KR20120124030A - 풍력 발전 시스템 및 그 제어 방법 - Google Patents

풍력 발전 시스템 및 그 제어 방법 Download PDF

Info

Publication number
KR20120124030A
KR20120124030A KR1020120044373A KR20120044373A KR20120124030A KR 20120124030 A KR20120124030 A KR 20120124030A KR 1020120044373 A KR1020120044373 A KR 1020120044373A KR 20120044373 A KR20120044373 A KR 20120044373A KR 20120124030 A KR20120124030 A KR 20120124030A
Authority
KR
South Korea
Prior art keywords
actual
blade
output
voltage
power generation
Prior art date
Application number
KR1020120044373A
Other languages
English (en)
Inventor
모토후미 다나카
히사시 마츠다
구니히코 와다
히로유키 야스이
쇼헤이 고시마
나오히코 시무라
유타카 이시와타
스스무 기노시타
다몬 오자키
스에요시 미즈노
신이치 노다
도시키 오사코
도시마사 야마다
Original Assignee
가부시끼가이샤 도시바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바 filed Critical 가부시끼가이샤 도시바
Priority to KR1020120044373A priority Critical patent/KR20120124030A/ko
Publication of KR20120124030A publication Critical patent/KR20120124030A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

실시형태의 풍력 발전 시스템(10)은, 허브(41) 및 날개(42)를 구비하는 로터(40)와, 로터(40)를 축 지지하는 나셀(31)과, 나셀(31)을 지지하는 타워(30)와, 날개(42)의 전연부에 설치되며, 제1 전극(61)과 제2 전극(62)을 유전체를 통해 이간(離間)하여 구비한 기류 발생 장치(60)와, 기류 발생 장치(60)의 전극간에 전압을 인가 가능한 방전용 전원(65)을 구비한다. 또한, 풍력 발전 시스템(10)에 있어서의 출력, 로터(40)에 있어서의 토크 및 날개(42)의 회전수 중 적어도 하나에 따른 정보를 검지하는 계측 장치와, 계측 장치로부터의 출력에 의거하여 방전용 전원(65)을 제어하는 제어부(110)를 구비한다.

