KR20120131066A - Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same - Google Patents

Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same Download PDF

Info

Publication number
KR20120131066A
KR20120131066A KR1020110049266A KR20110049266A KR20120131066A KR 20120131066 A KR20120131066 A KR 20120131066A KR 1020110049266 A KR1020110049266 A KR 1020110049266A KR 20110049266 A KR20110049266 A KR 20110049266A KR 20120131066 A KR20120131066 A KR 20120131066A
Authority
KR
South Korea
Prior art keywords
leu
ser
glu
gln
lys
Prior art date
Application number
KR1020110049266A
Other languages
Korean (ko)
Other versions
KR101482663B1 (en
Inventor
윤정훈
오기훈
박수연
이미화
강철형
오태광
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to PCT/KR2011/003810 priority Critical patent/WO2012161360A1/en
Priority to KR20110049266A priority patent/KR101482663B1/en
Publication of KR20120131066A publication Critical patent/KR20120131066A/en
Application granted granted Critical
Publication of KR101482663B1 publication Critical patent/KR101482663B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE: A novel cellulophage sp. which is isolated from seawater and mud flat is provided to ensure various polysaccharide decomposition activities. CONSTITUTION: A composition for decomposing polysaccharides contains Cellulophaga sp.(deposit number KCTC11940BP or KCTC11941BP) or a supernatant of a culture thereof. The polysaccharides are agarose, carrageenan, starch, pllulan, carboxylmethylcellulose(CMC), xylan, chitin, or pectin. A method for producing bioethnaol comprises: a step of isolating polysaccharides from a biomass; a step of contacting the strain or supernatant with the polysaccharides to prepare monosaccharides; and a step of fermenting monosaccharides.

Description

신규한 다당류 분해활성을 갖는 셀룰로파가 속 균주 및 이의 용도{Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same}Cellulpaga genus strain with novel polysaccharide degrading activity and its use {Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same}

본 발명은 다당류 분해 활성을 갖는 신규한 셀룰로파가(Cellulophaga sp .) 속 균주에 관한 것으로, 보다 상세하게는 해수, 갯벌, 해안가에서 분리한 다양한 다당류 분해 활성을 갖는 신규한 셀룰로파가 속 균주에 관한 것이다.
The present invention wave (Cellulophaga a novel cellulose having polysaccharide-degrading activity sp . In particular, the present invention relates to a novel strain of cellulopa, which has various polysaccharide degrading activities isolated from seawater, tidal flats, and shore.

바이오연료(biofuel)는 재생 가능하고 환경 친화적이다. 왜냐하면, 바이오연료는 이산화탄소 고정에 의한 광합성으로 생성되는 바이오매스(biomass)로 부터 생산되기 때문이다. 특히 점점 줄어드는 화학 연료 공급에 대한 우려, 및 깨끗한 재생가능 에너지에 대한 요구로 인해 바이오연료에 대한 필요성은 증가하는 추세이다.Biofuels are renewable and environmentally friendly. This is because biofuel is produced from biomass produced by photosynthesis by carbon dioxide fixation. In particular, with the ever-increasing concern for the supply of chemical fuels and the need for clean renewable energy, the need for biofuels is on the rise.

현재 두 개의 바이오연료인 바이오알코올(바이오에탄올)과 바이오디젤이 각각 가솔린 및 디젤의 대안이 되는 연료로 제안되고 있으며 또한 사용되고 있다. 이들은 대기중 이산화탄소 방출 감소 및 지구 온난화에 긍정적인 효과를 줄 뿐만 아니라, 기존의 자동차의 시스템을 변화시키지 않고 사용될 수 있다. 바이오연료의 일례로는 목초, 건초 및 스위치그래스(switchgrss)와 같은 셀룰로오스 자원을 이용하여 바이오에탄올을 생산하고 있다. 최근에, 바이오에탄올의 매년 전세계 생산은 대략 10억 갤론으로 평가되고 있다. 이들 대부분은 기존의 정립된 시스템의 전분 및 당으로부터 생산되고 있다. 현재의 기술은 자연 상태에서 가장 풍부한 탄소원인 육상 식물로부터 유래된 다당류를 이용하여 바이오연료를 생산하는 것에 제한되고 있다. 특히, 육상 식물은 그 종류에 따라 차이는 있지만 자라는데 시간이 걸리고 기후 조건의 변화에 쉽게 반응한다. 따라서, 육상 식물로부터 유래된 다당류를 바이오연료를 생산에 상용하는 것은 한계가 있다.Currently, two biofuels, bioalcohol (bioethanol) and biodiesel, are proposed and used as alternative fuels for gasoline and diesel, respectively. Not only do they have a positive effect on reducing atmospheric carbon dioxide emissions and global warming, they can also be used without altering existing vehicle systems. One example of biofuels is the production of bioethanol using cellulose resources such as grasses, hay and switchgrss. Recently, the annual worldwide production of bioethanol is estimated at approximately one billion gallons. Most of these are produced from starches and sugars in existing established systems. Current technology is limited to producing biofuels using polysaccharides derived from land plants, the most abundant carbon source in nature. In particular, land plants vary depending on their type but take time to grow and respond easily to changes in climatic conditions. Therefore, there is a limit to commercial use of polysaccharides derived from land plants for the production of biofuels.

수생에서 서식하는 해조류는 포자에 의한 무성 생식 방법과 배우자에 의한 유성 생식 방법을 통하여 증식한다. 이들은 적절한 조건이 갖추어지면 육상 식물에 비해 더 빠른 속도로 증식할 수 있다. 또한, 이들은 지구의 70% 이상을 차지하는 바다 속에서 서식하고 있어 그 공급 가능성도 크다. 따라서, 빠른 속도로 증식할 수 있고 육상 식물에 비해 넓은 재배 면적을 갖는 해조류로부터 유래된 세포 외 다당류는 육상 식물로부터 유래된 다당류에 비해 바이오연료를 생산하는데 더 높은 효율을 제공할 수 있을 것이다.
Algae in aquatic life multiply through spores 'asexual reproduction method and spouses' sexual reproduction method. They can multiply faster than on land plants if appropriate conditions are met. They also live in the oceans, which make up more than 70% of the world's supply, so they are very likely to be supplied. Thus, extracellular polysaccharides derived from algae that can grow rapidly and have a larger cultivation area than land plants may provide higher efficiency in producing biofuels than polysaccharides derived from land plants.

셀롤로스란 β-(1, 4)-결합의 D-포도당 유닛으로 구성된 다당류를 말한다. 이는 식물 세포벽에서 주요한 구성요소이자 지구상에 존재하는 가장 풍부한 탄소원이기도 하다. 미생물에 의해 셀룰로스를 분해한다는 것은 지구 탄소 재활용에 있어 중요한 사안이다. 셀룰로스 분해 미생물들은 엔도글루카나아제, 엑소글루카나아제, 베타-글루코시다아제, 및 보조적 효소들을 생산함으로써 셀룰로스의 β-1,4-글룰코시드 결합을 시너지 효과를 일으키며 포도당으로 효과적으로 분해한다. 이들 효소들은 종종 탄수화물 결합 도메인(carborhydrate binding domain; CBD)라고 칭해지는 부속적 모듈을 포함한다. CBD의 주 역할은 셀룰라아제의 촉매적 도메인을 좀 더 근접하게 셀룰로스 표면으로 이송함으로써 효과적 가수분해를 일으키는 데에 있다.Cellulose refers to a polysaccharide composed of D-glucose units of β- (1, 4) -bonds. It is a major component of plant cell walls and the most abundant source of carbon on earth. Degrading cellulose by microorganisms is an important issue for global carbon recycling. Cellulose Degrading Microorganisms produce endoglucanase, exoglucanase, beta-glucosidase, and coenzyme to synergistically degrade β-1,4-glucosidic bonds of cellulose and effectively break down glucose into glucose. These enzymes often include an accessory module called the carborhydrate binding domain (CBD). The main role of CBD is to bring about effective hydrolysis by transferring the catalytic domain of cellulase closer to the cellulose surface.

현재, 셀룰라아제가 동물 사료, 섬유, 폐기물 처리 및 양조 산업에서 광범위하게 사용되고 있다(Beguin, 1983; Mandels, 1985). 또한, 셀룰로스 바이오매스를 셀룰라아제에 의해 분해함으로써 얻어지는 포도당을 이용한 발효를 통한 에탄올 및 부탄올과 같은 생물연료는 점차적으로 매력적인 지속적이자 대안적 에너지원으로 간주되고 있다. 따라서, 셀룰라아제를 이용한 효과적 셀룰로스 분해가 셀롤로스 바이오매스의 사용에 있어 중요한 이슈가 되는 것이다. 퇴비 토양, 부패 식물재료, 하수도 찌꺼기, 반추류의 분변 및 극심한 환경 등과 같은 다양한 소스에서 곰팡이 및 세균에 의해 생성된 셀룰로스 분해 효소 다량을 분리하여 특성화했다(Blumer-Schuette et al., 2008; Doi, 2008; Maki et al., 2009; Viikari et al., 2007). 그러나, 해양 세균에서 얻어지는 셀룰로스 분해 시스템에 대해서는 상대적으로 연구된 수가 적은 편이다(Ekborg et al., 2007; Fu et al., 2010; Gao et al., 2010; Hirasawa et al., 2006; Ryu et al., 2001; Shanmughapriya et al., 2010; Taylor et al., 2006; Yin et al., 2010; Zeng et al., 2006). 최근 들어, Saccharophagus degradans 2-20TTeredinibacter turnerae T7902T 에 대해 보고된바 있다(Taylor et al., 2006; Yang et al., 2009). S. degradans 2-20TT.turnerae T7902T 은 다중 엔도글루카나아제 및 엑소글루카나아제와 함께 기타 해조류(marine algae and plants)의 다당류 분해 시스템을 보유한다. 따라서, 해양 세균류가 신규한 셀룰로스 바이오매스 분해 시스템을 위해 풍부한 소스가 될 것으로 보인다.
Currently, cellulase is widely used in the animal feed, textile, waste processing and brewing industries (Beguin, 1983; Mandels, 1985). In addition, biofuels such as ethanol and butanol through fermentation with glucose, obtained by the degradation of cellulose biomass by cellulase, are increasingly regarded as attractive, sustainable and alternative energy sources. Therefore, effective cellulose degradation using cellulase is an important issue in the use of cellulose biomass. Large amounts of cellulose degrading enzymes produced by fungi and bacteria have been isolated and characterized from various sources such as compost soils, decaying plant material, sewage sludge, ruminant feces and extreme environments (Blumer-Schuette et al., 2008; Doi, 2008; Maki et al., 2009; Viikari et al., 2007). However, relatively few studies have been made on cellulose degradation systems obtained from marine bacteria (Ekborg et al., 2007; Fu et al., 2010; Gao et al., 2010; Hirasawa et al., 2006; Ryu et. al., 2001; Shanmughapriya et al., 2010; Taylor et al., 2006; Yin et al., 2010; Zeng et al., 2006). Recently, Saccharophagus degradans 2-20 T and Teredinibacter It has been reported for turnerae T7902 T (Taylor et al., 2006; Yang et al., 2009). S. degradans 2-20 T and T. turnerae T7902 T, together with multiple endoglucanases and exoglucanases , possess polysaccharide degradation systems of other marine algae and plants. Thus, marine bacteria are expected to be a rich source for new cellulose biomass degradation systems.

이에, 본 발명자들은 해조류 및 식물 유래 다당류를 분해할 수 있는 신규 미생물을 선별하기 위하여, 다양한 시료를 채취하여 미생물을 분리한 후, 카로복시메칠 셀룰로오즈(carboxymethyl cellulose; CMC)를 분해할 수 있는 미생물을 선별하고, 16S rRNA 분석을 통해 셀룰로파가(Cellulophaga) 속에 속하는 신규한 미생물임을 확인한 다음, 상기 신규한 미생물이 다양한 다당류 효과적으로 분해할 수 있음을 확인함으로써 본 발명을 완성하였다.
Thus, the present inventors, in order to screen new microorganisms capable of degrading algae and plant-derived polysaccharides, isolate various microorganisms by collecting various samples, and then isolate microorganisms capable of degrading carboxymethyl cellulose (CMC). The present invention was completed by screening, confirming that the microorganism belongs to the genus Cellulophaga through 16S rRNA analysis, and then confirming that the novel microorganism can effectively degrade various polysaccharides.

본 발명의 목적은 다당류 분해 활성을 가지는 신규한 균주, 상기 균주를 이용한 다당류 분해용 조성물 및 상기 균주를 이용한 다당류 분해하는 방법을 제공한다.
It is an object of the present invention to provide a novel strain having a polysaccharide decomposition activity, a composition for polysaccharide decomposition using the strain and a method for degrading polysaccharide using the strain.

상기 목적을 달성하기 위하여, 본 발명은 다당류 분해 활성을 갖는 셀룰로파가(Cellulophaga) 속 균주를 제공한다. In order to achieve the above object, the present invention provides a strain of Cellulophaga genus having a polysaccharide decomposition activity.

또한, 본 발명은 다당류 분해 활성을 갖는 셀룰로파가 속 균주 및 이의 배양 상층액을 포함하는 다당류 분해용 조성물을 제공한다.The present invention also provides a composition for degrading polysaccharide comprising a cellulose genus strain having a polysaccharide degrading activity and a culture supernatant thereof.

또한, 본 발명은 다당류 분해 활성을 갖는 셀룰로파가 속 균주 및 이의 배양 상층액을 다당류에 접촉시키는 단계를 포함하는 다당류 분해 방법을 제공한다.The present invention also provides a polysaccharide decomposition method comprising the step of contacting the cellulose genus strain having a polysaccharide degradation activity and its culture supernatant with the polysaccharide.

아울러, 본 발명은In addition,

1) 바이오매스로부터 다당류를 분리하는 단계;1) separating the polysaccharides from the biomass;

2) 단계 1)의 다당류에 제 1항 또는 제 2항의 균주, 또는 이의 배양 상층액을 접촉시켜 단당류를 생성시키는 단계; 및 2) contacting the polysaccharide of step 1) with the strain of claim 1 or 2, or a culture supernatant thereof to produce monosaccharides; And

3) 단계 2)의 단당류를 미생물에 의해 발효시키는 단계를 포함하는 바이오에탄올의 제조방법을 제공한다.
3) It provides a method for producing bioethanol comprising the step of fermenting the monosaccharide of step 2) by a microorganism.

본 발명의 목적은 다당류 분해 활성을 가지는 신규한 셀룰로파가(Cellulophaga) 속 균주에 관한 것으로, 남해 지역의 해수, 갯벌, 해안가에서 시료를 채취하여 미생물을 분리한 후, 카르복시메칠셀룰로오즈(CMC)를 분해할 수 있는 미생물을 선별하고, 16S rRNA 분석을 통해 상기 미생물이 셀룰로파가 속 신규한 균주임을 확인한 다음, 상기 균주 및 이의 배양 상층액이 다양한 다당류의 분해 활성을 가지는 것을 확인하였다.
An object of the present invention relates to a novel Cellulophaga genus strain having a polysaccharide degrading activity. The microorganisms capable of degrading were selected, and 16S rRNA analysis confirmed that the microorganisms were novel strains of cellulose, and then the strains and their culture supernatants were confirmed to have degrading activity of various polysaccharides.

