KR20120122822A - Preparation of ultra high molecular weight polyethlene fiber - Google Patents

Preparation of ultra high molecular weight polyethlene fiber Download PDF

Info

Publication number
KR20120122822A
KR20120122822A KR1020110041222A KR20110041222A KR20120122822A KR 20120122822 A KR20120122822 A KR 20120122822A KR 1020110041222 A KR1020110041222 A KR 1020110041222A KR 20110041222 A KR20110041222 A KR 20110041222A KR 20120122822 A KR20120122822 A KR 20120122822A
Authority
KR
South Korea
Prior art keywords
filament yarn
polyvinyl alcohol
molecular weight
high molecular
ultra high
Prior art date
Application number
KR1020110041222A
Other languages
Korean (ko)
Inventor
염정현
김인교
최재영
김영화
김정열
서기오
문영주
두해림
Original Assignee
(주)글로벌첼린지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)글로벌첼린지 filed Critical (주)글로벌첼린지
Priority to KR1020110041222A priority Critical patent/KR20120122822A/en
Publication of KR20120122822A publication Critical patent/KR20120122822A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/062Load-responsive characteristics stiff, shape retention
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Abstract

PURPOSE: A method for fabricating a polymer solution for a filament yarn is provided to enhance durability, strength, abrasion resistance, and antibacterial property. CONSTITUTION: A method for fabricating a polymer solution for functional filament yarn comprises a step of inorganic materials with solid powder and preparing polyvinyl alcohol filament yarn. The inorganic material is MMT(montmorillonite), carbon nanotube(CNT), and silver nanoparticles. [Reference numerals] (AA) Distilled water + inorganic materials; (BB) PVA(1700 of number-average polymerization degree, 99% of saponification); (CC) Preparing complex solution; (DD) Fabricating filament yarn; (EE) Drying spinning

Description

인열보강 용액으로 사가공된 초고분자량 폴리에틸렌 섬유 {Preparation of ultra high molecular weight polyethlene fiber}{Preparation of ultra high molecular weight polyethlene fiber} processed into tear reinforcing solution

본 발명은 초고강도 혼합 직물 제직에 필요한 기능성 필라멘트사의 고분자 용액을 제조하기 위한 것으로, 기존의 초고분자량 폴리에틸렌(ultra high molecular weight polyethylene, UHMWPE) 필라멘트사와 함께 제직하는 강도, 강성도, 차단성, 내마모성, 고온안정성 등 독특한 기능성을 발휘하는 무기재료가 혼입된 고분자 용액의 제조방법에 관한 것이다.
The present invention is to prepare a polymer solution of the functional filament yarn required for weaving ultra-high strength mixed fabrics, strength, stiffness, barrier properties, wear resistance, high temperature weaving together with the existing ultra high molecular weight polyethylene (UHMWPE) filament yarn The present invention relates to a method for producing a polymer solution in which an inorganic material exhibiting unique functionality such as stability is incorporated.

금속 산업, 도자기 산업, 해양 산업, 운송 산업, 의학용 장비 산업, 자동차 산업, 포장 산업, 제약 산업 등과 같은 다양한 기술 분야에서, 마찰, 마모 저항성, 화학 저항성, 노화 저항성, 오존 저항성, 표면 온도 저항성, 높아진 온도에서 약화 특성, 물에 대한 낮은 흡수성, 저항력에 관하여, 우수한 특성을 갖는 고분자 제품에 대한 요구가 지속되고 있는 상황에서 초고분자량 폴리에틸렌(UHMWPE)이 이러한 요구를 충족이시는 고분자재료로 주목받고 있다. 초고분자량 폴리에틸렌(UHMWPE)은 상용화된 합성수지 중 내충격성이 가장 강한 것으로 알려져 있으며 내마모성, 내화학성, 내열성이 뛰어나 다양한 산업분야에서 응용되며 특히 방탄복, 헬멧, 다공성 필터뿐만 아니라 승마복, 산업용 작업복 등 초고강도를 요구하는 분야에서 사용되고 있다.
In various technical fields such as metal industry, ceramic industry, marine industry, transportation industry, medical equipment industry, automobile industry, packaging industry, pharmaceutical industry, etc., friction, abrasion resistance, chemical resistance, aging resistance, ozone resistance, surface temperature resistance, Ultra high molecular weight polyethylene (UHMWPE) is attracting attention as a polymer material that meets these demands in a situation where there is a continuing demand for polymer products having excellent properties regarding weakening properties, low water absorption and resistance to water at elevated temperatures. have. Ultra high molecular weight polyethylene (UHMWPE) is known to have the strongest impact resistance among commercialized synthetic resins, and has excellent wear resistance, chemical resistance, and heat resistance, and is applied in various industrial fields.In particular, ultra high strength such as bulletproof clothes, helmets, porous filters, riding clothes, industrial work clothes, etc. Used in demanding fields.