Description

풍력 발전 시스템 및 그 제어 방법{WIND POWER GENERATION SYSTEM AND CONTROL METHOD THEREOF}
본 발명은 일반적으로 풍력 발전 시스템 및 그 제어 방법에 관한 것이다.
현재, 지구 온난화 방지의 관점에서, 전 지구 규모로 재생 에너지 발전 시스템의 도입이 진행되고 있다. 그러한 상황 중, 풍력 발전은 보급이 진행되고 있는 발전 방식 중 하나이다. 그러나, 일본에서는, 풍력 발전의 보급율은 유럽 등에 비해 낮다.
일본에서 풍력 발전이 보급되기 어려운 것은, 그 지리적 제약에 의한 점이 크다. 특히, 일본에서는 산악성 기상이기 때문에, 풍력 및 풍향이 어지럽게 변화하여, 풍력 발전에 있어서 안정된 출력을 유지하는 것이 곤란해진다. 이와 같은 것이 원인이 되어, 풍차 1대당의 발전 효율을 저하시켜, 결과적으로 풍력 발전 시스템의 도입 비용을 올리고 있다.
일본과 같은 풍속 풍향 변동이 심한 지역에서 대규모의 풍력 발전을 도입하기 위해서는, 이들 문제를 극복한 내(耐)변동형 풍차 개발이 필수가 된다. 그래서, 유전체를 통해 대향 배치된 전극간에 전압을 인가하여 발생한 플라즈마에 의해 플라즈마 유기류(誘起流)를 발생시키는 기류 발생 장치를, 풍차의 익면(翼面)에 배설(配設)함으로써, 바람의 변동에 대응한 제어가 가능한 풍력 발전 시스템이 제안되고 있다.
그러나, 지금까지 실제 회전장에서 기류 발생 장치를 작동시켜, 풍차 효율에 대한 효과를 확인한 사례는 나타나 있지 있다. 그 때문에, 실제 풍차에 있어서, 최적인 기류 발생 장치에 있어서의 전압 인가 방법이나, 날개에 있어서의 실속(失速) 상태를 제어하여 효율의 향상을 도모하는 운용 방법 등의 확립이 필요해진다.
일 실시형태에 있어서, 풍력 발전 시스템은 허브 및 상기 허브에 장착된 적어도 2매 이상의 날개를 구비하는 로터와, 상기 허브에 접속된 회전축을 통해 상기 로터를 축 지지하는 나셀(Nacelle)과, 상기 나셀을 지지하는 타워를 구비한다.
또한, 풍력 발전 시스템은, 상기 날개의 전연부에 설치되며, 제1 전극과 제2 전극을 유전체를 통해 이간(離間)하여 구비하고, 플라즈마 유기류를 발생 가능한 기류 발생 장치와, 상기 기류 발생 장치의 상기 제1 전극과 상기 제2 전극 사이에 전압을 인가 가능한 전압 인가 기구와, 풍력 발전 시스템에 있어서의 출력, 상기 로터에 있어서의 토크 및 상기 날개의 회전수 중 적어도 하나에 따른 정보를 검지하는 계측 장치와, 상기 계측 장치로부터의 출력에 의거하여, 상기 전압 인가 기구를 제어하는 제어 수단을 구비한다.
도 1은 일반적인 풍차에 있어서의 축방향 풍속과 풍차의 출력(발전량)의 관계를 나타내는 도면.
도 2는 일반적인 풍차에 있어서의 축방향 풍속의 변화를 나타낸 도면.
도 3은 실시형태의 풍력 발전 시스템을 나타내는 사시도.
도 4는 실시형태의 풍력 발전 시스템에 설치된 기류 발생 장치를 설명하기 위한 날개의 전연(前緣)부의 단면을 나타낸 도면.
도 5는 실시형태의 풍력 발전 시스템에 있어서의 펄스 변조 제어의 개요를 설명하기 위한 도면.
도 6은 실시형태의 풍력 발전 시스템의 제어 구성을 모식적으로 나타낸 도면.
도 7은 실시형태의 풍력 발전 시스템의 동작(제어예 1)을 설명하기 위한 플로우 차트.
도 8은 실시형태의 풍력 발전 시스템의 동작(제어예 2)을 설명하기 위한 플로우 차트.
도 9는 전연 박리형 단독 날개의 양력(揚力) 계수(C)와 영각(迎角)(α)의 관계를 나타내는 도면.
도 10은 날개의 전연에 있어서 흐름이 실속(失速)했을 때, 기류 발생 장치를 작동시키지 않을 경우(OFF)의 날개를 따르는 흐름을 모식적으로 나타내는 도면.
도 11은 날개의 전연에 있어서 흐름이 실속했을 때, 기류 발생 장치에 연속적으로 전압을 인가했을 경우(연속)의 날개를 따르는 흐름을 모식적으로 나타내는 도면.
도 12는 날개의 전연에 있어서 흐름이 실속했을 때, 기류 발생 장치에 펄스변조 제어된 전압을 인가했을 경우(펄스)의 날개를 따르는 흐름을 모식적으로 나타내는 도면.
도 13은 기류 발생 장치에 연속적으로 전압을 인가했을 경우(연속)에 있어서의 출력과 시간의 관계를 나타내는 도면.
도 14는 기류 발생 장치에 연속적으로 전압을 인가했을 경우(연속)에 있어서의 출력과 축방향 풍속의 관계를 나타내는 도면.
도 15는 기류 발생 장치에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서의 출력과 시간의 관계를 나타내는 도면.
도 16은 기류 발생 장치에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서의 출력과 축방향 풍속의 관계를 나타내는 도면.
도 17은 기류 발생 장치에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서의 fC/U와 출력의 관계를 나타내는 도면.
도 18은 실시형태의 풍력 발전 시스템에 있어서의 다른 제어 구성을 모식적으로 나타낸 도면.
도 19는 발전기 토크 목표값과, 목표 회전수와 현상 회전수의 차의 관계를 나타내는 도면.
도 20a는 흐름의 박리 상태의 검출용 동작시의 로터 토크의 시간 변화를 나타내는 도면.
도 20b는 흐름의 박리 상태의 검출용 동작시의 로터 토크의 시간 변화를 나타내는 도면.
도 21은 검출용 동작 및 제어 동작시에 있어서의 방전용 전원의 동작을 설명하기 위한 도면.
도 22a는 검출용 동작시 및 그 후의 로터 토크의 시간 변화를 나타내는 도면.
도 22b는 검출용 동작시 및 그 후의 로터 토크의 시간 변화를 나타내는 도면.
도 23은 검출용 동작시 및 제어 동작시에 있어서의 방전용 전원의 동작을 설명하기 위한 도면.
이하, 본 발명의 실시형태에 대해서 도면을 참조하여 설명한다.
우선, 일반적인 풍차에 있어서의 풍속과 풍차의 출력(발전량)의 관계에 대해서 설명한다. 도 1은 일반적인 풍차에 있어서의 축방향 풍속과 풍차의 출력(발전량)의 관계를 나타내는 도면이다.
축방향 풍속과 풍차의 출력(발전량)의 관계를 나타내는 도면을 파워 커브라고 부른다. 도 1의 횡축에 나타난 Vi는 커트 인(cut in) 축방향 풍속, Vr은 정격 축방향 풍속, Vo는 커트 아웃(cut out) 축방향 풍속이다. 커트 인 축방향 풍속(Vi)은 풍차가 이용 가능한 동력을 발생시키는 최소의 축방향 풍속이며, 커트 아웃 축방향 풍속(Vo)은 풍차가 이용 가능한 동력을 발생시키는 최대의 축방향 풍속이다. 또한, 축방향 풍속이란, 풍차의 회전축 방향의 바람의 속도 성분이다.
풍차는, 축방향 풍속이 커트 인 축방향 풍속(Vi) 이상에서 발전기의 기동 토크를 극복하여 회전을 개시하고, 도 1에 나타내는 바와 같이 축방향 풍속의 증가와 함께 출력이 증대한다. 출력이 발전기의 정격에 달하면, 그 이상의 축방향 풍속을 받아도 출력이 증대하지 않도록, 날개의 피치를 제어하여 출력을 일정하게 억제하고 있다. 커트 아웃 축방향 풍속(Vo)을 초과하여, 날개나 타워를 손상시키는 리스크가 염려되는 축방향 풍속에 달하면, 날개가 바람으로부터 힘을 받지 않도록 피치나 요(yaw)를 제어하여 회전을 멈춘다.
커트 인 축방향 풍속(Vi)에서 정격 축방향 풍속(Vr)까지의 영역을 부분 부하 영역, 정격 축방향 풍속(Vr)을 초과하며, 커트 아웃 축방향 풍속(Vo)까지의 영역을 정격 영역이라고 부른다. 실제의 풍황에서는, 부분 부하 영역이 되는 축방향 풍속의 출현 확률이 높은 것이나, 부분 부하 영역에서는, 바람의 에너지가 그대로 출력에 반영되는 것 등에서, 이 부분 부하 영역에서의 날개의 수풍(受風) 효율을 향상시키는 것이 요구되고 있다.
또한, 파워 커브에는 여러가지 정의가 있지만, 이하의 설명에서 이용하는 파워 커브란, 정상풍에 있어서 설계 주속비(周速比)로 운전했을 경우의 출력을, 각 풍속에서 이론적으로 구한 곡선을 말하며, 설계상의 이론 최대 출력을 나타내는 것이다. 또한, 풍차의 부분 부하 영역에 있어서는, 어느 설계 주속비를 정하고, 그 주속비에 있어서, 각 날개 요소가 최대의 양항비(揚抗比)를 갖고 운전되도록, 날개의 비틀림, 및 날개의 허브에의 장착각이 설계된다. 그리고, 항상 설계 주속도비로 회전하도록 발전기 토크가 제어된다.
여기에서, 발명자들은 축방향 풍속의 변동이 있을 경우에, 도 1에 나타난 파워 커브에 의해서는 나타낼 수 없는 사상(事象)이 존재함을 발견했다. 즉, 도 1에서의 점 A에서 운전하고 있는 상태에서 축방향 풍속이 증대했을 때, 파워 커브 상의 점 C가 아니라, 그보다 출력이 작은 점 B로 이행함을 발견했다. 그리고, 그 후에 같은 축방향 풍속으로 장시간 유지해도, 점 B에서 안정됨을 발견했다.
또한, 축방향 풍속의 증대율을 바꾸어서 시험을 반복했다. 도 2는 일반적인 풍차에 있어서의 축방향 풍속의 변화를 나타낸 도면이다. 도 2에 나타낸 V1과 같이 축방향 풍속이 완만하게 증가할 경우에는, 출력은 도 1에 나타낸 점 C로 이행할 때와 같이, 파워 커브를 따라 증가했다. 한편, 도 2에 나타낸 V2와 같이 축방향 풍속이 급격하게 증가할 경우에는, 출력은 도 1에 나타낸 점 B로 이행할 때와 같이, 파워 커브로부터 벗어나, 출력이 증가하지 않는 상태가 되었다. 이하 이 상태를 완전 실속 상태라고 한다. 풍속 풍향 변동이 심한 자연풍 하에서는, 항상 이와 같은 다양한 시정수의 풍속 증대가 일어나고 있다.
또한, 지면(地面)으로부터의 높이 방향에 속도 분포가 있을 경우나, 풍향에 대하여 풍차 회전면이 정면으로 마주 대해 있지 않을 경우에도, 마찬가지인 현상이 일어남을 발견했다.
발명자들은 상기한 바와 같은 완전 실속 상태가 되는 현상을 파악하여, 이 완전 실속 상태가 되었을 경우에도, 신속하게 그 상태를 해소하여, 파워 커브를 따른 출력을 얻을 수 있는 제어가 가능해지는 새로운 지견을 발견했다.
이하에, 실시형태의 풍력 발전 시스템(10)에 대해서 설명한다.
도 3은 실시형태의 풍력 발전 시스템(10)을 나타내는 사시도이다. 도 4는 실시형태의 풍력 발전 시스템(10)에 설치된 기류 발생 장치(60)를 설명하기 위한 날개(42)의 전연부의 단면을 나타낸 도면이다. 또한, 이하에 있어서, 동일한 구성부분에는 동일한 부호를 붙여, 중복하는 설명을 생략 또는 간략한다.
도 3에 나타내는 바와 같이 풍력 발전 시스템(10)에 있어서, 지면(20)에 설치된 타워(30)의 정부(頂部)에는, 발전기(도시 생략) 등을 수용한 나셀(31)이 장착되어 있다. 또한, 나셀(31)로부터 돌출된 발전기의 회전축에 로터(40)가 축 지지되어 있다.
로터(40)는 허브(41), 및 이 허브(41)에 장착된 날개(42)를 구비하고 있다. 또한, 날개(42)는 피치각이 변경 가능하게 구비되어 있다. 또한, 여기에서는, 3매의 날개(42)를 구비하는 일례를 나타내고 있지만, 날개(42)는 적어도 2매 이상 구비되어 있으면 된다. 나셀(31)의 상면에는, 도 3에 나타내는 바와 같이 바람의 풍향이나 속도를 계측하는 풍향 풍속계(50)가 설치되어 있다. 또한, 여기에서는 날개(42)가 피치각을 변경 가능하게 구비된 일례를 나타냈지만, 피치각을 제어할 수 없는 날개여도 된다.
날개(42)의 전연부에는, 도 4에 나타내는 바와 같이 기류 발생 장치(60)가 설치되어 있다. 기류 발생 장치(60)는 제1 전극(61)과, 이 제1 전극(61)과 유전체(63)를 통해 이간하여 배설된 제2 전극(62)을 구비한다. 여기에서는, 제1 전극(61)을 유전체(63)의 표면에 설치하고, 제2 전극(62)을 유전체(63) 내에 매설한 구성을 갖는 기류 발생 장치(60)를 나타내고 있다. 또한, 유전체(63)를 구성하는 유전 재료에 대해서는 특별히 한정되지 않고, 사용되는 용도나 환경에 따라, 공지한 고체로 이루어지는 유전 재료로부터 적절히 선택할 수 있다.
또한, 기류 발생 장치(60)의 구성은 이에 한정되는 것이 아니다. 예를 들면 날개(42)에 홈부를 구성하고, 이 홈부에 제1 전극(61), 제2 전극(62) 및 유전체(63)로 이루어지는 구성을 끼워넣도록 설치하며, 기류 발생 장치(60)가 날개(42)의 표면으로부터 돌출되지 않도록 구성해도 된다. 이 경우, 날개(42)가, 예를 들면 글래스 파이버를 합성 수지에 의해 고형화한 GFRP(글래스 파이버 강화 수지) 등의 유전 재료로 구성되어 있을 때에는, 유전체(63)로서 날개(42) 자체를 기능시킬 수 있다. 즉, 날개(42)의 표면에 직접 제1 전극(61)을 배설하고, 이 제1 전극(61)과 이간하여 날개(42)에 제2 전극(62)을 직접 매설할 수 있다.
