JP2001026414A - Hydrogen storage material - Google Patents
Hydrogen storage materialInfo
- Publication number
- JP2001026414A JP2001026414A JP11202228A JP20222899A JP2001026414A JP 2001026414 A JP2001026414 A JP 2001026414A JP 11202228 A JP11202228 A JP 11202228A JP 20222899 A JP20222899 A JP 20222899A JP 2001026414 A JP2001026414 A JP 2001026414A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- hydrogen
- hydrogen storage
- expanded graphite
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、水素を吸収して貯蔵
し、かつ適宜に貯蔵水素の放出が可能な水素吸蔵材に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage material capable of absorbing and storing hydrogen and releasing the stored hydrogen appropriately.
【0002】[0002]
【従来技術及びその課題】近年、自動車業界等では、地
球温暖化の主たる原因物質である二酸化炭素の排出量を
抑制するため、単位燃焼エネルギ−当りの二酸化炭素排
出量が小さい天然ガスや水素ガスを主要燃料として使用
する構想が進められている。しかし、燃料ガスを高密度
で貯蔵できる技術としては、現在のところ、高圧貯蔵技
術(200気圧程度までの高圧圧縮下で貯蔵する技術)
以外には実用化されていない。2. Description of the Related Art In recent years, in the automobile industry and the like, natural gas and hydrogen gas, which emit a small amount of carbon dioxide per unit combustion energy, in order to suppress the emission of carbon dioxide, which is a main cause of global warming, The concept of using as a main fuel is being promoted. However, as a technology capable of storing fuel gas at high density, at present, a high pressure storage technology (a technology of storing under high pressure compression up to about 200 atm) is used.
Other than that, it has not been put to practical use.
【0003】ところが、高圧貯蔵の場合には、貯蔵容器
を頑丈にする必要があるために容器重量が大きくなると
いった問題のほか、「高圧法」という法律上の規制を受
けなければならないなど、その適用を制限せざるを得な
い事情が多く存在していた。However, in the case of high-pressure storage, the storage container must be rugged and the weight of the container must be increased. There were many circumstances where the application had to be restricted.
【0004】特にクリ−ンなエネルギ−源として注目さ
れる“水素”の場合には、水素の燃焼エネルギ−が小さ
い(天然ガスの約3分の1)ので高圧貯蔵しても貯蔵エ
ネルギ−は小さく、そのためこれを自動車用燃料に適用
した場合には1充填当りの走行距離はガソリン車や天然
ガス車の半分以下にしか達しないなど、使い勝手の点で
他の燃料に大きく劣っていた。[0004] In particular, in the case of "hydrogen" which is attracting attention as a clean energy source, since the combustion energy of hydrogen is small (about one-third of that of natural gas), the stored energy is high even when stored at high pressure. Because of its small size, when it is applied to automotive fuel, the mileage per charge is less than half that of gasoline and natural gas vehicles, and it is significantly inferior to other fuels in terms of usability.
【0005】そこで、低圧の状態で高密度に燃料ガスを
貯蔵することができる技術が切望されている。なお、水
素に関しては、水素吸蔵合金を用いて10気圧程度の低
圧状態にて体積基準でかなり高密度に水素を貯蔵できる
技術が開発されている。しかし、水素吸蔵合金を用いた
場合には重量基準では合金重量の1〜2重量%程度の水
素しか貯蔵できず、これを自動車用の燃料源にしてガソ
リン車並の「1充填当り500km程度という走行距離」
を達成しようとすると、必要な合金重量は200〜40
0kg(大人3〜6人程度の重量)となってしまい燃費を
低下させる原因となる。従って、これは省エネルギ−の
観点から到底容認できるものではない。[0005] Therefore, a technique capable of storing fuel gas at a high density under a low pressure has been desired. With respect to hydrogen, a technology has been developed that can store hydrogen at a relatively high density on a volume basis at a low pressure of about 10 atm using a hydrogen storage alloy. However, when a hydrogen storage alloy is used, only about 1 to 2% by weight of the alloy weight can be stored on a weight basis, and this is used as a fuel source for automobiles, and is equivalent to that of a gasoline-powered vehicle. Mileage ''
To achieve the required alloy weight of 200 to 40
It weighs 0 kg (weight of 3 to 6 adults), which causes a reduction in fuel efficiency. Therefore, this is not at all acceptable from an energy conservation point of view.