특히 모터사이클용 의류와 같이 외부로 노출된 환경에서는 초고강도 기능을 발휘하여 인체를 보호하는 역할을 하는 분야에서는 초고분자량 폴리에틸렌(UHMWPE)로 제조된 의류가 적합하게 이용될 수 있다. 하지만 이러한 장점에도 불구하고 초고분자량 폴리에틸렌(UHMWPE)는 현재 고가이며 단독으로 사용하여 제직 시 지나친 강도로 인해 착용감이 저하되고, 대량생산에 한계가 있으므로 단독 제직보다는 고강도를 발휘하는 필라멘트사와 함께 제직하여 의류용 직물로 제조한다면 기존의 초고강도를 어느 정도 유지하면서도 상대적으로 저비용 대량 생산이 가능할 것이다.
In particular, clothing made of ultra high molecular weight polyethylene (UHMWPE) may be suitably used in a field that serves to protect the human body by exerting an ultra high strength function in an environment exposed to the outside such as a motorcycle garment. However, despite these advantages, ultra-high molecular weight polyethylene (UHMWPE) is currently expensive and is worn alone due to excessive strength when weaving, and the mass production is limited, so weaving together with filament yarns showing higher strength than weaving alone is limited. If the fabric is made of fabrics, it will be possible to mass produce relatively low cost while maintaining the existing ultra high strength to some extent.

초고분자량 폴리에틸렌(UHMWPE) 필라멘트사와 함께 혼합 직물로 제직이 가능한 고강도 고분자들의 종류에는 Polyethylene terephthalate(PET), Nylon, Polyparaphenylene Terephthalamid(PPTA), High Strength PolyEthylene(HSPE), High density poly ethylene(HDPE), Polybenzoxazole(PBO), Poly(p-phenylene benzobisthiazole(PBZT), Poly para phenylene telephthalamide(PPTA), (Poly(pyridobisimidazole)(PIPD)), Polyacrylate, Polyethylene2,6-Naphthalate(PEN)가 있으며 그 중에서 폴리비닐알코올 (poly(vinyl alcohol) (PVA))은 폴리비닐아세테이트 (Poly(vinylacetate) (PVAc))를 가수분해하여 얻는 고분자로 대표적인 수용성 고분자이며 방사성이 좋아 건식법, 습식법, 건습식법 등 방법으로 필라멘트사 제조가 가능하며, 우수한 강도뿐만 아니라 내열성, 내구성, 내약품성에 강한 특성으로 이미 의류용 필라멘트사로서 대량 생산되고 있다.
Types of high strength polymers that can be woven into mixed fabrics with ultra high molecular weight polyethylene (UHMWPE) filament yarn include Polyethylene terephthalate (PET), Nylon, Polyparaphenylene Terephthalamid (PPTA), High Strength PolyEthylene (HSPE), High density poly ethylene (HDPE), Polybenzoxazole (PBO), Poly (p-phenylene benzobisthiazole (PBZT), Poly para phenylene telephthalamide (PPTA), (Poly (pyridobisimidazole) (PIPD)), Polyacrylate, Polyethylene2,6-Naphthalate (PEN), among them polyvinyl alcohol ( poly (vinyl alcohol) (PVA)) is a polymer obtained by hydrolyzing polyvinylacetate (PVAc), which is a representative water-soluble polymer, and has good radioactivity, and can be manufactured by filament yarn by dry, wet, and wet methods. In addition, it is already mass-produced as a filament yarn for clothing due to its excellent strength, heat resistance, durability, and chemical resistance.