여기에서, 예를 들면 제1 전극(61)의 제2 전극(62)측 가장자리가, 날개(42)의 전연 상(前緣上)이 되도록 제1 전극(61)을 배치하고, 제1 전극(61)보다 날개(42)의 배측(背側)(42a)이 되는 위치에 제2 전극(62)을 배치할 수 있다. 또한, 기류 발생 장치(60)의 배치 위치는, 익면에 발생하는 박리 등을 제어할 수 있는 위치이면 되고, 특별히 한정되는 것이 아니지만, 적확하게 흐름을 제어하기 위해서는, 날개(42)의 전연부로 하는 것이 바람직하다.
이와 같이 기류 발생 장치(60)에서는, 발생하는 플라즈마 유기류가 제1 전극(61)측으로부터 제2 전극(62)측을 향하여 흐르도록, 제1 전극(61) 및 제2 전극(62)이 배치되어 있다. 예를 들면 도 4에 나타낸 기류 발생 장치(60)에 있어서는, 플라즈마 유기류는, 날개(42)의 전연으로부터 익면의 배측(42a)을 향하여 흐른다.
기류 발생 장치(60)는, 예를 들면 도 3에 나타내는 바와 같이 날개(42)의 날개 근부(根部)로부터 날개 단부(端部)를 향하는 날개폭 방향에, 복수 독립하여 배치된다. 이 경우, 각 기류 발생 장치(60)는 각각 단독으로 제어되며, 예를 들면 제1 전극(61)과 제2 전극(62) 사이에 인가되는 전압을, 각 기류 발생 장치(60)마다 제어할 수 있다. 또한, 날개폭이 작을 경우에는, 예를 들면 하나의 기류 발생 장치(60)를 날개(42)의 전연부에 날개폭 방향에 배치할 수도 있다.
제1 전극(61) 및 제2 전극(62)은, 도 4에 나타내는 바와 같이 각각 케이블 배선(64)을 통해, 전압 인가 기구로서 기능하는 방전용 전원(65)에 전기적으로 접속되어 있다. 이 방전용 전원(65)을 기동함으로써, 제1 전극(61)과 제2 전극(62) 사이에 전압이 인가된다.
방전용 전원(65)은, 제1 전극(61)과 제2 전극(62) 사이에, 예를 들면 펄스 형상(양극성, 음극성, 음양의 양(兩)극성(교번(交番) 전압))의 펄스 변조 제어된 전압이나, 교류 형상(정현파, 단속 정현파)의 파형을 갖는 전압 등을 인가할 수 있다. 이와 같이, 방전용 전원(65)은, 전압값, 주파수, 전류 파형, 듀티비 등의 전류 전압 특성 등을 변화시켜, 제1 전극(61)과 제2 전극(62) 사이에 전압을 인가할 수 있다.
예를 들면, 복수의 기류 발생 장치(60)를 구비할 경우, 방전용 전원(65)은, 각 기류 발생 장치(60)마다 구비되어도 되고, 각 기류 발생 장치(60)를 독립하여 전압 제어할 수 있는 기능을 포함하는 하나의 전원으로 구성되어도 된다.
여기에서, 도 5는 실시형태의 풍력 발전 시스템(10)에 있어서의 펄스 변조 제어의 개요를 설명하기 위한 도면이다. 도 5에 나타내는 바와 같이 방전용 전원(65)으로부터의 인가 전압을 소정 시간 온(ON), 소정 시간 오프(OFF)로 하는 제어 방법을 펄스 변조 제어라고 하고, 그 주파수를 펄스 변조 주파수(f)라고 한다. 또한, 도 5에 나타난 기본 주파수란, 인가 전압의 주파수이다.
예를 들면, 전압을 펄스 변조 제어했을 때, 다음 식 (1)의 관계식을 충족시키도록, 펄스 변조 주파수(f)를 설정하는 것이 바람직하다.
0.1≤fC/U≤9 … 식 (1)
여기에서, C는 기류 발생 장치(60)가 구비된 날개부에 있어서의 날개(42)의 익현(翼弦) 길이이다. U는 기류 발생 장치(60)가 구비된 날개부에 있어서의, 날개의 주속도와 풍속을 합성한 상대 속도이다. 또한, 도 3에 나타내는 바와 같이 기류 발생 장치(60)를 날개폭 방향에 복수 구비했을 경우에도, 하나의 기류 발생 장치(60)는 날개폭 방향에 소정의 폭을 갖고 있다. 그 때문에, 하나의 기류 발생 장치(60)에 있어서도, 익현 길이(C)나 상대 속도(U)는 이 기류 발생 장치(60)의 폭방향으로 변화한다. 그래서, 익현 길이(C)나 상대 속도(U)로서, 각 기류 발생 장치(60)가 구비된 날개부에 있어서의 날개폭 방향의 평균값을 사용하는 것이 바람직하다.
여기에서, 상기 관계식을 충족시키도록 펄스 변조 주파수(f)를 설정함으로써, 상술한 도 1에 나타낸 점 B의 완전 실속 상태가 되었을 때에도, 파워 커브를 따른 정상 상태(예를 들면 도 1의 점 C)로 확실히 이행할 수 있다.
다음으로, 풍력 발전 시스템(10)의 제어 방법에 대해서 설명한다.
(제어예 1)
도 6은 실시형태의 풍력 발전 시스템(10)의 제어 구성을 모식적으로 나타낸 도면이다.
도 6에 나타내는 바와 같이 풍력 발전 시스템(10)은, 풍속 센서(100)와, 풍향 센서(101)와, 회전수 센서(102)와, 제어부(110)와, 제어 데이터베이스(120)와, 방전용 전원(65)과, 피치 각도 구동 기구(130)를 구비하고 있다.
풍속 센서(100)는 날개(42)에 유입하는 바람의 속도를 계측하는 센서이다. 풍향 센서(101)는 날개(42)에 유입하는 바람의 풍향을 계측하는 센서이다. 이들 풍속 센서(100)나 풍향 센서(101)는, 예를 들면 도 3에 나타내는 바와 같이 나셀(31)의 상측면에 설치된 풍향 풍속계(50) 등으로 구성된다.
회전수 센서(102)는 날개(42)(로터(40))의 회전수를 계측하는 센서이며, 예를 들면 나셀(31) 내에 설치된다.
제어 데이터베이스(120)는, 풍속, 풍향, 회전수 등의 계측값에 의거해서 특정하기 위한 실출력(측정 데이터에 의거하여 산출된 출력 또는 발전기에 있어서의 출력의 계측값), 설정 출력, 설정 영각, 피치 각도 등의 데이터를 기억하고 있다. 예를 들면 설정 출력은, 풍차에 있어서의 출력과 축방향 풍속의 관계를 나타내는 파워 커브에 따른 정보로서 기억시킬 수 있다.
또한, 제어 데이터베이스(120)는, 각 기류 발생 장치(60)가 구비된 날개부에 있어서의, 날개(42)의 익현 길이(예를 들면 상기한 바와 같이 평균적인 익현 길이)나 날개(42)의 날개 근부에서 날개폭 방향의 거리(예를 들면 기류 발생 장치(60)가 구비된 날개부에 있어서의 날개폭 방향의 평균값) 등의 데이터를 기억하고 있다. 또한, 제어 데이터베이스(120)에는, 상술한 식 (1)의 관계식 및 이 관계식이 충족시키는 범위가 기억되고, 펄스 변조 주파수(f)를 산출할 때에 이용된다.
이 제어 데이터베이스(120)는 메모리, 하드디스크 장치 등으로 구성된다. 또한, 제어 데이터베이스(120)에는, 도시하지 않은, 키보드, 마우스, 외부 입력 인터페이스 등을 통해, 데이터의 입력 등이 가능하다.
제어부(110)는, 풍속 센서(100), 풍향 센서(101), 회전수 센서(102) 등의 각센서로부터 출력된 정보 및 제어 데이터베이스(120)에 기억된 데이터에 의거하여, 회전 속도, 상대 속도, 영각, 피치 각도, 풍력 발전 시스템(10)에 있어서의 출력 등을 산출한다. 또한, 풍력 발전 시스템(10)에 있어서의 출력은, 발전기의 출력의 계측값을 사용해도 된다. 또한, 풍속 센서(100)로부터 출력된 정보, 및 제어 데이터베이스(120)에 기억된 파워 커브에 따른 정보 등에 의거하여, 미리 설정된 풍력 발전 시스템(10)에 있어서의 설정 출력 등을 특정한다.
또한, 제어부(110)는 상기 산출 결과에 의거하여, 방전용 전원(65), 피치 각도 구동 기구(130) 등을 제어한다. 이 제어부(110)는, 예를 들면 연산 장치(CPU), 판독 전용 메모리(ROM), 랜덤 액세스 메모리(RAM) 등으로 주로 구성되며, CPU에서는, ROM이나 RAM에 저장된 프로그램이나 데이터 등을 이용하여 각종 연산 처리를 실행한다. 이 제어부(110)가 실행하는 처리는, 예를 들면 컴퓨터 장치 등에 의해 실현된다. 또한, 제어부(110)는, 풍속 센서(100), 풍향 센서(101), 회전수 센서(102), 제어 데이터베이스(120), 방전용 전원(65), 피치 각도 구동 기구(130), 발전기 등의 각 기기와 전기 신호의 입출력이 가능하게 접속되어 있다.
방전용 전원(65)은, 제어부(110)로부터의 정보에 의거하여, 상술한 바와 같이, 제1 전극(61)과 제2 전극(62) 사이에 펄스 변조 제어된 전압 등을 인가한다.
피치 각도 구동 기구(130)는, 제어부(110)로부터의 정보에 의거하여, 날개(42)의 회전수에 따라, 날개(42)의 각도를 구동 제어한다. 또한, 피치각을 제어할 수 없는 날개를 사용할 경우에는, 피치 각도 구동 기구(130)는 불필요해진다.
다음으로, 풍력 발전 시스템(10)의 동작(제어예 1)에 대해서 설명한다.
도 7은 실시형태의 풍력 발전 시스템(10)의 동작(제어예 1)을 설명하기 위한 플로우 차트이다. 또한, 여기에서는, 도 3에 나타내는 바와 같이 날개(42)의 날개 근부로부터 날개 단부를 향하는 날개폭 방향에, 기류 발생 장치(60)를 복수 독립하여 배치했을 경우를 예시하여 설명한다.
우선, 제어부(110)는, 풍속 센서(100), 풍향 센서(101)에 의해 계측된 풍속, 풍향 등의 계측 정보, 회전수 센서(102)로부터 입력된 회전수, 제어 데이터베이스(120)에 기억된 데이터에 의거하여, 풍력 발전 시스템(10)의 실출력 및 축방향 풍속을 산출한다(스텝 S150).
또한, 실출력으로서, 발전기의 출력의 계측값을 사용해도 된다. 축방향 풍속은 풍속, 풍향 등의 계측 정보에 의거하여 산출된다.
계속해서 제어부(110)는, 이 실출력이 얻어졌을 때의 축방향 풍속에 있어서의, 미리 설정된 풍력 발전 시스템(10)에 있어서의 설정 출력을 제어 데이터베이스(120)에 기억된 데이터로부터 판독하여 실출력과 비교하여, 실출력이 설정 출력보다 낮은지의 여부를 판정한다(스텝 S151).
여기에서, 실출력이 설정 출력보다 낮다는 것은, 실출력이 설정 출력의, 예를 들면 80%를 하회했을 경우를 말한다.
스텝 S151에 있어서, 실출력이 설정 출력보다 낮지 않다고 판정했을 경우(스텝 S151의 No)에는, 스텝 S150의 처리를 다시 실행한다.
한편, 스텝 S151에 있어서, 실출력이 설정 출력보다 낮다고 판정했을 경우(스텝 S151의 Yes)에는, 제어부(110)는, 실출력이 설정 출력보다 낮은 상태가 되고나서 소정 시간을 초과하고 있는지의 여부를 판정한다(스텝 S152).
여기에서, 소정 시간은 5?10초 정도로 설정된다. 이 소정 시간을 설정함으로써, 로터의 관성에 의한 출력 응답 지연과, 박리 실속에 의한 출력 저하를 분별할 수 있다. 또한, 지속적이 아니라, 순간적으로 실출력이 설정 출력보다 낮은 상태가 될 경우를 제외할 수 있다.
스텝 S152에 있어서, 실출력이 설정 출력보다 낮은 상태가 되고나서 소정 시간을 초과하고 있지 않다고 판정했을 경우(스텝 S152의 No)에는, 스텝 S150의 처리를 다시 실행한다.
한편, 스텝 S152에 있어서, 실출력이 설정 출력보다 낮은 상태가 되고나서 소정 시간을 초과하고 있다고 판정했을 경우(스텝 S152의 Yes)에는, 제어부(110)는 방전용 전원(65)을 작동시켜, 기류 발생 장치(60)의 제1 전극(61)과 제2 전극(62) 사이에 펄스 변조 제어된 전압을 인가하고, 플라즈마 유기류를 발생시킨다(스텝 S152).
또한, 이때, 상술한 식 (1)의 관계식을 충족시키도록, 제어부(110)는 펄스 변조 주파수(f)를 설정한다. 제1 전극(61)과 제2 전극(62) 사이가 일정한 임계값 이상의 전위차가 되면, 제1 전극(61)의 근방에 방전이 유기된다. 이때 생성된 전자나 이온은, 전계(電界)에 의해 구동되며, 그들이 기체 분자와 충돌함으로써 운동량이 기체 분자로 이행한다. 이에 따라, 제1 전극(61) 부근에 플라즈마 유기류가 발생한다.
계속해서 제어부(110)는, 풍속 센서(100), 풍향 센서(101)에 의해 계측된 풍속, 풍향 등의 계측 정보, 회전수 센서(102)로부터 입력된 회전수, 제어 데이터베이스(120)에 기억된 데이터에 의거하여, 기류 발생 장치(60)를 작동한 상태에 있어서의 풍력 발전 시스템(10)의, 제2 실출력으로서 기능하는 실출력 및 축방향 풍속을 산출한다(스텝 S154). 또한, 실출력으로서, 발전기의 출력의 계측값을 사용해도 된다.
계속해서 제어부(110)는, 이 실출력(제2 실출력)이 얻어졌을 때의 축방향 풍속에 있어서의, 미리 설정된 풍력 발전 시스템(10)에 있어서의, 제2 설정 출력으로서 기능하는 설정 출력을 제어 데이터베이스(120)에 기억된 데이터로부터 판독하여 실출력(제2 실출력)과 비교하여, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮은지의 여부를 판정한다(스텝 S155).
