 80℃ 에서 12시간 완전 진공 건조하였다. 상기와 같은 과정을 3 회 반복하여 제조하였다. 세척된 흑연분말은 상온에서 황산(H3PO4)에 1 시간 첨착시킨 후, 과산화수소(H2O2)를 첨가하여 24 시간동안 첨착 시키고, 1~2회 세척 및 여과하여, 120℃에서 24 시간 완전 건조하여 흑연의 구조가 개질된 흑연분말을 제조하였다. 또한, 제조된 구조개질된 흑연분말을 인산(H3PO4)용액 10 M에 첨착 시킨 후 12 시간동안 교반하였다. 그 다음 증류수에서 1~2회 세척하여 120℃에서 12 시간 이상 완전 건조하여 산소관능기가 도입된 표면 기능화된 흑연분말을 제조하였다.After stirring 1 g of graphite powder in distilled water and ethanol solution at room temperature for 12 hours, vacuum drying was carried out at 80 ° C for 12 hours. The same procedure was repeated three times. The washed graphite powder was impregnated with sulfuric acid (H 3 PO 4 ) at room temperature for 1 hour, hydrogenated peroxide (H 2 O 2 ), and then impregnated for 24 hours, washed and filtered once or twice, and then at 120 ° C. for 24 hours. After drying completely, a graphite powder having a modified structure of graphite was prepared. In addition, the prepared structure-modified graphite powder was impregnated with 10 M phosphoric acid (H 3 PO 4 ) solution and stirred for 12 hours. Then, washed 1-2 times in distilled water and completely dried at 120 ℃ for more than 12 hours to prepare a surface functionalized graphite powder introduced oxygen functional group.

상기 인산용액의 농도별 화학적 첨착처리를 통하여 산소관능기를 도입된 수소저장량이 대폭 향상된 수소저장용 흑연분말 기반 흡착제의 제조 전 과정은 상온, 교반 하에서 실시하였다.
The entire process of preparing the graphite powder-based adsorbent for hydrogen storage, in which the hydrogen storage amount introduced with the oxygen functional group was significantly improved by chemically impregnating the phosphoric acid solution by concentration, was performed at room temperature and under stirring.

실시예Example 5. 5.

상기 실시예 3과 동일하게 과정을 실시하되, 화학적 인산첨착 처리과정을 2h 동안 교반하여 산소관능기를 도입된 수소저장량이 대폭 향상된 수소저장용 흑연 분말 기반 흡착제를 제조하였다.
The process was performed in the same manner as in Example 3, but the chemical phosphoric acid impregnation treatment was stirred for 2 h to prepare a graphite powder-based adsorbent for hydrogen storage, which greatly improved the hydrogen storage amount into which the oxygen functional group was introduced.

비교예Comparative example 1. One.

흑연분말 1g을 상온에서 증류수 및 에탄올 용액에 12시간 교반한 후, 120℃ 에서 12시간 완전 진공 건조하였다. 상기와 같은 과정을 3회 반복하여 제조하였다.After stirring 1 g of graphite powder in distilled water and ethanol solution at room temperature for 12 hours, vacuum drying was carried out at 120 ° C. for 12 hours. The same procedure was repeated three times.

비교예Comparative example 2. 2.

상기 비교예 1과 동일한 과정으로 실시하되, 세척된 흑연분말을 상온에서 황산(H3PO4)에 1 시간 첨착시킨 후, 과산화수소(H2O2)를 첨가하여 24 시간동안 첨착 시키고, 1~2회 세척 및 여과하여, 120℃에서 24 시간 완전 건조하여 구조 개질된 흑연분말을 제조하였다.
After the same process as in Comparative Example 1, the washed graphite powder is attached to sulfuric acid (H 3 PO 4 ) for 1 hour at room temperature, hydrogen peroxide (H 2 O 2 ) is added for 24 hours, 1 ~ After washing twice and filtration, and completely dried at 120 ℃ 24 hours to prepare a structure-modified graphite powder.

하기의 표 1과 표 2는 본 발명에 따른 인산용액 농도별 화학적 첨착처리를 통하여 제조된 수소저장용 흑연분말 기반 흡착제의 도입된 산소관능기 담지량 및 수소 흡착량을 나타낸 결과이다.Table 1 and Table 2 below are the results showing the amount of oxygen functional group supported and hydrogen adsorption of the hydrogen storage graphite powder-based adsorbent prepared by chemically impregnated with each concentration of phosphoric acid solution according to the present invention.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