【0006】そのため、少なくとも現状の水素吸蔵能力
の2倍程度(重量基準で合金重量の3〜4重量%程度)
の水素を貯蔵できるような水素吸蔵合金の研究開発が進
められているが、その前途は多難で、開発合金の水素貯
蔵能力は飽和しつつある。Therefore, at least about twice the current hydrogen storage capacity (about 3 to 4% by weight of the alloy weight on a weight basis)
Research and development of hydrogen storage alloys that can store hydrogen have been progressing, but the prospects are difficult, and the hydrogen storage capacity of the developed alloys is becoming saturated.
【0007】このようなことから、本発明が目的とした
のは、“二酸化炭素を排出することのないエネルギ−
源”として期待される“水素”を高密度で貯蔵すること
が可能な軽量でコンパクトな材料を提供することであっ
た。[0007] In view of the above, an object of the present invention is to provide an energy source that does not emit carbon dioxide.
The object was to provide a lightweight and compact material capable of storing "hydrogen" expected as a "source" at a high density.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究を行ったが、その過程で、メタ
ン,窒素,酸素,二酸化炭素等の分子がこれら分子のサ
イズと同程度の細孔やスリットが存在するとこれに入り
込んで濃縮保持されるという所謂“濃縮効果”に着目
し、水素分子にも適当な細孔やスリットが存在する場合
に濃縮効果を期待できるのではないかと考えた。そし
て、このような観点から水素分子の濃縮効果が期待され
る細孔やスリットを有した材料の存否について研究を重
ね、炭素材料、その中でも特に“黒鉛”に水素吸蔵材の
可能性を求めることとなった。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and in the process, molecules such as methane, nitrogen, oxygen and carbon dioxide have the same size as these molecules. Focusing on the so-called “concentration effect” in which the presence of pores and slits of a certain degree causes the concentration and retention of such pores and pores, the concentration effect cannot be expected when appropriate pores and slits also exist in the hydrogen molecule. I thought. From this point of view, we will continue to study the existence of materials having pores and slits that are expected to have the effect of enriching hydrogen molecules, and seek the potential of hydrogen storage materials in carbon materials, especially "graphite". It became.
【0009】なぜなら、黒鉛は高密度状態であっても非
常に軽量である上に化学的に極めて安定した材料であ
り、しかも水素と親和性があるので水素を吸着させる材
料として適していると思われることに加えて、黒鉛は平
坦な六員環重合体層が重なり合った六方晶系結晶から成
っていて六角形の網目を成す層面が弱いファンデルワ−
ルス結合により積み重なっているため、この黒鉛の六員
環重合面の層と層の間に水素分子が入り込むのではない
かと考えたからである。This is because graphite is a material that is extremely light and chemically extremely stable even in a high-density state, and has an affinity for hydrogen, and thus is suitable as a material for adsorbing hydrogen. In addition to the above, graphite is composed of hexagonal crystals in which flat six-membered ring polymer layers are overlapped, and the layer surface forming a hexagonal network is weak in van der Waals.
This is because hydrogen molecules are likely to enter between the layers of the six-membered ring polymerized surface of graphite because they are stacked by the Ruth bond.
【0010】即ち、上述したように、黒鉛は平坦な六員
環重合体面の層が重なり合った六方晶系の結晶構造を有
しており、そのためこの構造に基づく著しい異方性を示
しはするものの、耐熱性,耐熱衝撃性,耐食性に富み、
また電気や熱の伝導性が非常に良好な材料であるが、上
記“黒鉛の六員環重合面”の層と層との間に種々の異原
子を化学的に挿入することによって黒鉛層間化合物を生
成できることが知られている。そこで、この黒鉛層間化
合物について、その層間に水素を取り込んで濃縮する現
象を示さないか検討した。That is, as described above, graphite has a hexagonal crystal structure in which layers of flat six-membered ring polymer surfaces are overlapped with each other. Thus, although graphite shows a remarkable anisotropy based on this structure, Rich in heat resistance, thermal shock resistance, corrosion resistance,
Although it is a material with very good electrical and thermal conductivity, the graphite intercalation compound can be formed by chemically inserting various heteroatoms between the layers of the "six-membered polymerized surface of graphite". It is known that can be generated. Therefore, it was examined whether or not this graphite intercalation compound exhibited a phenomenon of taking in hydrogen between the layers and concentrating it.
【0011】しかしながら、黒鉛の六員環重合面の層と
層の間の層間距離は3.34Åと水素分子が入り込むのは非
常に困難な幅である上に、この黒鉛層間化合物は層間に
既に異原子が入り込んでいるので水素分子が入り込む空
間が小さく、従って水素を大量に吸蔵させる材料として
は適当でないと判断された。However, the interlayer distance between the layers of the six-membered ring polymerized surface of graphite is 3.34 °, which is an extremely difficult width for hydrogen molecules to enter, and the graphite intercalation compound is already different between the layers. Since the atoms have entered, the space into which hydrogen molecules enter is small, and thus it was judged that the material was not suitable as a material for storing a large amount of hydrogen.