최근 나노기술이 발달하면서 고분자 소재에도 나노크기의 무기재료를 혼입한 고분자 복합재료에 관한 연구가 활발히 진행되고 있으며 독특한 기능성을 지니는 무기재료를 고분자 재료에 혼입하게 되면 기존의 고분자 재료가 지니지 못했던 전도성, 내열성, 항균성 등의 기능을 발휘할 수 있다. 다양한 고분자 복합 기술 중에서 폴리비닐 알코올 복합재료에 관한 기술은 이미 학계(Journal of Applied Polymer Science, 113, 2009, 18601867)에 보고된 상태로 그 결과를 살펴보면 무기재료의 혼입된 양에 따라 인장강도와 열적특성의 향상을 관찰할 수 있다. 기능성 충전재로 사용되는 무기재료의 종류로는 실리카 (silica), 운모(mica), 몬모릴로나이트(montmorillonite), 카올리나이트(kaolinite), 석면(asbestos), 활석(talc), 규조토(diatomaceous earth), 천연 및 합성 제올라이트(natural and synthetic zeolites), 시멘트(cement), 점토(clay), 규산나트륨 알루미늄(sodium aluminium silicate), 알루미늄 폴리실리케이트(aluminium polysilicate), 알루미나실리카 젤(alumina silica gels) 및 유리 입자들(glass particles)과 같은 규산질 충전제들(siliceous fillers)이 사용가능하다. 상기 규산질 충전제들뿐만 아니라, 대체적으로 불수용성인 다른 입자 충전제들(other particulate substantially water-insoluble fillers)도 사용될 수 있다. 이러한 선택적인 충전제들의 예로는 카본 블랙(carbon black), 활성 탄소(activated carbon), 탄소 섬유(carbon fibers), 숯(charcoal), 흑연(graphite), 산화티타늄(titanium oxide), 산화철(iron oxide), 산화구리(copper oxide), 산화아연(zinc oxide), 산화납(lead oxide), 텅스텐(tungsten), 산화안티몬(antimony oxide), 지르코니아(zirconia), 마그네시아(magnesia), 알루미나(alumina), 탄산칼슘(calcium carbonate), 및 탄산마그네슘(magnesium carbonate)이 있다.
Recently, with the development of nanotechnology, research on polymer composite materials incorporating nano-size inorganic materials into polymer materials has been actively conducted. When inorganic materials having unique functionalities are incorporated into polymer materials, conductivity, which has not been achieved by conventional polymer materials, It can exhibit functions such as heat resistance and antibacterial properties. Among various polymer composite technologies, the technology of polyvinyl alcohol composites has already been reported in the journal of Applied Polymer Science, 113, 2009, 18601867. Looking at the results, the tensile strength and thermal The improvement of a characteristic can be observed. Inorganic materials used as functional fillers include silica, mica, montmorillonite, kaolinite, asbestos, talc, diatomaceous earth, natural and synthetic Natural and synthetic zeolites, cement, clay, sodium aluminum silicate, aluminum polysilicate, alumina silica gels and glass particles Siliceous fillers such as) are available. In addition to the siliceous fillers, other particulate substantially water-insoluble fillers may also be used. Examples of such optional fillers are carbon black, activated carbon, carbon fibers, charcoal, graphite, titanium oxide, iron oxide. Copper oxide, zinc oxide, lead oxide, tungsten, antimony oxide, zirconia, magnesia, alumina, carbonic acid Calcium carbonate, and magnesium carbonate.

나노복합기술은 적은 양의 무기 충전제를 사용하여도 우수한 물성을 얻을 수 있으며 강화제를 나노 사이즈까지 박리, 분산시켜 기계적 물성의 극대화 및 투과 억제능 등의 신기능을 부여할 수 있으며, 성능/원가면에서 매우 유리하다. 이러한 특성을 바탕으로 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사와 무기재료가 혼입된 폴리비닐 알코올 복합 필라멘트사를 혼합 직물로 제직하면 비용절감과 동시에 의류용 직물로 대량생산을 할 수 있다.
Nanocomposite technology can obtain excellent physical properties even with a small amount of inorganic fillers, and it can give new functions such as maximizing mechanical properties and permeation inhibition ability by peeling and dispersing the reinforcing agent to nano size, and in terms of performance / cost It is advantageous. Based on these characteristics, weaving ultra-high molecular weight polyethylene (UHMWPE) filament yarn and polyvinyl alcohol composite filament yarn mixed with inorganic materials into a mixed fabric enables mass production of garment fabrics while reducing costs.