도 1은 셀룰로파가(Cellulophaga) 속 PDB-1 및 PDB-2의 16S rRNA의 계통도 분석을 나타낸 도이다. 16S rRNA 유전자에 따른 인접한 계통도가 기타 다른 관련된 분류군들 사이에서 PDB-1 및 PDB-2의 위치를 보여준다. 분기점(branching point)에서 붓스트랩 값(bootstrap values)(1000 복제의 퍼센트로 표현됨) > 50 % 이 나타낸다. Bacteroides fragilis ATCC 25285T(GenBank accession number, X83935)를 외군비교(outgroup)로 사용했다. Scale bar, 0.01 substitutions per nucleotide position.
도 2는 셀룰로파가 속 PDB-1 및 PDB-2의 세포 외 셀룰라아제에 대한 CMC-SDA-PAGE 분석 및 자이코그래피를 나타낸 도이다;
좌측 패널에는 60% 및 70 % 황산암모늄(ammonium sulfate)에서 침전된 단백질의 Coomassie Brilliant Blue R-250 염색된 0.1 % CMC를 통한 SDS-PAGE 분석을 나타낸다; 및
우측 패널은 침전 단백질의 셀룰라아제 활성 염색에 대한 자이모그램(zymography)을 나타낸다.
Lanes: M: 분자무게 마커 단밸질
60은 60% 황산암모늄에서의 PDB-1 및 PDB-2의 침전된 세포 외 단백질;
70은 70% 황산암모늄에서의 PDB-1 및 PDB-2의 침전된 세포 외 단백질; 및
화살표는 N-말단 시퀀싱 수행을 수행한 35 kDa 단백질을 나타낸다.
도 3은 셀룰로파가 속 PDB-1의 분비 단백질의 갈락탄(Galactan)분해능을 나타낸 도이다. x축은 배양액 상에 포함된 단당류 및 다당류를 나타낸 것이며, y축은 1 mL의 PDB-1의 분비 단백질을 포함하는 배양액 첨가 시 반응액 상에 포함된 다당류인 저온 용해성 아가로스(Agarose)와 카라기난(Carrageenan)으로부터 시간당 유리되는 환원당의 양을 나타낸 것이다.
도 4는 셀룰로파가 속 PDB-1의 분비 단백질의 글루칸(Glucan)분해능을 나타낸 도이다. x축은 배양액 상에 포함된 단당류 및 다당류를 나타낸 것이며, y축은 1 mL의 PDB-1의 분비 단백질을 포함하는 배양액 첨가 시 반응액 상에 포함된 다당류인 전분(Starch), CMC, 라미나린(Laminarin), 풀루란(Pullulan)로부터 시간당 유리되는 환원당의 양을 나타낸 것이다.
도 5는 셀룰로파가 속 PDB-1의 분비 단백질의 자일란과 다른 다당류들에 대한 분해능을 나타낸 도이다. x축은 배양액 상에 포함된 단당류 및 다당류를 나타낸 것이며, y축은 1 mL의 PDB-1의 분비 단백질을 포함하는 배양액 첨가 시 반응액상에 포함된 다당류인 자일란(xylan), 알긴산(Alginate), 콜로이드 키틴(Chitin), 펙틴(Pectin)으로부터 시간당 유리되는 환원당의 양을 나타낸 것이다.
도 6은 셀룰로파가 속 PDB-2의 분비 단백질의 갈락탄(Galactan)분해능을 나타낸 도이다. x축은 배양액 상에 포함된 단당류 및 다당류를 나타낸 것이며, y축은 1 mL의 PDB-2의 분비 단백질을 포함하는 배양액 첨가 시 반응액상에 포함된 다당류인 저온 용해성 아가로스(Agarose)와 카라기난(Carrageenan)으로부터 시간당 유리되는 환원당의 양을 나타낸 것이다.
도 7은 셀룰로파가 속 PDB-2의 분비 단백질의 글루칸(Glucan)분해능을 나타낸 도이다. x축은 배양액 상에 포함된 단당류 및 다당류를 나타낸 것이며, y축은 1 mL의 PDB-1의 분비 단백질을 포함하는 배양액 첨가 시 반응액상에 포함된 다당류인 전분(Starch), CMC, 라미나린(Laminarin), 풀루란(Pullulan)로부터 시간당 유리되는 환원당의 양을 나타낸 것이다.
도 8은 셀룰로파가 속 PDB-2의 분비 단백질의 자일란과 다른 다당류들에 대한 분해능을 나타낸 도이다. x축은 배양액 상에 포함된 단당류 및 다당류를 나타낸 것이며, y축은 1 mL의 PDB-1의 분비 단백질을 포함하는 배양액 첨가 시 반응액상에 포함된 다당류인 자일란(xylan), 알긴산(Alginate), 콜로이드 키틴(Chitin), 펙틴(Pectin)으로부터 시간당 유리되는 환원당의 양을 나타낸 것이다.
1 is a diagram showing a phylogenetic analysis of 16S rRNA of Cellulophaga genus PDB-1 and PDB-2. Adjacent phylogenetic tree along the 16S rRNA gene shows the location of PDB-1 and PDB-2 among other related taxa. Bootstrap values (expressed as a percentage of 1000 replicates)> 50% at the branching point. Bacteroides fragilis ATCC 25285T (GenBank accession number, X83935) was used as the outgroup. Scale bar, 0.01 substitutions per nucleotide position.
FIG. 2 is a diagram showing CMC-SDA-PAGE analysis and gyography of extracellular cellulase of Cellulopa genus PDB-1 and PDB-2; FIG.
The left panel shows SDS-PAGE analysis via Coomassie Brilliant Blue R-250 stained 0.1% CMC of proteins precipitated in 60% and 70% ammonium sulfate; And
The right panel shows zymography for cellulase activity staining of precipitated proteins.
Lanes: M: molecular weight marker protein
60 is the precipitated extracellular protein of PDB-1 and PDB-2 in 60% ammonium sulfate;
70 is the precipitated extracellular protein of PDB-1 and PDB-2 in 70% ammonium sulfate; And
Arrows indicate 35 kDa protein with N-terminal sequencing run.
3 is a diagram showing the galactan (Galactan) resolution of the secreted protein of the genus PDB-1 cellulose. The x-axis shows the monosaccharides and polysaccharides contained on the culture, and the y-axis shows the low-temperature soluble agarose and carrageenan, the polysaccharides contained on the reaction solution, when the culture medium containing the secreted protein of 1 mL of PDB-1 was added. ) Shows the amount of reducing sugar free per hour.
4 is a diagram showing the glucan resolution of the secreted protein of the genus PDB-1 cellulose. The x-axis shows the monosaccharides and polysaccharides contained on the culture, and the y-axis shows the starch, CMC, and laminarin, which are the polysaccharides contained on the reaction solution when the culture medium containing the secreted protein of 1 mL of PDB-1 was added. ) Shows the amount of reducing sugar released per hour from Pullulan.
5 is a diagram showing the resolution of xylan and other polysaccharides of the secreted protein of genus PDB-1. The x-axis shows the monosaccharides and polysaccharides contained on the culture, and the y-axis shows the polysaccharides, xylan, alginate and colloid chitin, included in the reaction solution when the culture medium containing 1 mL of PDB-1 secreted protein was added. (Chitin, Pectin) shows the amount of reducing sugar released per hour.
6 is a diagram showing the galactan (Galactan) resolution of the secreted protein of the genus PDB-2 cellulose. The x-axis shows the monosaccharides and polysaccharides contained on the culture, and the y-axis shows the low-temperature soluble agarose and carrageenan, the polysaccharides included in the reaction solution when the culture medium containing 1 mL of PDB-2 secreted protein was added. Shows the amount of reducing sugar liberated per hour from.
7 is a diagram showing the glucan resolution of the secreted protein of the genus PDB-2 cellulose. The x-axis shows the monosaccharides and polysaccharides contained on the culture, and the y-axis shows the starch, CMC, and laminarin, which are the polysaccharides contained in the reaction solution when the culture medium containing the secreted protein of 1 mL of PDB-1 was added. , Shows the amount of reducing sugar freed from Pullulan per hour.
FIG. 8 is a diagram showing the resolution of xylan and other polysaccharides of the secreted protein of genus PDB-2. The x-axis shows the monosaccharides and polysaccharides contained on the culture, and the y-axis shows the polysaccharides, xylan, alginate and colloid chitin, included in the reaction solution when the culture medium containing 1 mL of PDB-1 secreted protein was added. (Chitin, Pectin) shows the amount of reducing sugar released per hour.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 수탁번호 KCTC11940BP Cellulophaga sp. PDB-1로 기탁된 다당류 분해 활성을 갖는 셀룰로파가(Cellulophaga) 속 균주를 제공한다.The present invention is an accession number KCTC11940BP Cellulophaga sp. Provided is a Cellulophaga genus strain having polysaccharide degradation activity deposited with PDB-1.

또한, 본 발명은 수탁번호 KCTC11941BP Cellulophaga sp. PDB-2로 기탁된 다당류 분해 활성을 갖는 셀룰로파가(Cellulophaga) 속 균주를 제공한다. In addition, the present invention accession number KCTC11941BP Cellulophaga sp. Provided is a Cellulophaga genus strain having polysaccharide degradation activity deposited with PDB-2.

상기 다당류는 아가로즈, 카라기난, 전분, 풀루난, 카르복시메칠셀룰로오즈(carboxylmethylcellulose; CMC), 자일란, 라미나린, 키틴 및 펙틴으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정되지 않는다.
The polysaccharide is preferably any one selected from the group consisting of agarose, carrageenan, starch, pullulan, carboxylmethylcellulose (CMC), xylan, laminarin, chitin and pectin, but is not limited thereto.

본 발명의 한가지 실시태양에서 본 발명자들은 다당류를 분해하는 미생물을 분리하기 위하여, 남해지역의 해수, 갯벌 및 해안가에서 시료를 채취하여 미생물을 분리한 후, 카르복시메칠 셀룰로오즈(carboxymethyl cellulosel; CMC)를 분해할 수 있는 미생물을 선별하였다.In one embodiment of the present invention, in order to isolate microorganisms that break down polysaccharides, the inventors take samples from seawater, tidal flats and coastal areas of the South Sea to separate microorganisms, and then decompose carboxymethyl cellulose (CMC). Possible microorganisms were selected.

또한, 본 발명의 한가지 실시태양에서 본 발명자들은 상기 선별된 미생물을 동정하기 위하여, 16S rRNA 유전자의 시퀀싱과 계통발생학적 분석을 수행한 결과, 이들 미생물들이 서열번호: 1 및 서열번호 2로 나타낸 바와 같이 C. lytica ATCC 23178TC. fucicola NN015860T 에 일관된 클러스터를 형성하는 Cellulophaga(셀롤로파가) 속을 포함하는 클레이드(clade)의 분류에 해당함을 확인하였다(도 2 참조). In addition, in one embodiment of the present invention, the inventors performed sequencing and phylogenetic analysis of the 16S rRNA gene to identify the selected microorganisms, and these microorganisms are represented by SEQ ID NO: 1 and SEQ ID NO: 2. Like C. It was confirmed that this corresponds to the classification of the clade containing the genus Cellulophaga ( Cellulopaga ) which forms a consistent cluster in lytica ATCC 23178 T and C. fucicola NN015860 T (see FIG. 2).

또한, 본 발명의 한가지 실시태양에서 본 발명자들은 상기 선별된 미생물의 셀롤로스 분해활성을 확인하기 위하여 CMC로 SDS-PAGE에 대한 자이모그램 분석을 수행한 결과, 상기 미생물은 셀룰로스 분해 효소를 가지는 것을 확인하였다(도 2 참조).In addition, in one embodiment of the present invention, the present inventors performed a zymogram analysis on SDS-PAGE with CMC to confirm the cellulolytic activity of the selected microorganisms. It was confirmed (see FIG. 2).

또한, 본 발명의 한가지 실시태양에서 본 발명자들은 PDB-1의 35 kDa 단백질의 N-말단 시퀀싱을 수행한 결과, 35 kDa 단백질의 N-말단 시퀀스는 기타 공지된 셀룰로스 분해 효소와 매칭되지 않는 것을 확인하였다.Further, in one embodiment of the present invention, the inventors performed N-terminal sequencing of the 35 kDa protein of PDB-1, and found that the N-terminal sequence of the 35 kDa protein did not match other known cellulose degrading enzymes. It was.

또한, 본 발명의 한가지 실시태양에서 본 발명자들은 PDB-1의 분비 단백질의 분해 활성 분석하기 위하여 PDB-1의 분비 단백질의 셀룰로스 분해 활성을 확인한 결과, PDB-1의 분비 단백질은 CMC를 잘 가수분해하는 반면, 결정체 기질(substrate)는 효과적으로 가수분해할 수 없었다. 이를 통해 이들 효소가 셀룰로스의 비결정질 부위의 β-1,4 결합에 더욱 활성을 보임을 확인하였다(표 1 참조).In addition, in one embodiment of the present invention, the inventors of the present invention provide for analyzing the degradation activity of the secreted protein of PDB-1. As a result of confirming the cellulolytic activity of the secreted protein of PDB-1, the secreted protein of PDB-1 hydrolyzed the CMC well, while the crystal substrate could not be effectively hydrolyzed. This confirmed that these enzymes are more active in β-1,4 binding of the amorphous site of cellulose (see Table 1).

또한, 본 발명의 한가지 실시태양에서 본 발명자들은 셀룰로파가 PDB-1 및 PDB-2의 다당류 분해 활성 확인하기 위하여, 다당류를 포함하는 최소 배지 배양액 하에서 배양 후, 세포 외로 분비된 단백질의 다당류 분해능력을 확인한 결과, PDB-1 및 PDB-2는 아가로즈, 카라기난, 전분, 풀루란, CMC, 자일란, 라미나린, 키틴, 펙틴과 같은 다양한 다당류의 분해시스템을 갖고 있음을 확인하였다(도 3 내지 도 8 참조).In addition, in one embodiment of the present invention, the present inventors, in order to confirm the polysaccharide degradation activity of cellulose is PDB-1 and PDB-2, after culturing in a minimal medium culture containing polysaccharides, polysaccharide degradation of the secreted protein extracellularly As a result of confirming the ability, it was confirmed that PDB-1 and PDB-2 have a decomposition system of various polysaccharides such as agarose, carrageenan, starch, pullulan, CMC, xylan, laminarin, chitin, pectin (FIGS. See FIG. 8).