여기에서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮다는 것은, 상술한 경우와 마찬가지로, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)의, 예를 들면 80%를 하회했을 경우를 말한다. 또한, 제어부(110)는, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮은지의 여부를 판정하는 대신에, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)의, 예를 들면 80% 이상에 달했는지의 여부를 판정해도 된다.
스텝 S155에 있어서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮다고 판정했을 경우(스텝 S155의 Yes)에는, 스텝 S153으로부터의 처리를 다시 실행한다. 즉, 기류 발생 장치(60)가 작동되고 있는 상태가 유지된다.
한편, 스텝 S155에 있어서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮지 않다고 판정했을 경우(스텝 S155의 No)에는, 제어부(110)는, 방전용 전원(65)의 작동을 정지하고, 기류 발생 장치(60)의 제1 전극(61)과 제2 전극(62) 사이에의 전압의 인가를 정지한다(스텝 S156).
여기에서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮지 않은 상태로 이행한 후에, 기류 발생 장치(60)를 정지시켜도, 그 상태를 유지할 수 있으며, 다시 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮은 상태로 이행하지 않는다. 그 때문에, 기류 발생 장치(60)에 있어서 소비되는 에너지를 최소한으로 억제할 수 있다.
또한, 상기한 풍력 발전 시스템(10)의 동작(제어예 1)에서는, 복수 구비된 기류 발생 장치(60) 중 어느 것에 대해서도 같은 제어가 이루어지는 일례를 나타내고 있다.
이와 같이, 풍력 발전 시스템(10)을 동작시킴으로써, 날개(42) 전연의 하류에 있어서 흐름이 박리하여, 상술한 도 1에 나타낸 점 B의 완전 실속 상태가 되었을 때에도, 파워 커브를 따른 정상의 상태(예를 들면 도 1의 점 C)로 확실히 이행할 수 있다.
또한, 여기에서는, 실출력과 이론 파워 커브 상의 설정 출력을 비교하여 제어하는 예를 나타냈지만, 이에 한정되는 것이 아니다. 상기한 제어는, 예를 들면 실토크와 이론 설정 토크의 비교, 혹은 실회전수와 이론 설정 회전수의 비교함에 의해서도 실현할 수 있다. 기류 발생 장치(60)가 작동하고 있을 때의, 실토크는 제2 실토크로서, 실회전수는 제2 실회전수로서 각각 기능한다. 또한, 기류 발생 장치(60)가 작동하고 있을 때의, 설정 토크는 제2 설정 토크로서, 설정 회전수는 제2 설정 회전수로서 각각 기능한다.
여기에서, 실토크란, 로터 토크를 의미하고 있다. 로터 토크는, 토크계에 의해 계측되어도 되고, 아래에 나타내는 관계식 (2), (3)을 이용하여 실출력으로부터 산출되어도 된다.
Trot=I×dω/dt+Tgen … 식 (2)
Tgen=P/(2πω/60) … 식 (3)
여기에서, Trot는 로터 토크, Tgen은 발전기 토크, I는 관성 모멘트, ω은 날개(42)(로터(40))의 회전수(rpm), P는 실출력을 나타낸다.
(제어예 2)
여기에서는, 상술한 제어예 1의 제어에 더하여, 날개(42)의 전연에 있어서의 영각에 의거하는 제어를 더하며, 기류 발생 장치(60)를 개별적으로 제어하는 구성으로 하고 있다. 또한, 풍력 발전 시스템(10)의 제어 구성은 도 6에 나타낸 구성과 같다.
풍력 발전 시스템(10)의 동작(제어예 2)에 대해서 설명한다.
도 8은 실시형태의 풍력 발전 시스템(10)의 동작(제어예 2)을 설명하기 위한 플로우 차트이다. 또한, 여기에서는, 도 3에 나타내는 바와 같이 날개(42)의 날개 근부로부터 날개 단부를 향하는 날개폭 방향에, 기류 발생 장치(60)를 복수개 독립하여 배치했을 경우를 예시해서 설명한다.
우선, 제어부(110)는, 풍속 센서(100), 풍향 센서(101)에 의해 계측된 풍속, 풍향 등의 계측 정보, 회전수 센서(102)로부터 입력된 회전수, 제어 데이터베이스(120)에 기억된 데이터에 의거하여, 풍력 발전 시스템(10)의 실출력 및 축방향 풍속을 산출한다(스텝 S160).
또한, 실출력으로서, 발전기의 출력의 계측값을 사용해도 된다. 축방향 풍속은 풍속, 풍향 등의 계측 정보에 의거하여 산출된다.
계속해서 제어부(110)는 이 실출력이 얻어졌을 때의 축방향 풍속에 있어서의, 미리 설정된 풍력 발전 시스템(10)에 있어서의 설정 출력을 제어 데이터베이스(120)에 기억된 데이터로부터 판독하여 실출력과 비교하여, 실출력이 설정 출력보다 낮은지의 여부를 판정한다(스텝 S161).
여기에서, 실출력이 설정 출력보다 낮다는 것은, 실출력이 설정 출력의, 예를 들면 80%를 하회했을 경우를 말한다.
스텝 S161에 있어서, 실출력이 설정 출력보다 낮지 않다고 판정했을 경우(스텝 S161의 No)에는, 스텝 S160의 처리를 다시 실행한다.
한편, 스텝 S161에 있어서, 실출력이 설정 출력보다 낮다고 판정했을 경우(스텝 S161의 Yes)에는, 제어부(110)는, 실출력이 설정 출력보다 낮은 상태가 되고나서 소정 시간을 초과하고 있는지의 여부를 판정한다(스텝 S162).
여기에서, 소정 시간은 5?10초 정도로 설정된다. 이 소정 시간을 설정함으로써, 로터의 관성에 의한 출력 응답 지연과, 박리 실속에 의한 출력 저하를 분별할 수 있다. 또한, 지속적이 아니라, 순간적으로 실출력이 설정 출력보다 낮은 상태가 될 경우를 제외할 수 있다.
스텝 S162에 있어서, 실출력이 설정 출력보다 낮은 상태가 되고나서 소정 시간을 초과하고 있지 않다고 판정했을 경우(스텝 S162의 No)에는, 스텝 S160의 처리를 다시 실행한다.
한편, 스텝 S162에 있어서, 실출력이 설정 출력보다 낮은 상태가 되고나서 소정 시간을 초과하고 있다고 판정했을 경우(스텝 S162의 Yes)에는, 제어부(110)는 입력된 계측 정보 및 제어 데이터베이스(120)에 기억된 데이터에 의거하여, 영각을 산출한다(스텝 S163).
여기에서, 영각은, 각 기류 발생 장치(60)가 설치된 날개폭 방향의 각 위치에 있어서의 날개 요소에 대하여 산출된다. 예를 들면, 날개(42)의 전연의 날개폭 방향에 5개의 기류 발생 장치(60)가 독립하여 설치되어 있을 경우에는, 각 기류 발생 장치(60)가 설치된 날개폭 방향의 5개소에 있어서의 날개 요소에 대하여 영각이 산출된다. 또한, 하나의 기류 발생 장치(60)는, 날개폭 방향에 소정의 폭을 갖고 있기 때문에, 영각으로서, 예를 들면 하나의 기류 발생 장치(60)가 구비된 날개부에 있어서의 날개폭 방향의 영각의 평균값을, 그 하나의 기류 발생 장치(60)가 설치된 부분의 영각으로서 사용하는 것이 바람직하다. 또한, 날개 요소란, 날개(42)의 날개폭 방향에 대하여 수직인 날개(42)의 단면을 의미한다.
계속해서 제어부(110)는, 이 영각이 산출되었을 때의 풍속 및 날개(42)의 회전수에 있어서의, 미리 설정된 각각의 날개 전연에 있어서의 영각을 제어 데이터베이스(120)에 기억된 데이터로부터 판독하여 산출된 영각과 비교한다. 미리 설정된 각각의 날개 전연에 있어서의 영각으로서, 예를 들면 전연 형상, 익형, 익현 길이, 레이놀드수(Reynold number) 등에 의거하여 결정되는, 실속이 생기는 각도(실속 영각)를 사용한다. 그리고, 산출된 영각이 설정된 영각보다 큰지의 여부를 판정한다(스텝 S164).
여기에서, 상술한 바와 같이, 영각은 각 기류 발생 장치(60)가 설치된 부분의 각각의 날개 요소에 대하여 산출되기 때문에, 설정된 영각도, 그 각 날개 요소에 대응하는 영각을 사용한다. 즉, 스텝 S164의 판정은, 각 날개 요소마다 행해진다. 그 때문에, 산출된 영각이 설정된 영각보다 크다고 판정되는 날개 요소나, 산출된 영각이 설정된 영각 이하라고 판정되는 날개 요소가 존재한다.
스텝 S164에 있어서, 산출된 영각이 설정된 영각 이하라고 판정되었을 경우(스텝 S164의 No)에는, 그 날개 요소에 대해서는, 스텝 S160으로부터의 처리를 다시 실행한다.
한편, 스텝 S164에 있어서, 산출된 영각이 설정된 영각보다 크다고 판정되었을 경우(스텝 S164의 Yes)에는, 제어부(110)는, 그 날개 요소에 대한 방전용 전원(65)을 작동시키며, 기류 발생 장치(60)의 제1 전극(61)과 제2 전극(62) 사이에, 펄스 변조 제어된 전압을 인가하고, 플라즈마 유기류를 발생시킨다(스텝 S165). 즉, 산출된 영각이 설정된 영각보다 크다고 판정된 날개 요소의 부분에 설치되어 있는 기류 발생 장치(60)만이 선택적으로 작동된다.
또한, 이때, 상술한 식 (1)의 관계식을 충족시키도록, 제어부(110)는 각 기류 발생 장치의 펄스 변조 주파수(f)를 설정한다.
계속해서 제어부(110)는, 풍속 센서(100), 풍향 센서(101)에 의해 계측된 풍속, 풍향 등의 계측 정보, 회전수 센서(102)로부터 입력된 회전수 및 제어 데이터베이스(120)에 기억된 데이터에 의거하여, 기류 발생 장치(60)를 작동한 상태에 있어서의 풍력 발전 시스템(10)의, 제2 실출력으로서 기능하는 실출력 및 축방향 풍속을 산출한다(스텝 S166). 또한, 실출력으로서, 발전기의 출력의 계측값을 사용해도 된다.
또한, 영각은, 각 기류 발생 장치(60)가 설치된 부분의 각각의 날개 요소에 대하여 산출되지만, 풍력 발전 시스템(10)의 출력은 풍력 발전 시스템(10) 전체로해서 얻어지는 하나의 값이다.
계속해서 제어부(110)는, 이 실출력(제2 실출력)이 얻어졌을 때의 축방향 풍속에 있어서의, 미리 설정된 풍력 발전 시스템(10)에 있어서의, 제2 설정 출력으로서 기능하는 설정 출력을 제어 데이터베이스(120)에 기억된 데이터로부터 판독하여 실출력(제2 실출력)과 비교하여, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮은지의 여부를 판정한다(스텝 S167).
여기에서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮다는 것은, 상술한 경우와 마찬가지로, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)의, 예를 들면 80%를 하회했을 경우를 말한다. 또한, 제어부(110)는, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮은지의 여부를 판정하는 대신에, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)의, 예를 들면 80% 이상에 달했는지의 여부를 판정해도 된다.
스텝 S167에 있어서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮다고 판정했을 경우(스텝 S167의 Yes)에는, 스텝 S165로부터의 처리를 다시 실행한다. 즉, 산출된 영각이 설정된 영각보다 크다고 판정된 날개 요소의 부분에 설치되어 있는 기류 발생 장치(60)만이 선택적으로 작동되고 있는 상태가 유지된다.
한편, 스텝 S167에 있어서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮지 않다고 판정했을 경우(스텝 S167의 No)에는, 제어부(110)는, 방전용 전원(65)의 작동을 정지하고, 기류 발생 장치(60)의 제1 전극(61)과 제2 전극(62) 사이에의 전압의 인가를 정지한다(스텝 S156). 즉, 산출된 영각이 설정된 영각보다 크다고 판정된 날개 요소의 부분에 설치되어 있는 기류 발생 장치(60)의 작동이 정지된다.
여기에서, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮지 않은 상태로 이행한 후에, 기류 발생 장치(60)를 정지시켜도 그 상태를 유지할 수 있어, 다시, 실출력(제2 실출력)이 설정 출력(제2 설정 출력)보다 낮은 상태로 이행하지 않는다. 그 때문에, 기류 발생 장치(60)에 있어서 소비되는 에너지를 최소한으로 억제할 수 있다.
상기한 풍력 발전 시스템(10)의 동작(제어예 2)에서는, 조건에 따라, 복수 구비된 기류 발생 장치(60)를 개별적으로 독립하여 선택적으로 제어할 수 있다. 이와 같이, 풍력 발전 시스템(10)을 동작시킴으로써, 날개(42) 전연의 하류에 있어서 흐름이 박리하여, 상술한 도 1에 나타낸 점 B의 완전 실속 상태가 되었을 때에도, 파워 커브를 따른 정상의 상태(예를 들면 도 1의 점 C)로 확실히 이행할 수 있다.