【0012】ただ、黒鉛は、前記層間を膨張によって伸
張させた“熱膨張黒鉛”の形態を採ることが知られてい
る。即ち、前記黒鉛層間化合物において、硫酸,硝酸,
過酸化水素,塩酸が黒鉛層間にインタ−カレ−ト(層間
挿入)されているものは、加熱すると層間物質が活性化
・ガス化されて流体圧を生じ、該流体圧による膨張作用
により黒鉛の前記層間が図1で示すように伸張されて所
謂“熱膨張黒鉛”となる。この熱膨張黒鉛は、耐熱性,
耐薬品性に優れると共に、電気伝導性,熱伝導性にも優
れており、またシ−ト状に形成することによって弾力
性,ガス不浸透性が付与される。そのため、熱膨張黒鉛
は、自動車エンジンのシリンダ−ヘッド・ガスケット,
ロッカ−カバ−・ガスケット,マニホ−ルド・ガスケッ
ト等に使用されるほか、シ−ル材,断熱材,油吸着材に
使用されている。However, it is known that graphite takes the form of "thermally expanded graphite" in which the layers are expanded by expansion. That is, in the graphite intercalation compound, sulfuric acid, nitric acid,
In the case where hydrogen peroxide and hydrochloric acid are intercalated (intercalated) between the graphite layers, when heated, the interlayer material is activated and gasified to generate fluid pressure, and the expansion action of the fluid pressure causes the graphite to expand. The interlayer is stretched as shown in FIG. 1 to form so-called "thermally expanded graphite". This thermally expanded graphite has heat resistance,
In addition to being excellent in chemical resistance, it is also excellent in electric conductivity and heat conductivity, and when formed in a sheet shape, elasticity and gas impermeability are imparted. Therefore, the thermal expansion graphite is used in the cylinder head gaskets of automobile engines,
It is used for rocker cover gaskets, manifold gaskets, etc., as well as for seal materials, heat insulating materials, and oil absorbing materials.
【0013】そこで、今度は、六員環重合体面が成す層
の層間距離が大きく拡げられ、しかも層間の異原子がガ
ス化して逸散してしまっている上記“熱膨張黒鉛”の水
素濃縮効果を調査した。しかし、この調査により、従来
から知られている上記熱膨張黒鉛も有為な水素吸蔵能を
示さないことが分かった。[0013] Then, this time, the hydrogen enrichment effect of the above-mentioned "thermally expanded graphite", in which the interlayer distance of the layer formed by the surface of the six-membered ring polymer is greatly increased, and the foreign atoms between the layers are gasified and dissipated. investigated. However, from this investigation, it was found that the above-described conventionally-expanded thermally expanded graphite does not show a significant hydrogen storage capacity.
【0014】そして、従来から知られている熱膨張黒鉛
が有為な水素吸蔵能を示さない理由が、熱膨張黒鉛の膨
張の度合いが非常に大きく、六員環重合体面が成す層の
層間距離が大きく拡がり過ぎているためではないかと結
論された。つまり、前記ガスケット,シ−ル材,断熱材
あるいは油吸着材に適用されている従来の熱膨張黒鉛
は、元の黒鉛に比べて10〜100倍以上にも体積膨張
し、嵩密度が百分の数g/cc〜千分の数g/cc(具体的には
0.03g/cc以下で、 通常 0.004〜 0.006g/cc程度)と非常
に小さくなっており、そのため、六員環重合体面が成す
層の層間距離が水素分子のサイズに比して拡がり過ぎて
いることが“水素の濃縮効果”を発揮しない原因となっ
ているのではないかと考えた。[0014] The reason that the conventionally known thermally expanded graphite does not show a significant hydrogen storage capacity is that the degree of expansion of the thermally expanded graphite is very large, and the interlayer distance of the layer formed by the six-membered ring polymer surface is large. It was concluded that this was due to the widespread spread. That is, the conventional thermally expanded graphite applied to the gasket, the seal material, the heat insulating material, or the oil absorbing material expands its volume by 10 to 100 times or more as compared with the original graphite, and has a bulk density of 100% or more. G / cc to several thousandths of a g / cc (specifically
(0.03 g / cc or less, usually about 0.004 to 0.006 g / cc), so the interlayer distance of the layer formed by the 6-membered ring polymer surface is too large compared to the size of the hydrogen molecule We thought that this was the cause of not exhibiting the "hydrogen enrichment effect".