따라서, 상기 다양한 다당류에 대한 분해 활성을 가진 신규한 미생물을 셀룰로파가 속으로 동정하고, Cellulophaga sp. PDB-1 및 Cellulophaga sp. PDB-2으로 명명하였으며 2011년 05월 24일에 한국생명공학연구원(KRIBB) 생물자원관리본부(KBRC) 미생물자원센터(KCTC)에 기탁하였다.(기탁번호: KCTC11940BP 및 KCTC11941BP).
Therefore, a novel microorganism having degradation activity for the various polysaccharides was identified as Cellulopa spp ., Cellulophaga sp. PDB-1 and Cellulophaga sp. It was named PDB-2 and deposited on May 24, 2011 to the Korea Biotechnology Research Institute (KRIBB) Biological Resources Management Center (KBRC) Microbial Resource Center (KCTC) (Accession No .: KCTC11940BP and KCTC11941BP).

또한, 본 발명은 PDB-1 및 PDB-2, 또는 이의 배양 상층액을 포함하는 다당류 분해용 조성물을 제공한다.
In addition, the present invention provides a composition for degrading polysaccharide comprising PDB-1 and PDB-2, or a culture supernatant thereof.

본 발명의 한가지 실시태양에서 본 발명자들은 PDB-1의 분비 단백질의 분해 활성 분석하기 위하여 PDB-1의 분비 단백질의 셀룰로스 분해 활성을 확인한 결과, PDB-1의 분비 단백질은 CMC를 잘 가수분해하는 반면, 결정체 기질(substrate)은 효과적으로 가수분해할 수 없었다. 이를 통해 이들 효소가 셀룰로스의 비결정질 부위의 β-1,4 결합에 더욱 활성을 보임을 확인하였다(표 1 참조).In one embodiment of the present invention, the inventors have performed the assay for the degradation activity of the secreted protein of PDB-1. As a result of confirming the cellulolytic activity of the secreted protein of PDB-1, the secreted protein of PDB-1 hydrolyzed the CMC well, while the crystal substrate could not be effectively hydrolyzed. This confirmed that these enzymes are more active in β-1,4 binding of the amorphous site of cellulose (see Table 1).

또한, 본 발명의 한가지 실시태양에서 본 발명자들은 셀룰로파가 PDB-1 및 PDB-2의 다당류 분해 활성 확인하기 위하여, 다당류를 포함하는 최소 배지 배양액 하에서 배양 후, 세포 외로 분비된 단백질의 다당류 분해능력을 확인한 결과, PDB-1 및PDB-2는 아가로즈, 카라기난, 전분, 풀루란, CMC, 자일란, 라미나린, 키틴, 펙틴과 같은 다양한 다당류의 분해시스템을 갖고 있음을 확인하였다(도 3 내지 도 8 참조).In addition, in one embodiment of the present invention, the present inventors, in order to confirm the polysaccharide degradation activity of cellulose is PDB-1 and PDB-2, after culturing in a minimal medium culture containing polysaccharides, polysaccharide degradation of the secreted protein extracellularly As a result of confirming the ability, it was confirmed that PDB-1 and PDB-2 have a decomposition system of various polysaccharides such as agarose, carrageenan, starch, pullulan, CMC, xylan, laminarin, chitin, pectin (FIGS. 8).

따라서, 본 발명의 PDB-1 및 PDB-2, 또는 이의 배양 상층액은 다양한 다당류에 대한 분해 활성을 가지므로 다당류 분해용 조성물로 유용하게 이용될 수 있다. Therefore, PDB-1 and PDB-2, or the culture supernatant thereof of the present invention have a degradation activity for a variety of polysaccharides can be usefully used as a composition for degradation of polysaccharides.

또한, 본 발명은 PDB-1 및 PDB-2, 또는 이의 배양 상층액을 포함하는 다당류에 접촉시키는 단계를 포함하는 다당류 분해 방법을 제공한다.The present invention also provides a polysaccharide degradation method comprising the step of contacting a polysaccharide comprising PDB-1 and PDB-2, or a culture supernatant thereof.

상기 다당류를 접촉시키는 단계는 다당류와 PDB-1 및 PDB-2, 또는 이의 배양 상층액을 55℃-85℃, 바람직하게는 65℃에서, pH 5.0 내지 5.5 또는 7.5 내지 8.0에서 10-30분 동안 접촉시키는 것이 바람직하나 이에 한정하지 않는다.The step of contacting the polysaccharide is a polysaccharide and PDB-1 and PDB-2, or a culture supernatant thereof at 55 ℃-85 ℃, preferably 65 ℃, for 10-30 minutes at pH 5.0 to 5.5 or 7.5 to 8.0 It is preferred to contact but not limited thereto.

본 발명의 PDB-1 및 PDB-2, 또는 이의 배양 상층액은 다양한 다당류에 대한 분해 활성을 가지므로 다당류에 접촉시키는 단계를 포함하는 다당류 분해 방법으로 이용될 수 있다.
PDB-1 and PDB-2, or the culture supernatant thereof of the present invention can be used as a polysaccharide decomposition method comprising the step of contacting the polysaccharide because it has a degradation activity for a variety of polysaccharides.

또한, 본 발명은In addition,

1) 바이오매스로부터 다당류를 분리하는 단계;1) separating the polysaccharides from the biomass;

2) 단계 1)의 다당류에 제 1항 또는 제 2항의 균주, 또는 이의 배양 상층액을 접촉시켜 단당류를 생성시키는 단계; 및 2) contacting the polysaccharide of step 1) with the strain of claim 1 or 2, or a culture supernatant thereof to produce monosaccharides; And

3) 단계 2)의 단당류를 미생물에 의해 발효시키는 단계를 포함하는 바이오에탄올의 제조방법을 제공한다.3) It provides a method for producing bioethanol comprising the step of fermenting the monosaccharide of step 2) by a microorganism.

상기 바이오매스는 다당류를 포함하는 볏짚, 보릿짚, 고구마 줄기, 유채줄기, 카사바 줄기의 농업 부산물, 폐지, 플러프의 고체 쓰레기, 간벌목, 폐목재, 가공 부산물의 목재, 담조류, 해조류의 수상 식물 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정하지 않는다.The biomass is rice straw, barley straw, sweet potato stalk, rapeseed stem, agricultural by-product of cassava stalk, waste paper, solid waste of fluff, thin lumber, waste wood, wood of processed by-products, algae, seaweed And it is preferably any one selected from the group consisting of a combination thereof, but is not limited thereto.

상기 단계 1)의 다당류는 아가로즈, 카라기난, 전분, 풀루난, 카르복시메칠셀룰로오즈, 자일란, 라미나린, 키틴 및 펙틴으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정하지 않는다.The polysaccharide of step 1) is preferably one selected from the group consisting of agarose, carrageenan, starch, pullulan, carboxymethyl cellulose, xylan, laminarin, chitin and pectin, but is not limited thereto.

상기 단계 3)의 미생물은 사카로마이세스 세레비시애, 사르시나 벤트리큘리, 클루이베로마이세스 프라질리스, 자이고모모나스 모빌리스, 클루이베로마이세스 막시아너스 IMB3, 브레타노마이세스 쿠스테르시이, 클로스트리디움 아세토부틸리쿰, 클로스트리디움 바이예링키, 클로스트리디움 아우란티부틸리쿰 및 클로스트리디움 테타노모르퓸으로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정하지 않는다.The microorganism of step 3) is Saccharomyces cerevisiae, Sarcina ventriculum, Kluyveromyces pragilis, Zygomonas mobilis, Kluyveromyces maxianas IMB3, Bretanomyces custersii, Clos It is preferably, but not limited to, any one selected from the group consisting of tridium acetobutylicum, clostridium biyeringki, clostridium aurantibutylricum and clostridium tetanomorphium.

본 발명의 PDB-1 및 PDB-2, 또는 이의 배양 상층액은 다양한 다당류에 대한 분해 활성을 가지므로 이러한 분해를 통해 생성된 다당류 분해 생성물에 바이오 연료를 생산할 수 있는 미생물을 반응시켜 효과적으로 바이오에탄올을 제조할 수 있다.
PDB-1 and PDB-2, or the culture supernatant thereof of the present invention has degradation activity for various polysaccharides, so that the bioethanol is effectively reacted by reacting microorganisms capable of producing biofuels with the polysaccharide degradation products produced through such degradation. It can manufacture.

이하, 본 발명을 실시예에의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
However, the following examples are only for exemplifying the present invention, and the contents of the present invention are not limited to the following examples and experimental examples.

<< 실시예Example 1> 미생물의 분리 1> Isolation of Microorganisms

셀룰라아제(cellulase)를 생산하는 미생물을 분리하기 위해, 대한민국 거제도 남해 모래 해안에서 dilution plating 방법을 이용하여 Marine Agar 2216(MA; Difco, 미국)에서 성장하는 미생물을 분리하였다.In order to isolate cellulase-producing microorganisms, the microorganisms growing in Marine Agar 2216 (MA; Difco, USA) were isolated by dilution plating method in the sandy coast of Namhae, Korea.

분리한 미생물 중 셀룰라아제를 생산하는 미생물을 선별하기 위하여, 카르복시메칠 셀룰로오즈(carboxymethyl cellulosel; CMC)를 분해할 수 있는 미생물을 선별하였다.In order to select microorganisms producing cellulase among the isolated microorganisms, microorganisms capable of degrading carboxymethyl cellulose (CMC) were selected.

구체적으로 상기 분리한 미생물은 CMC 한천배지(1.0%의 카르복시메틸 셀룰로스(Sigma, 미국)와 MA)상으로 찍어서 도말하는 방법으로 옮겨진 후, 3일 동안 25℃에서 배양한 후, 상기 플레이트들을 0.1% 콩고 레드(congo red) 용액으로 15분 동안 염색한 후, 1M NaCl으로 세척(Beguin, 1983)한 결과, 큰 헤일로(halos)를 나타내는 CMC 분해 활성(degrading activity)을 가진 두 종류의 균주를 선별하였다.
Specifically, the isolated microorganism was transferred to a method of smearing and spreading on a CMC agar medium (1.0% of carboxymethyl cellulose (Sigma, USA) and MA), incubated at 25 ° C. for 3 days, and then the plates were 0.1% After staining with Congo red solution for 15 minutes and washing with 1M NaCl (Beguin, 1983), two strains with CMC degrading activity showing large halos were selected. .

<< 실시예Example 2> 미생물의 동정 2> Identification of microorganisms

상기 <실시예 1>에서 선별된 미생물을 분류하기 위해, Yoon et al.에 기재된 방법에 따라, 분리된 박테리아에 대해 염색체 DNA 추출 및 정제를 수행하고, 이와 함께 RNase T1 102의 변형을 RNase A와 조합하여 사용함으로써 RNA에 의한 오염을 최소화했다(Yoon et al., 1996). 상기 언급한 두 개의 유니버셜 프라이머(universal primers)를 사용하여 16S rRNA 유전자 증폭을 수행한 후(Yoon et al., 1998), Yoon et al.에 기재된 방법에 따라, 증폭된 16S rRNA 유전자의 시퀀싱과 계통발생학적 분석을 수행했다(Yoon et al., 2003). In order to classify the microorganisms selected in <Example 1>, according to the method described in Yoon et al., Chromosomal DNA extraction and purification are performed on the isolated bacteria, and the modification of RNase T1 102 is combined with RNase A. Combination use minimizes contamination by RNA (Yoon et al., 1996). 16S rRNA gene amplification using the two universal primers mentioned above (Yoon et al., 1998), followed by sequencing and lineage of the amplified 16S rRNA gene according to the method described in Yoon et al. Embryological analysis was performed (Yoon et al., 2003).

그 결과, 도 1에 나타낸 바와 같이 PDB-1 및 PDB-2의 16S rRNA에 대한 계통발생학적 분석에 따라, 이들 미생물들이 서열번호: 1 및 서열번호 2로 나타낸 바와 같이 C lytica ATCC 23178TC. fucicola NN015860T 에 일관된 클러스터를 형성하는 Cellulophaga(셀롤로파가) 속을 포함하는 클레이드(clade)의 분류에 해당함을 확인하였다. 또한, 스트레인(strain) PDB-2는 스트레인 PDB-1, C. fucicola NN015860T , 및 C. lytica ATCC 23178T, 각각에 대해 16S rRNA 유전자 상동성 99.0, 98.5, 및 97.6%를 가지며, 다만 기타 다른 Cellulophaga 속에 대해서는 92.2 내지 93.6% 값을 갖는 것을 확인한 후(도 1), Cellulophaga sp. PDB-1 및 Cellulophaga sp. PDB-2으로 명명하였으며 2011년 05월 24일에 한국생명공학연구원(KRIBB) 생물자원관리본부(KBRC) 미생물자원센터(KCTC)에 기탁하였다.(기탁번호: KCTC11940BP 및 KCTC11941BP).
As a result, according to the phylogenetic analysis of 16S rRNAs of PDB-1 and PDB-2 as shown in FIG. 1, these microorganisms were identified as C as shown in SEQ ID NO: 1 and SEQ ID NO: 2. It was confirmed that this corresponds to the classification of clade including the genus Cellulophaga ( Cellulopaga ) forming coherent clusters on lytica ATCC 23178 T and C. fucicola NN015860 T. In addition, strain PDB-2 is strain PDB-1, C. fucicola NN015860 T , And C. lytica ATCC 23178 T , having 16S rRNA gene homology 99.0, 98.5, and 97.6% for each, except for 92.2 to 93.6% for other Cellulophaga genera (FIG. 1), Cellulophaga sp . PDB-1 and Cellulophaga sp. It was named PDB-2 and deposited on May 24, 2011 to the Korea Biotechnology Research Institute (KRIBB) Biological Resources Management Center (KBRC) Microbial Resource Center (KCTC) (Accession No .: KCTC11940BP and KCTC11941BP).

<< 실시예Example 3> 미생물의  3> microbial 셀롤로스Cellulose ( ( cellulosecellulose ) 분해 활성 확인) Decomposition activity confirmation

상기 <실시예 2>에 선별한 미생물의 셀롤로스 분해활성을 확인하기 위하여, 0.2% CMC의 MA 배지 내에서 30℃에서 이틀간 배양된 PDB-1 및 PDB-2의 세포외 단백질에 대해 4℃에서 염석(salting out)을 수행하였다. 대부분의 활성 셀룰라아제 분획물은 포화 황산 암모늄 50 내지 70% 범위 사이에서 침전되었고, 자이모그래피(zymography technique) 용법을 이용하여 탈염 분획물을 분석하였다. In order to confirm the cellulolytic activity of the microorganisms selected in Example 2, the extracellular proteins of PDB-1 and PDB-2 cultured at 30 ° C. in MA medium of 0.2% CMC for 2 days at 4 ° C. Salting out was performed. Most active cellulase fractions precipitated between 50 and 70% saturated ammonium sulfate, and the desalted fractions were analyzed using a zymography technique.