(그 밖의 제어예)
도 18은 실시형태의 풍력 발전 시스템(10)에 있어서의 다른 제어 구성을 모식적으로 나타낸 도면이다. 도 18에 나타내는 바와 같이, 제어 구성은 계측부(180), 제어부(181), 제어 데이터베이스(182)로 구성된다.
계측부(180)에는, 날개 요소 상태 계측부, 환경 정보 계측부, 풍차 상태 계측부, 발전기 상태 계측부가 포함된다. 날개 요소 상태 계측부에서는 대칭으로 하는 날개 요소의 애지머스각(azimuth angle)이 계측된다. 환경 정보 계측부에서는 기압, 기온, 풍속, 풍향, 난류 강도가 계측된다. 풍차 상태 계측부에서는 로터 토크, 회전수, 요각이 계측된다. 발전기 상태 계측부에서는 전압, 전류, 출력, 발전기 토크가 계측된다.
제어 데이터베이스(182)에는 대상 날개 요소마다의 반경 위치, 익형, 익현 길이, 비틀림, 날개의 설정각, 허브 높이, 각 익형 실속각(실속 영각을 포함함) 등의 풍차 형상의 파라미터가 저장되어 있다.
제어부(181)는 상기한 계측 정보 및 파라미터를 이용하여, 동점도(動粘度), 유입 속도, 레이놀드수, 마하수, 영각 등의 각종 물리량을 연산한다. 그리고, 제어부(181)는, 연산한 결과에 의거하여, 방전용 전원, 피치 각도 구동 기구, 요 각도 구동 기구, 발전기 제어 기구, 계통 연휴 제어 기구를 제어하는 제어 신호를 출력한다.
여기에서, 방전용 전원, 피치 각도 구동 기구는, 상술한 방전용 전원(65), 피치 각도 구동 기구(130)와 마찬가지인 기능을 갖는다. 또한, 제어부(181)는 상술한 제어부(110)와 동일한 구성을 구비한다. 요 각도 구동 기구는, 계측부(180)로부터의 제어 신호에 의거하여, 요 구동 모터를 제어하여, 타워(30)에 대한 나셀(31)의 수평 방향의 요잉(yawing) 각도를 설정한다. 발전기 제어 기구는 계측부(180)로부터의 제어 신호에 의거하여, 발전기의 권선 전류를, 그것에 접속된 인버터, 컨버터의 설정값을 조정하는 것 등으로 조정하여, 발전기의 토크를 제어한다. 계통 연휴 제어 기구는, 계측부(180)로부터의 제어 신호에 의거하여, 소외(所外)의 계통에 접속되어 있는 단자의 전압을 제어함으로써, 계통에의 통전량을 제어한다.
이 제어 구성을 이용한 제어예로서, 소정의 날개 요소의, 현상(現狀)의 영각과, 실속이 생기는 영각(실속 영각)이 결정되며, 그들의 비교 결과에 의거하여, 방전용 전원이 제어되는 순서를 다음에 나타낸다.
우선, 제어부(181)는 날개 요소의 반경 위치와 애지머스각의 계측값, 허브 높이의 정보에 의거하여, 날개 요소의 고도를 산출하고, 풍속 및 풍향의 계측값과 요각의 계측값을 맞춰, 날개 요소 위치에 있어서의 자연풍의 풍속 및 풍향을 산출한다.
제어부(181)는 날개 요소의 반경 위치와 회전수로부터 회전에 의한 상대풍(相對風)의 풍속 및 풍향을 산출한다. 제어부(181)는, 이들과, 날개의 장착각, 비틀림의 정보를 맞춰, 날개 요소에 대한 상대풍의, 그 순간에 있어서의 유입 속도와 영각을 산출한다.
또한, 제어부(181)는, 기온과 기압의 계측 정보로부터 동점도를 산출하고, 날개 요소의 익현 길이와, 상기 산출된 날개 요소에 대한 상대풍의 유입 속도로부터, 레이놀드수와 마하수를 산출한다. 제어부(181)는, 이들과, 난류 강도의 계측값, 날개 요소의 익형의 정보를 바탕으로, 이 날개 요소에 있어서의 실속을 생기게 하는 영각을 참조하여, 설정된 영각으로서 채용한다.
제어부(181)는 산출된 영각과 설정된 영각을 비교하여, 산출한 영각이 설정된 영각보다 크다고 판정되었을 경우, 익면에서의 박리가 생기고 있다고 판정하고, 이 날개 요소에 방전을 생기게 하도록 방전용 전원을 동작시킨다. 이때, 방전용 전원의 펄스 변조 주파수(f)는, 후술하는 바와 같이, 상술한 유입 속도를 U, 익현 길이를 C로 하여, fC/U가 소정의 범위가 되도록 설정된다.
이와 같이, 이 제어 구성을 사용함으로써, 익면에 박리를 검출하는 센서를 구비하지 않고, 각 날개 요소에 있어서의 박리의 유무를 판정하여, 그에 따라 방전용 전원의 구동을 제어하는 것이 가능해져, 시스템의 신뢰성의 향상이나 시스템의 저비용화를 도모할 수 있다.
(회전수에 의거하는 제어)
상기한 제어 구성을 이용한 다른 제어예로서, 회전수의 계측값을 이용한 기류 발생 장치의 제어 방법의 예를 나타낸다. 도 19는 발전기 토크 목표값과, 목표 회전수와 현상 회전수의 차의 관계를 나타내는 도면이다.
우선, 주속비 일정 제어에 의한 발전기의 제어의 예를 나타낸다. 주속비 일정 제어란, 상술한 바와 같이, 부분 부하 영역에 있어서, 풍속 풍향의 변동이 있어도, 항상 설계 주속비로 운전되도록 발전기 토크를 제어함을 말한다.
제어부(181)는, 소정의 시간 간격 사이의 풍속의 평균값으로부터, 목표 주속비를 달성하기 위한 회전수를 산출하고, 산출된 회전수를 목표 회전수로 한다.
계속해서 제어부(181)는, 도 19에 나타내는 바와 같이 발전기 토크 목표값을 종축, 현상 회전수에서 목표 회전수를 뺀 회전수차(Δω)를 횡축으로 하는 제어 곡선을 설정한다. 여기에서, 회전수차(Δω)에 따라, 종축의 발전기 토크 목표값으로 설정된다.
도 19에 나타난 제어 곡선은, 예를 들면 시그모이드 함수(sigmoid function)에 의거하여 설정할 수 있다. 이 시그모이드 함수에 의거하는 제어 곡선의 한쪽은, 발전기 토크 목표값의 상한값에 점근(漸近)하고, 제어 곡선의 다른쪽은, 발전기 토크 목표값의 하한값에 점근해 있다.
현상 회전수가 목표 회전수보다 클 때(회전수차(Δω)가 0보다 클 때)에는, 제어부(181)는 제어 곡선에 의거하여 발전기 토크 목표값을 증가시키고, 현상 회전수를 감소시켜, 목표 회전수에 가까이하기 위한 제어를 행한다.
한편, 현상 회전수가 목표 회전수보다 작을 때(회전수차(Δω)가 0보다 작을 때)에는, 제어부(181)는 제어 곡선에 의거하여 발전기 토크 목표값을 감소시키고, 현상 회전수를 증가시켜, 목표 회전수에 가까이하기 위한 제어를 행한다.
여기에서, 현상 회전수가 목표 회전수와 동등할 때(회전수차(Δω)가 0일 때)에는, 발전기 토크 목표값이, 목표 회전수에서의 로터 토크의 이론값과 일치한다.
상기한 바와 같이, 제어부(181)는, 풍속과 현상 회전수의 계측값으로부터 발전기 토크 목표값을 산출하며, 이 발전기 토크 목표값을 발생시키도록 발전기 또는 부하를 제어한다.
이와 같은 발전기의 제어를 할 때, 제어부(181)는, 현상 회전수가 목표 회전수보다 작은 영역에 있을 때에 방전용 전원을 작동(ON)시킨다. 익면에서 박리가 생기고 있을 경우에는, 박리가 억제되며, 날개 요소의 양력이 증가하고, 로터 토크가 증가하여, 보다 빨리 목표 회전수에 도달하는 것이 가능해진다. 또한, 제어부(181)는, 현상 회전수가 목표 회전수보다 클 경우에는, 방전용 전원은 작동되지 않는다(OFF). 이에 따라, 로터 토크가 감소하며, 보다 빨리 목표 회전수에 도달하는 것이 가능해진다.
여기에서, 방전용 전원을 작동시킨다는 것은, 기류 발생 장치(60)에 있어서 연속 또는 펄스 변조 제어에 의해 플라즈마 유기류를 발생시키는 것을 의미하고, 방전용 전원을 작동시키지 않는다는 것은, 기류 발생 장치(60)에 있어서, 연속 또는 펄스 변조 제어에 있어서도 플라즈마 유기류를 발생시키지 않음을 의미한다.
(로터 토크에 의거하는 제어)
다음으로, 상술한 제어 구성을 이용한 다른 제어예로서, 로터 토크의 계측값을 이용한 기류 발생 장치의 제어의 예를 나타낸다. 여기에서는, 로터 토크는 토크계를 이용하여 계측되어도 되고, 상술한 식 (2)로부터 산출된 값을 이용해도 된다.
제어부(181)는 회전수, 발전기 토크의 계측값을 이용하여 로터 토크를 산출한다. 여기에서, 발전기 토크는 토크계를 이용하여 계측되어도 되고, 상술한 식 (3)으로부터 산출된 값을 이용해도 된다. 또한, 출력(P)은 전력계를 이용하여 계측된 것이어도 되고, 전압, 전류의 계측값의 곱을 이용해도 된다.
여기에서는, 후에 설명하지만, 방전용 전원의 동작은, 박리 상태의 검출용 동작 및 흐름 제어용 동작의 쌍방의 기능을 구비하고 있다.
도 20a 및 도 20b는 본 제어예에 있어서의, 흐름의 박리 상태의 검출용 동작시의 로터 토크의 시간 변화를 나타내는 도면이다. 도 21은 검출용 동작 및 제어 동작시에 있어서의 방전용 전원의 동작을 설명하기 위한 도면이다.
우선, 자연풍의 변동에 따라, 로터 토크가 변동하면서 추이하고 있는 상태에서의 검출용 동작을 설명한다. 도 20a 및 도 20b에 나타내는 바와 같이 제어부(181)는 시각(t0)에 있어서, 방전용 전원을 시간(Texam) 동안 작동(ON)한다. 이때, 익면에서 흐름의 박리가 발생하고 있을 경우에는, 방전용 전원이 작동함으로써 날개의 양력이 향상하기 때문에, 로터 토크가 증대한다. 또한, 로터 토크가 증대하지 않을 경우에는, 익면에서의 흐름의 박리는 발생하고 있지 않게 된다.
그래서, 제어부(181)는 도 20a 및 도 20b에 나타내는 바와 같이 방전용 전원을 작동하는 타이밍(시각(t0)) 전의 시간(Δt1) 동안, 및 방전용 전원을 작동하는 타이밍 후의 시간(Δt2) 동안의 각각에 있어서의 로터 토크의 평균값을 산출한다. 그리고, 제어부(181)는 시간(Δt1) 동안과 시간(Δt2) 동안에 있어서의 로터 토크의 평균값을 비교한다.
로터 토크의 평균값의 차(ΔTr1)가 소정의 임계값 이상이 될 경우(도 20a), 방전용 전원을 작동시키는 것에 의한 효과를 얻을 수 있게 된다. 즉, 도 20a에 나타내는 바와 같이 로터 토크의 평균값의 차(ΔTr1)가 소정의 임계값 이상이 될 경우, 방전용 전원을 작동시키기 전에 있어서, 흐름의 박리가 발생하고 있었다고 판정한다.
한편, 로터 토크의 평균값의 차(ΔTr1)가 소정의 임계값을 초과하지 않을 경우(도 20b), 방전용 전원을 작동시키는 것에 의한 효과를 얻을 수 없는 상태, 즉 방전용 전원을 작동시키기 전에 있어서, 흐름의 박리가 발생하고 있지 않은 상태라고 판정한다.
또한, 방전용 전원을 시간(Texam) 동안 작동하는 상태가, 도 21에서는 검출용 동작이 ON 상태이다.
제어부(181)는 로터 토크의 평균값의 차(ΔTr1)에 의거하여, 흐름의 박리가 발생하고 있다고 판정했을 경우, 도 21의 제어용 동작 B에 나타내는 바와 같이 검출용 동작 후에 있어서도 소정 시간 연속하여 방전용 전원을 작동시킨다. 그리고, 제어부(181)는 소정 시간 경과 후, 방전용 전원을 시간(Texam) 동안 작동시키고, 다시 검출용 동작을 행한다.
한편, 제어부(181)는 로터 토크의 평균값의 차(ΔTr1)에 의거하여, 흐름의 박리가 발생하고 있지 않다고 판정했을 경우, 도 21의 제어용 동작 A에 나타내는 바와 같이 소정 시간, 방전용 전원을 작동시키지 않는다. 그리고, 제어부(181)는 소정 시간 경과 후, 방전용 전원을 시간(Texam) 동안 작동시키고, 다시 검출용 동작을 행한다.
이와 같이, 검출용 동작시의 로터 토크의 시간 변화를 검지함으로써 흐름의 박리의 유무를 검지할 수 있다. 또한, 이 검지 결과에 의거하여, 기류 발생 장치(60)를 동작시킴으로써, 흐름을 제어하여 흐름의 박리를 소멸시킬 수 있다.
다음으로, 검출용 동작에 의해 흐름의 박리 상태를 검지한 후, 흐름이 박리한 채인 상태인지, 부착된 상태로 되어 있는지를 판정하는 동작을 포함한 제어예 에 대해서 설명한다. 도 22a 및 도 22b는 본 제어예에 있어서의 검출용 동작시 및 그 후의 로터 토크의 시간 변화를 나타내는 도면이다. 도 23은 검출용 동작시 및 제어 동작시에 있어서의 방전용 전원의 동작을 설명하기 위한 도면이다.
여기에서는, 검출용 동작에 있어서, 흐름의 박리가 발생하고 있다고 판정되었을 경우의 동작에 대해서 설명하지만, 도 23에는 검출용 동작에 있어서, 흐름의 박리가 발생하고 있지 않다고 판정했을 경우에 있어서의 제어용 동작 A도 나타내고 있다.
제어부(181)는 로터 토크의 평균값의 차(ΔTr1)에 의거하여, 흐름의 박리가 발생하고 있다고 판정했을 경우, 도 23의 제어용 동작 C에 나타내는 바와 같이 방전용 전원을 시간(Texam) 동안 작동 후, 일단, 방전용 전원의 작동을 정지한다.
여기에서, 익면에서 흐름의 박리가 발생하고 있을 경우에는, 방전용 전원을 정지함으로써 날개의 양력이 저하하고, 로터 토크가 감소한다. 또한, 로터 토크가 감소하지 않을 경우에는, 익면에서의 흐름의 박리는 소멸해 있게 된다.
