KR20120122995A - Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same - Google Patents

Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same Download PDF

Info

Publication number
KR20120122995A
KR20120122995A KR1020120102907A KR20120102907A KR20120122995A KR 20120122995 A KR20120122995 A KR 20120122995A KR 1020120102907 A KR1020120102907 A KR 1020120102907A KR 20120102907 A KR20120102907 A KR 20120102907A KR 20120122995 A KR20120122995 A KR 20120122995A
Authority
KR
South Korea
Prior art keywords
coli
gene
transformed
fatty acid
sequence
Prior art date
Application number
KR1020120102907A
Other languages
Korean (ko)
Other versions
KR101305424B1 (en
Inventor
이진원
전은영
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020120102907A priority Critical patent/KR101305424B1/en
Publication of KR20120122995A publication Critical patent/KR20120122995A/en
Application granted granted Critical
Publication of KR101305424B1 publication Critical patent/KR101305424B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A method for preparing transformed E.coli for overexpression of fatty acid biosynthesis pathway is provided to enhance genetic stability of the transformed E.coli. CONSTITUTION: A method for preparing a co-transformed E.coli comprises: a step of inserting an aceE(pyruvate dehydrogenase, decarboxylase component E1) gene and accA(acetyl-CoA carboxylase, carboxytransferase) gene into an expression vector; and a step of electroporation of E.coli with the expression vector and transforming. A fatty acid biosynthesis comprises a step of culturing co-transformed E.coli and biosynthesizing fatty acid; and a step of collecting the synthesized fatty acid.

Description

지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법 및 상기 제조방법으로 제조된 형질전환 대장균{Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same}Method for preparing transformed E. coli for overexpression of fatty acid biosynthetic pathway and transformed E coli prepared by the above method {Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same}

본 발명은 지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법 및 상기 제조방법으로 제조된 형질전환 대장균에 관한 것이다.
The present invention relates to a method for producing a transgenic E. coli for overexpression of a fatty acid biosynthetic pathway and to a transgenic E. coli prepared by the method.

세계적 경제 성장에 따른 에너지 사용증가와 지속적인 가격상승을 보이는 화석연료 자원의 한정성으로 인하여 에탄올, 부탄올, 바이오디젤과 같은 바이오에너지에 대한 관심이 증가하고 있다. 언급된 종류의 바이오에너지 모두 전력생산용 또는 수송용 연료로 사용될 수 있으나, 실적용 및 생산 방법의 몇몇 단점으로 인해 새로운 신재생에너지 자원인 하이드로카본 형태의 화합물에 대한 관심이 특히 증가되고 있다. 이에 따라 장쇄 지방산을 대사산물로서 생성할 수 있는 재조합 균주에 대한 관심도 증대되고 있다.The interest in bioenergies such as ethanol, butanol and biodiesel is increasing due to the limited amount of fossil fuel resources that show increasing energy use and sustained price increases in line with global economic growth. All of the aforementioned types of bioenergy can be used as fuel for power generation or transportation, but interest in compounds in the form of hydrocarbons, which is a new renewable energy resource, is particularly increasing due to some shortcomings of performance and production methods. Accordingly, interest in recombinant strains capable of producing long-chain fatty acids as metabolites is also increasing.

미생물 생체 내에서의 지방산 합성은 아세틸-CoA에서 시작하여, 그 뒤 탄소원자가 한 번에 두 개의 원자씩 탄화수소사슬에 붙어 사슬이 길어지게 된다. 이화작용은 그와 반대방향으로 진행된다. 즉, 카복실 그룹에서 시작하여 아세틸-CoA로 끝나며, 탄화수소사슬의 단편과 아세틸-CoA는 대장균(Escherichia coli)의 시트르산 회로(TCA cycle)에서 산화되어 ATP 형태로 저장되는 에너지를 제공한다. 지방산 생합성의 첫 단계는 아세틸-CoA(지방산 합성에 필수적인 전구체)를 세포질로 운반하는 것이다. 아세틸-CoA는 지방산의 β-산화나 피루브산의 탈카복실화에 의해 생길 수 있다(특정 아미노산들이 분해되면 아세틸-CoA가 생성되기도 한다). 세포질에서 아세틸-CoA는 카복실화 되어서, 지방산 생합성에 있어 중요한 중간체가 되는 말로닐-CoA(malonyl-CoA)를 생산한다. 아래의 식에서 보여지듯이, 이 반응은 아세틸-CoA 카복실라아제 복합체에 의해 촉매되는데, 이 복합체는 세 개의 효소로 구성되어 있고, 효소 활성을 위해 ATP뿐만 아니라 Mn2 +과 바이오틴을 요구한다. 아세틸-CoA 카복실라아제는 세 개의 단백질인 바이오틴 카복실라아제, 바이오틴 운반 단백질, 그리고 카복실기 전달효소로 구성되어있다. The synthesis of fatty acids in a microorganism in vivo begins with acetyl-CoA, and then carbon atoms are attached to the hydrocarbon chain two atoms at a time, and the chain becomes longer. Catabolic reaction proceeds in the opposite direction. That is, starting from the carboxyl group and ending with acetyl-CoA, fragments of the hydrocarbon chain and acetyl-CoA are E. coli ( Escherichia coli ) provides energy that is oxidized in the citric acid cycle (TCA cycle) and stored in the form of ATP. The first step in fatty acid biosynthesis is the transport of acetyl-CoA (an essential precursor for fatty acid synthesis) into the cytoplasm. Acetyl-CoA can be produced by β-oxidation of fatty acids or decarboxylation of pyruvic acid (decomposition of certain amino acids may produce acetyl-CoA). In the cytoplasm, acetyl-CoA is carboxylated to produce malonyl-CoA, an important intermediate in fatty acid biosynthesis. As shown in the equation below, this reaction is catalyzed by an acetyl-CoA carboxylase complex, which is composed of three enzymes and requires Mn 2 + and biotin as well as ATP for enzymatic activity. Acetyl-CoA carboxylase is composed of three proteins: biotin carboxylase, biotin transport protein, and carboxyl group transferase.

Figure pat00001
Figure pat00001

지방산 생합성은 연속적으로 두 개의 탄소단위가 성장 사슬에 덧붙여지며 이루어진다. 말로닐-CoA의 말로닐 그룹에 있는 세 개의 탄소원자 중 두 개가 생합성 반응의 각 단계마다 지방산 사슬에 더해진다. 이 반응은 말로닐-CoA 형성과 마찬가지로 세포질에 있고 막과 결합되어 있지 않는 다효소 복합체가 필요하다. 개별적인 효소들로 구성되어 있는 이 복합체는 지방산 합성효소를 말한다. 이러한 지방산 합성 효소 복합체의 일부인 아실 운반 단백질(acyl carrier protein: ACP)은 아세틸-CoA의 아세틸 그룹이 지방산의 탄소 수를 증가시키기 위한 결합에 관여한다. Fatty acid biosynthesis is achieved by successively adding two carbon units to the growth chain. Two of the three carbon atoms in the malonyl group of malonyl-CoA are added to the fatty acid chain at each stage of the biosynthetic reaction. This reaction, like malonyl-CoA formation, requires a multienzyme complex that is in the cytoplasm and is not bound to the membrane. This complex, made up of individual enzymes, refers to fatty acid synthase. The acyl carrier protein (ACP), which is a part of the fatty acid synthase complex, is involved in the binding of the acetyl group of acetyl-CoA to increase the carbon number of fatty acids.

Figure pat00002

Figure pat00002

미생물을 사용하여 지방산 합성 경로의 활발한 대사흐름을 꾀한 아세틸-CoA, 말로닐-CoA의 과발현 목적에 해당하는 시도와 노력은 끊임없이 있어왔다. 대장균은 효소 생산 시스템으로 타 생물체에 비해 많은 대사정보가 알려져 있고, 유전자에 대한 정보가 거의 다 밝혀져 재조합 단백질 생산에 널리 이용되고 있다. Attempts and efforts corresponding to the purpose of overexpression of acetyl-CoA and malonyl-CoA, which aimed at the active metabolic flow of the fatty acid synthesis pathway using microorganisms, have been constantly made. Escherichia coli is an enzyme production system that has more metabolic information than other organisms, and has been widely used in the production of recombinant proteins because almost all information on genes is revealed.

대장균의 지방산 생합성을 위한 도입단계의 대사 작용에 아세틸-CoA와 말로닐 Co-A가 중요한 역할을 한다는 것에 대해 문헌(Ethan S. James and John E. Cronan. Expression of Two Escherichia coli Acetyl-CoA Carboxylase Subunits Is Autoregulated, THE JOURNAL OF BIOLOGICAL CHEMISTRY , 279(4):25202527(2004))에 언급되어 있다. 또한, ACP 트랜스아실라제에 의해 말로닐-Co가 말로닐-ACP로 전환되어 지방산 합성을 위한 대사 네트워크가 진행된다는 것에 대해 참고 문헌에 나타나있다(Satyanrayana subrahmanyam and John E. Cronan, JR., Overproduction of a Functional Fatty Acid Biosynthetic Enzyme Blocks Fatty Acid Synthesis in Escherichia coli , JOURNAL OF BACTERIOLOGY , 180(17):4596-4602(1998)). Ethan S. James and John E. Cronan. Expression of Two Escherichia on the role of acetyl-CoA and malonyl Co-A in the metabolism of the introduction stage for fatty acid biosynthesis in Escherichia coli (Ethan S. James and John E. Cronan. coli Acetyl-CoA Carboxylase Subunits Is Autoregulated, THE JOURNAL OF BIOLOGICAL CHEMISTRY , 279(4):25202527(2004)). In addition, it is shown in references that malonyl-Co is converted to malonyl-ACP by ACP transacylase, and the metabolic network for fatty acid synthesis proceeds (Satyanrayana subrahmanyam and John E. Cronan, JR., Overproduction of a Functional Fatty Acid Biosynthetic Enzyme Blocks Fatty Acid Synthesis in Escherichia coli , JOURNAL OF BACTERIOLOGY , 180(17):4596-4602(1998)).

하지만 대부분의 연구는 지방산 생합성 경로의 내부 사이클, 즉 말로닐-ACP이후의 대사 경로를 중심으로 이루어졌으며, fab 계열의 유전자의 기작에 의해 지방산의 생산과 저해에 대해 논하고 있다. 그로 인해 지방산 생합성을 위한 탄소원부터 지방산 합성경로 도입부까지의 연구는 부족한 상태이다.
However, most studies have centered on the internal cycle of the fatty acid biosynthesis pathway, that is, the metabolic pathway after malonyl-ACP, and discuss the production and inhibition of fatty acids by the mechanism of the fab family of genes. Therefore, research from the carbon source for fatty acid biosynthesis to the introduction of the fatty acid synthesis pathway is insufficient.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Throughout this specification, a number of papers and patent documents are referenced and citations are indicated. The disclosure contents of cited papers and patent documents are incorporated by reference in this specification as a whole, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.

