KR20120121131A - Manufacturing method of a high purity Ru powder and target using a waste Ru target - Google Patents

Manufacturing method of a high purity Ru powder and target using a waste Ru target Download PDF

Info

Publication number
KR20120121131A
KR20120121131A KR1020110038916A KR20110038916A KR20120121131A KR 20120121131 A KR20120121131 A KR 20120121131A KR 1020110038916 A KR1020110038916 A KR 1020110038916A KR 20110038916 A KR20110038916 A KR 20110038916A KR 20120121131 A KR20120121131 A KR 20120121131A
Authority
KR
South Korea
Prior art keywords
ruthenium
target
powder
waste
high purity
Prior art date
Application number
KR1020110038916A
Other languages
Korean (ko)
Other versions
KR101285284B1 (en
Inventor
윤원규
양승호
홍길수
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to KR1020110038916A priority Critical patent/KR101285284B1/en
Priority to SG2013078811A priority patent/SG194598A1/en
Priority to PCT/KR2012/000737 priority patent/WO2012148074A1/en
Priority to JP2014508276A priority patent/JP2014518565A/en
Priority to US14/113,746 priority patent/US20140105777A1/en
Publication of KR20120121131A publication Critical patent/KR20120121131A/en
Application granted granted Critical
Publication of KR101285284B1 publication Critical patent/KR101285284B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F8/00Manufacture of articles from scrap or waste metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F2009/001Making metallic powder or suspensions thereof from scrap particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: A method for producing super high-purity Ru powder and target using waste Ru targets is provided to improve the function of a sputtering target material by pulverizing Ru powder and target using plasma instead of rough crushing. CONSTITUTION: A method for producing super high-purity Ru powder and target using waste Ru targets comprises the steps of: removing pollutants remaining on the surface of waste Ru targets with a chemical or mechanical method, producing Ru powder from the waste Ru targets using plasma, heat-treating and pulverizing the Ru powder to obtain high-purity Ru powder, press-molding the high-purity Ru powder to obtain a high-density sintered Ru body, and post-processing the sintered Ru body into a Ru target with controlled surface roughness.

Description

폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법{Manufacturing method of a high purity Ru powder and target using a waste Ru target}Manufacturing method of a high purity Ru powder and target using a waste Ru target {Manufacturing method of a high purity Ru powder and target using a waste Ru target}

본 발명은, 최근에 자기기록 매체나 차세대 메모리와 관련된 대용량 및 고집적에 따른 자성층 형성을 위한 시드층 등에 많이 사용되는 루테늄(Ru) 분말 및 타겟의 제조방법에 관한 것으로, 사용 후의 폐 루테늄 타겟의 표면으로부터 물리적 또는 기계적으로 표면에 잔존하는 오염물이나, 이물질을 간단히 제거하고, 플라즈마, 분쇄 및 열처리를 이용하여 초고순도의 루테늄(Ru) 분말을 제조하고, 열간가압 성형을 통해 고밀도의 루테늄(Ru) 타겟을 제조하는 것을 목적으로 한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ruthenium (Ru) powder and a target, which are recently used in a seed layer for forming a magnetic layer according to a large capacity and a high density associated with a magnetic recording medium or a next generation memory, and a surface of a used ruthenium target after use. Simple removal of contaminants and foreign substances remaining on the surface from the surface physically and mechanically, to prepare ultra high purity ruthenium (Ru) powder using plasma, grinding and heat treatment, and high density ruthenium (Ru) target through hot pressing For the purpose of manufacturing.

폐 루테늄(Ru) 타겟에 열 플라즈마를 이용하여 기화 또는 비산된 루테늄(Ru) 분말을 제조하고, 미분쇄 및 열처리를 이용하여 미세하고 초고순도화된 루테늄(Ru) 분말을 제조한 후, 열간가압성형에 의해 고밀도의 루테늄(Ru) 타겟 제조에 관한 것으로, 보다 상세하게는, 기존에 루테늄(Ru)분말을 제조하는데 있어 필수로 사용되어지고 있는 습식법을 이용한 루테늄(Ru) 분말 및 타겟의 제조공정과 비교하여, 친환경적이며, 공정도 단축되고, 제조시간의 단축이 가능한 플라즈마를 이용하여 루테늄(Ru) 분말 및 타겟 제조 방법에 관한 것이다.The vaporized or scattered ruthenium (Ru) powder was prepared by using a thermal plasma on a waste ruthenium (Ru) target, and fine and ultra-purified ruthenium (Ru) powder was prepared by pulverization and heat treatment, and then hot pressed. The present invention relates to the production of high density ruthenium (Ru) targets by molding, and more particularly, to manufacturing ruthenium (Ru) powders and targets using the wet method, which is conventionally used to produce ruthenium (Ru) powder. Compared with the present invention, the present invention relates to a ruthenium (Ru) powder and a target manufacturing method using a plasma that is environmentally friendly, shortens a process, and can shorten manufacturing time.

일반적으로, 차세대 반도체 메모리(RAM, MRAM, FeRAM), 헤드(MR, TMR) 및 캐패시터(Capacitor)와 관련해서 사용되는 웨이퍼(Wafer)나, 하드디스크의 대용량화에 따른 수직자기방식의 적용에 따라, 자성층(Magnetic layer)의 효과적인 배열을 위한 시드층 형성을 위해 루테늄(Ru) 박막이 많이 사용되며, 이러한 박막형성용 루테늄(Ru) 스퍼터링 타겟을 제조하기 위한 루테늄(Ru) 분말이 고가이기 때문에 폐 루테늄(Ru) 타겟을 리사이클링(Recycling)하여 루테늄(Ru) 분말 및 타겟을 제조하여 사용하고 있다. 루테늄(Ru) 타겟의 경우, 재료의 특성으로 인해 상온에서 가공이 어려울 뿐만 아니라, 고온에서도 대기 중에서는 산화 및 휘발되는 특성으로 인해 용해법이 아닌 소결법을 이용하여 제조되고 있다. 또한 타겟의 미세한 결정립 제어를 위해 미세한 루테늄(Ru) 분말 및 고순도의 분말 제조는 필수적이다.In general, according to the application of wafers used in connection with next-generation semiconductor memories (RAM, MRAM, FeRAM), heads (MR, TMR), and capacitors, or the vertical magnetic method for increasing the capacity of hard disks, Ruthenium (Ru) thin films are frequently used to form seed layers for effective arrangement of magnetic layers, and because ruthenium (Ru) powder for manufacturing such ruthenium (Ru) sputtering targets is expensive, waste ruthenium ( Ru) Recycling the target (Ru) is used to produce ruthenium (Ru) powder and the target. Ruthenium (Ru) targets are not only difficult to process at room temperature due to the properties of the material, but are also manufactured using a sintering method rather than a dissolution method due to the characteristics of oxidation and volatilization in the air even at high temperatures. In addition, the preparation of fine ruthenium (Ru) powder and high purity powder is essential for fine grain control of the target.