그래서, 제어부(181)는 도 22a 및 도 22b에 나타내는 바와 같이 방전용 전원을 정지하기(시각 t0으로부터 Texam 후) 전의 시간(Δt3) 동안, 및 방전용 전원을 정지한 후의 시간(Δt4) 동안의 각각에 있어서의 로터 토크의 평균값을 산출한다. 그리고, 제어부(181)는 시간(Δt3) 동안과 시간(Δt4) 동안에 있어서의 로터 토크의 평균값을 비교한다.
로터 토크의 평균값의 차(ΔTr2)가 소정의 임계값 이상이 될 경우(도 22a), 흐름의 박리가 발생하고 있다고 판정한다.
한편, 로터 토크의 평균값의 차(ΔTr2)가 소정의 임계값을 초과하지 않을 경우(도 22b), 흐름은 익면에 부착된 흐름이 되며, 흐름의 박리는 소멸했다고 판정한다.
제어부(181)는 로터 토크의 평균값의 차(ΔTr2)에 의거하여, 흐름의 박리가 발생하고 있다고 판정했을 경우, 도 23의 제어용 동작 C에 나타내는 바와 같이 소정 시간, 방전용 전원을 작동시킨다. 그리고, 소정 시간 경과 후에 방전용 전원을 정지하고, 그 후, 방전용 전원을 시간(Texam) 동안 작동시켜, 다시 검출용 동작을 행한다.
또한, 로터 토크의 평균값의 차(ΔTr2)가 소정의 임계값 이상이 될 경우, 제어부(181)는, 도 23의 제어용 동작 D에 나타내는 바와 같이 검출용 동작을 반복하여 행하도록 방전용 전원을 작동시켜도 된다. 이 경우에는, 예를 들면 매회의 검출용 동작에 대하여, 상기한 로터 토크의 평균값의 차(ΔTr2)를 검출하여, 흐름의 박리의 유무를 검지해도 된다. 또한, 검출용 동작을 소정의 횟수 행한 후에, 상기한 로터 토크의 평균값의 차(ΔTr2)를 검출하여, 흐름의 박리의 유무를 검지해도 된다.
이와 같이, 검출용 동작시의 로터 토크의 시간 변화를 검지함으로써, 검출용 동작의 전후에 있어서의 흐름의 박리의 유무를 검지할 수 있다. 또한, 검출용 동작 후에 있어서의 흐름의 박리의 유무를 검지할 수 있으므로, 검출용 동작 후에 있어서도 흐름의 박리가 생기고 있을 때에 한하여, 방전용 전원, 즉 기류 발생 장치(60)를 효과적으로 작동시킬 수 있다. 그리고, 기류 발생 장치(60)를 동작시킴으로써, 흐름을 제어하여 흐름의 박리를 소멸시킬 수 있다.
여기에서, 날개 상에 기류 발생 장치(60)가 복수 설치되어 있을 경우, 소정의 기류 발생 장치(60)에 있어서, 검출용 동작과 제어용 동작의 쌍방을 행해도 된다. 또한, 검출용 동작을 행하는 기류 발생 장치(60)와, 제어용 동작을 행하는 기류 발생 장치(60)를 상이한 것으로 해도 된다. 검출용 동작을 행하는 기류 발생 장치(60)의 개수를 삭감함으로써, 소비 전력의 저감을 도모할 수 있다.
또한, 상기한 제어예에서는, 검출용 동작에 의해 박리 상태를 검출할 경우의 계측값으로서 로터 토크를 이용하고 있지만, 출력이나 회전수를 계측값으로서 이용해도, 마찬가지인 제어가 가능하다.
(기류 발생 장치(60)에 인가하는 전압의 영향)
(1) 양력 계수(C)와 영각(α)의 관계
도 9는 전연 박리형 단독 날개의 양력 계수(C)와 영각(α)의 관계를 나타내는 도면이다. 도 9에 나타낸 결과는, 2차원 날개의 풍동 시험에 의해 얻어진 결과이다.
여기에서, 단독 날개의 전연에는, 도 4에 나타낸 구성과 마찬가지로, 기류 발생 장치(60)가 구비되어 있다. 도 9에는 실속했을 때에, 기류 발생 장치(60)를 작동시키지 않을 경우(OFF), 기류 발생 장치(60)의 제1 전극(61)과 제2 전극(62) 사이에 펄스 변조 제어된 전압을 인가했을 경우(펄스), 기류 발생 장치(60)의 제1 전극(61)과 제2 전극(62) 사이에 펄스 변조 제어를 행하지 않고, 연속적으로 전압을 인가했을 경우(연속)가 나타나 있다.
전연 박리형 날개에 있어서의 양력 특성에서는, 영각(α)이 임계값을 초과하면 양력 계수(C)가 대폭 저하하는 실속 현상이 생긴다. 실속 현상이 생긴 날개의 배측(음압측)의 익면에서는, 후술하지만 대규모의 박리가 생기고 있다.
기류 발생 장치(60)를 작동시키면, 연속 및 펄스 중 어느 경우에 있어서도, 실속이 생기는 영각(α)이 커진다. 그러나, 연속일 경우와 펄스일 경우에서, 양력 계수(C)에 대한 영각(α)이 상이하다. 연속일 경우, 실속이 생기는 영각(α)이 커지고, 최대의 양력 계수(C)가 증가하지만, 영각(α)을 더 증가시키면 결국 실속을 생기게 하여, 양력 계수(C)가 급격히 저하하고 있다.
한편, 펄스일 경우에는, OFF일 경우에 있어서 실속하는 영각(α)보다 큰 측의 영역에 있어서, 영각(α)의 증가에 수반하는 양력 계수(C)의 감소율이, OFF일 경우에 있어서의 영각(α)의 증가에 수반하는 양력 계수(C)의 감소율보다 작아져 있다. 즉, 양력 계수(C)의 감소율이 작음을 알 수 있다.
도 10은 날개의 전연에 있어서 흐름이 실속했을 때, 기류 발생 장치(60)를 작동시키지 않을 경우(OFF)의 날개를 따르는 흐름을 모식적으로 나타내는 도면이다. 도 11은 날개의 전연에 있어서 흐름이 실속했을 때, 기류 발생 장치(60)에 연속적으로 전압을 인가했을 경우(연속)의 날개를 따르는 흐름을 모식적으로 나타내는 도면이다. 도 12는 날개의 전연에 있어서 흐름이 실속했을 때, 기류 발생 장치(60)에 펄스 변조 제어된 전압을 인가했을 경우(펄스)의 날개를 따르는 흐름을 모식적으로 나타내는 도면이다.
도 10?도 12에 나타난 흐름은 PIV(Particle Image Velocimetry)를 사용하여 계측한 결과이다.
OFF일 경우에는, 날개의 전연 하류의 배측(음압측)에서, 대규모의 박리가 생기고 있음을 알 수 있다. 연속일 경우, 도 11에 나타내는 바와 같이 완전히 흐름이 부착되어 있음을 알 수 있다. 펄스일 경우에는, 도 12에 나타내는 바와 같이 완전한 부착이 아니지만, 흐름을 끌어당기는 효과가 있음을 알 수 있다. 이와 같이, 연속일 경우와 펄스일 경우에는, 기류 제어 효과로서 크게 상이한 현상이 생기고 있음을 알 수 있다.
(2) 실기(實機)에 의한 검증
여기에서는, 실기인 소형 풍차의 날개에 기류 발생 장치(60)를 배치하여 풍동 시험을 행하고, 기류 발생 장치(60)에 인가하는 전압의 영향을 조사했다.
풍동으로서, 정격 풍량이 1200㎥/min, 정격 압력이 11.8㎪인 분출형 풍동을 사용했다. 풍동의 출구에 축류부(縮流部)를 설치하여, 속도가 10m/s까지의 통풍을 가능하게 했다.
소형 풍차로서, 시판의 소형 풍차를 개조한 소형 풍차 모델을 사용했다. 소형 풍차로서, 풍동의 출구의 사이즈에 대응시켜, 목제의 3매의 날개를 갖고, 풍차 직경이 1.6m, 출력이 300W용 풍차를 채용했다. 소형 풍차를 요각이 0도이고, 풍동의 출구로부터 770㎜의 위치에 배치했다. 이 소형 풍차의 정격은 풍속이 12.5m/s에 있어서 발전량이 300W이다. 또한, 주류 속도는 피트관 및 열전대를 이용하여 계측했다.
각 날개의 전연부에, 각각 하나의 기류 발생 장치(60)를 날개폭 방향에 배치했다. 이때, 도 4에 나타내는 바와 같이 제1 전극(61)의 제2 전극(62)측 가장자리가, 날개의 전연 상이 되도록 제1 전극(61)을 배치하고, 제1 전극(61)보다 날개의 배측(42a)이 되는 위치에 제2 전극(62)을 배치했다. 유전체인 두께가 250㎛인 폴리이미드 수지 상에, 길이가 610㎜인 제1 전극(61)을 배치했다. 플라즈마 유기류가 날개의 배면측을 향하여 생기도록, 제2 전극(62)을 폴리이미드 수지 내에 배치했다.
허브와 발전기 사이의 회전축 상에, 방전용 전원(65), 슬립 링을 배치했다. 회전수를 계측하기 위한 인코더를 배치했다. 외부로부터 입력이 0?100VAC, 변조 신호가 5VDC를 슬립 링을 통해 방전용 전원(65)에 입력했다. 전원 트랜스로부터의 고전압 출력은, 20kV 내압의 고전압용 케이블 배선(64)을 이용하며, 노즈콘 내에 배선했다. 방전용 전원(65)에 있어서의 고전압 진폭은 입력 전압을 슬라이덕으로 변화시킴으로써 조정했다.
펄스 변조 제어를 행할 경우, 펄스 변조시의 듀티비를 10%로 고정하고, 펄스 변조 주파수(f)를 1?900Hz의 범위에서 변화시켰다.
발전기의 발전 전압은, 풍차의 타워축 내를 통하여 외부에 도출되어 있는 배선의 양단에 부하로서 에레마 저항(R)을 접속하고, 이 저항의 양단 전압으로 발전기 출력을 평가했다.
시험에서는, 우선, 풍차가 저속으로 회전하고 있는 상태에서 풍속을 증가시켜, 상술한 도 1에 나타낸 점 B의 완전 실속 상태가 되도록, 축방향 풍속의 증가율을 조정했다. 이 완전 실속 상태에서 기류 발생 장치(60)를 작동시켰다. 시험 결과를 도 13?도 16에 나타낸다.
도 13은 기류 발생 장치(60)에 연속적으로 전압을 인가했을 경우(연속)에 있어서의 출력과 시간의 관계를 나타내는 도면이다. 도 14는 기류 발생 장치(60)에 연속적으로 전압을 인가했을 경우(연속)에 있어서의 출력과 축방향 풍속의 관계를 나타내는 도면이다. 도 15는 기류 발생 장치(60)에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서의 출력과 시간의 관계를 나타내는 도면이다. 도 16은 기류 발생 장치(60)에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서의 출력과 축방향 풍속의 관계를 나타내는 도면이다.
또한, 도 13 및 도 15의 횡축의 t0은, 기류 발생 장치(60)를 작동시켰을 때를 나타내고 있다. 또한, 도 15 및 도 16에서는 상술한 식 (1)로 나타나는 fC/U가 1이 되도록, 펄스 변조 주파수(f)를 조정했을 때의 결과를 나타내고 있다.
도 13에 나타내는 바와 같이 연속일 경우, t0에 있어서 출력이 10% 정도 증가했다. 이 효과를 파워 커브 상에 플롯하면, 도 14에 나타내는 바와 같이 되어, 완전 실속 상태인 점 B로부터 점 B1로 이행했지만, 출력의 향상은 근소함을 알 수 있었다.
도 15에 나타내는 바와 같이 펄스일 경우, t0에 있어서 출력이 근소하게 증가한 후, 몇 분 사이에 출력이 서서히 증가하여, 원래 출력의 8배 정도까지 증가하고, 그 후 포화했다. 이때의 효과를 파워 커브 상에 플롯하면, 도 16에 나타내는 바와 같이 되어, 완전 실속 상태인 점 B로부터 파워 커브 상의 점 C로 이행함을 알 수 있었다. 또한, 점 C의 상태로 이행한 후에, 기류 발생 장치(60)를 정지시켜도, 상태는 점 C에 머물며, 다시 점 B로 이행하지 않았다.
다음으로, 기류 발생 장치(60)에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서, 펄스 변조 주파수(f)를 변화시켜, 상술한 식 (1)의 fC/U와 출력의 관계를 조사했다.
이 시험에 있어서도, 우선, 풍차가 저속으로 회전하고 있는 상태에서 풍속을 증가시켜, 상술한 도 1에 나타낸 점 B의 완전 실속 상태가 되도록 축방향 풍속의 증가율을 조정했다. 이 완전 실속 상태에서, 기류 발생 장치(60)를 작동시켰다. 도 17은 기류 발생 장치(60)에 펄스 변조 제어된 전압을 인가했을 경우(펄스)에 있어서의 fC/U와 출력의 관계를 나타내는 도면이다.
도 17에 나타내는 바와 같이, fC/U의 값이 0.1?9인 범위에서는, 완전 실속 상태인 점 B로부터 파워 커브 상의 점 C로 이행하는 현상이 생겨, 높은 출력을 얻을 수 있음을 알 수 있었다. 또한, 점 C의 상태로 이행한 후에, 기류 발생 장치(60)를 정지시켜도, 상태는 점 C에 머물며, 다시 점 B로 이행하지 않았다.
이상 설명한 실시형태에 의하면, 익면 상의 흐름을 최적화할 수 있음과 함께, 발전 출력을 향상시키는 것이 가능해진다. 본 실시형태에서는, 날개의 피치각을 제어 가능한 풍력 발전 시스템에 일례를 나타냈지만, 식 (1)의 fC/U의 관계는, 피치각을 제어의 유무에 관계없이 성립한다. 그 때문에, 식 (1)의 fC/U의 관계는, 날개의 피치각의 제어 기구를 갖지 않은 풍력 발전 시스템에 있어서도 적용할 수 있다.
특정 실시형태를 기술했지만, 이들 실시형태는 단지 예로서 나타낸 것이며, 본 발명의 범주를 제한하고자 함은 아니다. 실제로, 여기에서 기술한 신규한 실시형태는 다양한 다른 형태로 실시될 수 있고, 또한 본 발명의 사상으로부터 벗어나지 않고 여기에 기술된 실시형태의 형태에서 다양한 생략, 치환 및 변경이 이루어질 수 있다. 첨부된 특허청구범위 및 그에 동등한 것은 본 발명의 범주 및 사상에 속하는 형태 또는 변형을 포함하는 것으로 한다.