【0015】そのため、本発明者等は、黒鉛の層間距離
の調整手段を見出すべく更に研究を重ねたところ、酸処
理の時間,酸処理の温度,膨張に際しての加熱温度等を
適正に調整することによって様々な膨張度合いの膨張黒
鉛が得られることを確認することができた。そして、試
料として粉末状の黒鉛を用い、これに調整された条件で
酸処理と熱処理を施すことにより層間距離を水素分子が
入り込める程度にだけ拡げて(即ち嵩密度で 2.0〜 1.0
g/cc 程度と膨張の度合いを従来の熱膨張黒鉛に比べて
極端に小さく抑えた)層間に異分子が存在しない膨張黒
鉛を製造し、水素吸蔵を試みたところ、この膨張黒鉛は
水素吸蔵材として非常に有効であることを知見した。[0015] Therefore, the present inventors have further studied to find a means for adjusting the interlayer distance of graphite, and found that the time of acid treatment, the temperature of acid treatment, the heating temperature upon expansion, and the like are appropriately adjusted. As a result, it was confirmed that expanded graphite having various degrees of expansion was obtained. Then, powdery graphite is used as a sample, and an acid treatment and a heat treatment are performed on the graphite under the adjusted conditions, so that the interlayer distance is increased to an extent that hydrogen molecules can enter (that is, a bulk density of 2.0 to 1.0).
g / cc and the degree of expansion was extremely small compared to conventional thermal expansion graphite) .Expansion graphite with no foreign molecules between layers was manufactured and hydrogen storage was attempted. This expanded graphite was used as a hydrogen storage material. It was found to be very effective.
【0016】本発明は、上記知見事項等に基づいてなさ
れたもので、次に示す水素吸蔵材を提供するものであ
る。 (1) 酸処理と加熱処理とを施して黒鉛の六員環重合面の
層と層との間の距離を拡げた“膨張黒鉛”から成る水素
吸蔵材。 (2) 酸処理と加熱処理とを施して黒鉛の嵩密度を小さく
した“膨張黒鉛”から成る水素吸蔵材。 (3) 嵩密度が 1.0〜 2.0g/ccである、前記 (1)項又は
(2)項に記載の水素吸蔵材。The present invention has been made based on the above findings and the like, and provides the following hydrogen storage material. (1) A hydrogen storage material made of “expanded graphite” that has been subjected to an acid treatment and a heat treatment to increase the distance between layers of the six-membered ring polymerized surface of graphite. (2) A hydrogen storage material made of “expanded graphite” that has been subjected to an acid treatment and a heat treatment to reduce the bulk density of graphite. (3) The bulk density is 1.0 to 2.0 g / cc, the above (1) or
The hydrogen storage material according to (2).
【0017】このように、本発明は、そのままでは六員
環重合体面が成す層の層間が狭くて水素分子が入り込め
ない黒鉛を素材とし、この層間を僅かに拡げることで、
水素分子が入り込めるスペ−スを確保して水素分子の侵
入・濃縮がなされるようにした膨張黒鉛から成る水素吸
蔵材を提供するものであるが、素材である膨張前の黒鉛
としては、天然黒鉛,熱分解黒鉛,キッシュ黒鉛等のよ
うな「膨張性があり膨張後に嵩密度の小さい膨張黒鉛を
形成するもの」であれば何れであっても良い。As described above, according to the present invention, graphite is used as a raw material in which the layers formed by the surface of the six-membered ring polymer are narrow, and hydrogen molecules cannot enter, and the layers are slightly expanded.
It provides a hydrogen storage material made of expanded graphite that secures a space for hydrogen molecules to enter and allows hydrogen molecules to enter and concentrate, but as a material before expansion, natural graphite is used. Any material may be used as long as it is "expandable and forms expanded graphite having a low bulk density after expansion", such as pyrolytic graphite and quiche graphite.
【0018】本発明に係る水素吸蔵材は、上述の天然黒
鉛,熱分解黒鉛,キッシュ黒鉛等の黒鉛を酸に浸漬処理
(酸処理)し、水洗した後、加熱することによって製造
される。酸処理で用いる酸としては、硫酸,硝酸,塩
酸,過塩素酸,過酸化水素酸,リン酸あるいはこれらの
混合溶液等を挙げることができる。また、水に塩素ガス
を吹き込んたものを使用することもできる。この酸処理
により、加熱されると活性化・ガス化されて流体圧を生
じる酸が黒鉛層間にインタ−カレ−ト(層間挿入)され
る。The hydrogen storage material according to the present invention is produced by immersing (acid-treating) graphite such as the above-mentioned natural graphite, pyrolytic graphite, and quiche graphite in an acid, washing with water, and then heating. Examples of the acid used in the acid treatment include sulfuric acid, nitric acid, hydrochloric acid, perchloric acid, hydrogen peroxide, phosphoric acid, and a mixed solution thereof. Further, a gas obtained by blowing chlorine gas into water can also be used. By this acid treatment, an acid which is activated and gasified when heated to generate a fluid pressure is intercalated (intercalated) between the graphite layers.