직물의 제조방법에는 제직, 제편, 레이스 및 브레이드 제조, 부직포 등이 있으며 그 중에서 직기를 이용하여 제조되는 제직이 가장 널리 이용되고 있다. 이러한 직기의 종류에는 수직기, 원형직기, 그리퍼 북직기, 니들직기, 에어제트직기, 워터제터직기 등이 있으며 그 중에서도 레피어직기는 북이 없고 손가락 모양의 나르개들이 씨실을 날실통을 거쳐 직기의 반대쪽으로 옮기는 것이 특징으로 필라멘트사의 대량 제직에 적합하다.
Fabrication methods include weaving, knitting, lace and braid production, nonwoven fabrics, among which weaving manufactured using a loom is the most widely used. Types of such looms include vertical looms, circular looms, gripper looms, needle looms, air jet looms, and water jet looms. Among them, rapier looms have no drums and finger-shaped knives are weaved through wefts. It is suitable for mass weaving of filament yarn because it is moved to the opposite side.

대한민국 특허발명 제 10-2009-0101766호는 초고강도 폴리에틸렌 섬유의 제조방법 및 이로부터 제조된 초고강도 폴리에틸렌 섬유에 관한 것으로, 상기 제조방법은 중량평균분자량 20만 내지 500만의 폴리에틸렌을 비휘발성 유기 화합물의 제1용제와 혼합하여 17 내지 23 dl/g의 고유점도를 갖는 겔 용액을 형성하는 단계; 상기 겔 용액을 다이스로 방사하여 겔 섬유를 형성하는 단계; 상기 겔 섬유를 휘발점에 가까운 고온의 액체상의 휘발성 유기 화합물의 제2용제에 침지하여 냉각시키는 단계; 및 상기 냉각된 겔 섬유에 대하여 기체상의 휘발성 유기 화합물의 제2용제를 제트 분사하여 제1용제를 추출하는 동시에 상기 겔 섬유를 30:1 내지 50:1의 연신비로 연신하는 방법에 관한 것이다.
Republic of Korea Patent Invention No. 10-2009-0101766 relates to a method for producing an ultra high strength polyethylene fiber and to an ultra high strength polyethylene fiber prepared therefrom, the production method is a weight average molecular weight of 200,000 to 5 million polyethylene of non-volatile organic compounds Mixing with the first solvent to form a gel solution having an inherent viscosity of 17 to 23 dl / g; Spinning the gel solution with a die to form gel fibers; Immersing and cooling the gel fibers in a second solvent of a liquid volatile organic compound having a high temperature near a volatilization point; And extracting the first solvent by jet-jetting a second solvent of a gaseous volatile organic compound to the cooled gel fibers and simultaneously stretching the gel fibers in a draw ratio of 30: 1 to 50: 1.

또한, 대한민국 특허발명 제 10-2005-0122424호는 폴리비닐알코올 섬유의 제조 방법에 관한 것으로 폴리비닐알코올(PVA), 폴리아크릴로니트릴(PAN) 및 용매를 혼합하여 도프(dope)를 제조하고; (b) 상기 도프를 건습식법으로 방사하고 열연신하는 단계를 포함하는 내열성을 갖는 고강도 폴리비닐알코올 섬유의 제조방법에 관한 것이다.
In addition, Korean Patent Invention No. 10-2005-0122424 relates to a method for producing polyvinyl alcohol fibers, wherein dope is prepared by mixing polyvinyl alcohol (PVA), polyacrylonitrile (PAN) and a solvent; (B) a method for producing a high strength polyvinyl alcohol fiber having a heat resistance comprising the step of spinning and hot stretching the dope in a dry and wet method.

본 발명은 종래의 초고분자량 폴리에틸렌(UHMWPE) 직물 제조 시 발생하는 문제점인 고비용과 초고강도로 인한 착용감 저하를 해결하기 위한 방법으로 강도, 강성도, 차단성, 내마모성, 고온안정성 등의 고기능성을 발휘하는 필라멘트사용 고분자 복합 용액의 제조방법을 제공하는 것을 목적으로 한다.
The present invention is a method for solving the problem of the high cost and ultra-high strength wear caused by the conventional ultra-high molecular weight polyethylene (UHMWPE) fabric manufacturing to exhibit high functionality such as strength, stiffness, barrier properties, wear resistance, high temperature stability An object of the present invention is to provide a method for producing a polymer composite solution using filament.

상기 목적을 달성하기 위해 본 발명은 고강도이면서 대표적인 수용성 고분자인 폴리비닐 알코올(수평균 중합도 1700, 비누화도 99%) 5~20 wt.%, 폴리비닐 알코올 고형분 대비 1~20 wt.%의 무기재료를 포함하는 고기능성 고분자 복합 용액의 조조방법을 제공한다.
In order to achieve the above object, the present invention is an inorganic material of 5-20 wt.% Of polyvinyl alcohol (number average degree of polymerization of 1700, 99% of saponification degree), 1-20 wt.% Of polyvinyl alcohol solids, which is a high strength and representative water-soluble polymer. It provides a method for preparing a high functional polymer composite solution comprising a.