본 발명자들은 안정적이고 효과적으로 지방산 생합성 경로를 과발현 시킬 수 있는 형질전환 대장균의 제조방법 개발을 위하여 예의 연구 노력하였고 그 결과 aceE 유전자 및 accA 유전자를 하나의 발현벡터에 삽입시키고 상기 발현벡터로 대장균을 형질전환시키는 방법을 개발해 냄으로써, 본 발명을 완성하게 되었다.The present inventors have made intensive research efforts to develop a method for producing transformed E. coli that can stably and effectively overexpress the fatty acid biosynthetic pathway. As a result, the aceE gene and accA By inserting a gene into one expression vector and developing a method of transforming E. coli with the expression vector, the present invention was completed.

따라서 본 발명의 목적은 지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a method for preparing a transgenic E. coli for overexpression of a fatty acid biosynthetic pathway.

본 발명의 다른 목적은 상기 방법으로 제조된 지방산 생합성 경로의 과발현용 형질전환 대장균을 제공하는 데 있다.Another object of the present invention is to provide a transgenic E. coli for overexpression of the fatty acid biosynthetic pathway prepared by the above method.

본 발명의 또 다른 목적은 상기 제조한 형질전환된 대장균을 이용하여 지방산을 생합성하는 방법을 제공하는데 있다.
Another object of the present invention is to provide a method for biosynthesizing fatty acids using the transformed E. coli prepared above.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent by the following detailed description, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법을 제공한다:According to one aspect of the present invention, the present invention provides a method for preparing a transgenic E. coli for overexpression of a fatty acid biosynthetic pathway comprising the following steps:

(a) aceE(pyruvate dehydrogenase, decarboxylase component E1) 유전자 및 accA(acetyl-CoA carboxylase, Carboxytransferase) 유전자를 하나의 발현벡터에 삽입시키는 단계; 및(a) aceE (pyruvate dehydrogenase, decarboxylase component E1) Inserting the gene and accA (acetyl-CoA carboxylase, Carboxytransferase) gene into one expression vector; And

(b) 상기 aceE 유전자 및 accA 유전자가 삽입된 발현벡터로 대장균을 형질전환시키는 단계.(b) the aceE Transforming E. coli with the gene and the expression vector into which the accA gene is inserted.

본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 방법으로 제조된 aceE 유전자 및 accA 유전자로 공-형질전환(cotransformed)된 대장균을 제공한다.
According to another aspect of the present invention, the present invention is aceE prepared by the method of the present invention described above. E. coli cotransformed with gene and accA gene is provided.

본 발명자들은 안정적이고 효과적으로 지방산 생합성 경로를 과발현 시킬 수 있는 형질전환 대장균의 제조방법 개발을 위하여 예의 연구 노력하였고 그 결과 aceE 유전자 및 accA 유전자를 하나의 발현벡터에 삽입시키고 상기 발현벡터로 대장균을 형질전환시키는 방법을 개발해 냄으로써, 본 발명을 완성하게 되었다.The present inventors have made intensive research efforts to develop a method for producing transformed E. coli that can stably and effectively overexpress the fatty acid biosynthetic pathway. As a result, the aceE gene and accA By inserting a gene into one expression vector and developing a method of transforming E. coli with the expression vector, the present invention was completed.

최근, 지방산(fatty acids)은 수송용 연료를 위한 바이오 에너지로서 이용될 수 있다는 것이 보고되었다. 따라서, 본 발명은 신재생에너지에 대한 일반적 관심사로서 개선된 지방산 생합성 경로를 위한 변이 균주 개발에 대한 방법을 제시한다. 지방산(fatty acid)은 화학 또는 생화학적으로 사슬 모양의 포화 혹은 불포화 모노카르복시산을 말하며, 지방을 가수분해하면 글리세롤과 지방산이 분리되어 생기기 때문에 이러한 이름이 붙었다. 가장 단순한 지방산은 부티르산(4 carbons)이지만, 자연에 존재하는 지방산은 탄소 수가 8개(caprylic acid) 이상이며 모두 짝수의 탄소 수를 갖고 있다. 지방산은 Escherichia coli 생체 내에서 탄소 공급원으로부터 특정 경로를 거쳐 생합성 될 수 있으며, 본 발명은 상기 지방산 생합성(FAS) 경로의 대사 흐름을 향상시키는 방법을 제공한다. Escherichia coli 생체 내에서 글루코오즈에서부터 지방산까지의 지방산 생합성(FAS) 경로는 도 1에 간략히 도식화하였다.Recently, it has been reported that fatty acids can be used as bioenergy for transportation fuels. Accordingly, the present invention proposes a method for developing mutant strains for an improved fatty acid biosynthesis pathway as a general concern for renewable energy. Fatty acid refers to a chain-shaped saturated or unsaturated monocarboxylic acid chemically or biochemically, and this name is given because glycerol and fatty acids are separated when fat is hydrolyzed. The simplest fatty acid is butyric acid (4 carbons), but fatty acids that exist in nature have caprylic acid or more, all of which have an even number of carbons. Fatty acid is Escherichia coli It can be biosynthesized from a carbon source in vivo through a specific pathway, and the present invention provides a method of improving the metabolic flow of the fatty acid biosynthesis (FAS) pathway. Escherichia coli Fatty acid biosynthesis (FAS) pathway from glucose to fatty acid in vivo is schematically illustrated in FIG. 1.

본 발명에서, 상기 지방산 생합성(FAS) 경로의 대사 흐름을 향상시키는 방법은 아세틸-CoA와 말로닐-CoA를 과발현함으로써 FAS(fatty acid biosynthesis)로의 흐름이 활발하도록 돕는 것이다. 이를 실현하기 위해 피루베이트를 아세틸-CoA로 전환하는 효소(pyruvate dehydrogenase)의 생산을 담당하는 aceE 유전자와 아세틸-CoA를 말로닐-CoA로 전환하는 효소(acetyl-CoA carboxylase)를 암호화하는 accA를 발현벡터에 포함시키고 상기 발현벡터를 사용하여 대장균(Escherichia coli)을 형질전환 시킨다.In the present invention, the method of improving the metabolic flow of the fatty acid biosynthesis (FAS) pathway is to help the flow to FAS (fatty acid biosynthesis) by overexpressing acetyl-CoA and malonyl-CoA. To achieve this enzyme to convert pyruvate into acetyl -CoA (pyruvate dehydrogenase) expressing accA encoding the enzyme (acetyl-CoA carboxylase) to switch to the carbonyl -CoA the aceE gene and acetyl -CoA words, responsible for the production of Included in the vector and using the expression vector Escherichia ( Escherichia coli ) is transformed.

상기 aceE accA유전자의 암호화부분은 효소의 과발현 기능을 꾀하면서 최소한의 길이를 가지도록 RBS(ribosomal binding site) 및 효소발현에 꼭 필요한 부분을 포함하는 염기서열만을 서열로 정하는 것이 바람직한데 이는 유전자의 발현에 의한 숙주세포의 대사부담(metabolic burden)을 줄이기 위해서이다.The aceE And the coding portion of the accA gene is preferable to sequence only the nucleotide sequence including the ribosomal binding site (RBS) and the part necessary for enzyme expression so as to have a minimum length while attempting the overexpression function of the enzyme. This is to reduce the metabolic burden of host cells.

일 구현예에서, 상기 aceE 유전자는 서열목록 제1서열의 뉴클레오타이드서열로 이루어진 것을 특징으로 한다. 보다 바람직하게는, 상기 aceE 유전자는 RBS(ribosomal binding site)가 서열목록 제1서열의 뉴클레오타이드서열의 업스트림에 결합되어 있는 것이다.In one embodiment, the aceE The gene is characterized by consisting of the nucleotide sequence of the first sequence in the sequence listing. More preferably, the aceE The gene has a ribosomal binding site (RBS) bound upstream of the nucleotide sequence of the first sequence in the sequence listing.

다른 구현예에서, 상기 accA 유전자는 서열목록 제2서열의 뉴클레오타이드서열로 이루어진 것을 특징으로 한다. 보다 바람직하게는, 상기 aceA 유전자는 서열목록 제5서열의 RBS(ribosomal binding site)가 서열목록 제2서열의 뉴클레오타이드서열의 업스트림에 결합되어 있는 것이다.In another embodiment, the accA The gene is characterized by consisting of the nucleotide sequence of the second sequence in the sequence listing. More preferably, the aceA The gene is one in which the ribosomal binding site (RBS) of SEQ ID NO: 5 is bound upstream of the nucleotide sequence of SEQ ID NO: 2.

상기 aceE accA유전자를 암호화하는 핵산은 발현 조절서열에 작동가능하게 연결되어 발현 벡터 내에 삽입될 수 있다. 상기에서 '작동 가능하게 연결된다(operably linked to)'는 것은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 말한다. 또한, '발현 조절 서열(expression control sequence)'이란 특정한 숙주 세포에서 작동 가능하게 연결된 핵산 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 개시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다.
The aceE And the nucleic acid encoding the accA gene can be operably linked to an expression control sequence and inserted into an expression vector. In the above, "operably linked to" means that one nucleic acid fragment is associated with another nucleic acid fragment, and its function or expression is affected by the other nucleic acid fragment. In addition, the term'expression control sequence' refers to a DNA sequence that controls the expression of a nucleic acid sequence operably linked in a specific host cell. Such regulatory sequences include promoters to initiate transcription, any operator sequences to regulate transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences that regulate termination of transcription and translation.

*본 발명에 있어서, aceE accA유전자를 암호화하는 핵산에 결합된 프로모터는 강력한 발현능력을 가지는 것을 사용하며, 바람직하게는 trc 프로모터를 사용할 수 있다. * In the present invention, aceE And the promoter bound to the nucleic acid encoding the accA gene is used that has a strong expression ability, preferably a trc promoter can be used.

일 구현예에서, 본 발명의 발현 벡터는 프로모터(trc promoter) 서열, aceE 및 accA 유전자의 서열 및 박테리아에서 유래된 터미네이터(rrnB terminator)서열을 포함하며, 상기 서열들이 5'-3' 순서대로 연결되는 것이 바람직하다. 이는 aceEaccA 유전자가 대장균의 염색체 내에서의 위치에 따른 발현 순서에 해당하는 것으로, 세포성장곡선에서 아세틸-CoA가 먼저 생산되어 소비되면서 말로닐-CoA가 생산되는 생합성 경로를 적용한 것이다.In one embodiment, the expression vector of the present invention comprises a promoter (trc promoter) sequence, aceE and accA gene sequences, and a bacterial-derived terminator sequence, wherein the sequences are linked in 5'-3' order It is desirable to be. This is aceE and accA The gene corresponds to the expression sequence according to the position in the chromosome of E. coli, and the biosynthetic pathway in which acetyl-CoA is first produced and consumed in the cell growth curve is applied to the production of malonyl-CoA.

다른 구현예에서, 상기 발현벡터는 lacI 유전자를 추가적으로 포함한다. lacI 유전자는 숙주 세포가 Lac 리프레서를 코딩하는 유전자를 포함하고 있는지 불문하고, trc 프로모터를 조절할 수 있도록 한다. 이 경우 상기 aceE accA 유전자의 발현을 유도하기 위하여, IPTG(Isopropyl-β-D-thiogalactopyranoside)를 사용할 수 있다.In another embodiment, the expression vector further comprises a lac I gene. The lac I gene allows the host cell to regulate the trc promoter, whether or not it contains a gene encoding a Lac repressor. In this case above a ceE And accA In order to induce gene expression, Isopropyl-β-D-thiogalactopyranoside (IPTG) may be used.