【0019】なお、酸処理に際しては、黒鉛をそのまま
酸に浸漬しても良いが、前処理として黒鉛を常温で真空
排気するかあるいは加熱真空排気した後に酸に浸漬する
のが安定した性能を示す水素吸蔵材を得る上で好まし
い。酸処理の処理温度としては−196℃〜300℃の
範囲を選ぶことができ、処理時間としては0.05〜200
時間の範囲を選ぶことができる。また、酸処理は何度繰
り返しても良く、繰り返し回数が多くなるほど得られる
水素吸蔵材の性能が安定化する。In the acid treatment, the graphite may be immersed in the acid as it is, but the graphite is evacuated at room temperature as a pretreatment, or immersed in the acid after heating and evacuating the graphite. It is preferable for obtaining a hydrogen storage material. The treatment temperature of the acid treatment can be selected from the range of -196 ° C to 300 ° C, and the treatment time is 0.05 to 200 ° C.
You can choose a time range. The acid treatment may be repeated any number of times, and the performance of the obtained hydrogen storage material is stabilized as the number of repetitions increases.
【0020】酸処理が終了した黒鉛は、水洗処理され、
次いで膨張させるために加熱処理が施される。加熱温度
は 0.1〜100時間の範囲が選ばれる。ここで、加熱雰
囲気は窒素,酸素,空気,二酸化炭素,アルゴン,塩素
等の何れのガス雰囲気でも良く、格別に制限されるもの
ではない。この加熱処理により、前記酸処理によって黒
鉛層間にインタ−カレ−ト(層間挿入)されていた酸等
の層間物質が活性化・ガス化されて流体圧を生じ、黒鉛
を膨張させて層間から放散するので、層間に異分子が存
在しない膨張黒鉛が得られる。The graphite after the acid treatment is washed with water,
Next, a heat treatment is performed to expand the structure. The heating temperature is selected in the range of 0.1 to 100 hours. Here, the heating atmosphere may be any gas atmosphere such as nitrogen, oxygen, air, carbon dioxide, argon, and chlorine, and is not particularly limited. This heat treatment activates and gasifies the intercalated substance such as acid intercalated between the graphite layers by the acid treatment to generate a fluid pressure, thereby expanding the graphite and dispersing it from the interlayer. Therefore, expanded graphite having no foreign molecules between layers can be obtained.
【0021】なお、黒鉛を膨張させた“膨張黒鉛”を更
に酸処理し、水洗し、加熱処理するという工程を幾度も
繰り返すこともできる。これらの条件を選ぶことによ
り、様々な膨張度合いの膨張黒鉛(六員環重合体面が成
す層の層間距離が様々な膨張黒鉛)を得ることができる
が、水素吸蔵材としては元の黒鉛の2倍程度の層間距離
(嵩密度にして 1.0〜 2.0g/ccの範囲)となるように膨
張度合いを調整するのが良い。これによって、膨張黒鉛
層間への水素の侵入・濃縮作用が著しく向上する。とこ
ろで、水素吸蔵材として使用する膨張黒鉛の六員環重合
面の層と層は、互いに平行を保って拡がっているのが好
ましいが、傾斜してくさび状に拡がる層間空隙を形成し
ていても何ら差し支えはない。[0021] The process of further expanding the "expanded graphite" obtained by expanding graphite, washing with water, and heating may be repeated many times. By selecting these conditions, it is possible to obtain expanded graphite having various degrees of expansion (expanded graphite in which the layers formed by the six-membered ring polymer surface have various interlayer distances). It is preferable to adjust the degree of expansion so that the interlayer distance is about twice (in terms of bulk density, 1.0 to 2.0 g / cc). As a result, the effect of infiltration and concentration of hydrogen between the expanded graphite layers is significantly improved. By the way, the layers of the six-membered ring polymerized surface of the expanded graphite used as the hydrogen storage material are preferably extended while keeping parallel to each other, but may be formed to have an interlayer gap which is inclined and expands in a wedge shape. No problem.