대부분의 루테늄(Ru) 분말 제조는 습식법에 의해 제조되고 있는데, 간략히 소개하면 폐 타겟에 강한 산용액을 이용하여 습식용해를 하고 이후 증류, 농축, 건조, 산화 및 열처리를 통하여 최종 루테늄(Ru) 분말을 제조한다.Most ruthenium (Ru) powder is manufactured by the wet method. Briefly, the ruthenium (Ru) powder is wet-dissolved using strong acid solution to the waste target, followed by distillation, concentration, drying, oxidation and heat treatment. To prepare.

그러나 상기의 습식법을 적용할 경우, 강한 산용액 사용에 따른 핸들링에 위험이 있으며, 산용액에 용해 및 최종 분말을 얻는데 많은 시간이 소요될 뿐만 아니라, 복잡한 공정적용에 따른 제조시간 및 비용이 소요되고, 사용하고 난 후의 상당량의 폐액처리에 따른 고비용이 추가로 발생되고 있는 실정이다.However, when the wet method is applied, there is a risk in handling due to the use of strong acid solution, it takes a lot of time to dissolve and obtain the final powder in acid solution, and also takes a manufacturing time and cost according to complex process application, After use, a considerable amount of wastewater treatment costs are additionally generated.

최근에는 상기의 습식법을 보완하기 위해 분쇄 공정만을 이용한 루테늄(Ru) 분말의 제조가 시도되고 있으나, 기계적인 분쇄만을 적용하여 분말을 제조하고 있어, 공정 초기부터 타겟 조분쇄를 이용하고, 분말의 미세화를 위해 적용되는 분쇄로 인해 분쇄 기기에 의한 오염이 발생되고 있으며, 오염원을 제거하기 위해 산용액을 이용하여 제거하는 공정을 추가하여 제안하고 있어 고순도 분말 제조에는 미흡한 실정이다.Recently, in order to supplement the wet method, ruthenium (Ru) powder has been tried to be prepared using only a grinding process, but the powder is manufactured by applying only mechanical grinding. Due to the pulverization applied for the generation of contamination by the crushing device, and to remove the contaminant using an acid solution to remove the proposal to add a situation that is insufficient for the production of high purity powder.

본 발명은 폐 루테늄(Ru) 타겟을 이용하여 미세하고 고순도화된 루테늄(Ru) 분말을 제조하고, 제조된 분말을 이용하여 고밀도의 타겟을 제조하는 방법에 관한 것이다. 이를 해결하기 위해, 기존의 화학약품을 이용한 용해 및 분말 제조가 아닌 친환경적인 플라즈마 공정을 이용하며, 분말을 제조하고 분말 미분쇄 및 열처리를 통해 고순도화하며, 열간가압성형을 통해 루테늄(Ru) 타겟을 제조하는데 목적이 있다. 이를 통해 분말 및 타겟이 제조되면, 기존의 제조방법에 비해 제조시간이 단축되고, 산용액 미사용에 따른 폐액이 발생되지 않아 환경 친화적이며, 제조공정도 간단하여, 단시간에 분말 및 타겟 제조가 가능하다는 장점이 있다.The present invention relates to a method for producing fine and highly purified ruthenium (Ru) powder using waste ruthenium (Ru) target, and to produce a high density target using the prepared powder. To solve this problem, instead of dissolving and manufacturing powders using conventional chemicals, eco-friendly plasma processes are used, powders are prepared, high purity through powder grinding and heat treatment, and ruthenium (Ru) target through hot pressing. The purpose is to prepare. When the powder and the target is produced through this, the manufacturing time is shortened compared to the existing manufacturing method, and the waste solution is not generated due to the non-use of acid solution, which is environmentally friendly, and the manufacturing process is simple, so that the powder and the target can be manufactured in a short time. There is an advantage.

이를 해결하기 위해, 폐 루테늄(Ru)타겟에 대해 표면상의 연마나 가공 등의 물리적인 방법이나, 화학적인 방법을 이용하여 표면에 잔존하는 오염물을 제거하고, 플라즈마 장치를 이용하여 고순도 루테늄(Ru) 분말을 제조하며, 제조된 분말에 미분쇄 및 분급을 통해 최종적으로는 고순도화 및 미세화된 루테늄(Ru) 분말을 제조하는 것을 목적으로 한다.In order to solve this problem, the contaminants remaining on the surface of the waste ruthenium (Ru) target are removed by physical or chemical methods such as polishing on the surface or by chemical methods, and high purity ruthenium (Ru) using a plasma device. It is intended to prepare a powder, and finally to obtain a high purity and refined ruthenium (Ru) powder through pulverization and classification to the prepared powder.

본 발명은, 폐 루테늄(Ru) 타겟에 화학적 또는 기계적인 방법을 이용하여 표면 오염원 및 이물질을 제거하고, 열 플라즈마 장비를 이용하여 루테늄(Ru) 분말을 제조 후 분쇄 및 열처리를 이용하여 고순도의 루테늄 분말을 제조한다. 그리고, 최종 얻어진 고순도의 루테늄 분말에 고온가압성형을 이용하여 고순도의 루테늄(Ru) 타겟을 얻는 것을 특징으로 한다.The present invention is to remove the surface contaminants and foreign substances to the ruthenium (Ru) target using a chemical or mechanical method, and to produce ruthenium (Ru) powder using a thermal plasma equipment, and then high-purity ruthenium using grinding and heat treatment Prepare a powder. In addition, a high purity ruthenium (Ru) target is obtained by using high temperature press molding for the finally obtained high purity ruthenium powder.

상기에 기술한 바와 같이, 기존의 습식법의 경우, 분말을 제조하는데 복잡한 공정(습식용해, 농축, 건조 및 열처리)이 적용되어 수일 이상의 장시간이 소요되고, 강한 산용액 사용에 따른 핸들링 제약 및 폐액 처리에 따른 비용 발생 등 여러 단점이 있다. As described above, in the conventional wet method, a complicated process (wet dissolution, concentration, drying and heat treatment) is applied to prepare a powder, which takes a long time of several days or more, and handling constraints and waste solution treatment using strong acid solution. There are a number of disadvantages, including the cost involved.

또한, 최근에 알려진 건식법의 경우에도 조분쇄에 따른 오염으로 인해 일부 습식공정을 적용하여 이를 해결하고 있는 실정이다.In addition, the recently known dry method is a situation that solves this by applying some wet process due to contamination due to coarse grinding.

그러나, 본 발명은 루테늄(Ru) 분말을 제조하는데 있어서 습식법이 아닌 건식법을 도입하고, 조분쇄가 아닌 플라즈마를 이용하여 루테늄(Ru) 분말을 제조하는 것을 특징으로 한다. 이를 통해, 최종 분말 및 타겟 L/T을 단축시키고 고순도 및 미세화된 루테늄(Ru) 분말 및 타겟 제조가 가능함으로써 스퍼터링 타겟재의 기능향상이 기대된다.However, the present invention is characterized by introducing a dry method rather than a wet method in the production of ruthenium (Ru) powder, and to produce a ruthenium (Ru) powder using a plasma instead of coarse grinding. Through this, it is expected to shorten the final powder and target L / T, and to manufacture high purity and refined ruthenium (Ru) powder and target, thereby improving the function of the sputtering target material.