Claims (17)

  1. 허브 및 상기 허브에 장착된 적어도 2매 이상의 날개를 구비하는 로터와,
    상기 허브에 접속된 회전축을 통해 상기 로터를 축 지지하는 나셀(Nacelle)과,
    상기 나셀을 지지하는 타워와,
    상기 날개의 전연(前緣)부에 설치되며, 제1 전극과 제2 전극을 유전체를 통해 이간(離間)하여 구비하고, 플라즈마 유기류(誘起流)를 발생 가능한 기류 발생 장치와,
    상기 기류 발생 장치의 상기 제1 전극과 상기 제2 전극 사이에 전압을 인가 가능한 전압 인가 기구와,
    풍력 발전 시스템에서의 출력, 상기 로터에서의 토크 및 상기 날개의 회전수 중 적어도 하나에 따른 정보를 검지하는 계측 장치와,
    상기 계측 장치로부터의 출력에 의거하여, 상기 전압 인가 기구를 제어하는 제어 수단을 구비하는 풍력 발전 시스템.
  2. 제1항에 있어서,
    상기 제어 수단이,
    상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수가, 상기 실출력, 상기 실토크 또는 상기 실회전수가 얻어졌을 때의 축방향 풍속에서의, 미리 설정된 상기 풍력 발전 시스템에서의 설정 출력, 상기 로터에서의 설정 토크 또는 상기 날개의 설정 회전수보다, 소정 시간에 걸쳐 낮다고 판정했을 때에, 상기 전압 인가 기구를 제어하여, 상기 기류 발생 장치에 전압을 인가해서, 플라즈마 유기류를 발생시키는 풍력 발전 시스템.
  3. 제2항에 있어서,
    상기 제어 수단이,
    플라즈마 유기류가 발생하고 있을 때에 얻어진 상기 풍력 발전 시스템에서의 제2 실출력, 상기 로터에서의 제2 실토크 또는 상기 날개의 제2 실회전수가, 상기 제2 실출력, 상기 제2 실토크 또는 상기 제2 실회전수가 얻어졌을 때의 축방향 풍속에서의, 미리 설정된 상기 풍력 발전 시스템에서의 제2 설정 출력, 상기 로터에서의 제2 설정 토크 또는 상기 날개의 제2 설정 회전수에 소정 시간에 걸쳐 달해 있다고 판정했을 때에, 상기 전압 인가 기구를 제어하여, 상기 기류 발생 장치에의 전압의 인가를 정지하는 풍력 발전 시스템.
  4. 제1항에 있어서,
    상기 제어 수단이,
    소정의 시간에 걸쳐 상기 전압 인가 기구로부터 상기 기류 발생 장치에 전압을 인가하고, 전압을 인가하기 전후의, 상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수를 비교하여,
    상기 실출력, 상기 실토크 또는 상기 실회전수가, 전압을 인가한 것에 의해 증가했다고 판정했을 경우에는, 소정의 시간, 상기 전압 인가 기구를 더 제어하여, 상기 기류 발생 장치에 전압을 인가해서, 플라즈마 유기류를 발생시키는 풍력 발전 시스템.
  5. 제1항에 있어서,
    상기 날개의 전연부에 날개폭 방향에, 복수의 상기 기류 발생 장치가 설치되며, 복수의 상기 기류 발생 장치를 독립하여 제어하는 풍력 발전 시스템.
  6. 제1항에 있어서,
    상기 날개의 전연부에 날개폭 방향에, 복수의 상기 기류 발생 장치가 설치되며, 복수의 상기 기류 발생 장치를 독립하여 제어할 경우에,
    상기 제어 수단이,
    상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수가, 상기 실출력, 상기 실토크 또는 상기 실회전수가 얻어졌을 때의 축방향 풍속에서의, 미리 설정된 상기 풍력 발전 시스템에서의 설정 출력, 상기 로터에서의 설정 토크 또는 상기 날개의 설정 회전수보다, 소정 시간에 걸쳐 낮다고 판정했을 때에, 풍속 및 상기 날개의 실회전수에 의거하여, 각 상기 기류 발생 장치가 구비된 각각의 날개 전연에서의 영각(迎角)을 산출하고,
    산출된 영각이, 이 영각이 산출되었을 때의 풍속 및 상기 날개의 실회전수에서의, 미리 설정된 각각의 날개 전연에서의 영각보다 크다고 판정했을 때에, 상기 전압 인가 기구를 제어하여, 미리 설정된 영각보다 크다고 판정된 날개 전연에 구비된 상기 기류 발생 장치에 선택적으로 전압을 인가하는 풍력 발전 시스템.
  7. 제1항에 있어서,
    상기 날개의 전연부에 날개폭 방향에, 복수의 상기 기류 발생 장치가 설치되며, 복수의 상기 기류 발생 장치를 독립하여 제어할 경우에,
    상기 제어 수단이,
    소정의 시간에 걸쳐 상기 전압 인가 기구로부터 상기 기류 발생 장치에 전압을 인가하고, 전압을 인가하기 전후의, 상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수를 비교하여, 상기 실출력, 상기 실토크 또는 상기 실회전수가, 전압을 인가한 것에 의해 증가했다고 판정했을 경우에는, 풍속 및 상기 날개의 실회전수에 의거하여, 각 상기 기류 발생 장치가 구비된 각각의 날개 전연에서의 영각을 산출하고,
    산출된 영각이, 이 영각이 산출되었을 때의 풍속 및 상기 날개의 실회전수에서의, 미리 설정된 각각의 날개 전연에서의 영각보다 크다고 판정했을 때에, 상기 전압 인가 기구를 제어하여, 미리 설정된 영각보다 크다고 판정된 날개 전연에 구비된 상기 기류 발생 장치에 선택적으로 전압을 인가하는 풍력 발전 시스템.
  8. 제1항에 있어서,
    상기 전압 인가 기구에 의해 인가되는 전압이 펄스 변조 제어되어 있는 풍력 발전 시스템.
  9. 제8항에 있어서,
    전압의 상기 펄스 변조 제어에서의 펄스 변조 주파수를 f로, 상기 날개의 익현(翼弦) 길이를 C로, 상기 날개의 주속도와 풍속을 합성한 상대 속도를 U로 했을 때에, 관계식 fC/U의 값이 0.1 이상 9 이하가 되는 풍력 발전 시스템.
  10. 허브 및 상기 허브에 장착된 적어도 2매 이상의 날개를 구비하는 로터와,
    상기 허브에 접속된 회전축을 통해 상기 로터를 축 지지하는 나셀과,
    상기 나셀을 지지하는 타워와,
    상기 날개의 전연부에 설치되며, 제1 전극과 제2 전극을 유전체를 통해 이간하여 구비한 기류 발생 장치와,
    상기 기류 발생 장치의 상기 제1 전극과 상기 제2 전극 사이에 전압을 인가 가능한 전압 인가 기구와,
    풍력 발전 시스템에서의 출력, 상기 로터에서의 토크 및 상기 날개의 회전수 중 적어도 하나에 따른 정보를 검지하는 계측 장치와,
    상기 전압 인가 기구를 제어하는 제어 수단을 구비하는 풍력 발전 시스템의 제어 방법으로서,
    상기 제어 수단이, 상기 계측 장치로부터의 출력에 의거하여 상기 전압 인가 기구를 제어하여, 상기 기류 발생 장치에 전압을 인가해서, 플라즈마 유기류를 발생시키는 풍력 발전 시스템의 제어 방법.
  11. 제10항에 있어서,
    상기 제어 수단이, 상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수와, 상기 실출력, 상기 실토크 또는 상기 실회전수가 얻어졌을 때의 축방향 풍속에서의, 미리 설정된 상기 풍력 발전 시스템에서의 설정 출력, 상기 로터에서의 설정 토크 또는 상기 날개의 설정 회전수를 비교하는 스텝과,
    상기 실출력, 상기 실토크 또는 상기 실회전수가, 소정 시간에 걸쳐, 상기 설정 출력, 상기 설정 토크 또는 상기 실회전수보다 낮다고 판정했을 경우, 상기 제어 수단이, 상기 전압 인가 기구를 제어하여, 상기 기류 발생 장치에 전압을 인가해서, 플라즈마 유기류를 발생시키는 스텝을 포함하는 풍력 발전 시스템의 제어 방법.
  12. 제11항에 있어서,
    상기 제어 수단이, 플라즈마 유기류를 발생시킨 후에 얻어진 상기 풍력 발전 시스템에서의 제2 실출력, 상기 로터에서의 제2 실토크 또는 상기 날개의 제2 실회전수와, 상기 제2 실출력, 상기 제2 실토크 또는 상기 제2 실회전수가 얻어졌을 때의 축방향 풍속에서의, 미리 설정된 상기 풍력 발전 시스템에서의 제2 설정 출력, 상기 로터에서의 제2 설정 토크 또는 상기 날개의 제2 설정 회전수를 비교하는 스텝과,
    상기 제2 실출력, 상기 제2 실토크 또는 상기 제2 실회전수가, 제2 설정 출력, 상기 제2 설정 토크 또는 상기 제2 설정 회전수에 소정 시간에 걸쳐 달해 있다고 판정했을 경우, 상기 제어 수단이, 상기 전압 인가 기구를 제어하여, 상기 기류 발생 장치에의 전압의 인가를 정지하는 스텝을 더 포함하는 풍력 발전 시스템의 제어 방법.
  13. 제10항에 있어서,
    상기 제어 수단이, 소정의 시간에 걸쳐 전압 인가 기구로부터 상기 기류 발생 장치에 전압을 인가하고, 전압을 인가하기 전후의, 상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수를 비교하는 스텝과,
    상기 실출력, 상기 실토크 또는 상기 실회전수가, 전압을 인가한 것에 의해 증가했다고 판정했을 경우, 상기 제어 수단이, 소정의 시간, 상기 전압 인가 기구를 더 제어하여, 상기 기류 발생 장치에 전압을 인가하여, 플라즈마 유기류를 발생시키는 스텝을 포함하는 풍력 발전 시스템의 제어 방법.
  14. 제10항에 있어서,
    상기 날개의 전연부에 날개폭 방향에, 복수의 상기 기류 발생 장치가 설치되며, 복수의 상기 기류 발생 장치를 독립하여 제어할 경우에,
    상기 제어 수단이, 상기 풍력 발전 시스템에서의 실출력과, 상기 로터에서의 실토크 또는 상기 날개의 실회전수가, 상기 실출력, 상기 실토크 또는 상기 실회전수가 얻어졌을 때의 축방향 풍속에서의, 미리 설정된 상기 풍력 발전 시스템에서의 설정 출력, 상기 로터에서의 설정 토크 또는 상기 날개의 설정 회전수를 비교하는 스텝과,
    상기 실출력, 상기 실토크 또는 상기 실회전수가, 소정 시간에 걸쳐, 상기 설정 출력, 상기 설정 토크 또는 상기 설정 회전수보다 낮다고 판정했을 경우, 상기 제어 수단이, 풍속 및 상기 날개의 실회전수에 의거하여, 각 상기 기류 발생 장치가 구비된 각각의 날개 전연에서의 영각을 산출하는 스텝과,
    산출된 영각이, 이 영각이 산출되었을 때의 풍속 및 상기 날개의 실회전수에서의, 미리 설정된 각각의 날개 전연에서의 영각보다 크다고 판정했을 때에, 상기 제어 수단이, 상기 전압 인가 기구를 제어하여, 미리 설정된 영각보다 크다고 판정된 날개 전연에 구비된 상기 기류 발생 장치에 선택적으로 전압을 인가해서, 플라즈마 유기류를 발생시키는 스텝을 포함하는 풍력 발전 시스템의 제어 방법.
  15. 제10항에 있어서,
    상기 날개의 전연부에 날개폭 방향에, 복수의 상기 기류 발생 장치가 설치되며, 복수의 상기 기류 발생 장치를 독립하여 제어할 경우에서,
    상기 제어 수단이, 소정의 시간에 걸쳐 상기 전압 인가 기구로부터 상기 기류 발생 장치에 전압을 인가하고, 전압을 인가하기 전후의, 상기 풍력 발전 시스템에서의 실출력, 상기 로터에서의 실토크 또는 상기 날개의 실회전수를 비교하는 스텝과,
    상기 실출력, 상기 실토크 또는 상기 실회전수가, 전압을 인가한 것에 의해 증가했다고 판정했을 경우, 상기 제어 수단이, 풍속 및 상기 날개의 실회전수에 의거하여, 각 상기 기류 발생 장치가 구비된 각각의 날개 전연에서의 영각을 산출하는 스텝과,
    산출된 영각이, 이 영각이 산출되었을 때의 풍속 및 상기 날개의 실회전수에서의, 미리 설정된 각각의 날개 전연에서의 영각보다 크다고 판정했을 때에, 상기 제어 수단이, 상기 전압 인가 기구를 제어하여, 미리 설정된 영각보다 크다고 판정된 날개 전연에 구비된 상기 기류 발생 장치에 선택적으로 전압을 인가해서, 플라즈마 유기류를 발생시키는 스텝을 포함하는 풍력 발전 시스템의 제어 방법.
  16. 제10항에 있어서,
    상기 전압 인가 기구에 의해 인가되는 전압이 펄스 변조 제어되어 있는 것을 특징으로 하는 풍력 발전 시스템의 제어 방법.
  17. 제16항에 있어서,
    전압의 상기 펄스 변조 제어에서의 펄스 변조 주파수를 f로, 상기 날개의 익현 길이를 C로, 상기 날개의 주속도와 풍속을 합성한 상대 속도를 U로 했을 때에, 관계식 fC/U의 값이 0.1 이상 9 이하가 되는 풍력 발전 시스템의 제어 방법.
KR1020120044373A 2011-05-02 2012-04-27 풍력 발전 시스템 및 그 제어 방법 KR20120124030A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120044373A KR20120124030A (ko) 2011-05-02 2012-04-27 풍력 발전 시스템 및 그 제어 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-103083 2011-05-02
JPJP-P-2012-066706 2012-03-23
KR1020120044373A KR20120124030A (ko) 2011-05-02 2012-04-27 풍력 발전 시스템 및 그 제어 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140062454A Division KR101477213B1 (ko) 2011-05-02 2014-05-23 풍력 발전 시스템 및 그 제어 방법