구체적으로, 0.1 % CMC의 SDS-PAGE 젤을 제조한 후, 70 V 전기영동 한 다음, 리폴딩(refolding) 버퍼(20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 및 1% Triton-X100)에서 실온에서 1 시간 동안 인큐베이션하고, 새로운 리폴딩 버퍼로 바꿨다. 1 시간 동안 추가로 인큐베이션을 한 뒤, 상기 젤을 150 mM NaCl으로 20 mM Tris-HCl, pH 8.0에서 하룻밤 동안 유지시킨 다음, 0.1% 콩고 레드(Congo Red)로 염색했다. Specifically, SDS-PAGE gel of 0.1% CMC was prepared, followed by 70 V electrophoresis, and then refolding buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 1% Triton-X100). Incubated at room temperature for 1 hour and replaced with fresh refolding buffer. After an additional incubation for 1 hour, the gel was kept overnight in 20 mM Tris-HCl, pH 8.0 with 150 mM NaCl, and then stained with 0.1% Congo Red.

그 결과, 도 2에 나타낸 바와 같이 CMC로 SDS-PAGE에 대한 자이모그램 분석을 수행한 결과, 각 세균의 다양한 분자량 및 유사한 소거 밴드(clear band)를 지니는 셀룰로스 분해 효소를 가지는 것을 확인하였고, 또한, 이들은 유사한 셀룰로스 분해 시스템을 가지고 있는 것을 확인하였다(도 2).
As a result, as shown in FIG. 2, a Zymogram analysis of SDS-PAGE was performed with CMC, and it was confirmed that each bacterium had cellulose degrading enzymes having various molecular weights and similar clear bands. , They confirmed that they had a similar cellulose decomposition system (FIG. 2).

<< 실시예Example 4> 미생물 유래 단백질의 활성 분석 4> Activity analysis of microorganism-derived protein

<4-1><4-1> N-말단 시퀀싱(N-terminal sequencing ( sequencingsequencing ))

PDB-1의 35 kDa 단백질의 N-말단 시퀀싱을 수행했다. 70% 포화 황산암모늄(ammonium sulfate) 내의 PDB-1의 세포외 단백질의 침전 분획물을 SDS-PAGE 분석한 후, 이를 폴리비닐리덴 디플루오라이드 멤브레인(polyvinylidene difluoride membrane; PVDF) 상으로 전자이동(electrotransferred)시킨 후, 35 kDa 단백질의 N-말단 아미노산 시퀀싱을 Automatic Protein Sequencer(Applied Biosystems)를 이용하여 수행하였다. N-terminal sequencing of 35 kDa protein of PDB-1 was performed. SDS-PAGE analysis of precipitated fractions of extracellular proteins of PDB-1 in 70% saturated ammonium sulfate followed by electrotransferred onto polyvinylidene difluoride membrane (PVDF). After the N-terminal amino acid sequencing of the 35 kDa protein was performed using an Automatic Protein Sequencer (Applied Biosystems).

그 결과, 상기 단백질의 N-말단 시퀀스는 NTAQTVV임을 확인하였다. 최근 들어, C. algicola DSM 14237의 게놈 시퀀스가 보고되었고, 네 개의 ORF에 대해 셀룰라아제(GenBank 등록번호. ADV51156, ADV50035, 및 ADV 47383) 및 글루코시드 가수분해 계열 5(GenBank 등록번호. ADV50845)로 주석이 달린 바가 있다. 그러나 35 kDa 단백질의 N-말단 시퀀스는 기타 공지된 셀룰로스 분해 효소는 물론, C. algicola DSM 14237 셀룰라아제와 매칭되지는 않았다. 따라서, Cellulophaga 속 PDB-1은 신규한 셀룰로스 분해 시스템을 보유하고 있는 것을 확인하였다.
As a result, it was confirmed that the N-terminal sequence of the protein is NTAQTVV. Recently, the genome sequence of C. algicola DSM 14237 has been reported and cellulase (GenBank Accession No. ADV51156, ADV50035, and ADV 47383) and Glucoside Hydrolysis Series 5 (GenBank Accession No. 4) for four ORFs. ADV50845). However, the N-terminal sequence of the 35 kDa protein was not matched with C. algicola DSM 14237 cellulase as well as other known cellulolytic enzymes. Therefore, it was confirmed that PDB-1 of the genus Cellulophaga possesses a novel cellulose degradation system.

<4-2> <4-2> PDBPDB -1의 분비 단백질의 분해 활성 분석Degradation Activity Analysis of Secretory Proteins of -1

PDB-1의 분비 단백질의 셀룰로스 분해 활성을 알아보기 위해, 450 μL의 카르복시메틸셀룰로스(CMC), 20 μm의 마이크로크리스탈린 셀룰로스 및 아비셀 PH-101, 셀룰로스 섬유를 이용하여 0.5% 농도로 pH 5.0의 25 mM citrate 완충용액과 pH 7.0의 10 mM phosphate 완충용액에 현탁하였다. 각 반응용액에 50 μg의 PDB-1의 분비 단백질을 첨가한 후, 30℃에서 1시간 동안 반응을 진행하였다. 100℃로 가열하여 효소를 실활 한 후, 방출된 환원당을 파라-하이드록시벤조산 히드라자이드 (p-hydroxybenzoic acid hydrazide; pHBH) 분석법을 이용하여 415 nm에서 흡광도변화를 통해 측정하였다 (Moretti and Thorson, 2008).To determine the cellulolytic activity of the secreted protein of PDB-1, pH 5.0 at 0.5% concentration using 450 μL of carboxymethylcellulose (CMC), 20 μm of microcrystalline cellulose and Avicel PH-101, cellulose fiber. It was suspended in 25 mM citrate buffer and 10 mM phosphate buffer at pH 7.0. 50 μg of PDB-1 secretion protein was added to each reaction solution, followed by reaction at 30 ° C. for 1 hour. After heating to 100 ℃ to inactivate the enzyme, the released reducing sugar para-hydroxybenzoic acid hydrazine Zaid (p -hydroxybenzoic acid hydrazide; pHBH) using the assay was measured by the change in absorbance at 415 nm (Moretti and Thorson, 2008 ).

그 결과, 표 1에 나타낸 바와 같이, PDB-1의 분비 단백질은 CMC를 잘 가수분해하는 반면, 결정체 기질(substrate)는 효과적으로 가수분해할 수 없었다. 이를 통해 이들 효소가 셀룰로스의 비결정질 부위의 β-1,4 결합에 더욱 활성을 보임을 확인하였다. 또한, pH 5.0 및 pH 7.0에서의 특정 활성도는 유사함을 확인하였다. 따라서, PDB-1의 셀룰로스 분해 시스템은 산성 및 중성 pH에서 활동적이다. 해양환경은 일반적으로 약 알칼리성 조건이기 때문에 해양 환경에서 얻어진 대부분의 특징화된 셀룰라아제가 중성 및 약 알칼리 조건에서 최대 활성을 보이고, 산성 조건에서는 활성이 감소된다는 사실을 고려할 때, PDB-1의 셀룰로스 시스템이 pH 5.0 하에서 CMC를 잘 가수분해할 수 있다는 것은 흥미로운 사실이다. 또한, 총 세포외 단백질과 50 ~ 70%의 포화 황산암모늄에서의 침전 단백질이 유사한 특정 활성을 보였다. 따라서, PDB-1의 셀룰로스 분해 시스템은 산성 조건하에서도 활성을 유지했다. 이러한 특성은 산성 조건 하에서 전 처리된 셀룰로스 재료의 분해와 같은 생명공학적 적용에서 유용하게 이용될 수 있음을 확인하였다.
As a result, as shown in Table 1, the secreted protein of PDB-1 hydrolyzed the CMC well, while the crystalline substrate could not be effectively hydrolyzed. This confirmed that these enzymes are more active in β-1,4 binding of the amorphous region of cellulose. It was also confirmed that the specific activities at pH 5.0 and pH 7.0 were similar. Thus, the cellulose degradation system of PDB-1 is active at acidic and neutral pH. Since the marine environment is generally weakly alkaline, most of the characterized cellulase obtained in the marine environment exhibits maximum activity in neutral and weakly alkaline conditions, and in acidic conditions, the cellulose system of PDB-1 It is interesting that the CMC can be hydrolyzed well at this pH 5.0. In addition, total extracellular protein and precipitated protein in 50-70% saturated ammonium sulfate showed similar specific activity. Thus, the cellulose degradation system of PDB-1 remained active even under acidic conditions. These properties have been found to be useful in biotechnological applications such as degradation of pre-treated cellulose materials under acidic conditions.

Figure pat00001
Figure pat00001

<< 실시예Example 5>  5> 셀룰로파가Cellulopaga PDBPDB -1의 다당류 분해 활성 확인-1 Polysaccharide Degradation Activity

셀룰로파가 PDB-1의 다당류 분해 능력을 측정하기 위하여 아래의 배지를 이용하여 셀룰로파가 PDB-1을 배양하였다. 각 배지는 0.2%의 탄소원에 인공 해수(Artificial sea water: NaCl 23.6 g/L, KCl 0.64 g/L, MgCl26H2O 4.53 g/L, MgSO4H2O 5.94 g/L, CaCl2H2O 1.3g/L)에 효모 추출물(Yeast Extract) 1.0 g/L, 염화 암모늄(NH4Cl) 0.5 g/L, 트리즈마 염(Trizma Base) 6.05 g/L을 첨가 한 후, 염산을 이용하여 pH 7.4로 적정하였다. 사용된 단당류는 포도당(glucose), 갈락토스(galactose), N-아세틸글루코사(N-acetylglucosamine, NAG), 자일로스(xylose)를 이용하였으며, 다당류로는 저온 용해성 아가로스(Agarose, Lonza), 알긴산(Alginate, Wako), 카라기난(Carrageenan, Sigma), 카르복시메틸셀룰로스(Carboxymethylcellulose, Sigma), 콜로이드 키틴(Colloidal chitin, Sigma), 라미나린(Laminarin, Sigma), 펙틴(Pectin from apple peel, Sigma), 풀루란(Pullulan, Sigma), 전분(Soluble starch, Difco), 자일란(Birchwood xylan, Sigma)을 이용하였으며 단당류 및 다당류가 첨가되지 않은 배지를 포함하여 배양하였다. 콜로이드 키틴은 농축 염산을 이용하여 종래의 방법으로 제조하였다. 종균 배양의 탄소원으로서는 0.1 %의 Bacto-Trypton(Difco)를 이용하였다.In order to measure the polysaccharide degradation ability of the cellulopa PDB-1, the cellulopa PDB-1 was cultured using the following medium. Each medium contains 0.2% carbon source of artificial sea water (Artificial sea water: NaCl 23.6 g / L, KCl 0.64 g / L, MgCl 2 6H 2 O 4.53 g / L, MgSO 4 H 2 O 5.94 g / L, CaCl 2 H 2 g 1.3 g / L), 1.0 g / L yeast extract, 0.5 g / L ammonium chloride (NH 4 Cl), 6.05 g / L trisma base, and then using hydrochloric acid Titrated to pH 7.4. The monosaccharides used were glucose, galactose, N-acetylglucosamine (NAG) and xylose. The polysaccharides were low temperature soluble agarose (Agarose, Lonza) and alginic acid. (Alginate, Wako), Carrageenan (Sigma), Carboxymethylcellulose (Sigma), Colloidal chitin (Sigma), Laminarin (Sigma), Pectin from apple peel (Sigma), Pulu Eggs (Pullulan, Sigma), starch (Soluble starch, Difco), xylan (Birchwood xylan, Sigma) were used and cultured with a medium containing no added monosaccharides and polysaccharides. Colloidal chitin was prepared by conventional methods using concentrated hydrochloric acid. As a carbon source for spawn culture, 0.1% of Bacto-Trypton (Difco) was used.

구체적으로, 균주를 3 mL 종균 배양(seed culture)한 후, 30 mL 종균 배양한 다음, 단당류 및 다당류를 포함하는 50 mL 배지를 main culture에서 30℃에서 배양하였다. 그런 다음, 원심분리를 통해 세포를 제거한 후, 배지 용액을 동결하여 보관하였다. 세포 밖으로 분비된 단백질의 양을 Lowey 방법으로 측정하였다. 분비 단백질의 활성 측정을 위해 반응에 이용된 다당류는 배지에 탄소원으로 이용된 다당류와 동일하였으며 저장액의 농도는 0.5%였다. 다당류 저장액과 배지를 혼합한 후, 30℃에서 24시간 동안 400 rpm으로 반응시켰다. 각 반응액을 1/10으로 희석한 후, 0.5M 염산 녹인 2 %(w/v) pHBH 와 2M NaOH의 1:1 혼합액 120 μL에 희석액 40 μL 섞은 후, 100℃에서 7분간 가열하였다. 그런 다음 마이크로플레이트(microplate) 분석을 이용하여 415 nm 흡광도를 측정하였다(Moretti and Thorson, 2008). Specifically, after 3 mL seed culture of the strain (seed culture), 30 mL seed culture and then 50 mL medium containing monosaccharides and polysaccharides were incubated at 30 ℃ in the main culture. Then, after removing the cells by centrifugation, the medium solution was stored frozen. The amount of protein secreted out of the cells was measured by the Lowey method. The polysaccharide used in the reaction for measuring the activity of the secreted protein was the same as the polysaccharide used as a carbon source in the medium and the concentration of the stock solution was 0.5%. After mixing the polysaccharide stock solution and the medium, it was reacted at 400 rpm for 24 hours at 30 ℃. After diluting each reaction solution by 1/10, 40 μL of the diluted solution was mixed with 120 μL of a 1: 1 mixture of 2% (w / v) pHBH dissolved in 0.5 M hydrochloric acid and 2M NaOH, and then heated at 100 ° C. for 7 minutes. The absorbance at 415 nm was then measured using microplate analysis (Moretti and Thorson, 2008).

그 결과, 도 3 내지 도 5에 나타낸 바와 같이, 셀룰로파가 PDB-1은 갈락탄, 글루칸, 자일란 및 다른 다당류에 대한 유의적인 다당류 분해 활성을 가지는 것을 확인하였다(도 3 내지 도 5).
As a result, as shown in Figures 3 to 5, it was confirmed that the cellulopa PDB-1 has a significant polysaccharide decomposition activity against galactan, glucan, xylan and other polysaccharides (Figs. 3 to 5).