도 1은, 폐 루테늄(Ru) 타겟에 플라즈마를 이용하여 제조된 기화 루테늄(Ru) 분말에 대한 FESEM 이미지이다.
도 2는, 폐 루테늄(Ru) 타겟에 플라즈마를 이용하여 제조된 비산 루테늄(Ru) 분말에 대한 FESEM 이미지이다.
도 3은, 플라즈마에 의해 제조된 루테늄(Ru) 분말을 이용하여 분쇄, 대기열처리 및 수소열처리된 루테늄(Ru) 분말에 대한 FESEM 이미지이다.
FIG. 1 is a FESEM image of vaporized ruthenium (Ru) powder prepared by using a plasma on a waste ruthenium (Ru) target.
FIG. 2 is an FESEM image of ruthenium arsenate (Ru) powder prepared using plasma to a waste ruthenium (Ru) target.
FIG. 3 is an FESEM image of ruthenium (Ru) powders that have been ground, quenched and hydrothermally treated using ruthenium (Ru) powders prepared by plasma.

본 발명은 폐 루테늄(Ru) 타겟을 이용하여 루테늄 분말을 제조하는데 있어 종래의 습식법이나, 기계적인 분쇄 등의 방법이 아닌 플라즈마를 이용하여 분말을 제조하고, 미분쇄 및 열처리를 통해 최종 고순도 및 미세화된 루테늄(Ru) 분말을 제조하는 것을 특징으로 한다. 이를 통해, 기존의 습식법에 비해 제조시간이 획기적으로 단축되고, 용해 및 오염물 제거를 위해 사용되는 산사용을 억제함으로써 친환경적인 공법을 적용한 루테늄(Ru) 분말을 제조하는 것이 가능하며, 제조된 고순도 분말에 고온가압성형을 통해 결정립이 미세하고, 고순도화된 루테늄(Ru) 타겟의 제조가 가능하다는 장점이 있다.The present invention is to produce a ruthenium powder using a waste ruthenium (Ru) target to prepare the powder by using a plasma, not a conventional wet method, or mechanical grinding method, the final high purity and refinement through fine grinding and heat treatment It is characterized by producing a ruthenium (Ru) powder. Through this, manufacturing time is drastically shortened compared to the conventional wet method, and it is possible to manufacture ruthenium (Ru) powder to which eco-friendly method is applied by suppressing acid use used for dissolving and contaminants, and manufactured high purity powder The high-temperature pressing molding has the advantage that the crystal grains are fine, and the highly purified ruthenium (Ru) target can be manufactured.

본 발명은, 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟 제조방법에 관한 것으로서, 화학적 또는 기계적인 방법을 이용하여 폐 루테늄 타겟의 표면에 잔존하는 오염물 및 이물질을 제거하는 단계, 상기 오염물 및 이물질이 제거된 폐 루테늄 타겟에 플라즈마를 이용하여 루테늄 분말을 제조하는 단계, 상기 제조된 루테늄 분말에 열처리 및 분쇄를 이용하여 고순도화된 루테늄 분말을 제조하는 단계, 상기 고순도화된 루테늄 분말에 고온가압성형을 이용하여 고밀도의 루테늄 소결체를 제조하는 단계, 후가공을 통하여 표면 조도가 제어된 루테늄 타겟을 제조하는 단계로 구성되는 것을 특징으로 한다.
The present invention relates to an ultra-high purity ruthenium (Ru) powder using a waste ruthenium (Ru) target and a method for manufacturing the target, wherein the step of removing contaminants and foreign substances remaining on the surface of the waste ruthenium target using a chemical or mechanical method Preparing a ruthenium powder by using a plasma on the waste ruthenium target from which the contaminants and foreign substances have been removed; and preparing a highly purified ruthenium powder by heat treatment and grinding the manufactured ruthenium powder, and the highly purified ruthenium A high density ruthenium sintered body is manufactured by using hot pressing for the powder, and a ruthenium target having a controlled surface roughness through post-processing is characterized in that it is configured.

이하, 상기 공정단계에 대해 상세하게 설명한다.Hereinafter, the process steps will be described in detail.

먼저, 폐 루테늄(Ru) 타겟의 표면에 잔존하는 오염물이나 이물질을 화학적 또는 기계적인 방법을 이용하여 제거한다. First, contaminants or foreign substances remaining on the surface of the waste ruthenium (Ru) target are removed by chemical or mechanical methods.

폐 루테늄(Ru) 타겟의 표면은 핸들링에 의한 표면 오염이나, 스퍼터링 공정 중 재증착(Back Depo)에 의한 오염 및 장기간 대기 노출에 따른 이물질 오염 가능성이 높으며, 이러한 오염된 폐타겟을 이용하여 분말을 제조할 시 잔존하는 오염물이나, 이물질이 분말에 유입되어 분말 순도나, 최종 타겟의 순도 저하의 요인으로 작용하므로 분말제조 공정 이전에 이러한 오염물이나 이물질을 제거하는 것이 바람직하다. 오염물의 제거는 루테늄(Ru) 용해제에 단시간 침적시켜 표면을 수십 ㎛ 깎아내는 화학적인 방법을 이용하거나, 선반 등의 가공기 또는 연마기 등을 이용하여 일정량의 두께 층을 제거하는 것이 바람직하다. 상기의 기계적인 가공법들을 이용하여 제거할 경우에는 0.1 mm 정도의 두께를 제거하는 것이 바람직한데, 이는 너무 얇을 경우 산화막 등의 제거가 완벽하지 않을 수 있고, 너무 두꺼울 경우 최종 분말 수율을 저하시킬 수 있기 때문이다.
The surface of waste ruthenium (Ru) target has a high possibility of surface contamination by handling, contamination by back depo during sputtering process and foreign substance contamination by long-term atmospheric exposure. It is preferable to remove such contaminants or foreign substances before the powder manufacturing process because the remaining contaminants or foreign substances during the preparation flows into the powder and act as a factor of reducing the purity of the powder or the final target. The removal of contaminants is preferably performed using a chemical method of immersing the ruthenium (Ru) solubilizer for a short time and shaving the surface of several tens of micrometers, or removing a certain amount of the thickness layer using a processing machine such as a lathe or a polishing machine. In the case of removal using the above mechanical processing methods, it is desirable to remove the thickness of about 0.1 mm, which is too thin to remove the oxide film is not perfect, if too thick may reduce the final powder yield Because.

다음 단계로, 오염물 및 이물질이 제거된 폐 루테늄(Ru) 타겟에 열플라즈마를 이용하여 루테늄(Ru) 분말을 제조한다.In the next step, ruthenium (Ru) powder is prepared using thermal plasma on a waste ruthenium (Ru) target from which contaminants and foreign substances are removed.