【0022】[0022]
【作用】さて、本発明に係る水素吸蔵材は膨張黒鉛から
成るものであるが、多くの炭化水素化合物が存在してい
ることからも分かるように、炭素材料は水素と親和性が
あるのでこの点からしても水素を吸着・貯蔵する材料と
して好適である。しかも、この膨張黒鉛は、黒鉛の六員
環重合面の層と層との間に異分子の存在しない適宜サイ
ズのスリットや細孔を有した構造となっているので、水
素分子がこのスリットや細孔に侵入して濃縮する作用を
発揮し、前記水素との良好な親和力の効果も相乗されて
優れた水素吸蔵効果を発揮する。なお、この水素吸蔵効
果は、先にも説明したように膨張黒鉛の嵩密度が 1.0〜
2.0 g/ccの範囲(六員環重合面の層の層間距離ではほぼ
6〜9Åに相当する)にあると著しく顕著化する。The hydrogen storage material according to the present invention is made of expanded graphite. However, as can be seen from the presence of many hydrocarbon compounds, the carbon material has an affinity for hydrogen. Also from the viewpoint, it is suitable as a material for absorbing and storing hydrogen. Moreover, since the expanded graphite has a structure having slits and pores of an appropriate size in which no foreign molecules are present between the layers of the six-membered ring polymerized surface of graphite, hydrogen molecules are formed in the slits and fines. It exerts the effect of infiltrating into the pores and concentrating it, and also exerts an excellent hydrogen storage effect by synergistically exerting the effect of good affinity with the hydrogen. Note that, as described above, the hydrogen storage effect is such that the bulk density of the expanded graphite is 1.0 to 1.0.
When it is in the range of 2.0 g / cc (corresponding to approximately 6 to 9 ° in the interlayer distance between the layers of the six-membered ring-polymerized surface), it becomes significantly remarkable.
【0023】その上、黒鉛は軽量材であることに加えて
緻密度が大きいので、膨張処理した黒鉛であっても軽量
でコンパクトな部材となり、また膨張黒鉛も耐熱性や耐
薬品性に優れていて非常に安定な材料であるという長所
を有しているので、水素吸蔵材としての適性は非常に高
いと言える。In addition, graphite has a high density in addition to being a lightweight material, so even if expanded graphite, it becomes a lightweight and compact member, and expanded graphite is also excellent in heat resistance and chemical resistance. Therefore, it has an advantage of being a very stable material, so that it can be said that its suitability as a hydrogen storage material is very high.
【0024】加えて、本発明に係る水素吸蔵材は膨張黒
鉛から成るものであるため、長期使用により水素吸蔵機
能が低下して廃棄処分する段になっても固形燃料として
利用可能であり、また焼却せずに埋設等の処分を行って
も無害な材料であるので何ら問題はなく、現在特に望ま
れている環境負荷の小さい材料としても優れるものであ
るIn addition, since the hydrogen storage material according to the present invention is made of expanded graphite, it can be used as a solid fuel even when the hydrogen storage function is reduced due to long-term use and the stage of disposal is reached. There is no problem because it is harmless even if it is disposed of by burial without incineration, and it is excellent as a material with a low environmental load that is particularly desired at present.
【0025】なお、本発明に係る水素吸蔵材では、雰囲
気中の水素分圧が高くなるとそれに応じて水素吸蔵量が
上昇するが、雰囲気中の水素分圧を低下させると吸蔵さ
れていた水素は円滑に放出されるので、この点でも非常
に簡便な水素吸蔵材であると言える。In the hydrogen storage material according to the present invention, when the hydrogen partial pressure in the atmosphere increases, the amount of hydrogen storage increases in accordance with the increase. However, when the hydrogen partial pressure in the atmosphere decreases, the stored hydrogen is reduced. Since it is released smoothly, it can be said that this is also a very simple hydrogen storage material.
【0026】以下、本発明を実施例により説明する。Hereinafter, the present invention will be described with reference to examples.
【実施例】市販の黒鉛粉末5gを準備し、これを200
℃に加熱すると同時に真空ポンプで排気して乾燥する前
処理を実施した後、この黒鉛粉末を収容した容器に30
mlの濃硫酸と10mlの硝酸とを加えて6時間の酸浸漬処
理を行った。次いで、酸処理後の黒鉛粉末を蒸留水で水
洗した後、大気中にて550℃で3時間の加熱処理を行
い、六員環重合面の層の層間距離を拡げた膨張黒鉛を得
た。EXAMPLE 5 g of commercially available graphite powder was prepared, and 200 g of the powder was prepared.