또한 본 발명에서 '발현 벡터'라 함은 구조유전자를 암호화하는 핵산이 삽입될 수 있고, 숙주 세포 내에서 상기 핵산을 발현할 수 있는 당 분야에 공지된 플라스미드, 바이러스 벡터 또는 기타 매개체를 의미하며 바람직하게는 플라스미드 벡터일 수 있다.In addition, the term'expression vector' in the present invention refers to a plasmid, viral vector, or other mediator known in the art capable of inserting a nucleic acid encoding a structural gene and expressing the nucleic acid in a host cell. It may be a plasmid vector.

상기 플라스미드로는 대장균에서 복제 및 발현이 가능한 운반체라면 당업계에 공지된 그 어떠한 것이라도 사용할 수 있다. 예를 들면, 이에 한정되지는 않으나 pJE101, pJE102, 및 pJE103 발현 벡터(plasmid)일 수 있으며 상기 발현벡터는 바람직하게는 서열목록 제3서열의 최소 서열로 포함하는 백본벡터에 도입된 것 일 수 있다.As the plasmid, any carrier known in the art may be used as long as it is a carrier capable of replication and expression in E. coli. For example, although not limited thereto, it may be a pJE101, pJE102, and pJE103 expression vector (plasmid), and the expression vector may preferably be introduced into a backbone vector containing as the minimum sequence of the third sequence of the sequence listing. .

본 발명의 aceE accA유전자를 포함하는 발현 벡터는 당업계에 공지된 방법, 예를 들어 이에 한정되지는 않으나, CaCl2 완충액을 사용한 컴피턴트 세포를 만든 후 열충격(42℃) 방법에 의해 발현벡터를 숙주세포 내로 넣는 방법, 전기 충격에 의한 형질전환 방법, 일시적 형질감염(transient transfection), 미세주사, 세포융합, 칼슘 포스페이트 침전법, 전기침공법(electroporation) 등에 의해 숙주 세포 내로 도입할 수 있다. 형질전환체의 안정적 제조와 효율을 높이기 위해서는 전기 충격에 의한 형질전환 방법을 사용하는 것이 바람직하다. AceE of the present invention And the expression vector containing the accA gene is a method known in the art, for example, but is not limited thereto, after making a competent cell using a CaCl 2 buffer, and then introducing the expression vector into a host cell by a heat shock (42° C.) method. It can be introduced into the host cell by an injection method, a transformation method by electric shock, a transient transfection, microinjection, cell fusion, a calcium phosphate precipitation method, an electroporation method, or the like. In order to increase the stable production and efficiency of the transformant, it is preferable to use a transformation method by electric shock.

지방산 생합성 경로를 과발현하도록 형질전환시킬 숙주세포 대장균으로는 산업 미생물로 적용가능하고 그 기능이 뛰어난 야생종을 선정한다. 박테리아 그람 음성인 대장균(Escherichia coli) 속별 특징을 확인 및 비교하여 가장 그 기능이 뛰어난 야생종을 선정할 수 있다. 상기 에세리키아 속 미생물은 박테리아 그람 음성형 대장균인 Escherichia coli이며, 예를 들어 MG1655, W3110, DH5α, XL1-Blue 및 BL21이 포함된다. 바람직하게는 대장균 K-12 MG1655이다.As the host cell to be transformed to overexpress the fatty acid biosynthetic pathway, a wild species that can be applied as an industrial microorganism and has excellent function is selected as E. Gram-negative bacteria ( Escherichia coli ) genus characteristics can be identified and compared to select the wild species with the most excellent function. The microorganism of the genus Escherichia is Escherichia , which is a gram-negative E. coli coli , and include, for example, MG1655, W3110, DH5α, XL1-Blue and BL21. Preferably it is E. coli K-12 MG1655.

본 발명의 아세틸-CoA와 말로닐-CoA의 생산 증대를 위한 에세리키아 속 미생물은 내재적으로 지방산 생합성 경로를 가지고 있는 것이나, 지방산(fatty acid)를 생산하기 위한 효소를 코딩하는 유전자 즉 aceE accA 유전자가 추가적으로 도입되고, 상기 지방산(fatty acid)를 생산하기 위한 효소를 코딩하는 뉴클레오타이드 서열이 증폭, 즉 과발현 되는 균주이다. 이와 관련하여, 용어 '증폭'은 예를 들어 강력한 프로모터를 사용하거나 활성이 높은 적절한 효소를 암호화하는 유전자를 사용하고 임의로 이들 수단을 함께 사용하여 유전자(들)의 카피수를 증가시킴으로써, 적합한 DNA에 의해 암호화되는 하나 이상의 효소의 세포 내 활성을 미생물 내에서 증가시키는 것을 기술한다.
The microorganism of the genus Escherichia for increasing the production of acetyl-CoA and malonyl-CoA of the present invention inherently has a fatty acid biosynthesis pathway, but a gene encoding an enzyme for producing fatty acid, i.e. aceE And accA It is a strain in which a gene is additionally introduced, and a nucleotide sequence encoding an enzyme for producing the fatty acid is amplified, that is, overexpressed. In this regard, the term'amplification' is used to increase the copy number of the gene(s), e.g., by using a strong promoter or by using a gene encoding a suitable enzyme with high activity and optionally using these means together. It describes increasing the intracellular activity of one or more enzymes encoded by the microbe.

본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 상술한 본 발명의 공-형질전환된 대장균을 배양하여 지방산을 생합성 하는 단계; 및 (b) 상기 생합성된 지방산을 수득하는 단계를 포함하는 지방산 생합성 방법을 제공한다.According to another aspect of the present invention, the present invention comprises the steps of (a) biosynthesizing fatty acids by culturing the co-transformed E. coli of the present invention described above; And (b) obtaining the biosynthesized fatty acid.

본 발명의 방법은 aceE 유전자 및 accA 유전자로 공-형질전환된 본 발명의 형질전환 대장균을 이용하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The method of the present invention is aceE Gene and accA Since the transgenic E. coli of the present invention co-transformed with a gene is used, the descriptions in common between the two are omitted in order to avoid undue complexity in the present specification.

aceE 유전자 및 accA 유전자로 공-형질전환된 형질전환 대장균의 배양은 당업계에 공지된 통상의 대장균 배양 방법에 의해 배양될 수 있다. 예를 들어, 공-형질전환된 대장균은 LB 배지에서 37℃에서 배양할 수 있다. aceE Gene and accA The cultivation of the transformed E. coli co-transformed with the gene may be cultured by a conventional E. coli culture method known in the art. For example, co-transformed E. coli can be cultured at 37°C in LB medium.

바람직하게는, 단계 (a)는 발현 유도제인 IPTG의 존재 하에서 실시된다. Preferably, step (a) is carried out in the presence of an expression inducing agent, IPTG.

상기 공-형질전환된 대장균 내에서 생합성된 지방산을 분리하는 단계는 당업계에 공지된 통상의 분리 또는 정제 방법에 따라 실시될 수 있다(참조: B. Aurousseau et al., Journal of the American Oil Chemists' Society, 57(3):1558-9331( 1980); Frank C. Magne et al., Journal of the American Oil Chemists' Society, 34(3):127-129(1957)).
The step of separating the fatty acid biosynthesized in the co-transformed E. coli may be carried out according to a conventional separation or purification method known in the art (see B. Aurousseau et al., Journal). of the American Oil Chemists' Society , 57(3):1558-9331(1980); Frank C. Magne et al., Journal of the American Oil Chemists' Society , 34(3):127-129(1957)).

상기 기술한 제조방법을 사용하여 제조한 공-형질전환된 대장균을 배양하는 경우 지방산 생합성 경로를 과발현하므로, 유익한 에너지 원으로 사용할 수 있는 지방산을 용이하게 얻을 수 있다.In the case of culturing the co-transformed E. coli prepared using the above-described manufacturing method, the fatty acid biosynthetic pathway is overexpressed, and thus fatty acids that can be used as a beneficial energy source can be easily obtained.

따라서, 본 발명에서는 지방산 생합성 대사 경로(fatty acid biosynthesis pathway)의 상위단계의 물질들의 세포 내 생산 증대를 위해 특정 대사산물을 효율적으로 생산하는 균주를 개발하기 위해서 미생물의 게놈 정보와 대사 네트워크를 이해함과 동시에 야생형 대장균에 적용하여, 표적 유전자의 삽입을 통한 재조합 균주를 개발하여 본 발명이 완성되었다.
Therefore, in the present invention, in order to develop a strain that efficiently produces a specific metabolite to increase intracellular production of substances at a higher level of the fatty acid biosynthesis pathway, understanding the genomic information and metabolic network of microorganisms. At the same time, the present invention was completed by developing a recombinant strain through the insertion of a target gene by applying it to wild-type E. coli.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(ⅰ) 본 발명은 다음 단계를 포함하는 지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법을 제공한다:(I) The present invention provides a method for preparing a transgenic E. coli for overexpression of a fatty acid biosynthetic pathway comprising the following steps:

(a) aceE 유전자 및 accA 유전자를 하나의 발현벡터에 삽입시키는 단계; 및(a) aceE Gene and accA Inserting the gene into one expression vector; And

(b) 상기 aceE 유전자 및 accA 유전자가 삽입된 발현벡터로 대장균을 형질전환시키는 단계.(b) the aceE Transforming E. coli with the gene and the expression vector into which the accA gene is inserted.

(ⅱ) 본 발명의 지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법은 aceE 유전자 및 accA 유전자를 하나의 발현벡터에 삽입하여, 상기 벡터로 대장균을 형질전환시키므로, 형질전환 대장균의 유전적 안정성이 높고 지방산 생합성 경로 과발현 효과가 매우 뛰어나다.
(Ii) The method for producing transformed E. coli for overexpression of the fatty acid biosynthetic pathway of the present invention is aceE Gene and accA Since the gene is inserted into one expression vector, E. coli is transformed with the vector, the genetic stability of the transformed E. coli is high, and the effect of overexpressing the fatty acid biosynthetic pathway is very excellent.