본 발명에 의해 제조된 폴리비닐 알코올 복합 용액을 필라멘트사로 제조하면 폴리비닐 알코올의 특성인 고강도, 내구성, 내마모성과 무기재료의 특성인 항균, 흡착성, 고온안정성 등의 효과를 동시에 기대할 수 있다.
When the polyvinyl alcohol composite solution prepared according to the present invention is manufactured with filament yarn, effects such as high strength, durability, abrasion resistance, and antibacterial properties, adsorption, and high temperature stability, which are characteristics of polyvinyl alcohol, can be expected at the same time.

도 1은 본 발명의 실시예에 따른 폴리비닐 알코올 복합 필라멘트사 제조공정을 나타낸 것이다.
도 2는 본 발명의 실시예에 따라 제조된 무기재료가 혼입된 폴리비닐 알코올 복합 용액 (a) 은 나노 입자, (b) 몬모릴로나이트, (c) 카본 블랙 사진이다.
도 3은 본 발명의 실시예에 따라 제조된 폴리비닐 알코올 복합 필라멘트사와 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사 혼합 제직에 관한 구조도이다.
도 4는 본 발명의 실시예에 따라 제조된 무기재료가 혼입된 폴리비닐 알코올 복합 용액의 투과전자현미경 사진이다.
Figure 1 shows a polyvinyl alcohol composite filament yarn manufacturing process according to an embodiment of the present invention.
Figure 2 is a polyvinyl alcohol composite solution (a) silver nanoparticles mixed with an inorganic material prepared according to an embodiment of the present invention, (b) montmorillonite, (c) carbon black photograph.
3 is a structural diagram of the mixed weaving of polyvinyl alcohol composite filament yarn and ultra high molecular weight polyethylene (UHMWPE) filament yarn prepared according to an embodiment of the present invention.
4 is a transmission electron microscope photograph of a polyvinyl alcohol complex solution containing an inorganic material prepared according to an embodiment of the present invention.

본 발명은 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사와 혼합 제직하기 위한 무기재료가 혼입된 폴리비닐알코올 필라멘트사의 용액 제조 방법에 관한 것이다. 이에 첨부된 도면에 의하여 본 발명의 실시예를 설명하면 다음과 같다.
The present invention relates to a method for preparing a solution of polyvinyl alcohol filament yarn in which an inorganic material for mixing and weaving with ultra high molecular weight polyethylene (UHMWPE) filament yarn is incorporated. When explaining the embodiment of the present invention by the accompanying drawings as follows.

도 1은 본 발명의 폴리비닐 알코올 필라멘트사를 제조하기 위한 공정을 나타낸 것이고, 도 2는 본 발명의 실시예에 따라 제조된 폴리비닐 알코올 복합 용액 사진이며, 도 3은 본 발명의 실시예에 따라 제조된 폴리비닐 알코올 복합 용액을 필라멘트사로 방사 후 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사와 혼합 제직한 구조도이고, 도 4는 본 발명의 실시예에 따라 제조된 무기재료가 혼입된 폴리비닐 알코올 복합 용액의 투과전자현미경 사진이다.
Figure 1 shows a process for producing a polyvinyl alcohol filament yarn of the present invention, Figure 2 is a picture of a polyvinyl alcohol composite solution prepared according to an embodiment of the present invention, Figure 3 according to an embodiment of the present invention After the polyvinyl alcohol composite solution is spun into filament yarn, the structure is mixed and woven with ultra high molecular weight polyethylene (UHMWPE) filament yarn. FIG. 4 is a permeation rate of the polyvinyl alcohol composite solution in which the inorganic material prepared according to the embodiment of the present invention is incorporated. Electron micrograph.

첨부된 도 1을 참조하면, 본 발명의 실시에에 따른 폴리비닐 알코올 복합 용액 제조에 사용된 무기재료로는 몬모릴로나이트(montmorillonite, MMT), 카본 나노 튜브 (carbon nanotube, CNT), 은 나노입자 (Ag)를 사용하였으며 단독 또는 2종류 이상의 무기재료를 동시에 복합하여 제조 가능하다.
Referring to FIG. 1, inorganic materials used to prepare a polyvinyl alcohol composite solution according to the embodiment of the present invention include montmorillonite (montmorillonite, MMT), carbon nanotubes (CNT), and silver nanoparticles (Ag). ) And can be manufactured either alone or in combination of two or more kinds of inorganic materials.