분말 제조 순서로는 고순도의 분말을 제조하기 위해, 플라즈마 챔버 내부를 세정하고, 도가니 위에 폐타겟을 세팅하고, 플라즈마를 형성시켜, 분말을 얻는다.In order to produce high purity powder in the powder preparation sequence, the inside of the plasma chamber is cleaned, a waste target is set on the crucible, and plasma is formed to obtain a powder.

먼저 플라즈마 처리 전에 챔버 내부를 세정하여 불순물이나, 이물질의 혼입을 방지하는 것이 바람직하다. 또한, 고순도 분말을 제조하기 위해서는 열플라즈마 형성을 위해 사용되는 전극이나, 몰드에 의한 오염을 최소화하여야 하는데, 사용 가능한 몰드 재질로는 몰리브덴(Mo), 텅스텐(W), 구리(Cu), 흑연(Graphite) 및 루테늄(Ru) 등이 가능하며, 몰드에 의한 오염을 방지하기 위해서는 동일 재질의 루테늄 몰드를 이용하는 것이 가장 바람직하나, 취성이 높은 루테늄(Ru)의 경우 가공이 난해하여 제조가 어려우므로, 오염이 되더라도 쉽게 제거가 가능한 카본 몰드를 이용하는 것이 바람직하다. 플라즈마 처리에 사용가능한 전극 재질에는 몰리브덴(Mo), 텅스텐(W) 및 루테늄(Ru) 등이 사용가능하나, 전극에 의한 오염을 최소화하기 위해 동일 재질의 루테늄(Ru)을 이용하는 것이 가장 바람직하다.It is preferable to first clean the inside of the chamber before the plasma treatment to prevent the incorporation of impurities or foreign matter. In addition, in order to manufacture high-purity powder, it is necessary to minimize contamination by electrodes or molds used to form thermal plasma, and the available mold materials include molybdenum (Mo), tungsten (W), copper (Cu), and graphite ( Graphite) and ruthenium (Ru) are possible, and ruthenium mold of the same material is most preferable to prevent contamination by the mold. However, in the case of highly brittle ruthenium (Ru), it is difficult to manufacture due to difficulty in processing. It is preferable to use a carbon mold which can be easily removed even if it is contaminated. Molybdenum (Mo), tungsten (W), ruthenium (Ru), and the like may be used as the electrode material that can be used for the plasma treatment, but it is most preferable to use ruthenium (Ru) of the same material to minimize contamination by the electrode.

플라즈마를 형성시키기 위해 진공펌프를 이용하여 감압하고, 반응가스 투입 및 작업 진공도를 조절 후 전력을 인가한다. 플라즈마 형성을 위해 사용되는 반응가스로는 Ar, H2, N2, CH4, Ar+H2, Ar+N2 등의 혼합가스 사용이 가능하며, H2, N2, O2는 최종 루테늄(Ru) 분말에 잔존가능성이 높아, 대기 및 수소 열처리에 의해 완전히 제거되지 않고 일부가 잔존하여 타겟으로 제조하여 사용될 경우, 성막과정 중에 파티클(Particle)이나, 아크를 야기시켜 수율을 떨어뜨리거나, 반도체 제품 특성에도 영향을 주므로 Ar을 사용하는 것이 가장 유리하다. 그러나, 생산성 확보를 위한 분말 제조 속도를 증가시키기 위해 N2나 H2를 사용하거나, 챔버내부 잔존 O2에 의해 제조되는 분말에 가스성분이 잔존하더라도 분말을 미세화 처리 후 탈가스 처리를 통해 완벽히 제거 가능하다면, 상기의 H2, N2, O2 가스를 이용하는 것도 바람직하다.In order to form a plasma, a vacuum pump is used to reduce the pressure, reactant gas is injected, and the working vacuum is adjusted and then electric power is applied. Reaction gases used for plasma formation include Ar, H 2 , N 2 , CH 4 , Ar + H 2 , Ar + N 2 It is possible to use a mixed gas, and H 2 , N 2 and O 2 have a high possibility of remaining in the final ruthenium (Ru) powder, and when some are left to be used as a target without being completely removed by air and hydrogen heat treatment. It is most advantageous to use Ar because it may cause particles or arcs during the film formation process, thereby lowering the yield or affecting semiconductor product characteristics. However, even if N 2 or H 2 is used to increase the powder manufacturing speed to secure productivity, or even gas components remain in the powder produced by the remaining O 2 inside the chamber, the powder is completely removed through the degassing treatment after the powder is refined. If possible, the above H 2 , N 2 , O 2 It is also preferable to use a gas.

플라즈마를 형성 후 전력을 증가시켜 루테늄(Ru) 분말을 제조하는데, 플라즈마 전력을 증가시키게 되면 용탕이 형성되고, 용탕의 온도가 증가하여 기화온도 이상의 용탕은 기화 및 냉각되어 분말이 제조되거나, 주위 분위기 및 반응가스 압력에 의해 용탕이 비산되어 분말이 제조된다. 이때 인가되는 전력은 10~100 kw 범위가 적당한데, 10 kw 이하로 낮을 경우, 용탕 형성, 기화나 비산이 쉽게 일어나지 않을 수 있으며, 장비의 안정성을 고려하여 100 kw 이하에서 실시한다. Ruthenium (Ru) powder is manufactured by increasing the power after plasma formation. When plasma power is increased, a molten metal is formed, and the temperature of the molten metal is increased so that the molten metal above the vaporization temperature is vaporized and cooled to produce a powder, or an ambient atmosphere. And the molten metal is scattered by the reaction gas pressure to prepare a powder. At this time, the applied power is in the range of 10 ~ 100 kw, if it is lower than 10 kw, melt formation, vaporization or scattering may not easily occur, and should be carried out at 100 kw or less in consideration of the stability of the equipment.

다음으로, 제조된 루테늄(Ru) 분말에 열처리 및 분쇄를 이용하여 고순도화된 루테늄(Ru) 분말을 제조한다. 플라즈마에 의해 제조된 루테늄(Ru) 분말의 경우 기화된 분말은 수백 nm 급의 미세한 분말 사이즈를 보이나, 비산된 경우 수십 ㎛의 조대한 분말도 얻어지게 되는데, 타겟으로 제조되어 고품위의 루테늄(Ru) 박막을 얻기 위해서는 균일하고 미세한 결정립을 갖는 타겟이 유리하므로, 타겟 제조를 위한 분말 사이즈도 미세하면서 균일할수록 바람직하다. 그러나, 플라즈마에 의해 제조된 분말에 대해 미세한 분말만을 사용할 경우 전체 수율이 급격히 저하되므로, 조대한 분말도 모두 사용가능하게 하여 미세하고 고순도화된 분말을 제조하는 것이 본 발명의 특징이다.Next, a highly purified ruthenium (Ru) powder is prepared by using heat treatment and grinding to the prepared ruthenium (Ru) powder. In the case of ruthenium (Ru) powder produced by plasma, the vaporized powder shows a fine powder size of several hundred nm, but when scattered, coarse powder of several tens of micrometers is obtained, and it is manufactured as a target to make high quality ruthenium (Ru) In order to obtain a thin film, a target having uniform and fine grains is advantageous. Therefore, the finer and more uniform the powder size for producing the target is, the more preferable. However, when only the fine powder is used for the powder produced by the plasma, the overall yield is drastically lowered. Therefore, it is a feature of the present invention to make fine and highly purified powder by making all coarse powders usable.