도 1은 Escherichia coli 생체 내에서 글루코오즈에서부터 지방산 생합성(FAS) 까지의 경로를 보여주는 도식이다.
도 2는 Escherichia coli 와 같은 박테리아용 발현벡터인 pTrc99A에 aceE 유전자가 삽입되어있는 구조의 도식화이다. pJE101라 명명한다.
도 3은 Escherichia coli 와 같은 박테리아용 발현벡터인 pTrc99A에 accA 유전자가 삽입되어있는 구조의 도식화이다. pJE102라 명명한다.
도 4는 Escherichia coli 와 같은 박테리아용 발현벡터인 pTrc99A에 aceEaccA 유전자가 삽입되어있는 구조의 도식화이다. pJE103라 명명한다.
도 5는 재조합 Escherichia coli의 생장곡선을 야생종 Escherichia coli 와 비교한 결과를 그린 그래프이다.
도 6은 재조합 Escherichia coli의 세포 외에서 분석된 아세트산(도 6a)과 말론산(도 6b)의 양을 야생종 Escherichia coli 의 실험 결과와 비교한 결과이다.
도 7은 pJE103을 포함하는 대장균의 세포 외에서 분석된 아세트산(도 7a)과 말론산(도 7b)의 양을, pJE101 또는 pJE102 만을 포함하는 대장균의 실험 결과와 비교한 결과이다.
도 8은 pJE103을 포함하는 대장균의 세포 외에서 분석된 아세트산(도 8a)과 말론산(도 8b)의 양을, pJE101 pJE102 을 모두 포함하는 대장균 실험 결과와 비교한 결과이다.
도 9는 재조합 Escherichia coli의 세포 내에서 분석된 아세트산(도 9a)과 말론산(도 9b)의 양을 야생종 Escherichia coli 의 실험 결과와 비교한 결과이다.
1 is Escherichia coli It is a schematic showing the pathway from glucose to fatty acid biosynthesis (FAS) in vivo.
Figure 2 is Escherichia coli Such as AceE to pTrc99A, an expression vector for bacteria It is a schematic diagram of the structure in which the gene is inserted. It is named pJE101.
Figure 3 is Escherichia coli AccA to pTrc99A, an expression vector for bacteria such as It is a schematic diagram of the structure in which the gene is inserted. It is named pJE102.
Figure 4 is Escherichia coli This is a schematic diagram of a structure in which aceE and accA genes are inserted into pTrc99A, an expression vector for bacteria such as. It is named pJE103.
Figure 5 is a recombinant Escherichia coli growth curve of the wild species Escherichia coli This is a graph showing the result of comparison with.
Figure 6 is a recombinant Escherichia The amounts of acetic acid (Fig. 6a) and malonic acid (Fig. 6b) analyzed outside the cells of coli were determined by the wild species Escherichia. This is the result of comparison with the experimental result of coli.
Fig. 7 shows the amounts of acetic acid (Fig. 7a) and malonic acid (Fig. 7b) analyzed outside the cells of Escherichia coli containing pJE103, pJE101. Or it is the result of comparison with the experimental results of E. coli containing only pJE102.
Figure 8 shows the amounts of acetic acid (Figure 8a) and malonic acid (Figure 8b) analyzed outside the cells of Escherichia coli containing pJE103, pJE101. And This is the result of comparison with the results of the E. coli experiment including all pJE102.
9 is a recombinant Escherichia The amounts of acetic acid (Fig. 9a) and malonic acid (Fig. 9b) analyzed in the cells of coli were determined by the wild species Escherichia. This is the result of comparison with the experimental result of coli.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and that the scope of the present invention is not limited by these examples according to the gist of the present invention for those of ordinary skill in the art to which the present invention pertains. It will be self-evident.

실시예Example

실시예 1: aceE accA 의 유전자를 발현하는 플라스미드 pJE101 , pJE102 , 및 pJE103의 제조 Example 1: Preparation of plasmid pJE101, pJE102, pJE103 and expressing the gene of the aceE accA

대장균 K-12의 염색체를 주형으로 하여 아세틸-CoA와 말로닐-CoA의 생산을 위한 네 가지 효소를 암호화하는 aceEaccA의 유전자서열(GenBank, NCBI)을 중합효소연쇄반응(PCR, DaKaRa Korea) 방법을 통해 클로닝 하였다. aceEaccA 유전자서열 및 각각이 암호화하는 효소의 이름은 하기 표 1에 정리하였고, 각각의 유전자를 증폭하기 위해 사용한 프라이머 및 제한효소는 하기 표 2에 정리하였다.Polymerase chain reaction (PCR, DaKaRa Korea) of aceE and accA encoding four enzymes for the production of acetyl-CoA and malonyl-CoA using the chromosome of E. coli K-12 as a template. It was cloned through the method. The aceE and accA gene sequences and the names of enzymes encoded by each are summarized in Table 1 below, and primers and restriction enzymes used to amplify each gene are summarized in Table 2 below.

유전자서열
(GenBank 허가번호)
Gene sequence
(GenBank license number)
유전자gene 생산 효소Production enzyme
서열목록 제1서열
(GeneID: 944834)
Sequence Listing first sequence
(GeneID: 944834)
aceEaceE pyruvate dehydrogenase,
decarboxylase component E1
pyruvate dehydrogenase,
decarboxylase component E1
서열목록 제2서열
(GeneID: 944895)
Sequence Listing 2
(GeneID: 944895)
accAaccA acetyl-CoA carboxylase,
carboxytransferase, alpha subunit
acetyl-CoA carboxylase,
carboxytransferase, alpha subunit

유전자gene 프라이머 서열Primer sequence 제한효소Restriction enzyme aceEaceE FF 5‘-CCATGGATGAACGAAACCGTTGACGGCG-3'5'-CCATGGATGAACGAAACCGTTGACGGCG-3' Nco INco I RR 5‘-GAGCTCTTACGCCAGACGCGGGTTAACT-3'5'-GAGCTCTTACGCCAGACGCGGGTTAACT-3' Sac ISac I accAaccA FF 5‘-GGATCCATGAGTCTGAATTTCCTTGATTTT-3'5'-GGATCCATGAGTCTGAATTTCCTTGATTTT-3' BamH IBamH I RR 5‘-TCTAGATTACGCGTAACCGTAGCTCATC-3'5'-TCTAGATTACGCGTAACCGTAGCTCATC-3' Xba IXba I

표 1의 유전자들은 표 2에 열거된 프라이머를 사용하여 증폭하였다. 증폭된 산물을 표 2에 열거된 제한 효소를 이용하여 pTrc99A 벡터(서열번호 3, Seon-Won Kim et al., Biotechnol . Prog ., 23:599-605(2007))에 도입하여 각각 aceE 유전자, accA 유전자 및 aceEaccA 유전자를 포함하는 pJE101, pJE102 및 pJE103를 제조하였다. The genes in Table 1 were amplified using the primers listed in Table 2. The amplified product was introduced into the pTrc99A vector (SEQ ID NO: 3, Seon-Won Kim et al., Biotechnol . Prog . , 23:599-605 (2007)) using the restriction enzymes listed in Table 2, respectively, and aceE Gene , accA Genes and pJE101 , pJE102, and pJE103 containing aceE and accA genes were prepared.

도 2, 3 및 4는 상기 pJE101(aceE 유전자 포함), pJE102(accA 유전자 포함), 및 pJE103(aceEaccA 유전자 포함)라 명명된 벡터의 지도를 나타내는 도면이다. 각각의 중합효소연쇄반응은 통상적인 반응조건(10 mM Tris-HCl(pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2 mM MgSO4, Taq DNA 중합효소(DaKaRa))에서 95℃/5분(denaturation), 60℃/1분(annealing), 72/1분(extension)로 1회 수행한 후, 95℃/1분(denaturation), 60℃/30초(annealing), 72/1분(extension)로 30회 반복 수행하였다. 마지막 단계로 안정적인 신장을 위해 95℃/1분(denaturation), 60℃/1분(annealing), 72/5분(extension) 반응시켰다. 중합효소연쇄반응 후 증폭된 DNA는 1% 아가로즈 젤 상에서 확인 후 정제하여 제한효소반응에 이용하였다. 제한효소 처리된 각각의 DNA 조각들을 pTrc99A 벡터의 다중삽입부위(multicloning site)에 도 2, 3 및 4에 개시된 것과 같이 삽입하였다. 각 단계마다 삽입된 유전자의 삽입여부를 확인하기 위해 형질전환된 대장균(E. coli AG1 competent cell, Stratagene)에서 플라스미드를 추출하여 이를 다시 원래 삽입부위의 제한효소로 처리하여 잘린 DNA 조작의 크기를 1% 아가로즈 젤 상에서 전기 영동하여 비교하는 방법을 사용하였다.
Figures 2, 3 and 4 is a view showing a map of the pJE101 (including aceE gene), pJE102 (including accA gene), and pJE103 (including the aceE gene accA) La named vector. Each polymerase chain reaction was performed at 95° C./ under conventional reaction conditions (10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2 mM MgSO 4 , Taq DNA polymerase (DaKaRa)). After performing once at 5 minutes (denaturation), 60°C/1 minute (annealing), 72/1 minute (extension), 95°C/1 minute (denaturation), 60°C/30 seconds (annealing), 72/1 It was repeated 30 times with an extension. In the last step, for stable elongation, the reaction was performed at 95°C/1 minute (denaturation), 60°C/1 minute (annealing), and 72/5 minutes (extension). The DNA amplified after the polymerase chain reaction was confirmed on a 1% agarose gel, purified, and used for restriction enzyme reaction. Each of the DNA fragments treated with the restriction enzyme was inserted into the multicloning site of the pTrc99A vector as disclosed in FIGS. 2, 3 and 4. Transformed E. coli (E. coli AG1 competent cell, Stratagene) was extracted and treated with the restriction enzyme of the original insertion site to compare the size of the cut DNA by electrophoresis on a 1% agarose gel.

실시예Example 2: 대장균 형질전환체( 2: E. coli transformant ( transformanttransformant )의 제조) Of the manufacture

통상적으로 클로닝용으로 많이 쓰이는 대장균의 경우 CaCl2 완충액을 사용한 컴피턴트 세포를 만든 후 열충격(42℃) 방법에 의해 플라스미드를 숙주세포 내로 넣지만, 본 발명에서는 형질전환체의 안정적 제조와 효율을 높이기 위해 전기충격에 의한 형질전환방법을 사용하였다.In the case of E. coli, which is commonly used for cloning, a plasmid is put into the host cell by the heat shock (42°C) method after making competent cells using CaCl 2 buffer, but in the present invention, stable production and efficiency of transformants are improved. For this, a transformation method by electric shock was used.

상기 전기충격에 의한 형질전환방법을 위해 16시간동안 배양된 200 ㎕의 야생종 대장균 배양액을 250 ml 플라스크에 들어있는 50 ml의 LB배지(10 g/L Tripton, 10 g/L NaCl, 5 g/L yeast extract)에 접종하여 배양액의 흡광도(absorbance)가 600 nm파장에서 0.6에 이르렀을 때, 배양액 전체에 해당하는 50 ml의 배양액은 원심분리하여 상등액과 세포를 분리하였다. 모아진 세포는 10% 글리세롤 5 ml로 2~3회 반복적으로 세척한 후, 10% 글리세롤 100~200 ㎕로 희석하였다.희석한 세포를 50 ㎕씩 분주하고 1~3 ㎕의 플라스미드를 넣어주었다.For the transformation method by electric shock, 200 µl of wild species E. coli culture medium cultured for 16 hours was added to 50 ml of LB medium (10 g/L Tripton, 10 g/L NaCl, 5 g/L) in a 250 ml flask. yeast extract), and when the absorbance of the culture solution reached 0.6 at a wavelength of 600 nm, 50 ml of the culture solution corresponding to the entire culture solution was centrifuged to separate the supernatant and cells. The collected cells were repeatedly washed 2-3 times with 5 ml of 10% glycerol, and then diluted with 100-200 µl of 10% glycerol. The diluted cells were dispensed with 50 µl and 1–3 µl of plasmid was added.