제조예 1
Production Example 1

2차 증류수 90ml 당 수평균 중합도 1700, 비누화도 99% 폴리비닐 알코올 5 내지 20g의 비율로 80℃에서 2h 동안 고속 교반을 실시하여 5 내지 20wt.%의 폴리비닐 알코올 용액을 제조한다. 고속으로 회전하는 증류수의 물기둥을 따라 폴리비닐 알코올을 두 번 또는 세 번에 걸쳐서 적당량으로 투입한다. 불투명한 용액의 색이 완전히 투명해지면 25℃까지 서서히 감온 시켜 잔여물을 확인하여 폴리비닐 알코올 용액을 제조하였다.
5 to 20 wt.% Of a polyvinyl alcohol solution was prepared by performing high speed agitation at 80 ° C. for 2 h at a rate of 5700 g of number average degree of polymerization of 1700 and saponification degree of 99% polyvinyl alcohol per 90 ml of distilled water. A proper amount of polyvinyl alcohol is added twice or three times along the water column of distilled water rotating at high speed. When the color of the opaque solution became completely transparent, the temperature was slowly reduced to 25 ° C to confirm the residue to prepare a polyvinyl alcohol solution.

실시예 1
Example 1

2차 증류수 90ml 당 폴리비닐 알코올 대비 각각 5 wt.%의 몬모릴로나이트(두께 1~3 nm, 너비 5~10 nm) 비율로 첨가하여 25℃에서 30분 간 교반을 먼저 실시한 후 폴리비닐 알코올을 투입하여 무기재료 복합 용액을 제조하였으며 나머지 제조 조건은 제조예 1과 동일하다.
5 wt.% Of montmorillonite (thickness 1-3 nm, width 5-10 nm) relative to polyvinyl alcohol per 90 ml of distilled water was added first, followed by stirring at 25 ° C. for 30 minutes, and then polyvinyl alcohol was added thereto. Inorganic material composite solution was prepared and the remaining conditions are the same as in Preparation Example 1.

실시예 2
Example 2

2차 증류수 90ml 당 폴리비닐 알코올 대비 각각 5 wt.%의 몬모릴로나이트, 탄소 나노 튜브, 탄소 계면활성제 1wt.%의 비율로 첨가하여 25℃에서 30분 간 교반을 먼저 실시한 후 폴리비닐 알코올을 투입하여 무기재료 복합 용액을 제조하였으며 나머지 제조 조건은 제조예 1과 동일하다.
5 wt.% Of montmorillonite, carbon nanotube, and carbon surfactant 1wt.% Relative to polyvinyl alcohol per 90 ml of secondary distilled water were first stirred at 25 ° C. for 30 minutes, and then polyvinyl alcohol was added to A composite material solution was prepared, and the remaining preparation conditions were the same as in Preparation Example 1.

실시예 3
Example 3

2차 증류수 90ml 당 폴리비닐 알코올 대비 각각 5 wt.%의 몬모릴로나이트, 탄소 나노 튜브, 은 나노입자 (5~10 nm)와 탄소 계면활성제 1wt.%의 비율로 첨가하여 25℃에서 30분 동안 교반을 실시하여 무기재료 복합 용액을 제조하였으며 나머지 제조 조건은 제조예 1과 동일하다.
5 wt.% Of montmorillonite, carbon nanotubes, silver nanoparticles (5-10 nm) and 1 wt.% Of carbon surfactant were added to 90 ml of polyvinyl alcohol per 90 ml of secondary distilled water, followed by stirring at 25 ° C. for 30 minutes. The inorganic material composite solution was prepared, and the remaining production conditions were the same as in Preparation Example 1.

비교예 1
Comparative Example 1

무기재료를 폴리비닐 알코올이 완전히 녹은 후 첨가한 것을 제외한 나머지는 실시예 1의 조건과 동일하게 제조하였다. 제조된 용액의 물성 평가는 표 1에 나타내었다.
The inorganic material was prepared in the same manner as in Example 1 except that the polyvinyl alcohol was completely dissolved and then added. Evaluation of the physical properties of the prepared solution is shown in Table 1.