C. and a pre-treatment of drying by evacuating and drying with a vacuum pump at the same time.
6 ml of concentrated sulfuric acid and 10 ml of nitric acid were added, and an acid immersion treatment was performed for 6 hours. Next, the acid-treated graphite powder was washed with distilled water, and then subjected to a heat treatment at 550 ° C. for 3 hours in the air to obtain expanded graphite in which the interlayer distance between the layers of the six-membered ring polymerized surface was increased.
【0027】そして、このようにして得られた膨張黒鉛
につき、再度、200℃に加熱すると同時に真空ポンプ
で排気して乾燥した後、これを収容した容器に30mlの
濃硫酸と10mlの硝酸とを加えて6時間の酸浸漬処理を
行い、蒸留水による水洗処理と大気中における550℃
で3時間の加熱処理とを施す処理工程を3回繰り返し
た。以上の処理により、六員環重合面の層の層間距離が
広がって(元の黒鉛のほぼ2倍の層間距離)嵩密度が1.
0g/cc と小さくなった膨張黒鉛が得られた。The expanded graphite thus obtained was heated again to 200 ° C. and evacuated by a vacuum pump and dried. Then, 30 ml of concentrated sulfuric acid and 10 ml of nitric acid were placed in a container containing the expanded graphite. In addition, an acid immersion treatment for 6 hours is performed, and a washing treatment with distilled water and 550 ° C. in the atmosphere are performed.
And a heat treatment for 3 hours were repeated three times. By the above treatment, the interlayer distance between the layers of the six-membered ring polymerized surface is increased (the interlayer distance is almost twice that of the original graphite) and the bulk density is 1.
Expanded graphite reduced to 0 g / cc was obtained.
【0028】次に、得られた膨張黒鉛の水素吸蔵能を調
査した。水素吸蔵能の調査は、膨張黒鉛を室温(25℃)
で水素ガスと接触させ、種々の水素圧力における黒鉛単
位重量当りの水素吸蔵重量を調べる方法によった。この
結果を図2に示す。また、比較として、膨張処理を施さ
ない原料の黒鉛粉末での調査結果も図2に併せて示し
た。Next, the hydrogen storage capacity of the obtained expanded graphite was investigated. Investigating hydrogen storage capacity, expanded graphite at room temperature (25 ° C)
By contacting with a hydrogen gas at a hydrogen pressure and examining the hydrogen storage weight per unit weight of graphite at various hydrogen pressures. The result is shown in FIG. In addition, for comparison, FIG. 2 also shows the results of an investigation using a raw graphite powder that was not subjected to expansion treatment.
【0029】図2に示される結果からも明らかなよう
に、原料の黒鉛粉末には殆ど水素吸蔵作用が観察されな
かったのに対して、本発明の水素吸蔵材に係る膨張黒鉛
は著しい水素吸蔵作用を有していることを確認できる。As is evident from the results shown in FIG. 2, almost no hydrogen storage effect was observed in the raw graphite powder, whereas the expanded graphite according to the hydrogen storage material of the present invention showed a remarkable hydrogen storage capacity. It can be confirmed that it has an effect.
【0030】[0030]
【効果の総括】以上に説明した如く、この発明によれ
ば、簡易に水素を高密度で貯蔵・放出できる軽量で安価
な材料を提供することができ、水素燃料の貯蔵部材とし
てクリ−ンエネルギ−燃料化の促進に多大な寄与が期待
されるなど、産業上有用な効果がもたらされる。As described above, according to the present invention, it is possible to provide a lightweight and inexpensive material capable of easily storing and releasing hydrogen at a high density, and to provide clean energy as a hydrogen fuel storage member. Industrially useful effects such as a great contribution to the promotion of fuel conversion are expected.
【図1】酸処理した黒鉛を加熱することにより黒鉛の六
員環重合体層間が伸張されて熱膨張黒鉛となる状況を説
明した模式図である。BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram illustrating a situation in which the acid-treated graphite is heated to expand the six-membered ring polymer layer of the graphite into thermally expanded graphite.
【図2】黒鉛と本発明材に係る膨張黒鉛との水素吸蔵能
の調査結果を比較して示したグラフである。FIG. 2 is a graph showing a comparison between the results of an investigation on the hydrogen storage capacity of graphite and expanded graphite according to the material of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦邊 安彦 東京都江東区東陽3−27−30 中銀東陽公 園マンション801 (72)発明者 荒木 敏成 東京都杉並区桃井1−20−10 Fターム(参考) 4G040 AA02 AA36 AA42 4G046 EA05 EB02 EB04 EB06 EC02 EC05 EC07 EC08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiko Urabe 3-27-30 Toyo Park, Koto-ku, Tokyo 801 Central Bank Toyo Park Mansion 801 (72) Inventor Toshinari Araki 1-20-10 Momoi, Suginami-ku, Tokyo F-term (Reference) 4G040 AA02 AA36 AA42 4G046 EA05 EB02 EB04 EB06 EC02 EC05 EC07 EC08
Claims (3)
環重合面の層と層との間の距離を拡げた“膨張黒鉛”か
ら成る水素吸蔵材。1. A hydrogen storage material comprising "expanded graphite" which has been subjected to an acid treatment and a heat treatment to increase the distance between layers of a six-membered polymerized surface of graphite.