플라즈마에 의해 제조된 분말의 수율을 증가시키기 위한 분쇄방법으로는, 일반적으로 미분쇄에 많이 이용되는 볼밀(Ball Mil), 유성밀(Planetary Mill), 젯밀(Jet Mill) 등 여러 분쇄가 가능하며, 바람직하게는 젯밀이 가장 바람직하다. 이는, 루테늄(Ru)의 경우 쉽게 분쇄가 가능하나, 많은 양을 처리하거나 작업시간 증가 등에 의해 볼에 의해 오염가능성이 있어, 볼을 사용하지 않는 젯밀을 이용하여 분쇄하는 것이 고순도 루테늄(Ru) 분말을 얻는데 유리하다. As a pulverization method for increasing the yield of the powder produced by the plasma, a variety of pulverization such as ball mill, planet mill, jet mill, etc., which are generally used for pulverization, are possible. Preferably jet mill is most preferred. This can be easily crushed in the case of ruthenium (Ru), but may be contaminated by the ball by processing a large amount or increase the working time, such that the high-purity ruthenium (Ru) powder to grind using a jet mill not using the ball It is advantageous to obtain.

분쇄된 분말 중에는, 반응가스나 많이 사용하는 카본 도가니 사용에 의한 카본 성분이 분말 내에 잔존할 수 있으므로, 대기 열처리 후 수소열처리에 의해 고순도 루테늄(Ru) 분말제조가 가능하다.In the pulverized powder, since a reaction gas or a carbon component by using a carbon crucible which is frequently used may remain in the powder, high purity ruthenium (Ru) powder can be produced by hydrogen heat treatment after atmospheric heat treatment.

가령, 높은 플라즈마 열에 의해 분말제조시 몰드재질인 카본이 수 wt% 오염되는데, 간단히 대기열처리를 통해 CO나 CO2형태로 기화되어 제거가 가능하며, 카본 제거를 위해 실시된 대기열처리에 의해 루테늄(Ru)이 산화되어 푸른색의 루테늄(Ru) 산화물이 얻어지는데, 후속으로 수소열처리를 이용하여 고순도화된 루테늄(Ru) 분말을 제조하는 것이 바람직하다. For example, carbon powder, which is a mold material, is contaminated by wt% by high plasma heat.It can be removed by vaporization in the form of CO or CO 2 through simple queuing, and ruthenium ( Ru) is oxidized to obtain a blue ruthenium (Ru) oxide, and it is preferable to prepare a highly purified ruthenium (Ru) powder using hydrothermal treatment.

열처리 조건은 대기열처리의 경우, 온도는 600~1000℃ 및 1~5 시간 동안 열처리를 하는 것이 바람직하다. 온도가 600℃ 이하이고 1 시간 이하로 짧을 경우 잔존한 카본이 충분히 제거되지 않을 가능성이 높고, 온도가 1000℃ 이상 높고 5 시간 이상의 장시간일 경우 제조된 분말이 응집될 가능성이 높다. In the case of the heat treatment condition, in the case of queuing, the temperature is preferably 600 to 1000 ° C. and heat treatment for 1 to 5 hours. If the temperature is 600 ° C. or less and shorter than 1 hour, there is a high possibility that the remaining carbon is not sufficiently removed, and if the temperature is 1000 ° C. or higher and for a long time of 5 hours or more, the produced powder is likely to aggregate.

수소열처리의 경우, 온도는 800~1000 ℃ 및 1~5 시간 동안 열처리를 하는 것이 바람직하다. 온도가 800℃ 이하이고 1시간 이하로 짧을 경우 루테늄(Ru) 산화물의 환원이 충분히 이루어지지 않으며, 온도가 1000℃ 이상 높고 5 시간 이상의 장시간일 경우 제조된 분말이 응집될 가능성이 높기 때문이다.In the case of hydrothermal treatment, the temperature is preferably 800 to 1000 ℃ and heat treatment for 1 to 5 hours. If the temperature is 800 ° C or less and less than 1 hour, ruthenium (Ru) oxide is not sufficiently reduced, because if the temperature is 1000 ° C or more and 5 hours or more for a long time it is likely that the prepared powder is agglomerated.

열처리에 의해 얻어진 미세화된 고순도의 루테늄 분말에 고온가압성형을 이용하여 고밀도의 루테늄 소결체를 제조한다. 이때, 적용 가능한 고온가압성형방법으로는, 열간 성형(Hot Press), 고온등방향 성형(Hot Isostatic Press), 플라즈마 소결(Spark Plasma Sintering) 중 하나의 방법을 이용하여 제조하는 것이 가능하며, 고순도의 루테늄 타겟을 제조하기 위해서는 승온속도 제어가 용이하여, 루테늄(Ru) 분말내의 잔존 산소나 기타 C, N, H 등의 불순 가스들의 제거가 용이한 열간 성형법을 이용하는 것이 가장 바람직하다. A high-density ruthenium sintered body is manufactured by high temperature press molding on the refined high purity ruthenium powder obtained by heat treatment. In this case, as an applicable high temperature pressing molding method, it is possible to manufacture by using one of hot pressing, hot isostatic pressing, plasma sintering (Spark Plasma Sintering), In order to manufacture a ruthenium target, it is most preferable to use a hot forming method that is easy to control the temperature increase rate and which is easy to remove residual oxygen or other impurities such as C, N, H in the ruthenium (Ru) powder.

고밀도의 루테늄(Ru) 소결체를 제조하기 위해, 고온에서의 인가압력은 10~80 MPa, 소결온도는 1300~1700℃에서 실시하는 것이 바람직하다. 인가 압력이 10 Mpa 이하이고, 소결온도가 1300℃ 이하일 경우에는 밀도가 낮은 소결체가 제조될 가능성이 높으며, 온도가 1700℃ 이상으로, 높을 경우에는 조대한 결정립을 갖는 소결체가 제조되어 스퍼터링 타겟의 특성을 저하시킬 가능성이 높다. 그리고 높은 소결온도에서 많이 사용하는 고비용의 카본몰드 보호를 위해 80 MPa 이하에서 작업하는 것이 유리하다.
In order to manufacture a high density ruthenium (Ru) sintered compact, it is preferable that the applied pressure at high temperature is 10 to 80 MPa and the sintering temperature is performed at 1300 to 1700 ° C. When the applied pressure is 10 Mpa or less and the sintering temperature is 1300 ° C. or less, it is highly likely that a low density sintered body is produced. Is likely to lower. And it is advantageous to work at 80 MPa or less for high cost carbon mold protection, which is frequently used at high sintering temperatures.