상기의 플라스미드가 들어있는 분주된 50 ㎕의 액체는 전기천공용 큐벳에 담아 전기충격(1800 V, 25 μF, 200Ω)을 가하였다. 미리 준비해둔 1 ml LB배지(10 g/L Tripton, 10 g/L NaCl, 5 g/L yeast extract)를 첨가한 뒤 1시간 동안 37℃에서 배양하였다. 배양된 형질전환체는 선택배지(엠피실린(50 ㎍/ml)가 첨가된 LB 고체배지)에서 단일균체가 생성될 때까지 배양하였다.The dispensed 50 µl of the liquid containing the above plasmid was put in a cuvette for electroporation and electric shock (1800 V, 25 µF, 200Ω) was applied. After adding 1 ml of LB medium (10 g/L Tripton, 10 g/L NaCl, 5 g/L yeast extract) prepared in advance, it was incubated at 37°C for 1 hour. The cultured transformants were cultured in a selective medium (LB solid medium to which an ampicillin (50 µg/ml) was added) until a single cell was generated.

상기 방법에 의해 도 2, 도 3 및 도 4에서 보여지는 구성의 발현벡터가 삽입된 재조합 대장균(형질전환체) 3종이 완성되었다. 또한 도 2의 pJE101과 도 3의 pJE102의 플라즈미드를 동시에 가지는 재조합 E. coli는 상기 위에 설명되어 있는 형질전환 방식을 사용함에 추가적으로 pJE101이 삽입된 E. coli를 위의 방법에 따라 확인한 후, 같은 방법에 의해 pJE102를 삽입하였다. pJE101와 pJE102를 모두 가지는 재조합 E. coli는 내부의 플라즈미드를 추출한 후, PCR primer를 사용해 확인하였으며, 또한 전기영동으로 내부에 삽입된 유전자의 사이즈를 확인하였다.
By the above method, three types of recombinant E. coli (transformants) into which the expression vector of the configuration shown in FIGS. 2, 3 and 4 were inserted were completed. In addition, since the recombinant E. coli having the plasmid of pJE101 of FIG. 2 and the plasmid of pJE102 of FIG. 3 at the same time uses the transformation method described above, the E. coli into which pJE101 is inserted was additionally confirmed according to the above method, and then the same method. PJE102 was inserted. Recombinant E. coli having both pJE101 and pJE102 was identified using PCR primers after extracting the plasmid inside, and the size of the inserted gene was also confirmed by electrophoresis.

실시예Example 3: 대장균의 배양 및 재조합 균주로부터 단백질의 생산 3: Culture of E. coli and production of proteins from recombinant strains

형질전환의 정확성이 확인된 각각의 균들을 LB배지에 12시간 배양시키고 글리세롤 농도가 25%가 되게 보관용 균액으로 만든 다음 -80℃에서 배양실험시까지 저장하였다. 배양은 상기 보관용 균액 1 ml을 10 ml 저면 튜브 dp에 들어있는 엠피실린(50 ㎍/ml)이 첨가된 3 ml의 LB배지에 24시간동안 배양한 후, 이를 다시 500 ml 플라스크에 들어있는 엠피실린(50 ㎍/ml)이 첨가된 200 ml의 LB배지(10 g/L Tripton, 10 g/L NaCl, 5 g/L yeast extract)에 1/200의 전기 배양액을 접종하여 37℃, 170 rpm 상태에서 24시간 동안 배양하였다(도 5). 단백질 발현을 위해 배양액의 흡광도(absorbance)가 600 nm파장에서 0.6에 이르렀을 때 유도물질인 IPTG(isopropylthio-β-D-galactoside, sigma, USA)를 1 mM 첨가하여 재조합 단백질의 발현을 유도하였다.Each of the bacteria whose transformation accuracy was confirmed was incubated in LB medium for 12 hours, made into a bacterial solution for storage so that the glycerol concentration was 25%, and then stored at -80°C until the culture experiment. Incubation was carried out by incubating 1 ml of the storage bacteria solution in 3 ml of LB medium to which MPicillin (50 µg/ml) contained in a 10 ml bottom tube dp was added for 24 hours, and then again MP contained in a 500 ml flask. Inoculate 1/200 of the pre-culture solution in 200 ml of LB medium (10 g/L Tripton, 10 g/L NaCl, 5 g/L yeast extract) to which silin (50 µg/ml) was added to 37°C, 170 rpm Incubated for 24 hours in the state (FIG. 5). For protein expression, when the absorbance of the culture medium reached 0.6 at a wavelength of 600 nm, 1 mM of IPTG (isopropylthio-β-D-galactoside, sigma, USA) as an inducer was added to induce expression of the recombinant protein.

상기에 따라 배양된 재조합 대장균 4종과 야생종의 생장곡선은 도 5에 나타내었다.
The growth curves of the four recombinant E. coli species and wild species cultured according to the above are shown in FIG. 5.

실시예 4: 재조합 대장균 세포 내외로부터의 아세트산( acetic acid ) 및 말론 산(malonic acid)의 측정 Example 4: Preparation of acetic acid from a recombinant E. coli intracellular (acetic acid ) and malonic acid

배양액 내의 아세트산과 말론산의 농도는 배양 중 특정시간마다 채취한 시료를 4℃에서 원심분리(10분, 4500rpm) 후 상등액과 세포를 분리하여 -80℃에서 보관하고, 이 중 세포는 세포 내 물질의 추출을 위해서 아래와 같은 과정을 거쳤다.The concentration of acetic acid and malonic acid in the culture medium is determined by centrifugation (10 minutes, 4500 rpm) of the sample collected at a specific time during cultivation at 4°C. For extraction of, the following process was carried out.

상등액과 분리된 세포는 영하 -80℃에 넣어둔 메탄올 250 ㎕로 세포를 희석한 후, -80℃에 넣어두고 5~10분 뒤 확인하면 유동성 있는 액체로 변화된다. 이 과정을 3번 반복하여 -9℃에서 원심분리 후 상등액은 보관(-80℃)하였다. 남은 셀을 가지고 다시 위와 같은 과정을 반복하여 얻어진 용액을 합쳐, 총 500 ㎕의 샘플을 획득하였다. 이것이 인트라셀룰라 물질로서 세포 내의 메타볼라이트(metabolites)를 추출한 것이다.The cells separated from the supernatant are changed into a fluid liquid by diluting the cells with 250 µl of methanol placed at -80°C below -80°C and checking after 5-10 minutes. This process was repeated 3 times and centrifuged at -9°C and the supernatant was stored (-80°C). The solution obtained by repeating the above process again with the remaining cells was combined to obtain a total of 500 µl of a sample. This is an intracellular substance, extracted from metabolites in cells.

상기 배양액 50 ml로부터 분리된 상등액(엑스트라셀룰라 물질)과 세포에서 추출된 물질(인트라셀룰라 물질)은 각각 500 ㎕씩을 0.2 ㎛ 필터를 이용하여 정제한 후, 하단의 조건하에서 HPLC 정량 분석을 실시하고 그 결과를 도 6 내지 도 9에 도시하였다.The supernatant (extracellular material) separated from 50 ml of the culture medium and the material extracted from the cells (intracellular material) were purified by using a 0.2 μm filter, respectively, 500 μl, and then subjected to HPLC quantitative analysis under the conditions below. The results are shown in FIGS. 6 to 9.

아세트산과 말론산 분석을 위한 HPLC 조건HPLC conditions for acetic acid and malonic acid analysis 품 목item 조 건Condition HPLC 모델HPLC model (영린기기, Korea), UV730D (영린기기, Korea) (Younglin Machine, Korea), UV730D (Younglin Machine, Korea) 컬럼column Aminex HPX-87H(Biorad, USA)Aminex HPX-87H (Biorad, USA) 유속Flow rate 0.6 mi/min0.6 mi/min 주입부피Injection volume 30 ㎕30 μl 이동상Mobile phase 0.005N 황산0.005N sulfuric acid 오븐 온도Oven temperature 50℃50 작동 시간Working time 30분30 minutes UV 검출파장UV detection wavelength 210nm210nm

실험 결과, 재조합 대장균은 야생종 대장균의 세포 내 및 세포 외에서 분석되는 아세트산과 말론산의 생산량과 분비 경향에 큰 차이를 보임을 알 수 있었다(도 6 내지 9). As a result of the experiment, it was found that the recombinant E. coli showed a large difference in the production and secretion tendency of acetic acid and malonic acid analyzed in and outside the cells of wild E. coli (FIGS. 6 to 9).

도 7을 보면, pJE103을 포함하는 대장균의 경우, pJE101 또는 pJE102 만을 포함하는 대장균보다 세포 외에서 분석되는 아세트산과 말론산의 양이 현저하게 증가하였음을 확인할 수 있다.Referring to Figure 7, in the case of Escherichia coli containing pJE103, pJE101 Alternatively, it can be seen that the amount of acetic acid and malonic acid analyzed extracellularly was significantly increased than that of Escherichia coli containing only pJE102.

또한 도 8을 보면, pJE103을 포함하는 대장균의 경우 pJE101 pJE102 을 모두 포함하는 대장균보다 세포 외에서 분석되는 아세트산과 말론산의 양이 현저하게 증가하였음을 확인할 수 있다. In addition, referring to Figure 8, in the case of Escherichia coli containing pJE103 pJE101 And It can be seen that the amounts of acetic acid and malonic acid analyzed extracellularly were significantly increased compared to E. coli containing all of pJE102.

도 9를 보면, 배양이 시작된 후 12시간이 지난 이후부터 아세트산과 말론산의 생산이 야생종에서는 확인되지 않지만, 4종류의 재조합 대장균에서는 IPTG에 의한 발현유도로 아세트산과 말론산의 세포 내 생산이 유지됨을 확인할 수 있다.
9, the production of acetic acid and malonic acid was not confirmed in wild species from 12 hours after the initiation of culture, but intracellular production of acetic acid and malonic acid was maintained by induction of expression by IPTG in 4 types of recombinant E. coli. can confirm.

실시예Example 5: 재조합 대장균의 유전적 안정성( 5: genetic stability of recombinant E. coli ( geneticgenetic stabilitystability ) 비교) compare

aceE accA 유전자 모두로 대장균을 형질전환하는 방법은 (i) 도 3과 같이 aceE accA 유전자를 모두 포함한 하나의 발현벡터(pJE103)를 대장균에 삽입하는 방법이 있고, (ii) 도 2 및 3과 같이 aceE 유전자를 포함한 것(pJE101)과 accA 유전자를 포함한 것(pJE102) 이렇게 두 개의 발현벡터를 대장균에 주입하는 방법이 있다. aceE And accA method for transformation of Escherichia coli with both genes are (i), and a method for inserting a single expression vector (pJE103) containing all aceE and accA gene as shown in Figure 3 in E. coli, (ii) and Figs. 2 and 3 As aceE There is a method of injecting two expression vectors into E. coli, one containing the gene (pJE101) and one containing the accA gene (pJE102).