비교예 2
Comparative Example 2

탄소 계면활성제 첨가를 제외한 나머지는 실시예 2의 조건과 동일하게 제조하였다. 제조된 용액의 물성 평가는 표 1에 나타내었다.
Except for the addition of the carbon surfactant was prepared in the same manner as in Example 2. Evaluation of the physical properties of the prepared solution is shown in Table 1.

비교예 3
Comparative Example 3

무기재료와 폴리비닐 알코올을 동시에 투입하는 것을 제외한 나머지는 실시예 3의 조건과 동일하게 제조하였다. 제조된 용액의 물성 평가는 표 1에 나타내었다.
Except that the inorganic material and polyvinyl alcohol at the same time was prepared in the same manner as in Example 3. Evaluation of the physical properties of the prepared solution is shown in Table 1.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 무기재료 복합 형태 관찰Inorganic material composite shape observation 양호Good 양호Good 양호Good 불량Bad 불량Bad 불량Bad

* 투과전자현미경 (transmission electron microscope, TEM), 20,000배
* Transmission electron microscope (TEM), 20,000 times

본 발명의 실시예에 따른 폴리비닐 알코올 복합 용액은 성공적으로 제조되었으며 무기재료가 혼입된 상태 결과를 표1에 나타내었다. 실시예에 의하여 제조된 복합 용액을 방사하여 필라멘트사로 제조하면 카본 블랙 또는 탄소 나노 튜브의 첨가로 전도성을 발휘하여 정전기 방지 효과가 있으며, 은, 금 나노입자의 함유로 항균성을 발휘하고, 몬모릴로나이트의 첨가로 열적특성이 향상되는 효과를 기대할 수 있다. 즉, 고분자 필라멘트사에 하나 이상의 무기재료를 적절하게 복합하면 고분자가 가지지 못한 기능을 함께 발휘함과 동시에 제직 후에도 그 기능이 유지되는 효과를 얻을 수 있다.
The polyvinyl alcohol composite solution according to the embodiment of the present invention was successfully prepared, and the results of the mixed state of the inorganic material are shown in Table 1. When the composite solution prepared according to the embodiment is spun and manufactured by filament yarn, it exhibits conductivity by addition of carbon black or carbon nanotubes, thereby exhibiting antistatic effect, exhibiting antibacterial effect by containing silver and gold nanoparticles, and addition of montmorillonite. The effect of improving the thermal characteristics can be expected. That is, when one or more inorganic materials are properly combined with the polymer filament yarn, the polymer can exhibit the function that the polymer does not have and maintain the function after weaving.

이미 기존의 특허와 관련 기술을 바탕으로 제조된 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사와 폴리비닐알코올 필라멘트사의 제직 방법은 강도와 드레이프성 등의 기능이 발휘되는 경사에 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사를 준비하고 위사에는 폴리비닐알코올 필라멘트사를 준비하는데 일반적인 필라멘트사의 제직 준비 공정, 즉 권사, 정경 및 가호, 통경의 준비과정을 거친다. 준비된 경사와 위사는 직기의 개구운동, 위입운동, 바디 침 운동, 경사 송출 운동, 직물 권치 운동의 과정을 통하여 평직, 능직 또는 변형된 주자직의 다양한 직물을 제조할 수 있으며 추가적으로 염색 가공 공정을 거칠 수도 있다.
Weaving method of ultra high molecular weight polyethylene (UHMWPE) filament yarn and polyvinyl alcohol filament yarn manufactured based on existing patents and related technologies prepares ultra high molecular weight polyethylene (UHMWPE) filament yarn on a slope where strength and drape properties are exhibited. In the weft yarn, the polyvinyl alcohol filament yarn is prepared, and the general filament yarn weaving preparation process, that is, the winding, the diameter and protection, the preparation process of the diameter. The prepared warp yarns and weft yarns can be made into a variety of fabrics of plain weave, twill weave or deformed runners through the process of weaving, uplifting, body needle, warp and weaving. It may be.

이하, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
Hereinafter, the present invention is not limited to the above specific preferred embodiments, and various modifications can be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims. Of course, such changes are within the scope of the claims.