<< 실시예Example 6>  6> 셀룰로파가Cellulopaga PDBPDB -2의 다당류 분해 활성 확인-2 Polysaccharide Degradation Activity

셀룰로파가 PDB-2의 다당류 분해 능력을 측정하기 위하여 아래의 배지를 이용하여 셀룰로파가 PDB-2를 배양하였다. 각 배지는 0.2% 의 탄소원에 인공 해수(Artificial sea water: NaCl 23.6 g/L, KCl 0.64 g/L, MgCl26H2O 4.53 g/L, MgSO4H2O 5.94 g/L, CaCl2H2O 1.3g/L)에 효모 추출물(Yeast Extract) 1.0 g/L, 염화 암모늄(NH4Cl) 0.5 g/L, 트리즈마 염(Trizma Base) 6.05 g/L을 첨가 한 후, 염산을 이용하여 pH 7.4로 적정하였다. 사용된 단당류는 포도당(glucose), 갈락토스(galactose), N-아세틸글루코사민(N-acetylglucosamine, NAG), 자일로스(xylose)를 이용하였으며, 다당류로는 저온 용해성 아가로스(Agarose, Lonza), 알긴산(Alginate, Wako), 카라기난(Carrageenan, Sigma), 카르복시메틸셀룰로스(Carboxymethylcellulose, Sigma), 콜로이드 키틴(Colloidal chitin, Sigma), 라미나린(Laminarin, Sigma), 펙틴(Pectin from apple peel, Sigma), 풀루란(Pullulan, Sigma), 전분(Soluble starch, Difco), 자일란(Birchwood xylan, Sigma)을 이용하였으며 단당류 및 다당류가 첨가되지 않은 배지를 포함하여 배양하였다. 콜로이드 키틴은 농축 염산을 이용하여 종래의 방법으로 제조하였다. 종균 배양의 탄소원으로서는 0.1 %의 Bacto-Trypton(Difco)를 이용하였다.Cellulopagar PDB-2 was incubated using the following media to measure the ability of cellulolytic PDB-2 to degrade polysaccharides. Each medium contains 0.2% carbon source in artificial sea water (Artificial sea water: NaCl 23.6 g / L, KCl 0.64 g / L, MgCl 2 6H 2 O 4.53 g / L, MgSO 4 H 2 O 5.94 g / L, CaCl 2 H 2 g 1.3 g / L), 1.0 g / L yeast extract, 0.5 g / L ammonium chloride (NH 4 Cl), 6.05 g / L trisma base, and then using hydrochloric acid Titrated to pH 7.4. The monosaccharides used were glucose, galactose, N-acetylglucosamine (NAG) and xylose, and the polysaccharides were low temperature soluble agarose (Agarose, Lonza), alginic acid ( Alginate, Wako, Carrageenan (Sigma), Carboxymethylcellulose (Sigma), Colloidal chitin (Sigma), Laminarin (Sigma), Pectin from apple peel (Sigma), Pullulan (Pullulan, Sigma), starch (Soluble starch, Difco), xylan (Birchwood xylan, Sigma) were used and cultured with a medium containing no added monosaccharides and polysaccharides. Colloidal chitin was prepared by conventional methods using concentrated hydrochloric acid. As a carbon source for spawn culture, 0.1% of Bacto-Trypton (Difco) was used.

구체적으로, 균주를 3 mL 종균 배양(seed culture)한 후, 30 mL 종균 배양한 다음, 단당류 및 다당류를 포함하는 50 mL 배지를 main culture에서 30℃에서 배양하였다. 그런 다음, 원심분리를 통해 세포를 제거한 후, 배지 용액을 동결하여 보관하였다. 세포 밖으로 분비된 단백질의 양을 Lowey 방법으로 측정하였다. 분비 단백질의 활성 측정을 위해 반응에 이용된 다당류는 배지에 탄소원으로 이용된 다당류와 동일하였으며 저장액의 농도는 0.5% 였다. 다당류 저장액과 배지를 혼합한 후, 30℃에서 24시간 동안 400 rpm으로 반응시켰다. 각 반응액을 1/10으로 희석한 후, 0.5M 염산 녹인 2 % (w/v) pHBH 와 2M NaOH의 1:1 혼합액 120 μL에 희석액 40 μL 섞은 후, 100℃에서 7분간 가열하였다. 그런 다음 마이크로플레이트 분석을 이용하여 415 nm 흡광도를 측정하였다(Moretti and Thorson, 2008).Specifically, after 3 mL seed culture of the strain (seed culture), 30 mL seed culture and then 50 mL medium containing monosaccharides and polysaccharides were incubated at 30 ℃ in the main culture. Then, after removing the cells by centrifugation, the medium solution was stored frozen. The amount of protein secreted out of the cells was measured by the Lowey method. The polysaccharide used in the reaction for measuring the activity of secreted protein was the same as the polysaccharide used as a carbon source in the medium and the concentration of the stock solution was 0.5%. After mixing the polysaccharide stock solution and the medium, it was reacted at 400 rpm for 24 hours at 30 ℃. After diluting each reaction solution by 1/10, 40 μL of the diluted solution was mixed with 120 μL of a 1: 1 mixture of 2% (w / v) pHBH dissolved in 0.5 M hydrochloric acid and 2M NaOH, and then heated at 100 ° C. for 7 minutes. Then 415 nm absorbance was measured using microplate analysis (Moretti and Thorson, 2008).

그 결과, 도 6 내지 도 8에 나타낸 바와 같이, 셀룰로파가 PDB-2는 갈락탄, 글루칸, 자일란 및 다른 다당류에 대한 유의적인 다당류 분해 활성을 가지는 것을 확인하였다(도 6 내지 도 8).
As a result, as shown in Figures 6 to 8, it was confirmed that the cellulopa PDB-2 has a significant polysaccharide decomposition activity against galactan, glucan, xylan and other polysaccharides (Figs. 6 to 8).

한국생명공학연구원 생물자원관리본부 미생물자원센터(KCTC)Korea Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC11940BPKCTC11940BP 2011052420110524 한국생명공학연구원 생물자원관리본부 미생물자원센터(KCTC)Korea Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC11941BPKCTC11941BP 2011052420110524