(1) 흑연분말을 세척하는 단계; (2) 상기 세척된 흑연분말을 상온에서 진한 산 처리 후, 산화제 수용액을 첨가하여 개질하는 단계; 및 (3) 상기 구조개질된 흑연분말에 화학적 인산첨착을 통해 흑연분말의 표면을 기능화하는 단계;를 포함하는 흑연분말 표면 개질 방법.
(1) washing the graphite powder; (2) modifying the washed graphite powder by adding an oxidizing agent solution after the concentrated acid treatment at room temperature; And (3) functionalizing the surface of the graphite powder through chemical phosphoric acid attachment to the structure-modified graphite powder.
제 1항에 있어서,
상기 (1) 단계에서 흑연분말은 천연 인상 흑연(Natural Crystalline Graphite), 인조 흑연(Synthetic Graphite), 토상 흑연(Amorphous Graphite), 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 및 탄소나노튜브(Carbon nanotube)에서 선택되는 1종 이상을 사용하는 것을 특징으로 하는 흑연분말 표면 개질 방법.
The method of claim 1,
In the step (1), the graphite powder is natural crystalline graphite (Natural Crystalline Graphite), artificial graphite (Synthetic Graphite), soil graphite (Amorphous Graphite), activated carbon, activated carbon fibers, pitch-based nanofibers, and carbon nanotubes Graphite powder surface modification method using at least one selected from (Carbon nanotube).
제 1항에 있어서,
상기 (1) 단계에서 세척과정은 증류수 및 에탄올에 12 내지 24 시간동안 3 회 이상 교반하는 것을 특징으로 하는 흑연분말 표면 개질 방법.
The method of claim 1,
The washing step in the step (1) is a graphite powder surface modification method, characterized in that the stirring three or more times for 12 to 24 hours in distilled water and ethanol.
제 1항에 있어서,
상기 (2) 단계에서 진한 산 처리는 황산(H2SO4), 질산(HNO3) 및 염산(HCl) 용액으로 이루어진 군에서 선택되는 1 이상으로부터 1 내지 5 시간 첨착하는 것을 특징으로 하는 흑연분말 표면 개질 방법.
The method of claim 1,
The concentrated acid treatment in the step (2) is graphite, characterized in that the impregnation for 1 to 5 hours from one or more selected from the group consisting of sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ) and hydrochloric acid (HCl) solution. Powder surface modification method.
제 1항에 있어서,
상기 (2) 단계에서 산화제 수용액은 과산화수소수(H2O2?nH2O), 과망간산칼륨 수용액(KMnO4?nH2O), 싸이오황산칼륨수용액(K2S2O8?nH2O), 이산화염소수(Cl2O?nH2O), 및 하이포염소산 나트륨 수용액(NaClO (aq))으로 이루어진 군에서 선택된 1 이상인 것으로 진한 산 첨착처리된 흑연분말용액에 첨가하는 것을 특징으로 하는 흑연분말 표면 개질 방법.
The method of claim 1,
In step (2), the oxidizing agent solution is hydrogen peroxide solution (H 2 O 2 ? NH 2 O), potassium permanganate solution (KMnO 4 ? NH 2 O), aqueous potassium thiosulfate solution (K 2 S 2 O 8 ? NH 2 O ), the number of chlorine dioxide (Cl 2 O? nH 2 O ), and hypophosphorous acid aqueous solution of sodium (NaClO (aq)) to the graphite, characterized in that to add to the selected one concentrated acid impregnated the treated graphite powder solution equal to or higher than in the group consisting of Powder surface modification method.
제 1항에 있어서,
상기 (3) 단계는 상온에서 교반상태에서 이루어지는 것을 특징으로 하는 흑연분말 표면 개질 방법.
The method of claim 1,
Step (3) is a method for surface modification of graphite powder, characterized in that the stirring at room temperature.
제 1항에 있어서,
상기 (3) 단계의 화학적 인산첨착처리에서 인산용액의 농도는 0.01 내지 20 M 인 것을 특징으로 하는 흑연분말 표면 개질 방법.
The method of claim 1,
The concentration of the phosphate solution in the chemical phosphate impregnation treatment of step (3) is characterized in that the graphite powder surface modification method.
제 1항 내지 제 7항 중에서 선택되는 어느 하나의 방법에 따라 개질된 수소친화점이 다량 함유한 고효율 수소저장적합용 흑연분말.
A graphite powder for high efficiency hydrogen storage containing a large amount of hydrogen affinity point modified according to any one method selected from claims 1 to 7.
제 8항의 흑연분말을 포함하는 수소저장량이 향상된 수소저장용 흑연분말 기반 흡착제.
Graphite powder-based adsorbent for hydrogen storage with improved hydrogen storage amount comprising the graphite powder of claim 8.
제 9항에 있어서,
상기 수소저장용 흑연분말 기반 흡착제는 처리조건에 따라, 산소관능기의 도입량이 흑연분말의 중량 비에 대하여 15 내지 50.0 wt.% 를 가지는 것을 특징으로 하는 수소저장량이 향상된 수소저장용 흑연분말 기반 흡착제.
The method of claim 9,
The graphite powder-based adsorbent for hydrogen storage according to the treatment conditions, the hydrogen storage amount of the graphite powder-based adsorbent for improved hydrogen storage, characterized in that the amount of oxygen functional group has a 15 to 50.0 wt.% Based on the weight ratio of the graphite powder.
KR1020110049467A 2011-05-25 2011-05-25 Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage KR101250518B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110049467A KR101250518B1 (en) 2011-05-25 2011-05-25 Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110049467A KR101250518B1 (en) 2011-05-25 2011-05-25 Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage

Publications (2)

Publication Number Publication Date
KR20120131361A true KR20120131361A (en) 2012-12-05
KR101250518B1 KR101250518B1 (en) 2013-04-03

Family

ID=47515191

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110049467A KR101250518B1 (en) 2011-05-25 2011-05-25 Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage

Country Status (1)

Country Link
KR (1) KR101250518B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651227B1 (en) * 2015-04-20 2016-08-25 다이텍연구원 Method Of Surface Modifing UHMWPE Fiber Using Oxident Agent
CN109921018A (en) * 2017-12-13 2019-06-21 宁波杉杉新材料科技有限公司 The preparation method of sodium-ion battery high capacity biomass hard charcoal negative electrode material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106417277B (en) * 2016-09-09 2019-09-20 广西大学 A kind of graphene coated silkworm excrement porous carbon composite material and the preparation method and application thereof
CN106622122B (en) * 2016-09-09 2019-02-01 广西大学 A kind of graphene silkworm excrement Microporous Carbon core-shell composite material and the preparation method and application thereof
CN106345413A (en) * 2016-10-20 2017-01-25 碳为(北京)新材料科技有限公司 Preparation method of porous spongy graphene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044219A (en) * 1998-07-30 2000-02-15 Sumikin Chemical Co Ltd Production of thermally expandable graphite
JP2001026414A (en) * 1999-07-15 2001-01-30 Tokyo Gas Co Ltd Hydrogen storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651227B1 (en) * 2015-04-20 2016-08-25 다이텍연구원 Method Of Surface Modifing UHMWPE Fiber Using Oxident Agent
CN109921018A (en) * 2017-12-13 2019-06-21 宁波杉杉新材料科技有限公司 The preparation method of sodium-ion battery high capacity biomass hard charcoal negative electrode material

Also Published As

Publication number Publication date
KR101250518B1 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
Sylla et al. Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste
Gu et al. Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction
Jin et al. Catalyst-free synthesis of crumpled boron and nitrogen co-doped graphite layers with tunable bond structure for oxygen reduction reaction
Shah et al. Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices
Yan et al. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors
Xiang et al. Hydrothermal synthesis of a new kind of N-doped graphene gel-like hybrid as an enhanced ORR electrocatalyst
Wang et al. Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes
Yue et al. Ni/Co-MOF@ aminated MXene hierarchical electrodes for high-stability supercapacitors
Sahaym et al. Advances in the application of nanotechnology in enabling a ‘hydrogen economy’
Park et al. Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage
Candelaria et al. Nanostructured carbon for energy storage and conversion
Wang et al. Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors
Xia et al. A sulfur self‐doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers
Li et al. Molten salt and air induced nitrogen-containing graphitic hierarchical porous biocarbon nanosheets derived from kitchen waste hydrolysis residue for energy storage
Norouzi et al. Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology
Zeng et al. Nitrogen‐Doped Hierarchically Porous Carbon Materials with Enhanced Performance for Supercapacitor
KR101250518B1 (en) Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage
Zhan et al. Facile synthesis of biomass-derived porous carbons incorporated with CuO nanoparticles as promising electrode materials for high-performance supercapacitor applications
Shaku et al. Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors
WO2015011726A1 (en) Conducting carbon cloth electrode for hydrogen generation and dye sensitized solar cells
Zhang et al. A pioneering melamine foam-based electrode via facile synthesis as prospective direction for vanadium redox flow batteries
Yang et al. Effective boron doping in three-dimensional nitrogen-containing carbon foam with mesoporous structure for enhanced all-solid-state supercapacitor performance
Deng et al. KxCy phase induced expanded interlayer in ultra‐thin carbon toward full potassium‐ion capacitors
Wu et al. Atmosphere-free pyrolysis of harakeke fiber: A new chamber-induced activation methodology for porous carbon electrodes in supercapacitors
Cheng et al. Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum–Air Batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171213

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 8