(i)의 방법에 따라 pJE103(aceEaccA 유전자 포함) 벡터로 형질전환한 대장균은 형질전환용 벡터에 대한 유전적 안정성이 높아 후손 대장균들도 선조 대장균들과 거의 동일하게 아세트산 및 말론산 생산능력을 나타내었다. 반면, (ii)의 방법에 따라 pJE101(aceE 유전자 포함)벡터 및 pJE102(accA 유전자 포함) 벡터로 형질전환한 대장균의 경우 형질전환용 벡터에 대한 유전적 안정성이 (i)의 방법에 따라 pJE103(aceEaccA 유전자 포함) 벡터로 형질전환한 대장균에 비해 다소 낮아 후손 대장균들은 선조 대장균들과 비교하여 아세트산 및 말론산 생산능력이 약간 감소되었으나, 이는 야생종의 대장균이 생산하는 아세트산과 말론산에 비해 높은 생산성을 갖는다. (i)의 방법에 따라 pJE103(aceEaccA 유전자 포함) 벡터로 형질전환한 대장균의 유전적 안정성의 확인을 위해 재조합체를 선택배양배지에서 24시간의 배양 후, 세포 내에 벡터를 유지하고 있는 재조합 균주의 개체 수를 확인하였을 때, 89%가 유지되었으며, (ii)의 방법에 따라 pJE101(aceE 유전자 포함)벡터 및 pJE102(accA 유전자 포함) 벡터로 형질전환한 대장균의 경우 70%로 확인되었다.
E. coli transformed with pJE103 (including aceE and accA genes) vector according to the method (i) has high genetic stability to the vector for transformation, so descendant E. coli has almost the same ability to produce acetic acid and malonic acid as ancestor E. coli. Shown. On the other hand, pJE103 according to the process (including the aceE gene) pJE101 according to the method of (ii) vector and pJE102 (including accA gene) For transfection the E. coli by a vector of genetic stability of the vector for transfection (i) ( aceE and accA genes), compared to the vector-transformed E. coli, the descendant E. coli slightly decreased the acetic acid and malonic acid production capacity compared to the ancestor E. coli, but this was higher than the acetic acid and malonic acid produced by the wild E. coli. Have productivity. In order to confirm the genetic stability of E. coli transformed with pJE103 (including aceE and accA genes) vector according to the method (i), the recombinant was cultured in selective culture medium for 24 hours, and then the vector was maintained in the cell. when determine the number of objects of the strain, 89% was maintained, it was found to be 70% in the plasma one E. coli as pJE101 (including aceE gene) vector, and the pJE102 (including accA gene) vector according to the method of (ii).

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
As described above, a specific part of the present invention has been described in detail, and it is obvious that this specific technology is only a preferred embodiment for those of ordinary skill in the art, and the scope of the present invention is not limited thereto. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