度を小さくした“膨張黒鉛”から成る水素吸蔵材。2. A hydrogen storage material comprising “expanded graphite” in which the bulk density of graphite is reduced by performing an acid treatment and a heat treatment.
1又は2に記載の水素吸蔵材。3. The hydrogen storage material according to claim 1, wherein the bulk density is 1.0 to 2.0 g / cc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11202228A JP2001026414A (en) | 1999-07-15 | 1999-07-15 | Hydrogen storage material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11202228A JP2001026414A (en) | 1999-07-15 | 1999-07-15 | Hydrogen storage material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001026414A true JP2001026414A (en) | 2001-01-30 |
Family
ID=16454094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11202228A Pending JP2001026414A (en) | 1999-07-15 | 1999-07-15 | Hydrogen storage material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001026414A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157404A1 (en) | 2008-06-23 | 2009-12-30 | 株式会社トクヤマ | Porous carbon material and process for production thereof |
JP2011508659A (en) * | 2007-12-10 | 2011-03-17 | サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) | Hydrogen storage materials based on magnesium hydride |
KR101250518B1 (en) * | 2011-05-25 | 2013-04-03 | 인하대학교 산학협력단 | Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage |
-
1999
- 1999-07-15 JP JP11202228A patent/JP2001026414A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011508659A (en) * | 2007-12-10 | 2011-03-17 | サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) | Hydrogen storage materials based on magnesium hydride |
WO2009157404A1 (en) | 2008-06-23 | 2009-12-30 | 株式会社トクヤマ | Porous carbon material and process for production thereof |
US8569206B2 (en) | 2008-06-23 | 2013-10-29 | Tokuyama Corporation | Porous carbon material and a method of production thereof |
KR101250518B1 (en) * | 2011-05-25 | 2013-04-03 | 인하대학교 산학협력단 | Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1051350B1 (en) | Hydrogen storage in carbon material | |
Stan et al. | Uptake of gases in bundles of carbon nanotubes | |
Wilson et al. | Adsorption of H2 and D2 on carbon nanotube bundles | |
Dillon et al. | Carbon nanotube materials for hydrogen storage | |
Qu | Mechanism for electrochemical hydrogen insertion in carbonaceous materials | |
He et al. | A novel C 6 N 2 monolayer as a potential material for charge-controlled CO 2 capture | |
Wang et al. | Superconductivity in Langmuir-Blodgett multilayers of fullerene (C60) doped with potassium | |
US20070028768A1 (en) | Method of adsorption using self-locking carbon adsorbent | |
US20040076561A1 (en) | Method for producing hydrogen storage material and hydrogen storing and desorbing apparatus | |
JP2001026414A (en) | Hydrogen storage material | |
US20090194736A1 (en) | Nanosized nickel-doped carbon nanotubes for hydrogen storage and production method thereof | |
Singh | CO2 capture by metal-decorated silicon carbide nanotubes | |
KR101250518B1 (en) | Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage | |
WO2005120715A2 (en) | Electrostatic switch for hydrogen storage and release from hydrogen storage media | |
KR101273495B1 (en) | Tuning method of interlayer spacing in graphene oxide composites for hydrogen storage | |
KR100738651B1 (en) | The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma | |
US20060191409A1 (en) | Electrostatic switch for hydrogen storage and release from hydrogen storage media | |
CA2528629A1 (en) | Field-assisted gas storage materials and fuel cells comprising the same | |
Krainyukova et al. | Absorption of atomic and molecular species in carbon cellular structures | |
Buczek et al. | Improvement of hydrogen storage capacity for active carbon | |
JP2010029837A (en) | Hydrogen storing material and its manufacturing method | |
JP2004261739A (en) | Hydrogen occlusion composite material | |
Xuesong et al. | Effects of structure and surface properties on carbon nanotubes’ hydrogen storage characteristics | |
JP2003238133A (en) | Carbonaceous material, hydrogen absorbing material, hydrogen absorption equipment, fuel cell and hydrogen absorption method | |
Al Rey | Horizontally Stacked Pristine and Li-Doped C 12 Carbyne Ring as Hydrogen Storage Materials: A DFT Study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060926 |