Publications (1)

Publication Number Publication Date
KR20120124030A true KR20120124030A (ko) 2012-11-12

Family

ID=47509536

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120044373A KR20120124030A (ko) 2011-05-02 2012-04-27 풍력 발전 시스템 및 그 제어 방법

Country Status (1)

Country Link
KR (1) KR20120124030A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581026B2 (en) 2013-08-28 2017-02-28 Kabushiki Kaisha Toshiba Steam turbine
CN112613155A (zh) * 2020-02-06 2021-04-06 北京金风慧能技术有限公司 风力发电机组理论功率的确定方法、装置及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581026B2 (en) 2013-08-28 2017-02-28 Kabushiki Kaisha Toshiba Steam turbine
CN112613155A (zh) * 2020-02-06 2021-04-06 北京金风慧能技术有限公司 风力发电机组理论功率的确定方法、装置及设备
CN112613155B (zh) * 2020-02-06 2024-04-12 北京金风慧能技术有限公司 风力发电机组理论功率的确定方法、装置及设备

Similar Documents

Publication Publication Date Title
KR101477213B1 (ko) 풍력 발전 시스템 및 그 제어 방법
JP6049827B2 (ja) 風力発電システムおよびその制御方法
EP2556249B1 (en) A wind turbine
JP6001770B2 (ja) 風力発電装置、および風力発電装置またはウィンドパークの制御方法
JP4810342B2 (ja) 風車翼および風力発電システム
Rocha et al. The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments
US8810055B2 (en) Wind turbine control methods and systems
EP2556248B1 (en) A wind turbine
US10253757B2 (en) Wind turbine control system with boost based on upstream wind speed
EP2674617A2 (en) Wind turbine rotor control
EP2644887A2 (en) Method of rotor-stall prevention in wind turbines
EP2607689A2 (en) Rotor-sector based control of wind turbines
KR20150038405A (ko) 풍력 터빈 경사 최적화 및 제어
Matsuda et al. Plasma actuation effect on a MW class wind turbine
CN103061965A (zh) 用于对风力发电机生成的噪声的调幅进行控制的系统和方法
JP5847627B2 (ja) 風力発電システムおよびその制御方法
Tanaka et al. Plasma actuation for leading edge separation control on 300-kW rotor blades with chord length around 1 m at a Reynolds number around 1.6× 106
KR20120124030A (ko) 풍력 발전 시스템 및 그 제어 방법
EP4115079B1 (en) Control method and device of a wind park
Greenblatt et al. Dielectric barrier discharge plasma flow control on a vertical axis wind turbine
US11795912B2 (en) Wind turbine control device, wind turbine control program, and wind turbine control method
Amano et al. Design and Testing of Low-Speed Wind Turbine Blade

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140523

Effective date: 20150213