<110> ONCOTHERAPY SCIENCE, INC. <120> RAB6KIFL/KIF20A EPITOPE PEPTIDE AND VACCINES CONTAINING THE SAME <130> 11fpi-04-06 <150> US61/197,106 <151> 2008-10-22 <160> 12 <170> PatentIn version 3.5 <210> 1 <211> 3471 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (497)..(3166) <400> 1 tttttcccct taagacaaag caagcaccct aaaccagtta ccctgtgcac tcctgttaag 60 attgttgcta aggaaggaca ggagttggct gctgaagcct caagatttcc tttaggctct 120 taggtaagaa atgtctaagg ttcaaggaaa aaggttaagt tggaagaatc ccaggcaaaa 180 taagtgcgaa tccacgacag ttggtaaccc ggacccacat tagaactcag aggtcaagca 240 gaagcgaacg actggaattc cagtcaggcc cgcccccttt ccttacgcgg attggtagct 300 gcaggcttcc ctatctgatt ggccgaacga acgcagcgcg taatttaaaa tattgtatct 360 gtaacaaagc tgcacctcgt gggcggagtt gtgctctgcg gctgcgaaag tccagcttcg 420 gcgactaggt gtgagtaagc cagtatccca ggaggagcaa gtggcacgtc ttcggaccta 480 ggctgcccct gccgtc atg tcg caa ggg atc ctt tct ccg cca gcg ggc 529 Met Ser Gln Gly Ile Leu Ser Pro Pro Ala Gly 1 5 10 ttg ctg tcc gat gac gat gtc gta gtt tct ccc atg ttt gag tcc aca 577 Leu Leu Ser Asp Asp Asp Val Val Val Ser Pro Met Phe Glu Ser Thr 15 20 25 gct gca gat ttg ggg tct gtg gta cgc aag aac ctg cta tca gac tgc 625 Ala Ala Asp Leu Gly Ser Val Val Arg Lys Asn Leu Leu Ser Asp Cys 30 35 40 tct gtc gtc tct acc tcc cta gag gac aag cag cag gtt cca tct gag 673 Ser Val Val Ser Thr Ser Leu Glu Asp Lys Gln Gln Val Pro Ser Glu 45 50 55 gac agt atg gag aag gtg aaa gta tac ttg agg gtt agg ccc ttg tta 721 Asp Ser Met Glu Lys Val Lys Val Tyr Leu Arg Val Arg Pro Leu Leu 60 65 70 75 cct tca gag ttg gaa cga cag gaa gat cag ggt tgt gtc cgt att gag 769 Pro Ser Glu Leu Glu Arg Gln Glu Asp Gln Gly Cys Val Arg Ile Glu 80 85 90 aat gtg gag acc ctt gtt cta caa gca ccc aag gac tct ttt gcc ctg 817 Asn Val Glu Thr Leu Val Leu Gln Ala Pro Lys Asp Ser Phe Ala Leu 95 100 105 aag agc aat gaa cgg gga att ggc caa gcc aca cac agg ttc acc ttt 865 Lys Ser Asn Glu Arg Gly Ile Gly Gln Ala Thr His Arg Phe Thr Phe 110 115 120 tcc cag atc ttt ggg cca gaa gtg gga cag gca tcc ttc ttc aac cta 913 Ser Gln Ile Phe Gly Pro Glu Val Gly Gln Ala Ser Phe Phe Asn Leu 125 130 135 act gtg aag gag atg gta aag gat gta ctc aaa ggg cag aac tgg ctc 961 Thr Val Lys Glu Met Val Lys Asp Val Leu Lys Gly Gln Asn Trp Leu 140 145 150 155 atc tat aca tat gga gtc act aac tca ggg aaa acc cac acg att caa 1009 Ile Tyr Thr Tyr Gly Val Thr Asn Ser Gly Lys Thr His Thr Ile Gln 160 165 170 ggt acc atc aag gat gga ggg att ctc ccc cgg tcc ctg gcg ctg atc 1057 Gly Thr Ile Lys Asp Gly Gly Ile Leu Pro Arg Ser Leu Ala Leu Ile 175 180 185 ttc aat agc ctc caa ggc caa ctt cat cca aca cct gat ctg aag ccc 1105 Phe Asn Ser Leu Gln Gly Gln Leu His Pro Thr Pro Asp Leu Lys Pro 190 195 200 ttg ctc tcc aat gag gta atc tgg cta gac agc aag cag atc cga cag 1153 Leu Leu Ser Asn Glu Val Ile Trp Leu Asp Ser Lys Gln Ile Arg Gln 205 210 215 gag gaa atg aag aag ctg tcc ctg cta aat gga ggc ctc caa gag gag 1201 Glu Glu Met Lys Lys Leu Ser Leu Leu Asn Gly Gly Leu Gln Glu Glu 220 225 230 235 gag ctg tcc act tcc ttg aag agg agt gtc tac atc gaa agt cgg ata 1249 Glu Leu Ser Thr Ser Leu Lys Arg Ser Val Tyr Ile Glu Ser Arg Ile 240 245 250 ggt acc agc acc agc ttc gac agt ggc att gct ggg ctc tct tct atc 1297 Gly Thr Ser Thr Ser Phe Asp Ser Gly Ile Ala Gly Leu Ser Ser Ile 255 260 265 agt cag tgt acc agc agt agc cag ctg gat gaa aca agt cat cga tgg 1345 Ser Gln Cys Thr Ser Ser Ser Gln Leu Asp Glu Thr Ser His Arg Trp 270 275 280 gca cag cca gac act gcc cca cta cct gtc ccg gca aac att cgc ttc 1393 Ala Gln Pro Asp Thr Ala Pro Leu Pro Val Pro Ala Asn Ile Arg Phe 285 290 295 tcc atc tgg atc tca ttc ttt gag atc tac aac gaa ctg ctt tat gac 1441 Ser Ile Trp Ile Ser Phe Phe Glu Ile Tyr Asn Glu Leu Leu Tyr Asp 300 305 310 315 cta tta gaa ccg cct agc caa cag cgc aag agg cag act ttg cgg cta 1489 Leu Leu Glu Pro Pro Ser Gln Gln Arg Lys Arg Gln Thr Leu Arg Leu 320 325 330 tgc gag gat caa aat ggc aat ccc tat gtg aaa gat ctc aac tgg att 1537 Cys Glu Asp Gln Asn Gly Asn Pro Tyr Val Lys Asp Leu Asn Trp Ile 335 340 345 cat gtg caa gat gct gag gag gcc tgg aag ctc cta aaa gtg ggt cgt 1585 His Val Gln Asp Ala Glu Glu Ala Trp Lys Leu Leu Lys Val Gly Arg 350 355 360 aag aac cag agc ttt gcc agc acc cac ctc aac cag aac tcc agc cgc 1633 Lys Asn Gln Ser Phe Ala Ser Thr His Leu Asn Gln Asn Ser Ser Arg 365 370 375 agt cac agc atc ttc tca atc agg atc cta cac ctt cag ggg gaa gga 1681 Ser His Ser Ile Phe Ser Ile Arg Ile Leu His Leu Gln Gly Glu Gly 380 385 390 395 gat ata gtc ccc aag atc agc gag ctg tca ctc tgt gat ctg gct ggc 1729 Asp Ile Val Pro Lys Ile Ser Glu Leu Ser Leu Cys Asp Leu Ala Gly 400 405 410 tca gag cgc tgc aaa gat cag aag agt ggt gaa cgg ttg aag gaa gca 1777 Ser Glu Arg Cys Lys Asp Gln Lys Ser Gly Glu Arg Leu Lys Glu Ala 415 420 425 gga aac att aac acc tct cta cac acc ctg ggc cgc tgt att gct gcc 1825 Gly Asn Ile Asn Thr Ser Leu His Thr Leu Gly Arg Cys Ile Ala Ala 430 435 440 ctt cgt caa aac cag cag aac cgg tca aag cag aac ctg gtt ccc ttc 1873 Leu Arg Gln Asn Gln Gln Asn Arg Ser Lys Gln Asn Leu Val Pro Phe 445 450 455 cgt gac agc aag ttg act cga gtg ttc caa ggt ttc ttc aca ggc cga 1921 Arg Asp Ser Lys Leu Thr Arg Val Phe Gln Gly Phe Phe Thr Gly Arg 460 465 470 475 ggc cgt tcc tgc atg att gtc aat gtg aat ccc tgt gca tct acc tat 1969 Gly Arg Ser Cys Met Ile Val Asn Val Asn Pro Cys Ala Ser Thr Tyr 480 485 490 gat gaa act ctt cat gtg gcc aag ttc tca gcc att gct agc cag ctt 2017 Asp Glu Thr Leu His Val Ala Lys Phe Ser Ala Ile Ala Ser Gln Leu 495 500 505 gtg cat gcc cca cct atg caa ctg gga ttc cca tcc ctg cac tcg ttc 2065 Val His Ala Pro Pro Met Gln Leu Gly Phe Pro Ser Leu His Ser Phe 510 515 520 atc aag gaa cat agt ctt cag gta tcc ccc agc tta gag aaa ggg gct 2113 Ile Lys Glu His Ser Leu Gln Val Ser Pro Ser Leu Glu Lys Gly Ala 525 530 535 aag gca gac aca ggc ctt gat gat gat att gaa aat gaa gct gac atc 2161 Lys Ala Asp Thr Gly Leu Asp Asp Asp Ile Glu Asn Glu Ala Asp Ile 540 545 550 555 tcc atg tat ggc aaa gag gag ctc cta caa gtt gtg gaa gcc atg aag 2209 Ser Met Tyr Gly Lys Glu Glu Leu Leu Gln Val Val Glu Ala Met Lys 560 565 570 aca ctg ctt ttg aag gaa cga cag gaa aag cta cag ctg gag atg cat 2257 Thr Leu Leu Leu Lys Glu Arg Gln Glu Lys Leu Gln Leu Glu Met His 575 580 585 ctc cga gat gaa att tgc aat gag atg gta gaa cag atg caa cag cgg 2305 Leu Arg Asp Glu Ile Cys Asn Glu Met Val Glu Gln Met Gln Gln Arg 590 595 600 gaa cag tgg tgc agt gaa cat ttg gac acc caa aag gaa cta ttg gag 2353 Glu Gln Trp Cys Ser Glu His Leu Asp Thr Gln Lys Glu Leu Leu Glu 605 610 615 gaa atg tat gaa gaa aaa cta aat atc ctc aag gag tca ctg aca agt 2401 Glu Met Tyr Glu Glu Lys Leu Asn Ile Leu Lys Glu Ser Leu Thr Ser 620 625 630 635 ttt tac caa gaa gag att cag gag cgg gat gaa aag att gaa gag cta 2449 Phe Tyr Gln Glu Glu Ile Gln Glu Arg Asp Glu Lys Ile Glu Glu Leu 640 645 650 gaa gct ctc ttg cag gaa gcc aga caa cag tca gtg gcc cat cag caa 2497 Glu Ala Leu Leu Gln Glu Ala Arg Gln Gln Ser Val Ala His Gln Gln 655 660 665 tca ggg tct gaa ttg gcc cta cgg cgg tca caa agg ttg gca gct tct 2545 Ser Gly Ser Glu Leu Ala Leu Arg Arg Ser Gln Arg Leu Ala Ala Ser 670 675 680 gcc tcc acc cag cag ctt cag gag gtt aaa gct aaa tta cag cag tgc 2593 Ala Ser Thr Gln Gln Leu Gln Glu Val Lys Ala Lys Leu Gln Gln Cys 685 690 695 aaa gca gag cta aac tct acc act gaa gag ttg cat aag tat cag aaa 2641 Lys Ala Glu Leu Asn Ser Thr Thr Glu Glu Leu His Lys Tyr Gln Lys 700 705 710 715 atg tta gaa cca cca ccc tca gcc aag ccc ttc acc att gat gtg gac 2689 Met Leu Glu Pro Pro Pro Ser Ala Lys Pro Phe Thr Ile Asp Val Asp 720 725 730 aag aag tta gaa gag ggc cag aag aat ata agg ctg ttg cgg aca gag 2737 Lys Lys Leu Glu Glu Gly Gln Lys Asn Ile Arg Leu Leu Arg Thr Glu 735 740 745 ctt cag aaa ctt ggt gag tct ctc caa tca gca gag aga gct tgt tgc 2785 Leu Gln Lys Leu Gly Glu Ser Leu Gln Ser Ala Glu Arg Ala Cys Cys 750 755 760 cac agc act ggg gca gga aaa ctt cgt caa gcc ttg acc act tgt gat 2833 His Ser Thr Gly Ala Gly Lys Leu Arg Gln Ala Leu Thr Thr Cys Asp 765 770 775 gac atc tta atc aaa cag gac cag act ctg gct gaa ctg cag aac aac 2881 Asp Ile Leu Ile Lys Gln Asp Gln Thr Leu Ala Glu Leu Gln Asn Asn 780 785 790 795 atg gtg cta gtg aaa ctg gac ctt cgg aag aag gca gca tgt att gct 2929 Met Val Leu Val Lys Leu Asp Leu Arg Lys Lys Ala Ala Cys Ile Ala 800 805 810 gag cag tat cat act gtg ttg aaa ctc caa ggc cag gtt tct gcc aaa 2977 Glu Gln Tyr His Thr Val Leu Lys Leu Gln Gly Gln Val Ser Ala Lys 815 820 825 aag cgc ctt ggt acc aac cag gaa aat cag caa cca aac caa caa cca 3025 Lys Arg Leu Gly Thr Asn Gln Glu Asn Gln Gln Pro Asn Gln Gln Pro 830 835 840 cca ggg aag aaa cca ttc ctt cga aat tta ctt ccc cga aca cca acc 3073 Pro Gly Lys Lys Pro Phe Leu Arg Asn Leu Leu Pro Arg Thr Pro Thr 845 850 855 tgc caa agc tca aca gac tgc agc cct tat gcc cgg atc cta cgc tca 3121 Cys Gln Ser Ser Thr Asp Cys Ser Pro Tyr Ala Arg Ile Leu Arg Ser 860 865 870 875 cgg cgt tcc cct tta ctc aaa tct ggg cct ttt ggc aaa aag tac taag 3170 Arg Arg Ser Pro Leu Leu Lys Ser Gly Pro Phe Gly Lys Lys Tyr 880 885 890 gctgtgggga aagagaagag cagtcatggc cctgaggtgg gtcagctact ctcctgaaga 3230 aataggtctc ttttatgctt taccatatat caggaattat atccaggatg caatactcag 3290 acactagctt ttttctcact tttgtattat aaccacctat gtaatctcat gttgttgttt 3350 ttttttattt acttatatga tttctatgca cacaaaaaca gttatattaa agatattatt 3410 gttcacattt tttattgaat tccaaatgta gcaaaatcat taaaacaaat tataaaaggg 3470 a 3471 <210> 2 <211> 890 <212> PRT <213> Homo sapiens <400> 2 Met Ser Gln Gly Ile Leu Ser Pro Pro Ala Gly Leu Leu Ser Asp Asp 1 5 10 15 Asp Val Val Val Ser Pro Met Phe Glu Ser Thr Ala Ala Asp Leu Gly 20 25 30 Ser Val Val Arg Lys Asn Leu Leu Ser Asp Cys Ser Val Val Ser Thr 35 40 45 Ser Leu Glu Asp Lys Gln Gln Val Pro Ser Glu Asp Ser Met Glu Lys 50 55 60 Val Lys Val Tyr Leu Arg Val Arg Pro Leu Leu Pro Ser Glu Leu Glu 65 70 75 80 Arg Gln Glu Asp Gln Gly Cys Val Arg Ile Glu Asn Val Glu Thr Leu 85 90 95 Val Leu Gln Ala Pro Lys Asp Ser Phe Ala Leu Lys Ser Asn Glu Arg 100 105 110 Gly Ile Gly Gln Ala Thr His Arg Phe Thr Phe Ser Gln Ile Phe Gly 115 120 125 Pro Glu Val Gly Gln Ala Ser Phe Phe Asn Leu Thr Val Lys Glu Met 130 135 140 Val Lys Asp Val Leu Lys Gly Gln Asn Trp Leu Ile Tyr Thr Tyr Gly 145 150 155 160 Val Thr Asn Ser Gly Lys Thr His Thr Ile Gln Gly Thr Ile Lys Asp 165 170 175 Gly Gly Ile Leu Pro Arg Ser Leu Ala Leu Ile Phe Asn Ser Leu Gln 180 185 190 Gly Gln Leu His Pro Thr Pro Asp Leu Lys Pro Leu Leu Ser Asn Glu 195 200 205 Val Ile Trp Leu Asp Ser Lys Gln Ile Arg Gln Glu Glu Met Lys Lys 210 215 220 Leu Ser Leu Leu Asn Gly Gly Leu Gln Glu Glu Glu Leu Ser Thr Ser 225 230 235 240 Leu Lys Arg Ser Val Tyr Ile Glu Ser Arg Ile Gly Thr Ser Thr Ser 245 250 255 Phe Asp Ser Gly Ile Ala Gly Leu Ser Ser Ile Ser Gln Cys Thr Ser 260 265 270 Ser Ser Gln Leu Asp Glu Thr Ser His Arg Trp Ala Gln Pro Asp Thr 275 280 285 Ala Pro Leu Pro Val Pro Ala Asn Ile Arg Phe Ser Ile Trp Ile Ser 290 295 300 Phe Phe Glu Ile Tyr Asn Glu Leu Leu Tyr Asp Leu Leu Glu Pro Pro 305 310 315 320 Ser Gln Gln Arg Lys Arg Gln Thr Leu Arg Leu Cys Glu Asp Gln Asn 325 330 335 Gly Asn Pro Tyr Val Lys Asp Leu Asn Trp Ile His Val Gln Asp Ala 340 345 350 Glu Glu Ala Trp Lys Leu Leu Lys Val Gly Arg Lys Asn Gln Ser Phe 355 360 365 Ala Ser Thr His Leu Asn Gln Asn Ser Ser Arg Ser His Ser Ile Phe 370 375 380 Ser Ile Arg Ile Leu His Leu Gln Gly Glu Gly Asp Ile Val Pro Lys 385 390 395 400 Ile Ser Glu Leu Ser Leu Cys Asp Leu Ala Gly Ser Glu Arg Cys Lys 405 410 415 Asp Gln Lys Ser Gly Glu Arg Leu Lys Glu Ala Gly Asn Ile Asn Thr 420 425 430 Ser Leu His Thr Leu Gly Arg Cys Ile Ala Ala Leu Arg Gln Asn Gln 435 440 445 Gln Asn Arg Ser Lys Gln Asn Leu Val Pro Phe Arg Asp Ser Lys Leu 450 455 460 Thr Arg Val Phe Gln Gly Phe Phe Thr Gly Arg Gly Arg Ser Cys Met 465 470 475 480 Ile Val Asn Val Asn Pro Cys Ala Ser Thr Tyr Asp Glu Thr Leu His 485 490 495 Val Ala Lys Phe Ser Ala Ile Ala Ser Gln Leu Val His Ala Pro Pro 500 505 510 Met Gln Leu Gly Phe Pro Ser Leu His Ser Phe Ile Lys Glu His Ser 515 520 525 Leu Gln Val Ser Pro Ser Leu Glu Lys Gly Ala Lys Ala Asp Thr Gly 530 535 540 Leu Asp Asp Asp Ile Glu Asn Glu Ala Asp Ile Ser Met Tyr Gly Lys 545 550 555 560 Glu Glu Leu Leu Gln Val Val Glu Ala Met Lys Thr Leu Leu Leu Lys 565 570 575 Glu Arg Gln Glu Lys Leu Gln Leu Glu Met His Leu Arg Asp Glu Ile 580 585 590 Cys Asn Glu Met Val Glu Gln Met Gln Gln Arg Glu Gln Trp Cys Ser 595 600 605 Glu His Leu Asp Thr Gln Lys Glu Leu Leu Glu Glu Met Tyr Glu Glu 610 615 620 Lys Leu Asn Ile Leu Lys Glu Ser Leu Thr Ser Phe Tyr Gln Glu Glu 625 630 635 640 Ile Gln Glu Arg Asp Glu Lys Ile Glu Glu Leu Glu Ala Leu Leu Gln 645 650 655 Glu Ala Arg Gln Gln Ser Val Ala His Gln Gln Ser Gly Ser Glu Leu 660 665 670 Ala Leu Arg Arg Ser Gln Arg Leu Ala Ala Ser Ala Ser Thr Gln Gln 675 680 685 Leu Gln Glu Val Lys Ala Lys Leu Gln Gln Cys Lys Ala Glu Leu Asn 690 695 700 Ser Thr Thr Glu Glu Leu His Lys Tyr Gln Lys Met Leu Glu Pro Pro 705 710 715 720 Pro Ser Ala Lys Pro Phe Thr Ile Asp Val Asp Lys Lys Leu Glu Glu 725 730 735 Gly Gln Lys Asn Ile Arg Leu Leu Arg Thr Glu Leu Gln Lys Leu Gly 740 745 750 Glu Ser Leu Gln Ser Ala Glu Arg Ala Cys Cys His Ser Thr Gly Ala 755 760 765 Gly Lys Leu Arg Gln Ala Leu Thr Thr Cys Asp Asp Ile Leu Ile Lys 770 775 780 Gln Asp Gln Thr Leu Ala Glu Leu Gln Asn Asn Met Val Leu Val Lys 785 790 795 800 Leu Asp Leu Arg Lys Lys Ala Ala Cys Ile Ala Glu Gln Tyr His Thr 805 810 815 Val Leu Lys Leu Gln Gly Gln Val Ser Ala Lys Lys Arg Leu Gly Thr 820 825 830 Asn Gln Glu Asn Gln Gln Pro Asn Gln Gln Pro Pro Gly Lys Lys Pro 835 840 845 Phe Leu Arg Asn Leu Leu Pro Arg Thr Pro Thr Cys Gln Ser Ser Thr 850 855 860 Asp Cys Ser Pro Tyr Ala Arg Ile Leu Arg Ser Arg Arg Ser Pro Leu 865 870 875 880 Leu Lys Ser Gly Pro Phe Gly Lys Lys Tyr 885 890 <210> 3 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> An artifical peptide sequence <400> 3 Leu Leu Ser Asp Asp Asp Val Val Val 1 5 <210> 4 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> An artificial peptide sequence <400> 4 Cys Ile Ala Glu Gln Tyr His Thr Val 1 5 <210> 5 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> An artificial peptide sequence <400> 5 Ala Gln Pro Asp Thr Ala Pro Leu Pro Val 1 5 10 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 6 ctacaagcac ccaaggactc t 21 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 7 agatggagaa gcgaatgttt 20 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 8 catccacgaa actaccttca act 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 9 tctccttaga gagaagtggg gtg 23 <210> 10 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> An artificially synthesized peptide <400> 10 Ser Leu Tyr Asn Thr Tyr Ala Thr Leu 1 5 <210> 11 <211> 9 <212> PRT <213> mouse <400> 11 Leu Leu Ser Asp Glu Asp Val Val Asp 1 5 <210> 12 <211> 10 <212> PRT <213> mouse <400> 12 Ala Gln Pro Asp Thr Val Pro Val Ser Val 1 5 10 <110> ONCOTHERAPY SCIENCE, INC. <120> RAB6KIFL / KIF20A EPITOPE PEPTIDE AND VACCINES CONTAINING THE SAME <130> 11fpi-04-06 <150> US61 / 197,106 <151> 2008-10-22 <160> 12 <170> PatentIn version 3.5 <210> 1 <211> 3471 <212> DNA <213> Homo sapiens <220> <221> CDS (222) (497) .. (3166) <400> 1 tttttcccct taagacaaag caagcaccct aaaccagtta ccctgtgcac tcctgttaag 60 attgttgcta aggaaggaca ggagttggct gctgaagcct caagatttcc tttaggctct 120 taggtaagaa atgtctaagg ttcaaggaaa aaggttaagt tggaagaatc ccaggcaaaa 180 