고온가압성형에 의해 제조된 고밀도 루테늄(Ru) 소결체에 대해 선반가공 및 연마 등을 실시하여 스퍼터링을 위한 표면 조도 확보 및 최종 타겟을 제조한다.The high-density ruthenium (Ru) sintered body manufactured by high temperature pressing molding is subjected to lathe machining and polishing to secure surface roughness for sputtering and to manufacture a final target.

고온가압성형에 의해 제조된 루테늄(Ru) 소결체의 경우, 사용된 카본몰드나, 카본 시트(Sheet)의 접촉부위에 카본이 일부 오염되어 스퍼터링시 박막에 영향을 줄 수 있으므로, 이를 방지하기 위해 선반가공이나 연마 등을 실시하여 0.1~1 mm 정도의 일정 두께를 제거해 주는 것이 바람직하다. 이는, 두께가 너무 낮을 경우, 카본의 잔존 가능성이 높고, 두께가 1 mm 이상일 경우 전체 수율이 저하되어 전체 비용을 증가시킬 수 있기 때문이다. 또한, 반도체 용도로 사용되는 루테늄 타겟의 경우에는 표면조도가 박막특성에 영향을 미치므로, 표면조도 1 ㎛ 이하로 확보하는 것이 바람직한데, 상기의 표면조도를 확보하기 위해서는 연마가공을 통해 가능하며, 전체 제조시간 단축을 위해 일정 두께를 선반가공에 의해 제거 후, 나머지 두께를 연마로 제거하는 것이 바람직하다.
In the case of ruthenium (Ru) sintered body manufactured by high temperature pressing molding, carbon may be contaminated in the contact area of the used carbon mold or carbon sheet, which may affect the thin film during sputtering. It is preferable to remove a certain thickness of about 0.1 to 1 mm by processing or polishing. This is because, if the thickness is too low, the possibility of carbon remaining is high, and if the thickness is 1 mm or more, the overall yield may be lowered to increase the overall cost. In addition, in the case of ruthenium targets used in semiconductor applications, since the surface roughness affects the thin film properties, it is desirable to ensure the surface roughness of 1 ㎛ or less, in order to secure the above-mentioned surface roughness is possible through polishing, In order to shorten the overall manufacturing time, it is preferable to remove a certain thickness by turning, and then remove the remaining thickness by polishing.

[[ 실시예Example ]]

폐 루테늄(Ru) 타겟을 이용한 루테늄(Ru) 분말을 제조하기 위해 하드디스크의 시드층(Seed Layer)용으로 사용된 3N7 순도, 14 ㎛ 결정립을 갖는 폐 루테늄(Ru) 타겟 1.8 kg을 구입하였다. 폐 루테늄(Ru) 타겟 표면 이물질 및 오염원을 제거하기 위해, 차염소산나트륨(NaClO)에 30분 동안 침적시켰으며, 표면에 묻은 용액을 세척하였다. 이물질이 제거된 폐 루테늄(Ru) 타겟에 대해 열 플라즈마 장비를 이용하여 루테늄(Ru) 분말 1.8 kg을 제조하였다.1.8 kg of waste ruthenium (Ru) target with 3N7 purity, 14 μm grains used for seed layer of hard disk was prepared to prepare ruthenium (Ru) powder using waste ruthenium (Ru) target. To remove waste ruthenium (Ru) target surface debris and contaminants, it was immersed in sodium hypochlorite (NaClO) for 30 minutes and the solution on the surface was washed. 1.8 kg of ruthenium (Ru) powder was prepared using a thermal plasma apparatus for the waste ruthenium (Ru) target from which foreign substances were removed.

플라즈마에 의해 제조된 루테늄(Ru) 분말을 도 1,2에 나타내었다.Ruthenium (Ru) powder prepared by the plasma is shown in Figure 1,2.

도 1의 경우 기화된 루테늄 분말로 수십 nm 크기의 구형을 나타내고 있으며, 도 2는 비산된 루테늄 분말로 100 ㎛ 크기의 구형을 나타내고 있다. 제조된 루테늄(Ru) 분말들에 대해 젯밀을 이용하여 분쇄를 실시하였으며, 분쇄된 루테늄(Ru) 분말에 대해, 대기중에서 800℃ 1 시간 열처리를 행하여 잔여 카본(Carbon)을 제거하였으며, 800℃에서 수소열처리를 30분 실시하여 대기열처리시 산화된 루테늄(Ru) 분말에 환원처리를 행하여 최종 고순도 및 미세화된 분말을 얻었다. 분쇄 및 최종 열처리된 분말에 대한 형상을 도 3에 나타내었다. In the case of Figure 1 is a vaporized ruthenium powder shows a sphere of several tens of nm size, Figure 2 is a scattered ruthenium powder shows a sphere having a size of 100 ㎛. The prepared ruthenium (Ru) powder was pulverized using a jet mill, and the pulverized ruthenium (Ru) powder was subjected to heat treatment at 800 ° C. for 1 hour in air to remove residual carbon, and at 800 ° C. Hydrothermal heat treatment was carried out for 30 minutes to reduce the ruthenium (Ru) powder oxidized during the queue treatment to obtain a final high purity and refined powder. The shapes for the milled and final heat treated powders are shown in FIG. 3.

분쇄된 루테늄(Ru) 분말의 경우 편상의 형태를 나타내고 있으며, 입도 분석결과 중심입도 4 ㎛ 분말 크기를 갖는 미세한 분말로 구성됨을 알 수 있었다.In the case of pulverized ruthenium (Ru) powder, it shows a flake shape, and as a result of the particle size analysis, it can be seen that it is composed of a fine powder having a central particle size of 4 μm.

폐타겟과 폐타겟을 이용하여 제조된 루테늄 건식분말에 대한 불순물 함량을 확인하기 위해 글로우 방전 질량분석기(GDMS;Glow Discharge Mass Spectrometry) 분석을 통해 불순물 분석(실시예1)을 행하였으며, 제조된 루테늄(Ru) 분말의 수준을 파악하기 위해 시중에 시판되고 있는 고순도의 루테늄(Ru) 분말을 구입하여 글로우 방전 질량분석기 분석을 행하여 그 결과(비교예1)를 표 1에 나타내었다. 표 1로부터 본 발명에 의해 얻어진 루테늄 분말의 경우, 폐타겟과 비교하여 산소를 제외하고 불순물 함량 및 분말의 최종 순도에서 동일한 수준을 유지하고 있는 반면에, 상용화된 루테늄 분말의 경우에는, 산 용액 사용에 따른 Na, Cl이 완전히 제거되지 않아 불순물 함량이 200 ppm 이상으로 높고 순도도 낮음을 알 수 있다.Impurity analysis (Example 1) was performed through Glow Discharge Mass Spectrometry (GDMS) analysis to determine the impurity content of the ruthenium dry powder prepared using the waste target and the waste target. In order to determine the level of the (Ru) powder, a commercially available high purity ruthenium (Ru) powder was purchased and analyzed by a glow discharge mass spectrometer, and the results (Comparative Example 1) are shown in Table 1. In the case of the ruthenium powder obtained by the present invention from Table 1, the same level of impurities and the final purity of the powder except oxygen were maintained compared to the waste target, whereas in the case of commercialized ruthenium powder, acid solution was used. As Na and Cl are not completely removed, the impurity content is higher than 200 ppm and the purity is low.