<110> Industry - University Cooperation Foundation Sogang University <120> Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 2664 <212> DNA <213> Escherichia coli strain K-12, aceE <400> 1 atgtcagaac gtttcccaaa tgacgtggat ccgatcgaaa ctcgcgactg gctccaggcg 60 atcgaatcgg tcatccgtga agaaggtgtt gagcgtgctc agtatctgat cgaccaactg 120 cttgctgaag cccgcaaagg cggtgtaaac gtagccgcag gcacaggtat cagcaactac 180 atcaacacca tccccgttga agaacaaccg gagtatccgg gtaatctgga actggaacgc 240 cgtattcgtt cagctatccg ctggaacgcc atcatgacgg tgctgcgtgc gtcgaaaaaa 300 gacctcgaac tgggcggcca tatggcgtcc ttccagtctt ccgcaaccat ttatgatgtg 360 tgctttaacc acttcttccg tgcacgcaac gagcaggatg gcggcgacct ggtttacttc 420 cagggccaca tctccccggg cgtgtacgct cgtgctttcc tggaaggtcg tctgactcag 480 gagcagctgg ataacttccg tcaggaagtt cacggcaatg gcctctcttc ctatccgcac 540 ccgaaactga tgccggaatt ctggcagttc ccgaccgtat ctatgggtct gggtccgatt 600 ggtgctattt accaggctaa attcctgaaa tatctggaac accgtggcct gaaagatacc 660 tctaaacaaa ccgtttacgc gttcctcggt gacggtgaaa tggacgaacc ggaatccaaa 720 ggtgcgatca ccatcgctac ccgtgaaaaa ctggataacc tggtcttcgt tatcaactgt 780 aacctgcagc gtcttgacgg cccggtcacc ggtaacggca agatcatcaa cgaactggaa 840 ggcatcttcg aaggtgctgg ctggaacgtg atcaaagtga tgtggggtag ccgttgggat 900 gaactgctgc gtaaggatac cagcggtaaa ctgatccagc tgatgaacga aaccgttgac 960 ggcgactacc agaccttcaa atcgaaagat ggtgcgtacg ttcgtgaaca cttcttcggt 1020 aaatatcctg aaaccgcagc actggttgca gactggactg acgagcagat ctgggcactg 1080 aaccgtggtg gtcacgatcc gaagaaaatc tacgctgcat tcaagaaagc gcaggaaacc 1140 aaaggcaaag cgacagtaat ccttgctcat accattaaag gttacggcat gggcgacgcg 1200 gctgaaggta aaaacatcgc gcaccaggtt aagaaaatga acatggacgg tgtgcgtcat 1260 atccgcgacc gtttcaatgt gccggtgtct gatgcagata tcgaaaaact gccgtacatc 1320 accttcccgg aaggttctga agagcatacc tatctgcacg ctcagcgtca gaaactgcac 1380 ggttatctgc caagccgtca gccgaacttc accgagaagc ttgagctgcc gagcctgcaa 1440 gacttcggcg cgctgttgga agagcagagc aaagagatct ctaccactat cgctttcgtt 1500 cgtgctctga acgtgatgct gaagaacaag tcgatcaaag atcgtctggt accgatcatc 1560 gccgacgaag cgcgtacttt cggtatggaa ggtctgttcc gtcagattgg tatttacagc 1620 ccgaacggtc agcagtacac cccgcaggac cgcgagcagg ttgcttacta taaagaagac 1680 gagaaaggtc agattctgca ggaagggatc aacgagctgg gcgcaggttg ttcctggctg 1740 gcagcggcga cctcttacag caccaacaat ctgccgatga tcccgttcta catctattac 1800 tcgatgttcg gcttccagcg tattggcgat ctgtgctggg cggctggcga ccagcaagcg 1860 cgtggcttcc tgatcggcgg tacttccggt cgtaccaccc tgaacggcga aggtctgcag 1920 cacgaagatg gtcacagcca cattcagtcg ctgactatcc cgaactgtat ctcttacgac 1980 ccggcttacg cttacgaagt tgctgtcatc atgcatgacg gtctggagcg tatgtacggt 2040 gaaaaacaag agaacgttta ctactacatc actacgctga acgaaaacta ccacatgccg 2100 gcaatgccgg aaggtgctga ggaaggtatc cgtaaaggta tctacaaact cgaaactatt 2160 gaaggtagca aaggtaaagt tcagctgctc ggctccggtt ctatcctgcg tcacgtccgt 2220 gaagcagctg agatcctggc gaaagattac ggcgtaggtt ctgacgttta tagcgtgacc 2280 tccttcaccg agctggcgcg tgatggtcag gattgtgaac gctggaacat gctgcacccg 2340 ctggaaactc cgcgcgttcc gtatatcgct caggtgatga acgacgctcc ggcagtggca 2400 tctaccgact atatgaaact gttcgctgag caggtccgta cttacgtacc ggctgacgac 2460 taccgcgtac tgggtactga tggcttcggt cgttccgaca gccgtgagaa cctgcgtcac 2520 cacttcgaag ttgatgcttc ttatgtcgtg gttgcggcgc tgggcgaact ggctaaacgt 2580 ggcgaaatcg ataagaaagt ggttgctgac gcaatcgcca aattcaacat cgatgcagat 2640 aaagttaacc cgcgtctggc gtaa 2664 <210> 2 <211> 960 <212> DNA <213> Escherichia coli strain K-12, accA <400> 2 atgagtctga atttccttga ttttgaacag ccgattgcag agctggaagc gaaaatcgat 60 tctctgactg cggttagccg tcaggatgag aaactggata ttaacatcga tgaagaagtg 120 catcgtctgc gtgaaaaaag cgtagaactg acacgtaaaa tcttcgccga tctcggtgca 180 tggcagattg cgcaactggc acgccatcca cagcgtcctt ataccctgga ttacgttcgc 240 ctggcatttg atgaatttga cgaactggct ggcgaccgcg cgtatgcaga cgataaagct 300 atcgtcggtg gtatcgcccg tctcgatggt cgtccggtga tgatcattgg tcatcaaaaa 360 ggtcgtgaaa ccaaagaaaa aattcgccgt aactttggta tgccagcgcc agaaggttac 420 cgcaaagcac tgcgtctgat gcaaatggct gaacgcttta agatgcctat catcaccttt 480 atcgacaccc cgggggctta tcctggcgtg ggcgcagaag agcgtggtca gtctgaagcc 540 attgcacgca acctgcgtga aatgtctcgc ctcggcgtac cggtagtttg tacggttatc 600 ggtgaaggtg gttctggcgg tgcgctggcg attggcgtgg gcgataaagt gaatatgctg 660 caatacagca cctattccgt tatctcgccg gaaggttgtg cgtccattct gtggaagagc 720 gccgacaaag cgccgctggc ggctgaagcg atgggtatca ttgctccgcg tctgaaagaa 780 ctgaaactga tcgactccat catcccggaa ccactgggtg gtgctcaccg taacccggaa 840 gcgatggcgg catcgttgaa agcgcaactg ctggcggatc tggccgatct cgacgtgtta 900 agcactgaag atttaaaaaa tcgtcgttat cagcgcctga tgagctacgg ttacgcgtaa 960 960 <210> 3 <211> 4176 <212> DNA <213> Artificial Sequence <220> <223> Vector backbone pTrc99A <400> 3 gtttgacagc ttatcatcga ctgcacggtg caccaatgct tctggcgtca ggcagccatc 60 ggaagctgtg gtatggctgt gcaggtcgta aatcactgca taattcgtgt cgctcaaggc 120 gcactcccgt tctggataat gttttttgcg ccgacatcat aacggttctg gcaaatattc 180 tgaaatgagc tgttgacaat taatcatccg gctcgtataa tgtgtggaat tgtgagcgga 240 taacaatttc acacaggaaa cagaccatgg aattcgagct cggtacccgg ggatcctcta 300 gagtcgacct gcaggcatgc aagcttggct gttttggcgg atgagagaag attttcagcc 360 tgatacagat taaatcagaa cgcagaagcg gtctgataaa acagaatttg cctggcggca 420 gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc cgtagcgccg 480 atggtagtgt ggggtctccc catgcgagag tagggaactg ccaggcatca aataaaacga 540 aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt gaacgctctc 600 ctgagtagga caaatccgcc gggagcggat ttgaacgttg cgaagcaacg gcccggaggg 660 tggcgggcag gacgcccgcc ataaactgcc aggcatcaaa ttaagcagaa ggccatcctg 720 acggatggcc tttttgcgtt tctacaaact ctttttgttt atttttctaa atacattcaa 780 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 840 agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc 900 ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 960 gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc 1020 gccccgaaga acgttttcca atgatgagca cttttaaagt tctgctatgt ggcgcggtat 1080 tatcccgtgt tgacgccggg caagagcaac tcggtcgccg catacactat tctcagaatg 1140 acttggttga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 1200 aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 1260 cgatcggagg accgaaggag ctaaccgctt ttttgcacaa catgggggat catgtaactc 1320 gccttgatcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 1380 cgatgcctac agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 1440 tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 1500 tgcgctcggc ccttccggct ggctggttta ttgctgataa atctggagcc ggtgagcgtg 1560 ggtctcgcgg tatcattgca gcactggggc cagatggtaa gccctcccgt atcgtagtta 1620 tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 1680 gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 1740 ttgatttaaa acttcatttt taatttaaaa ggatctaggt gaagatcctt tttgataatc 1800 tcatgaccaa aatcccttaa cgtgagtttt cgttccactg agcgtcagac cccgtagaaa 1860 agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 1920 aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 1980 cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 2040 agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 2100 tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 2160 gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 2220 gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 2280 ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 2340 gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 2400 ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 2460 ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 2520 acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 2580 gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag 2640 cggaagagcg cctgatgcgg tattttctcc ttacgcatct gtgcggtatt tcacaccgca 2700 tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag tatacactcc 2760 gctatcgcta cgtgactggg tcatggctgc gccccgacac ccgccaacac ccgctgacgc 2820 gccctgacgg gcttgtctgc tcccggcatc cgcttacaga caagctgtga ccgtctccgg 2880 gagctgcatg tgtcagaggt tttcaccgtc atcaccgaaa cgcgcgaggc agcagatcaa 2940 ttcgcgcgcg aaggcgaagc ggcatgcatt tacgttgaca ccatcgaatg gtgcaaaacc 3000 tttcgcggta tggcatgata gcgcccggaa gagagtcaat tcagggtggt gaatgtgaaa 3060 ccagtaacgt tatacgatgt cgcagagtat gccggtgtct cttatcagac cgtttcccgc 3120 gtggtgaacc aggccagcca cgtttctgcg aaaacgcggg aaaaagtgga agcggcgatg 3180 gcggagctga attacattcc caaccgcgtg gcacaacaac tggcgggcaa acagtcgttg 3240 ctgattggcg ttgccacctc cagtctggcc ctgcacgcgc cgtcgcaaat tgtcgcggcg 3300 attaaatctc gcgccgatca actgggtgcc agcgtggtgg tgtcgatggt agaacgaagc 3360 ggcgtcgaag cctgtaaagc ggcggtgcac aatcttctcg cgcaacgcgt cagtgggctg 3420 atcattaact atccgctgga tgaccaggat gccattgctg tggaagctgc ctgcactaat 3480 gttccggcgt tatttcttga tgtctctgac cagacaccca tcaacagtat tattttctcc 3540 catgaagacg gtacgcgact gggcgtggag catctggtcg cattgggtca ccagcaaatc 3600 gcgctgttag cgggcccatt aagttctgtc tcggcgcgtc tgcgtctggc tggctggcat 3660 aaatatctca ctcgcaatca aattcagccg atagcggaac gggaaggcga ctggagtgcc 3720 atgtccggtt ttcaacaaac catgcaaatg ctgaatgagg gcatcgttcc cactgcgatg 3780 ctggttgcca acgatcagat ggcgctgggc gcaatgcgcg ccattaccga gtccgggctg 3840 cgcgttggtg cggatatctc ggtagtggga tacgacgata ccgaagacag ctcatgttat 3900 atcccgccgt caaccaccat caaacaggat tttcgcctgc tggggcaaac cagcgtggac 3960 cgcttgctgc aactctctca gggccaggcg gtgaagggca atcagctgtt gcccgtctca 4020 ctggtgaaaa gaaaaaccac cctggcgccc aatacgcaaa ccgcctctcc ccgcgcgttg 4080 gccgattcat taatgcagct ggcacgacag gtttcccgac tggaaagcgg gcagtgagcg 4140 caacgcaatt aatgtgagtt agcgcgaatt gatctg 4176 <110> Industry-University Cooperation Foundation Sogang University <120> Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 2664 <212> DNA <213> Escherichia coli strain K-12, aceE <400> 1 atgtcagaac gtttcccaaa tgacgtggat ccgatcgaaa ctcgcgactg gctccaggcg 60 atcgaatcgg tcatccgtga agaaggtgtt gagcgtgctc agtatctgat cgaccaactg 120 cttgctgaag cccgcaaagg cggtgtaaac gtagccgcag gcacaggtat cagcaactac 180 atcaacacca tccccgttga agaacaaccg gagtatccgg gtaatctgga actggaacgc 240 cgtattcgtt cagctatccg ctggaacgcc atcatgacgg tgctgcgtgc gtcgaaaaaa 300 gacctcgaac tgggcggcca tatggcgtcc ttccagtctt ccgcaaccat ttatgatgtg 360 tgctttaacc acttcttccg tgcacgcaac gagcaggatg gcggcgacct ggtttacttc 420 cagggccaca tctccccggg cgtgtacgct cgtgctttcc tggaaggtcg tctgactcag 480 gagcagctgg ataacttccg tcaggaagtt cacggcaatg gcctctcttc ctatccgcac 540 ccgaaactga tgccggaatt ctggcagttc ccgaccgtat ctatgggtct gggtccgatt 600 ggtgctattt accaggctaa attcctgaaa tatctggaac accgtggcct gaaagatacc 660 tctaaacaaa ccgtttacgc gttcctcggt gacggtgaaa tggacgaacc ggaatccaaa 720 ggtgcgatca ccatcgctac ccgtgaaaaa ctggataacc tggtcttcgt tatcaactgt 780 aacctgcagc gtcttgacgg cccggtcacc ggtaacggca agatcatcaa cgaactggaa 840 ggcatcttcg aaggtgctgg ctggaacgtg atcaaagtga tgtggggtag ccgttgggat 900 gaactgctgc gtaaggatac cagcggtaaa ctgatccagc tgatgaacga aaccgttgac 960 ggcgactacc agaccttcaa atcgaaagat ggtgcgtacg ttcgtgaaca cttcttcggt 1020 aaatatcctg aaaccgcagc actggttgca gactggactg acgagcagat ctgggcactg 1080 aaccgtggtg gtcacgatcc gaagaaaatc tacgctgcat tcaagaaagc gcaggaaacc 1140 aaaggcaaag cgacagtaat ccttgctcat accattaaag gttacggcat gggcgacgcg 1200 gctgaaggta aaaacatcgc gcaccaggtt aagaaaatga acatggacgg tgtgcgtcat 1260 atccgcgacc gtttcaatgt gccggtgtct gatgcagata tcgaaaaact gccgtacatc 1320 accttcccgg aaggttctga agagcatacc tatctgcacg ctcagcgtca gaaactgcac 1380 ggttatctgc caagccgtca gccgaacttc accgagaagc ttgagctgcc gagcctgcaa 1440 gacttcggcg cgctgttgga agagcagagc aaagagatct ctaccactat cgctttcgtt 1500 cgtgctctga acgtgatgct gaagaacaag tcgatcaaag atcgtctggt accgatcatc 1560 gccgacgaag cgcgtacttt cggtatggaa ggtctgttcc gtcagattgg tatttacagc 1620 ccgaacggtc agcagtacac cccgcaggac cgcgagcagg ttgcttacta taaagaagac 1680 gagaaaggtc agattctgca ggaagggatc aacgagctgg gcgcaggttg ttcctggctg 1740 gcagcggcga cctcttacag caccaacaat ctgccgatga tcccgttcta catctattac 1800 tcgatgttcg gcttccagcg tattggcgat ctgtgctggg cggctggcga ccagcaagcg 1860 cgtggcttcc tgatcggcgg tacttccggt cgtaccaccc tgaacggcga aggtctgcag 1920 cacgaagatg gtcacagcca cattcagtcg ctgactatcc cgaactgtat ctcttacgac 1980 ccggcttacg cttacgaagt tgctgtcatc atgcatgacg gtctggagcg tatgtacggt 2040 gaaaaacaag agaacgttta ctactacatc actacgctga acgaaaacta ccacatgccg 2100 gcaatgccgg aaggtgctga ggaaggtatc cgtaaaggta tctacaaact cgaaactatt 2160 gaaggtagca aaggtaaagt tcagctgctc ggctccggtt ctatcctgcg tcacgtccgt 2220 gaagcagctg agatcctggc gaaagattac ggcgtaggtt ctgacgttta tagcgtgacc 2280 tccttcaccg agctggcgcg tgatggtcag gattgtgaac gctggaacat gctgcacccg 2340 ctggaaactc cgcgcgttcc gtatatcgct caggtgatga acgacgctcc ggcagtggca 2400 tctaccgact atatgaaact gttcgctgag caggtccgta cttacgtacc ggctgacgac 2460 taccgcgtac tgggtactga tggcttcggt cgttccgaca gccgtgagaa cctgcgtcac 2520 cacttcgaag ttgatgcttc ttatgtcgtg gttgcggcgc tgggcgaact ggctaaacgt 2580 ggcgaaatcg ataagaaagt ggttgctgac gcaatcgcca aattcaacat cgatgcagat 2640 aaagttaacc cgcgtctggc gtaa 2664 <210> 2 <211> 960 <212> DNA <213> Escherichia coli strain K-12, accA <400> 2 atgagtctga atttccttga ttttgaacag ccgattgcag agctggaagc gaaaatcgat 60 tctctgactg cggttagccg tcaggatgag aaactggata ttaacatcga tgaagaagtg 120 catcgtctgc gtgaaaaaag cgtagaactg acacgtaaaa tcttcgccga tctcggtgca 180 tggcagattg cgcaactggc acgccatcca cagcgtcctt ataccctgga ttacgttcgc 240 ctggcatttg atgaatttga cgaactggct ggcgaccgcg cgtatgcaga cgataaagct 300 atcgtcggtg gtatcgcccg tctcgatggt cgtccggtga tgatcattgg tcatcaaaaa 360 ggtcgtgaaa ccaaagaaaa aattcgccgt aactttggta tgccagcgcc agaaggttac 420 cgcaaagcac tgcgtctgat gcaaatggct gaacgcttta agatgcctat catcaccttt 480 atcgacaccc cgggggctta tcctggcgtg ggcgcagaag agcgtggtca gtctgaagcc 540 attgcacgca acctgcgtga aatgtctcgc ctcggcgtac cggtagtttg tacggttatc 600 ggtgaaggtg gttctggcgg tgcgctggcg attggcgtgg gcgataaagt gaatatgctg 660 caatacagca cctattccgt tatctcgccg gaaggttgtg cgtccattct gtggaagagc 720 gccgacaaag cgccgctggc ggctgaagcg atgggtatca ttgctccgcg tctgaaagaa 780 ctgaaactga tcgactccat catcccggaa ccactgggtg gtgctcaccg taacccggaa 840 gcgatggcgg catcgttgaa agcgcaactg ctggcggatc tggccgatct cgacgtgtta 900 agcactgaag atttaaaaaa tcgtcgttat cagcgcctga tgagctacgg ttacgcgtaa 960 960 <210> 3 <211> 4176 <212> DNA <213> Artificial Sequence <220> <223> Vector backbone pTrc99A <400> 3 gtttgacagc ttatcatcga ctgcacggtg caccaatgct tctggcgtca ggcagccatc 60 ggaagctgtg gtatggctgt gcaggtcgta aatcactgca taattcgtgt cgctcaaggc 120 gcactcccgt tctggataat gttttttgcg ccgacatcat aacggttctg gcaaatattc 180 tgaaatgagc tgttgacaat taatcatccg gctcgtataa tgtgtggaat tgtgagcgga 240 taacaatttc acacaggaaa cagaccatgg aattcgagct cggtacccgg ggatcctcta 300 gagtcgacct gcaggcatgc aagcttggct gttttggcgg atgagagaag attttcagcc 360 tgatacagat taaatcagaa cgcagaagcg gtctgataaa acagaatttg cctggcggca 420 gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc cgtagcgccg 480 atggtagtgt ggggtctccc catgcgagag tagggaactg ccaggcatca aataaaacga 540 aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt gaacgctctc 600 ctgagtagga caaatccgcc gggagcggat ttgaacgttg cgaagcaacg gcccggaggg 660 tggcgggcag gacgcccgcc ataaactgcc aggcatcaaa ttaagcagaa ggccatcctg 720 acggatggcc tttttgcgtt tctacaaact ctttttgttt atttttctaa atacattcaa 780 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 840 agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc 900 ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 960 gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc 1020 gccccgaaga acgttttcca atgatgagca cttttaaagt tctgctatgt ggcgcggtat 1080 tatcccgtgt tgacgccggg caagagcaac tcggtcgccg catacactat tctcagaatg 1140 acttggttga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 1200 aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 1260 cgatcggagg accgaaggag ctaaccgctt ttttgcacaa catgggggat catgtaactc 1320 gccttgatcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 1380 cgatgcctac agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 1440 tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 1500 tgcgctcggc ccttccggct ggctggttta ttgctgataa atctggagcc ggtgagcgtg 1560 ggtctcgcgg tatcattgca gcactggggc cagatggtaa gccctcccgt atcgtagtta 1620 tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 1680 gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 1740 ttgatttaaa acttcatttt taatttaaaa ggatctaggt gaagatcctt tttgataatc 1800 tcatgaccaa aatcccttaa cgtgagtttt cgttccactg agcgtcagac cccgtagaaa 1860 agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 1920 aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 1980 cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 2040 agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 2100 tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 2160 gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 2220 gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 2280 ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 2340 gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 2400 ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 2460 ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 2520 acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 2580 gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag 2640 cggaagagcg cctgatgcgg tattttctcc ttacgcatct gtgcggtatt tcacaccgca 2700 tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag tatacactcc 2760 gctatcgcta cgtgactggg tcatggctgc gccccgacac ccgccaacac ccgctgacgc 2820 gccctgacgg gcttgtctgc tcccggcatc cgcttacaga caagctgtga ccgtctccgg 2880 gagctgcatg tgtcagaggt tttcaccgtc atcaccgaaa cgcgcgaggc agcagatcaa 2940 ttcgcgcgcg aaggcgaagc ggcatgcatt tacgttgaca ccatcgaatg gtgcaaaacc 3000 tttcgcggta tggcatgata gcgcccggaa gagagtcaat tcagggtggt gaatgtgaaa 3060 ccagtaacgt tatacgatgt cgcagagtat gccggtgtct cttatcagac cgtttcccgc 3120 gtggtgaacc aggccagcca cgtttctgcg aaaacgcggg aaaaagtgga agcggcgatg 3180 gcggagctga attacattcc caaccgcgtg gcacaacaac tggcgggcaa acagtcgttg 3240 ctgattggcg ttgccacctc cagtctggcc ctgcacgcgc cgtcgcaaat tgtcgcggcg 3300 attaaatctc gcgccgatca actgggtgcc agcgtggtgg tgtcgatggt agaacgaagc 3360 ggcgtcgaag cctgtaaagc ggcggtgcac aatcttctcg cgcaacgcgt cagtgggctg 3420 atcattaact atccgctgga tgaccaggat gccattgctg tggaagctgc ctgcactaat 3480 gttccggcgt tatttcttga tgtctctgac cagacaccca tcaacagtat tattttctcc 3540 catgaagacg gtacgcgact gggcgtggag catctggtcg cattgggtca ccagcaaatc 3600 gcgctgttag cgggcccatt aagttctgtc tcggcgcgtc tgcgtctggc tggctggcat 3660 aaatatctca ctcgcaatca aattcagccg atagcggaac gggaaggcga ctggagtgcc 3720 atgtccggtt ttcaacaaac catgcaaatg ctgaatgagg gcatcgttcc cactgcgatg 3780 ctggttgcca acgatcagat ggcgctgggc gcaatgcgcg ccattaccga gtccgggctg 3840 cgcgttggtg cggatatctc ggtagtggga tacgacgata ccgaagacag ctcatgttat 3900 atcccgccgt caaccaccat caaacaggat tttcgcctgc tggggcaaac cagcgtggac 3960 cgcttgctgc aactctctca gggccaggcg gtgaagggca atcagctgtt gcccgtctca 4020 ctggtgaaaa gaaaaaccac cctggcgccc aatacgcaaa ccgcctctcc ccgcgcgttg 4080 gccgattcat taatgcagct ggcacgacag gtttcccgac tggaaagcgg gcagtgagcg 4140 caacgcaatt aatgtgagtt agcgcgaatt gatctg 4176