100: 폴리비닐 알코올 복합 필라멘트사
200: 초고분자량 폴리에틸렌(UHMWPE) 필라멘트사
100: polyvinyl alcohol composite filament yarn
200: ultra high molecular weight polyethylene (UHMWPE) filament yarn

Claims (1)

기능성 필라멘트사용 고분자 용액 제조에 있어서, 고형분 대비 무기재료가 10 내지 20 wt.%가 되도록 혼입된 폴리비닐 알코올 필라멘트사를 재조하는 단계.In the preparation of the polymer solution using functional filament, the step of producing a polyvinyl alcohol filament yarn incorporated so that the inorganic material to the solid content is 10 to 20 wt.%.
KR1020110041222A 2011-04-30 2011-04-30 Preparation of ultra high molecular weight polyethlene fiber KR20120122822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110041222A KR20120122822A (en) 2011-04-30 2011-04-30 Preparation of ultra high molecular weight polyethlene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110041222A KR20120122822A (en) 2011-04-30 2011-04-30 Preparation of ultra high molecular weight polyethlene fiber

Publications (1)

Publication Number Publication Date
KR20120122822A true KR20120122822A (en) 2012-11-07

Family

ID=47509022

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110041222A KR20120122822A (en) 2011-04-30 2011-04-30 Preparation of ultra high molecular weight polyethlene fiber

Country Status (1)

Country Link
KR (1) KR20120122822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468700A (en) * 2018-10-31 2019-03-15 盐城优和博新材料有限公司 A kind of manufacturing method of antibacterial high-strength polyethylene fibre
CN109853070A (en) * 2019-02-28 2019-06-07 陕西师范大学 A kind of montmorillonite/polyvinyl alcohol composite flame retardant fiber
CN112877802A (en) * 2019-11-29 2021-06-01 霍尼韦尔国际公司 Antibacterial fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468700A (en) * 2018-10-31 2019-03-15 盐城优和博新材料有限公司 A kind of manufacturing method of antibacterial high-strength polyethylene fibre
CN109853070A (en) * 2019-02-28 2019-06-07 陕西师范大学 A kind of montmorillonite/polyvinyl alcohol composite flame retardant fiber
CN109853070B (en) * 2019-02-28 2021-06-15 陕西师范大学 Montmorillonite/polyvinyl alcohol composite flame-retardant fiber
CN112877802A (en) * 2019-11-29 2021-06-01 霍尼韦尔国际公司 Antibacterial fiber

Similar Documents

Publication Publication Date Title
WO2018161766A1 (en) Graphene/nylon-6 fiber, fabric and preparation method
EP2412850B1 (en) Amorphous polyetherimide fiber and heat-resistant fabric
CN111139583B (en) Waterproof mesh cloth and preparation method thereof
CN111088595B (en) High-wear-resistance mesh cloth and preparation method thereof
US20060058441A1 (en) Polyester fibers, their production and their use
JP4330741B2 (en) Bulletproof and blade-proof vest made of polyketone fiber
JP2021507139A (en) A method for producing carbon fibers from recycled cotton, and the use of the fibers obtained by this method for forming articles from composite materials.
WO2017068603A1 (en) Composite fibers having aligned inorganic nano structures of high aspect ratio and preparation method
KR20120122822A (en) Preparation of ultra high molecular weight polyethlene fiber
Zohoori et al. Vibration electrospinning of polyamide-66/multiwall carbon nanotube nanocomposite: Introducing electrically conductive, ultraviolet blocking and antibacterial properties
CN108914314A (en) A kind of manufacture craft of the blended fabric for having graphene fiber
JP2014001266A (en) Polyester molded article and method for manufacturing the same
US20070014989A1 (en) Polyester fibers, their production and their use
Kizildag et al. Electrospinning functional polyacrylonitrile nanofibers with polyaniline, carbon nanotubes, and silver nitrate as additives
KR101031924B1 (en) Process Of Producing Nano Size Meta-Aramid Fibrils
Mirjalili et al. Preparation of melt spun electroconductive fine fibres containing carbon nanotubes
CN111155232B (en) Mesh cloth with good thermal insulation performance and preparation method thereof
Jee et al. Effects of chemical functionalization of MWCNTs on the structural and physical properties of elastomeric copolyetherester-based composite fibers
CN111058180B (en) High-strength mesh cloth and preparation method thereof
JP2006207965A (en) Cloth for bulletproof clothing
JP2014095167A (en) Polyphenylene sulfide monofilament and industrial fabric
CN105908520A (en) Breathable and downproof warmth retaining garment fabric
JP2006234308A (en) Cloth for bullet-proof wear
JP4224555B2 (en) Polyphenylene sulfide fiber, method for producing the same, and industrial fabric
Joshi The impact of nanotechnology on polyesters, polyamides and other textiles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application