(단위:.ppm)(Unit: .ppm) 불순물impurities 폐 타겟Lung target 실시예1Example 1 비교예1Comparative Example 1 FeFe 2020 2323 2121 SiSi 22 1212 3636 ClCl 1414 -- 3232 NaNa 33 22 2525 KK 2828 <1<1 2525 CaCa 1010 55 66 MgMg 55 88 1111 PdPd 1818 1515 -- WW 33 1010 -- PtPt 2525 2020 2828 RhRh <1<1 1010 2525 UU -- -- -- ThTh -- -- -- OO 120120 680680 890890 불순물총합
(O제외)
Total impurities
(Except O)
128128 105105 209209
최종순도Final purity 3N83N8 3N83N8 3N73N7

본 발명에 의해 얻어진 루테늄(Ru) 건식 분말과, 구입한 루테늄(Ru) 분말에 대해 고온 프레스를 이용하여 소결 테스트를 진행하였으며, 제조된 소결체에 대한 특성을 비교하였다.(실시예2, 비교예2). 또한, 제조된 소결체의 물성을 비교하기 위해, 분말제조를 위해 구입한 폐 루테늄 타겟에 대해서도 특성을 비교하였다.(비교예3)
The ruthenium (Ru) dry powder and the purchased ruthenium (Ru) powder obtained by the present invention were subjected to a sintering test using a hot press, and the characteristics of the manufactured sintered body were compared. (Example 2, Comparative Example 2). In addition, in order to compare the physical properties of the produced sintered compact, the characteristics were also compared with respect to the waste ruthenium target purchased for powder production.

항목Item 실시예2Example 2 비교예2Comparative Example 2 비교예3Comparative Example 3 밀도(gr/cm3)Density (gr / cm3) 12.3412.34 12.3212.32 12.3312.33 상대밀도(%)Relative density (%) 99↑99 ↑ 99↑99 ↑ 99↑99 ↑ 순도water 99.98↑99.98 ↑ 99.97↑99.97 ↑ 99.98↑99.98 ↑ 결정립(㎛)Grain (㎛) 66 1515 1818

표 3으로부터 본 발명에 의해 제조된 루테늄(Ru) 소결체는, 습식에 의해 제조된 것으로 예상된 루테늄(Ru) 분말을 이용하여 제조된 소결체와 비교시 밀도, 순도 모두 동등 수준 이상을 나타내고 있으며, 시중에 판매되고 있는 루테늄(Ru) 타겟과 비교해도 차이가 없음을 알 수 있었으며, 특히 결정립 크기는 본 발명의 루테늄(Ru) 소결체가 종래의 습식분말을 이용한 소결체나, 기존의 폐 루테늄 타겟에 비해 미세한 결정립을 보이고 있음을 알 수 있었다.
Ruthenium (Ru) sintered body produced by the present invention from Table 3, the density and purity of the sintered body produced by using the ruthenium (Ru) powder expected to be produced by wet showed more than equivalent level, commercially available Compared with the ruthenium (Ru) target sold in the present invention, it was found that there is no difference. Particularly, the grain size of the ruthenium (Ru) sintered body of the present invention is smaller than that of a conventional wet powder or a conventional waste ruthenium target. It can be seen that the crystal grains.

Claims (12)