taagtgcgaa tccacgacag ttggtaaccc ggacccacat tagaactcag aggtcaagca 240 gaagcgaacg actggaattc cagtcaggcc cgcccccttt ccttacgcgg attggtagct 300 gcaggcttcc ctatctgatt ggccgaacga acgcagcgcg taatttaaaa tattgtatct 360 gtaacaaagc tgcacctcgt gggcggagtt gtgctctgcg gctgcgaaag tccagcttcg 420 gcgactaggt gtgagtaagc cagtatccca ggaggagcaa gtggcacgtc ttcggaccta 480 ggctgcccct gccgtc atg tcg caa ggg atc ctt tct ccg cca gcg ggc 529                       Met Ser Gln Gly Ile Leu Ser Pro Pro Ala Gly                         1 5 10 ttg ctg tcc gat gac gat gtc gta gtt tct ccc atg ttt gag tcc aca 577 Leu Leu Ser Asp Asp Asp Val Val Val Ser Pro Met Phe Glu Ser Thr              15 20 25 gct gca ttg ggg tct gtg gta cgc aag aac ctg cta tca gac tgc 625 Ala Ala Asp Leu Gly Ser Val Val Arg Lys Asn Leu Leu Ser Asp Cys          30 35 40 tct gtc gtc tct acc tcc cta gag gac aag cag cag gtt cca tct gag 673 Ser Val Val Ser Thr Ser Leu Glu Asp Lys Gln Gln Val Pro Ser Glu      45 50 55 gac agt atg gag aag gtg aaa gta tac ttg agg gtt agg ccc ttg tta 721 Asp Ser Met Glu Lys Val Lys Val Tyr Leu Arg Val Arg Pro Leu Leu  60 65 70 75 cct tca gag ttg gaa cga cag gaa gat cag ggt tgt gtc cgt att gag 769 Pro Ser Glu Leu Glu Arg Gln Glu Asp Gln Gly Cys Val Arg Ile Glu                  80 85 90 aat gtg gag acc ctt gtt cta caa gca ccc aag gac tct ttt gcc ctg 817 Asn Val Glu Thr Leu Val Leu Gln Ala Pro Lys Asp Ser Phe Ala Leu              95 100 105 aag agc aat gaa cgg gga att ggc caa gcc aca cac agg ttc acc ttt 865 Lys Ser Asn Glu Arg Gly Ile Gly Gln Ala Thr His Arg Phe Thr Phe         110 115 120 tcc cag atc ttt ggg cca gaa gtg gga cag gca tcc ttc ttc aac cta 913 Ser Gln Ile Phe Gly Pro Glu Val Gly Gln Ala Ser Phe Phe Asn Leu     125 130 135 act gtg aag gag atg gta aag gat gta ctc aaa ggg cag aac tgg ctc 961 Thr Val Lys Glu Met Val Lys Asp Val Leu Lys Gly Gln Asn Trp Leu 140 145 150 155 atc tat aca tat gga gtc act aac tca ggg aaa acc cac acg att caa 1009 Ile Tyr Thr Tyr Gly Val Thr Asn Ser Gly Lys Thr His Thr Ile Gln                 160 165 170 ggt acc atc aag gat gga ggg att ctc ccc cgg tcc ctg gcg ctg atc 1057 Gly Thr Ile Lys Asp Gly Gly Ile Leu Pro Arg Ser Leu Ala Leu Ile             175 180 185 ttc aat agc ctc caa ggc caa ctt cat cca aca cct gat ctg aag ccc 1105 Phe Asn Ser Leu Gln Gly Gln Leu His Pro Thr Pro Asp Leu Lys Pro         190 195 200 ttg ctc tcc aat gag gta atc tgg cta gac agc aag cag atc cga cag 1153 Leu Leu Ser Asn Glu Val Ile Trp Leu Asp Ser Lys Gln Ile Arg Gln     205 210 215 gag gaa atg aag aag ctg tcc ctg cta aat gga ggc ctc caa gag gag 1201 Glu Glu Met Lys Lys Leu Ser Leu Leu Asn Gly Gly Leu Gln Glu Glu 220 225 230 235 gag ctg tcc act tcc ttg aag agg agt gtc tac atc gaa agt cgg ata 1249 Glu Leu Ser Thr Ser Leu Lys Arg Ser Val Tyr Ile Glu Ser Arg Ile                 240 245 250 ggt acc agc acc agc ttc gac agt ggc att gct ggg ctc tct tct atc 1297 Gly Thr Ser Thr Ser Phe Asp Ser Gly Ile Ala Gly Leu Ser Ser Ile             255 260 265 agt cag tgt acc agc agt agc cag ctg gat gaa aca agt cat cga tgg 1345 Ser Gln Cys Thr Ser Ser Ser Gln Leu Asp Glu Thr Ser His Arg Trp         270 275 280 gca cag cca gac act gcc cca cta cct gtc ccg gca aac att cgc ttc 1393 Ala Gln Pro Asp Thr Ala Pro Leu Pro Val Pro Ala Asn Ile Arg Phe     285 290 295 tcc atc tgg atc tca ttc ttt gag atc tac aac gaa ctg ctt tat gac 1441 Ser Ile Trp Ile Ser Phe Phe Glu Ile Tyr Asn Glu Leu Leu Tyr Asp 300 305 310 315 cta tta gaa ccg cct agc caa cag cgc aag agg cag act ttg cgg cta 1489 Leu Leu Glu Pro Pro Ser Gln Gln Arg Lys Arg Gln Thr Leu Arg Leu                 320 325 330 tgc gag gat caa aat ggc aat ccc tat gtg aaa gat ctc aac tgg att 1537 Cys Glu Asp Gln Asn Gly Asn Pro Tyr Val Lys Asp Leu Asn Trp Ile             335 340 345 cat gtg caa gat gct gag gag gcc tgg aag ctc cta aaa gtg ggt cgt 1585 His Val Gln Asp Ala Glu Glu Ala Trp Lys Leu Leu Lys Val Gly Arg         350 355 360 aag aac cag agc ttt gcc agc acc cac ctc aac cag aac tcc agc cgc 1633 Lys Asn Gln Ser Phe Ala Ser Thr His Leu Asn Gln Asn Ser Ser Arg     365 370 375 agt cac agc atc ttc tca atc agg atc cta cac ctt cag ggg gaa gga 1681 Ser His Ser Ile Phe Ser Ile Arg Ile Leu His Leu Gln Gly Glu Gly 380 385 390 395 gat ata gtc ccc aag atc agc gag ctg tca ctc tgt gat ctg gct ggc 1729 Asp Ile Val Pro Lys Ile Ser Glu Leu Ser Leu Cys Asp Leu Ala Gly                 400 405 410 tca gag cgc tgc aaa gat cag aag agt ggt gaa cgg ttg aag gaa gca 1777 Ser Glu Arg Cys Lys Asp Gln Lys Ser Gly Glu Arg Leu Lys Glu Ala             415 420 425 gga aac att aac acc tct cta cac acc ctg ggc cgc tgt att gct gcc 1825 Gly Asn Ile Asn Thr Ser Leu His Thr Leu Gly Arg Cys Ile Ala Ala         430 435 440 ctt cgt caa aac cag cag aac cgg tca aag cag aac ctg gtt ccc ttc 1873 Leu Arg Gln Asn Gln Gln Asn Arg Ser Lys Gln Asn Leu Val Pro Phe     445 450 455 cgt gac agc aag ttg act cga gtg ttc caa ggt ttc ttc aca ggc cga 1921 Arg Asp Ser Lys Leu Thr Arg Val Phe Gln Gly Phe Phe Thr Gly Arg 460 465 470 475 ggc cgt tcc tgc atg att gtc aat gtg aat ccc tgt gca tct acc tat 1969 Gly Arg Ser Cys Met Ile Val Asn Val Asn Pro Cys Ala Ser Thr Tyr                 480 485 490 gat gaa act ctt cat gtg gcc aag ttc tca gcc att gct agc cag ctt 2017 Asp Glu Thr Leu His Val Ala Lys Phe Ser Ala Ile Ala Ser Gln Leu             495 500 505 gtg cat gcc cca cct atg caa ctg gga ttc cca tcc ctg cac tcg ttc 2065 Val His Ala Pro Pro Met Gln Leu Gly Phe Pro Ser Leu His Ser Phe         510 515 520 atc aag gaa cat agt ctt cag gta tcc ccc agc tta gag aaa ggg gct 2113 Ile Lys Glu His Ser Leu Gln Val Ser Pro Ser Leu Glu Lys Gly Ala     525 530 535 aag gca gac aca ggc ctt gat gat gat att gaa aat gaa gct gac atc 2161 Lys Ala Asp Thr Gly Leu Asp Asp Asp Ile Glu Asn Glu Ala Asp Ile 540 545 550 555 tcc atg tat ggc aaa gag gag ctc cta caa gtt gtg gaa gcc atg aag 2209 Ser Met Tyr Gly Lys Glu Glu Leu Leu Gln Val Val Glu Ala Met Lys                 560 565 570 aca ctg ctt ttg aag gaa cga cag gaa aag cta cag ctg gag atg cat 2257 Thr Leu Leu Leu Lys Glu Arg Gln Glu Lys Leu Gln Leu Glu Met His             575 580 585 ctc cga gat gaa att tgc aat gag atg gta gaa cag atg caa cag cgg 2305 Leu Arg Asp Glu Ile Cys Asn Glu Met Val Glu Gln Met Gln Gln Arg         590 595 600 gaa cag tgg tgc agt gaa cat ttg gac acc caa aag gaa cta ttg gag 2353 Glu Gln Trp Cys Ser Glu His Leu Asp Thr Gln Lys Glu Leu Leu Glu     605 610 615 gaa atg tat gaa gaa aaa cta aat atc ctc aag gag tca ctg aca agt 2401 Glu Met Tyr Glu Glu Lys Leu Asn Ile Leu Lys Glu Ser Leu Thr Ser 620 625 630 635 ttt tac caa gaa gag att cag gag cgg gat gaa aag att gaa gag cta 2449 Phe Tyr Gln Glu Glu Ile Gln Glu Arg Asp Glu Lys Ile Glu Glu Leu                 640 645 650 gaa gct ctc ttg cag gaa gcc aga caa cag tca gtg gcc cat cag caa 2497 Glu Ala Leu Leu Gln Glu Ala Arg Gln Gln Ser Val Ala His Gln Gln             655 660 665 tca ggg tct gaa ttg gcc cta cgg cgg tca caa agg ttg gca gct tct 2545 Ser Gly Ser Glu Leu Ala Leu Arg Arg Ser Gln Arg Leu Ala Ala Ser         670 675 680 gcc tcc acc cag cag ctt cag gag gtt aaa gct aaa tta cag cag tgc 2593 Ala Ser Thr Gln Gln Leu Gln Glu Val Lys Ala Lys Leu Gln Gln Cys     685 690 695 aaa gca gag cta aac tct acc act gaa gag ttg cat aag tat cag aaa 2641 Lys Ala Glu Leu Asn Ser Thr Thr Glu Glu Leu His Lys Tyr Gln Lys 700 705 710 715 atg tta gaa cca cca ccc tca gcc aag ccc ttc acc att gat gtg gac 2689 Met Leu Glu Pro Pro Pro Ser Ala Lys Pro Phe Thr Ile Asp Val Asp                 720 725 730 aag aag tta gaa gag ggc cag aag aat ata agg ctg ttg cgg aca gag 2737 Lys Lys Leu Glu Glu Gly Gln Lys Asn Ile Arg Leu Leu Arg Thr Glu             735 740 745 ctt cag aaa ctt ggt gag tct ctc caa tca gca gag aga gct tgt tgc 2785 Leu Gln Lys Leu Gly Glu Ser Leu Gln Ser Ala Glu Arg Ala Cys Cys         750 755 760 cac agc act ggg gca gga aaa ctt cgt caa gcc ttg acc act tgt gat 2833 His Ser Thr Gly Ala Gly Lys Leu Arg Gln Ala Leu Thr Thr Cys Asp     765 770 775 gac atc tta atc aaa cag gac cag act ctg gct gaa ctg cag aac aac 2881 Asp Ile Leu Ile Lys Gln Asp Gln Thr Leu Ala Glu Leu Gln Asn Asn 780 785 790 795 atg gtg cta gtg aaa ctg gac ctt cgg aag aag gca gca tgt att gct 2929 Met Val Leu Val Lys Leu Asp Leu Arg Lys Lys Ala Ala Cys Ile Ala                 800 805 810 gag cag tat cat act gtg ttg aaa ctc caa ggc cag gtt tct gcc aaa 2977 Glu Gln Tyr His Thr Val Leu Lys Leu Gln Gly Gln Val Ser Ala Lys             815 820 825 aag cgc ctt ggt acc aac cag gaa aat cag caa cca aac caa caa cca 3025 Lys Arg Leu Gly Thr Asn Gln Glu Asn Gln Gln Pro Asn Gln Gln Pro         830 835 840 cca ggg aag aaa cca ttc ctt cga aat tta ctt ccc cga aca cca acc 3073 Pro Gly Lys Lys Pro Phe Leu Arg Asn Leu Leu Pro Arg Thr Pro Thr     845 850 855 tgc caa agc tca aca gac tgc agc cct tat gcc cgg atc cta cgc tca 3121 Cys Gln Ser Ser Thr Asp Cys Ser Pro Tyr Ala Arg Ile Leu Arg Ser 860 865 870 875 cgg cgt tcc cct tta ctc aaa tct ggg cct ttt ggc aaa aag tac taag 3170 Arg Arg Ser Pro Leu Leu Lys Ser Gly Pro Phe Gly Lys Lys Tyr                 880 885 890 gctgtgggga aagagaagag cagtcatggc cctgaggtgg gtcagctact ctcctgaaga 3230 aataggtctc ttttatgctt taccatatat caggaattat atccaggatg caatactcag 3290 acactagctt ttttctcact tttgtattat aaccacctat gtaatctcat gttgttgttt 3350 ttttttattt acttatatga tttctatgca cacaaaaaca gttatattaa agatattatt 3410 gttcacattt tttattgaat tccaaatgta gcaaaatcat taaaacaaat tataaaaggg 3470 a 3471 <210> 2 <211> 890 <212> PRT <213> Homo sapiens <400> 2 Met Ser Gln Gly Ile Leu Ser Pro Pro Ala Gly Leu Leu Ser Asp Asp   1 5 10 15 Asp Val Val Val Ser Pro Met Phe Glu Ser Thr Ala Ala Asp Leu Gly              20 25 30 Ser Val Val Arg Lys Asn Leu Leu Ser Asp Cys Ser Val Val Ser Thr          35 40 45 Ser Leu Glu Asp Lys Gln Gln Val Pro Ser Glu Asp Ser Met Glu Lys      50 55 60 Val Lys Val Tyr Leu Arg Val Arg Pro Leu Leu Pro Ser Glu Leu Glu  65 70 75 80 Arg Gln Glu Asp Gln Gly Cys Val Arg Ile Glu Asn Val Glu Thr Leu                  85 90 95 Val Leu Gln Ala Pro Lys Asp Ser Phe Ala Leu Lys Ser Asn Glu Arg             100 105 110 Gly Ile Gly Gln Ala Thr His Arg Phe Thr Phe Ser Gln Ile Phe Gly         115 120 125 Pro Glu Val Gly Gln Ala Ser Phe Phe Asn Leu Thr Val Lys Glu Met     130 135 140 Val Lys Asp Val Leu Lys Gly Gln Asn Trp Leu Ile Tyr Thr Tyr Gly 145 150 155 160 Val Thr Asn Ser Gly Lys Thr His Thr Ile Gln Gly Thr Ile Lys Asp                 165 170 175 Gly Gly Ile Leu Pro Arg Ser Leu Ala Leu Ile Phe Asn Ser Leu Gln             180 185 190 Gly Gln Leu His Pro Thr Pro Asp Leu Lys Pro Leu Leu Ser Asn Glu         195 200 205 Val Ile Trp Leu Asp Ser Lys Gln Ile Arg Gln Glu Glu Met Lys Lys     210 215 220 Leu Ser Leu Leu Asn Gly Gly Leu Gln Glu Glu Glu Leu Ser Thr Ser 225 230 235 240 Leu Lys Arg Ser Val Tyr Ile Glu Ser Arg Ile Gly Thr Ser Thr Ser                 245 250 255 Phe Asp Ser Gly Ile Ala Gly Leu Ser Ser Ile Ser Gln Cys Thr Ser             260 265 270 Ser Ser Gln Leu Asp Glu Thr Ser His Arg Trp Ala Gln Pro Asp Thr         275 280 285 Ala Pro Leu Pro Val Pro Ala Asn Ile Arg Phe Ser Ile Trp Ile Ser     290 295 300 Phe Phe Glu Ile Tyr Asn Glu Leu Leu Tyr Asp Leu Leu Glu Pro Pro 305 310 315 320 Ser Gln Gln Arg Lys Arg Gln Thr Leu Arg Leu Cys Glu Asp Gln Asn                 325 330 335 Gly Asn Pro Tyr Val Lys Asp Leu Asn Trp Ile His Val Gln Asp Ala             340 345 350 Glu Glu Ala Trp Lys Leu Leu Lys Val Gly Arg Lys Asn Gln Ser Phe         355 360 365 Ala Ser Thr His Leu Asn Gln Asn Ser Ser Arg Ser His Ser Ile Phe     370 375 380 Ser Ile Arg Ile Leu His Leu Gln Gly Glu Gly Asp Ile Val Pro Lys 385 390 395 400 Ile Ser Glu Leu Ser Leu Cys Asp Leu Ala Gly Ser Glu Arg Cys Lys                 405 410 415 Asp Gln Lys Ser Gly Glu Arg Leu Lys Glu Ala Gly Asn Ile Asn Thr             420 425 430 Ser Leu His Thr Leu Gly Arg Cys Ile Ala Ala Leu Arg Gln Asn Gln         435 440 445 Gln Asn Arg Ser Lys Gln Asn Leu Val Pro Phe Arg Asp Ser Lys Leu     450 455 460 Thr Arg Val Phe Gln Gly Phe Ph Thr Gly Arg Gly Arg Ser Cys Met 465 470 475 480 Ile Val Asn Val Asn Pro Cys Ala Ser Thr Tyr Asp Glu Thr Leu His                 485 490 495 Val Ala Lys Phe Ser Ala Ile Ala Ser Gln Leu Val His Ala Pro Pro             500 505 510 Met Gln Leu Gly Phe Pro Ser Leu His Ser Phe Ile Lys Glu His Ser         515 520 525 Leu Gln Val Ser Pro Ser Leu Glu Lys Gly Ala Lys Ala Asp Thr Gly     530 535 540 Leu Asp Asp Asp Ile Glu Asn Glu Ala Asp Ile Ser Met Tyr Gly Lys 545 550 555 560 Glu Glu Leu Leu Gln Val Val Glu Ala Met Lys Thr Leu Leu Leu Lys                 565 570 575 Glu Arg Gln Glu Lys Leu Gln Leu Glu Met His Leu Arg Asp Glu Ile             580 585 590 Cys Asn Glu Met Val Glu Gln Met Gln Gln Arg Glu Gln Trp Cys Ser         595 600 605 Glu His Leu Asp Thr Gln Lys Glu Leu Leu Glu Glu Met Tyr Glu Glu     610 615 620 Lys Leu Asn Ile Leu Lys Glu Ser Leu Thr Ser Phe Tyr Gln Glu Glu 625 630 635 640 Ile Gln Glu Arg Asp Glu Lys Ile Glu Glu Leu Glu Ala Leu Leu Gln                 645 650 655 Glu Ala Arg Gln Gln Ser Val Ala His Gln Gln Ser Gly Ser Glu Leu             660 665 670 Ala Leu Arg Arg Ser Gln Arg Leu Ala Ala Ser Ala Ser Thr Gln Gln         675 680 685 Leu Gln Glu Val Lys Ala Lys Leu Gln Gln Cys Lys Ala Glu Leu Asn     690 695 700 Ser Thr Thr Glu Glu Leu His Lys Tyr Gln Lys Met Leu Glu Pro Pro 705 710 715 720 Pro Ser Ala Lys Pro Phe Thr Ile Asp Val Asp Lys Lys Leu Glu Glu                 725 730 735 Gly Gln Lys Asn Ile Arg Leu Leu Arg Thr Glu Leu Gln Lys Leu Gly             740 745 750 Glu Ser Leu Gln Ser Ala Glu Arg Ala Cys Cys His Ser Thr Gly Ala         755 760 765 Gly Lys Leu Arg Gln Ala Leu Thr Thr Cys Asp Asp Ile Leu Ile Lys     770 775 780 Gln Asp Gln Thr Leu Ala Glu Leu Gln Asn Asn Met Val Leu Val Lys 785 790 795 800 Leu Asp Leu Arg Lys Lys Ala Ala Cys Ile Ala Glu Gln Tyr His Thr                 805 810 815 Val Leu Lys Leu Gln Gly Gln Val Ser Ala Lys Lys Arg Leu Gly Thr             820 825 830 Asn Gln Glu Asn Gln Gln Pro Asn Gln Gln Pro Pro Gly Lys Lys Pro         835 840 845 Phe Leu Arg Asn Leu Leu Pro Arg Thr Pro Thr Cys Gln Ser Ser Thr     850 855 860 Asp Cys Ser Pro Tyr Ala Arg Ile Leu Arg Ser Arg Arg Ser Pro Leu 865 870 875 880 Leu Lys Ser Gly Pro Phe Gly Lys Lys Tyr                 885 890 <210> 3 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> An artifical peptide sequence <400> 3 Leu Leu Ser Asp Asp Asp Val Val Val   1 5 <210> 4 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> An artificial peptide sequence <400> 4 Cys Ile Ala Glu Gln Tyr His Thr Val   1 5 <210> 5 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> An artificial peptide sequence <400> 5 Ala Gln Pro Asp Thr Ala Pro Leu Pro Val   1 5 10 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 6 ctacaagcac ccaaggactc t 21 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 7 agatggagaa gcgaatgttt 20 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 8 catccacgaa actaccttca act 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> An artificially synthesized primer for PCR <400> 9 tctccttaga gagaagtggg gtg 23 <210> 10 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> An artificially synthesized peptide <400> 10 Ser Leu Tyr Asn Thr Tyr Ala Thr Leu   1 5 <210> 11 <211> 9 <212> PRT <213> mouse <400> 11 Leu Leu Ser Asp Glu Asp Val Val Asp   1 5 <210> 12 <211> 10 <212> PRT <213> mouse <400> 12 Ala Gln Pro Asp Thr Val Pro Val Ser Val   1 5 10