Claims (4)

(a) 서열목록 제1서열의 뉴클레오타이드 서열을 갖는 aceE(pyruvate dehydrogenase, decarboxylase component E1) 유전자 및 서열목록 제2서열의 뉴클레오타이드 서열을 갖는 accA(acetyl-CoA carboxylase, Carboxytransferase) 유전자를 서열목록 제3서열을 최소서열로 포함하는 하나의 발현벡터에 삽입시키는 단계; 상기 발현벡터는 trc 프로모터 서열, aceE 유전자의 서열, accA 유전자의 서열, rrnB 터미네이터 서열 및 lacI 유전자를 포함하고; 및 (b) 상기 aceE 유전자 및 accA 유전자가 삽입된 발현벡터로 대장균을 전기 충격에 의해 형질전환시키는 단계를 포함하는 지방산 생합성 경로의 과발현용 형질전환 대장균의 제조방법으로 제조된 aceE 유전자 및 accA 유전자로 공-형질전환(cotransformed)된 대장균.
(a) aceE (pyruvate dehydrogenase, decarboxylase component E1) having the nucleotide sequence of SEQ ID NO: 1 Inserting an accA (acetyl-CoA carboxylase, Carboxytransferase) gene having the nucleotide sequence of the gene and the sequence listing second sequence into one expression vector including the sequence listing the third sequence as the minimum sequence; The expression vector comprises a trc promoter sequence, aceE gene sequence, accA gene sequence, rrnB terminator sequence and lacI gene; And (b) in the aceE gene and accA the gene is producing E. coli in the inserted expression vector transfected method of producing a transformed E. coli for the expression of fatty acid biosynthesis comprising the steps of converting by an electric shock aceE gene and accA gene E. coli co-transformed.
(a) 상기 제 1 항의 공-형질전환된 대장균을 배양하여 지방산을 생합성 하는 단계; 및 (b) 상기 생합성된 지방산을 수득하는 단계를 포함하는 지방산 생합성 방법.
(a) culturing the co-transformed Escherichia coli of claim 1 to biosynthesize fatty acids; And (b) obtaining the biosynthesized fatty acid.
제 1 항 및 제 2 항에 있어서, 상기 지방산은 아세트산(acetic acid) 또는 말론산(malonic acid)인 것을 특징으로 하는 대장균.
The Escherichia coli according to claim 1 or 2, wherein the fatty acid is acetic acid or malonic acid.
제 1 항에 있어서, 상기 공-형질전환된 대장균은 야생형 대장균에 대하여 85% 이상의 생장성을 갖는 것을 특징으로 하는 대장균.The Escherichia coli according to claim 1, wherein the co-transformed Escherichia coli has a growth potential of at least 85% with respect to wild type Escherichia coli.
KR1020120102907A 2012-09-17 2012-09-17 Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same KR101305424B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120102907A KR101305424B1 (en) 2012-09-17 2012-09-17 Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120102907A KR101305424B1 (en) 2012-09-17 2012-09-17 Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020100026433A Division KR20110107209A (en) 2010-03-24 2010-03-24 Method for preparing transformed e coli for over-expression of fatty acid biosynthesis pathway and transformed e coli prepared by the same

Publications (2)

Publication Number Publication Date
KR20120122995A true KR20120122995A (en) 2012-11-07
KR101305424B1 KR101305424B1 (en) 2013-09-06

Family

ID=47509190

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120102907A KR101305424B1 (en) 2012-09-17 2012-09-17 Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same

Country Status (1)

Country Link
KR (1) KR101305424B1 (en)

Also Published As

Publication number Publication date
KR101305424B1 (en) 2013-09-06

Similar Documents

Publication Publication Date Title
KR101106253B1 (en) A Echerichia coli comprising a polynucleotide encoding psicose 3-epimerase and method of producing psicose using the same
AU2021204038B2 (en) Mutant microorganisms resistant to lactose killing
CN106867952B (en) One plant of Recombinant organism and the method for producing L-threonine using it
CN111235080B (en) Gene recombination escherichia coli and production method of 5-hydroxytryptamine
KR20130014445A (en) Method of producing retinoids from a microorganism
CN111154707B (en) Method for producing genetically engineered escherichia coli and melatonin
KR100971508B1 (en) A microorganism of Escherichia genus having enhanced isoprenoid productivity and method of producing isoprenoid using the same
CN107988250B (en) Construction method of universal chlamydomonas foreign gene expression vector
KR101443052B1 (en) Modified chondroitin synthase polypeptide and crystal thereof
CN104278031B (en) Promoter A regulated by xanthine as well as recombinant expression vector and application of promoter A
KR101226644B1 (en) Transformed Escherichia coli for Over-expression of Fatty Acid Biosynthesis Pathway and Method of Preparing the Same
KR102636404B1 (en) Preparing method for terpene alcohol or its derivatives
KR101246910B1 (en) Transformed Escherichia coli for Over-expression of Fatty Acid Biosynthesis Pathway Using Malonyl-CoA and Malonyl-[acp] and Method of Preparing the Same
CN111394383B (en) Polycoccaceae gene engineering bacteria for biosynthesizing caryophyllene and construction method and application thereof
KR100918121B1 (en) E. coli strain for increasing acetyl-CoA consumption and method of producing vanillin using the strain and adsorbent resin
KR20110107209A (en) Method for preparing transformed e coli for over-expression of fatty acid biosynthesis pathway and transformed e coli prepared by the same
CN106479928B (en) The indigenous plasmid of one plant of resistance to resistance to high COD salt water meningitidis strains and the source bacterial strain with high salt
CN111909914B (en) High PAM compatibility truncated variant txCas9 of endonuclease SpCas9 and application thereof
CN112553237A (en) Novel mariner transposon system, application and construction of bacillus subtilis insertion mutant library
KR20120122995A (en) Method for Preparing Transformed E coli for Over-expression of Fatty Acid Biosynthesis Pathway and Transformed E coli Prepared by the Same
KR20120088062A (en) A microorganism of Escherichia genus having enhanced farnesol productivity and method of producing farnesol using the same
CN111254104B (en) Preparation method of genetically engineered escherichia coli and indole-3-acetic acid
CN111254105B (en) Genetically engineered escherichia coli, preparation method thereof and production method of indole-3-acetic acid
CN106636023B (en) A method of enhancing zwf gene promoter expression intensity
CN114369593B (en) Method for preparing chiral amine by silica-binding peptide-mediated alcohol dehydrogenase and amine dehydrogenase co-immobilization cascade reaction

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160615

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180809

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191112

Year of fee payment: 7