Claims (9)

수탁번호 KCTC11940BP로 기탁된 다당류 분해 활성을 갖는 셀룰로파가(Cellulophaga) 속 균주.
Cellulophaga genus strain having polysaccharide degrading activity deposited with accession number KCTC11940BP.
수탁번호 KCTC11941BP로 기탁된 다당류 분해 활성을 갖는 셀룰로파가(Cellulophaga) 속 균주.
Cellulophaga genus strain having polysaccharide degrading activity deposited with accession number KCTC11941BP.
제 1항 또는 제 2항에 있어서, 상기 다당류는 아가로즈, 카라기난, 전분, 풀루난, 카르복시메칠셀룰로오즈(carboxylmethylcellulose; CMC), 자일란, 라미나린, 키틴 및 펙틴으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 셀룰로파가(Cellulophaga) 속 균주.
The method according to claim 1 or 2, wherein the polysaccharide is any one selected from the group consisting of agarose, carrageenan, starch, pullulan, carboxylmethylcellulose (CMC), xylan, laminarin, chitin and pectin. Characterized in the Cellulophaga genus strain.
제 1항 또는 제 2항의 균주, 또는 이의 배양 상층액을 포함하는 다당류 분해용 조성물.
The composition for degradation of polysaccharide comprising the strain of claim 1 or 2, or a culture supernatant thereof.
제 1항 또는 제 2항의 균주, 또는 이의 배양 상층액을 다당류에 접촉시키는 단계를 포함하는 다당류 분해 방법.
The method of claim 1 or 2, wherein the method of polysaccharide degradation comprising the step of contacting the polysaccharide with the culture supernatant thereof.
1) 바이오매스로부터 다당류를 분리하는 단계;
2) 단계 1)의 다당류에 제 1항 또는 제 2항의 균주, 또는 이의 배양 상층액을 접촉시켜 단당류를 생성시키는 단계; 및
3) 단계 2)의 단당류를 미생물에 의해 발효시키는 단계를 포함하는 바이오에탄올의 제조방법.
1) separating the polysaccharides from the biomass;
2) contacting the polysaccharide of step 1) with the strain of claim 1 or 2, or a culture supernatant thereof to produce monosaccharides; And
3) A method for producing bioethanol comprising the step of fermenting the monosaccharides of step 2) by microorganisms.
제 6항에 있어서, 상기 바이오매스는 다당류를 포함하는 볏짚, 보릿짚, 고구마 줄기, 유채줄기, 카사바 줄기의 농업 부산물, 폐지, 플러프의 고체 쓰레기, 간벌목, 폐목재, 가공 부산물의 목재, 담조류, 해조류의 수상 식물 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 바이오에탄올의 제조방법.
7. The biomass of claim 6, wherein the biomass comprises polysaccharides of rice straw, barley straw, sweet potato stalk, rapeseed stem, cassava stalk, agricultural by-products, waste paper, fluff solid wastes, thinning trees, waste wood, processing by-products, wood A method for producing a bioethanol, characterized in that any one selected from the group consisting of algae, seaweed marine plants and combinations thereof.
제 6항에 있어서, 상기 단계 1)의 다당류는 아가로즈, 카라기난, 전분, 풀루난, 카르복시메칠셀룰로오즈, 자일란, 라미나린, 키틴 및 펙틴으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 바이오에탄올 제조방법.
The bioethanol according to claim 6, wherein the polysaccharide of step 1) is any one selected from the group consisting of agarose, carrageenan, starch, pullulan, carboxymethyl cellulose, xylan, laminarin, chitin and pectin. Manufacturing method.
제 6항에 있어서, 상기 단계 3)의 미생물은 사카로마이세스 세레비시애, 사르시나 벤트리큘리, 클루이베로마이세스 프라질리스, 자이고모모나스 모빌리스, 클루이베로마이세스 막시아너스 IMB3, 브레타노마이세스 쿠스테르시이, 클로스트리디움 아세토부틸리쿰, 클로스트리디움 바이예링키, 클로스트리디움 아우란티부틸리쿰 및 클로스트리디움 테타노모르퓸으로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 바이오에탄올 제조방법.

The method of claim 6, wherein the microorganism of step 3) is Saccharomyces cerevisiae, Sarcina ventriculum, Kluyveromyces pragilis, Zygomonas mobilis, Kluyveromyces maximaus IMB3, Bretanomay Bio-characterized in the present invention, which is any one selected from the group consisting of sescusterssei, clostridium acetobutylicum, clostridium bayeringki, clostridium aurantibutyricum and clostridium tetanomorphium. Ethanol manufacturing method.

KR20110049266A 2011-05-24 2011-05-24 Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same KR101482663B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2011/003810 WO2012161360A1 (en) 2011-05-24 2011-05-24 Novel cellulophaga sp. strain having a degradative effect on polysaccharides and use of same
KR20110049266A KR101482663B1 (en) 2011-05-24 2011-05-24 Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110049266A KR101482663B1 (en) 2011-05-24 2011-05-24 Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140007978A Division KR101463899B1 (en) 2014-01-22 2014-01-22 Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same

Publications (2)

Publication Number Publication Date
KR20120131066A true KR20120131066A (en) 2012-12-04
KR101482663B1 KR101482663B1 (en) 2015-01-16

Family

ID=47217417

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110049266A KR101482663B1 (en) 2011-05-24 2011-05-24 Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same

Country Status (2)

Country Link
KR (1) KR101482663B1 (en)
WO (1) WO2012161360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073681A (en) * 2017-12-19 2019-06-27 대한민국(환경부 국립생물자원관장) A novel Cellulophaga sp., producing new saccharogenic enzyme and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883277B2 (en) * 2006-03-07 2012-02-22 佐賀県 Porphyran-specific degrading enzymes produced by Cerrophaga bacteria

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073681A (en) * 2017-12-19 2019-06-27 대한민국(환경부 국립생물자원관장) A novel Cellulophaga sp., producing new saccharogenic enzyme and use thereof

Also Published As

Publication number Publication date
KR101482663B1 (en) 2015-01-16
WO2012161360A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
AU2006312031B2 (en) Enzyme and methodology for the treatment of a biomass
Bansal et al. A novel strain of Aspergillus niger producing a cocktail of hydrolytic depolymerising enzymes for the production of second generation biofuels
Saratale et al. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU
CN101558166A (en) Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose
Guo et al. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity
Hebbale et al. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria
CN109072270B (en) Composition for producing oligosaccharides or glucose and method for producing the same
Swain et al. Marine enzymes and microorganisms for bioethanol production
Chimtong et al. Isolation and characterization of endocellulase-free multienzyme complex from newly isolated Thermoanaerobacterium thermosaccharolyticum strain NOI-1
KR101771960B1 (en) Paenibacillus jamilae BRC15-1 strain producing cellulase and use thereof
WO2012068310A2 (en) Compositions and methods for improved saccharification of genetically modified plant-derived biomass
Khadka et al. production optimization and biochemical characterization of cellulase from Geobacillus sp. KP43 Isolated from hot spring water of Nepal
Gomare et al. Isolation of the polysaccharidase-producing bacteria from the gut of sea snail, Batillus cornutus
ES2816631T3 (en) Production of enzymes for lignocellulosic biomass
Sreena et al. Production of cellulases and xylanase from Bacillus subtilis MU S1 isolated from protected areas of Munnar Wildlife Division.
Rastegari Molecular mechanism of cellulase production systems in penicillium
KR101482663B1 (en) Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same
Luziatelli et al. Screening, isolation, and characterization of glycosyl-hydrolase-producing fungi from desert halophyte plants
US20150175988A1 (en) Strain and A Method to Produce Cellulas and its Use
KR101463899B1 (en) Novel strain Cellulophaga sp. degrading polysaccharides and a method for degrading polysaccharides using the same
Krestyanova et al. Characteristics of fungal strains producing thermostable xyloglucanases from the Russian National Collection of industrial microorganisms
El-Bakary et al. Identification of Endoglucanase Gene Responsible for Cellulose Degradation Using Aspergillus flavus
JP5777128B2 (en) Novel cellulase
Kanti et al. Cellulolytic Yeast Isolated From Raja Ampat Indonesia
Li et al. Enhanced Fermentable Sugar Production from Enteromorpha Polysaccharides by the Crude Enzymes of Vibrio sp. H11

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 17