폐 루테늄(Ru) 타겟을 이용하여 초고순도 루테늄(Ru) 분말 및 타겟을 제조함에 있어서,
화학적 또는 기계적인 방법을 이용하여 폐 루테늄 타겟의 표면에 잔존하는 오염물 및 이물질을 제거하는 단계;
상기 오염물 및 이물질이 제거된 폐 루테늄 타겟에 플라즈마를 이용하여 루테늄 분말을 제조하는 단계;
상기 제조된 루테늄 분말에 열처리 및 분쇄를 이용하여 고순도화된 루테늄 분말을 제조하는 단계;
상기 고순도화된 루테늄 분말에 고온가압성형을 이용하여 고밀도의 루테늄 소결체를 제조하는 단계;
후가공을 통하여 표면 조도가 제어된 루테늄 타겟을 제조하는 단계로 구성되는 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟 제조방법.
In preparing ultra-high purity ruthenium (Ru) powders and targets using waste ruthenium (Ru) targets,
Removing contaminants and foreign matter remaining on the surface of the waste ruthenium target using a chemical or mechanical method;
Preparing a ruthenium powder using a plasma to the waste ruthenium target from which the contaminants and foreign substances have been removed;
Preparing a highly purified ruthenium powder using heat treatment and grinding to the prepared ruthenium powder;
Preparing a high density ruthenium sintered body by using hot pressing molding the highly purified ruthenium powder;
Ultra-high purity ruthenium (Ru) powder and target manufacturing method using a waste ruthenium (Ru) target, characterized in that the step consisting of producing a ruthenium target with a controlled surface roughness through post-processing.
제 1항에 있어서,
상기 폐 루테늄(Ru) 타겟의 표면 오염물 및 이물질의 제거는 화학적인 방법 또는 기계적인 방법을 이용하는 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟 제조방법.
The method of claim 1,
Ultra high purity ruthenium (Ru) powder and target manufacturing method using the waste ruthenium (Ru) target, characterized in that the removal of surface contaminants and foreign matter of the waste ruthenium (Ru) target using a chemical method or a mechanical method.
제 2항에 있어서,
상기 폐 루테늄 타겟 표면의 오염물 및 이물질을 제거하는 화학적인 방법으로 차염소산나트륨(NaClO) 용액 또는 차염소산나트륨(NaClO)이 혼합된 용액을 이용하는 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 2,
Ultra high purity using waste ruthenium (Ru) target, characterized in that using a solution mixed with sodium hypochlorite (NaClO) solution or sodium hypochlorite (NaClO) as a chemical method for removing contaminants and foreign substances on the surface of the waste ruthenium target Ruthenium (Ru) powder and method for producing a target.
제 2항에 있어서,
상기 폐 루테늄 타겟 표면의 오염물 및 이물질을 제거하는 기계적인 방법으로 선반 또는 연마 가공 등을 이용하는 것을 특징으로 하는 폐 루테늄(Ru)타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 2,
Method for producing ultra-high purity ruthenium (Ru) powder and target using the waste ruthenium (Ru) target, characterized in that using a lathe or grinding processing as a mechanical method for removing contaminants and foreign matter on the surface of the waste ruthenium target.
제 1항에 있어서,
상기 플라즈마를 이용하여 루테늄(Ru) 분말을 제조하는 단계에서 사용되는 몰드의 재질은 흑연(Graphite), 구리(Cu), 몰리브덴(Mo), 텅스텐(W) 또는 루테늄(Ru) 중에서 선택된 어느 하나인 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 1,
The material of the mold used in manufacturing the ruthenium (Ru) powder using the plasma is any one selected from graphite, copper (Cu), molybdenum (Mo), tungsten (W) or ruthenium (Ru). Ultra-high purity ruthenium (Ru) powder and a method for producing a target using a waste ruthenium (Ru) target.
제 1항에 있어서,
상기 플라즈마를 이용하여 루테늄(Ru) 분말을 제조하는 단계에서 사용되는 전극의 재질은 몰리브덴(Mo), 텅스텐(W) 또는 루테늄(Ru) 중에서 선택된 어느 하나인 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 1,
The material of the electrode used in manufacturing the ruthenium (Ru) powder using the plasma is a waste ruthenium (Ru) target, characterized in that any one selected from molybdenum (Mo), tungsten (W) or ruthenium (Ru). Ultra high purity ruthenium (Ru) powder and a method for producing a target.
제 1항에 있어서,
상기 플라즈마를 형성시 Ar, H2, N2, 또는 CH4 중 1종 이상의 가스를 사용하여 플라즈마를 형성시키는 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 1,
Ar, H 2 , N 2 , or CH 4 when forming the plasma Ultra high purity ruthenium (Ru) powder and a method for producing the target using a waste ruthenium (Ru) target, characterized in that the plasma is formed using one or more kinds of gases.
제 1항에 있어서,
상기 플라즈마를 이용하여 제조된 루테늄(Ru) 분말의 열처리는 대기 열처리 및 수소열처리를 행하여 고순도 Ru 분말을 얻는 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 1,
The heat treatment of the ruthenium (Ru) powder prepared using the plasma is a high-purity ruthenium (Ru) powder and a target using the waste ruthenium (Ru) target, characterized in that to obtain a high-purity Ru powder by performing an air heat treatment and hydrogen heat treatment Way.
제 8항에 있어서,
상기 대기열처리는 800℃ 내지 1000℃의 온도에서 1 내지 5 시간 동안 열처리하는 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 8,
The queue treatment is a method for producing ultra-high purity ruthenium (Ru) powder and target using waste ruthenium (Ru) target, characterized in that the heat treatment for 1 to 5 hours at a temperature of 800 ℃ to 1000 ℃.
제 8항에 있어서,
상기 수소열처리는 800℃ 내지 1000℃의 온도에서 1 내지 5 시간 동안 열처리하는 것을 특징으로 하는 폐 루테늄(Ru)타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 8,
The hydrothermal treatment is a method for producing ultra-high purity ruthenium (Ru) powder and target using waste ruthenium (Ru) target, characterized in that heat treatment for 1 to 5 hours at a temperature of 800 ℃ to 1000 ℃.
제 1항에 있어서,
상기 플라즈마를 이용하여 제조된 루테늄(Ru)분말의 분쇄는 볼밀(Ball Mil), 유성밀(Planetary Mill) 또는 젯밀(Jet Mill) 중에서 선택된 어느 하나인 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.
The method of claim 1,
Grinding the ruthenium (Ru) powder prepared using the plasma is any one selected from ball mill, planetary mill or jet mill, using waste ruthenium (Ru) target Ultra high purity ruthenium (Ru) powder and a method for producing a target.
제 1항에 있어서,
상기 고온가압성형은 열간 성형(Hot Press), 고온등방향 성형(Hot Isostatic Press) 또는 플라즈마 소결(Spark Plasma Sintering) 중에서 선택된 어느 하나인 것을 특징으로 하는 폐 루테늄(Ru) 타겟을 이용한 초고순도 루테늄(Ru) 분말 및 타겟의 제조방법.

The method of claim 1,
The hot pressing is hot rubbing (Hot Press), hot isostatic pressing (Hot Isostatic Press) or plasma sintering (Spark Plasma Sintering), characterized in that any one selected from ultra high purity ruthenium (Ru) using a waste ruthenium (Ru) target Ru) Method of preparing powders and targets.

KR1020110038916A 2011-04-26 2011-04-26 Manufacturing method of a high purity Ru powder and target using a waste Ru target KR101285284B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020110038916A KR101285284B1 (en) 2011-04-26 2011-04-26 Manufacturing method of a high purity Ru powder and target using a waste Ru target
SG2013078811A SG194598A1 (en) 2011-04-26 2012-01-31 Production method for ultra-high-purity ruthenium (ru) powder and target by using waste ruthenium (ru) targets
PCT/KR2012/000737 WO2012148074A1 (en) 2011-04-26 2012-01-31 Production method for ultra-high-purity ruthenium (ru) powder and target by using waste ruthenium (ru) targets
JP2014508276A JP2014518565A (en) 2011-04-26 2012-01-31 Ultra high purity ruthenium (Ru) powder using waste ruthenium (Ru) target and method for producing target
US14/113,746 US20140105777A1 (en) 2011-04-26 2012-01-31 Production method for ultra-high-purity ruthenium(ru) powder and target by using waste ruthenium(ru) targets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110038916A KR101285284B1 (en) 2011-04-26 2011-04-26 Manufacturing method of a high purity Ru powder and target using a waste Ru target

Publications (2)

Publication Number Publication Date
KR20120121131A true KR20120121131A (en) 2012-11-05
KR101285284B1 KR101285284B1 (en) 2013-07-11

Family

ID=47072560

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110038916A KR101285284B1 (en) 2011-04-26 2011-04-26 Manufacturing method of a high purity Ru powder and target using a waste Ru target

Country Status (5)

Country Link
US (1) US20140105777A1 (en)
JP (1) JP2014518565A (en)
KR (1) KR101285284B1 (en)
SG (1) SG194598A1 (en)
WO (1) WO2012148074A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002345A1 (en) * 2013-07-01 2015-01-08 희성금속 주식회사 Method for manufacturing ruthenium powder and ruthenium target
KR20150101647A (en) * 2014-02-27 2015-09-04 희성금속 주식회사 Preparation method of reuse ta targets for semiconductors and the ta sputtering target prepared thereby

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101206416B1 (en) * 2011-05-04 2012-11-29 희성금속 주식회사 Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target
KR101562851B1 (en) * 2014-03-26 2015-10-26 재단법인 경북하이브리드부품연구원 Recycling of waste graphite method
EP3238825A4 (en) * 2014-12-24 2018-06-20 South China University of Technology Application method for cold field plasma discharge assisted high energy ball milled powder and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853046B2 (en) * 1989-06-21 1999-02-03 日新製鋼株式会社 Ultra fine powder production equipment
JP4058777B2 (en) * 1997-07-31 2008-03-12 日鉱金属株式会社 High purity ruthenium sintered compact sputtering target for thin film formation and thin film formed by sputtering the target
US6379419B1 (en) * 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
JP2001342506A (en) 2000-05-31 2001-12-14 Hitachi Metals Ltd Method for production of powder material and method for producing target material
TWI232241B (en) * 2001-03-13 2005-05-11 Ind Tech Res Inst Method of regenerating a phase change sputtering target for optical storage media
JP3792535B2 (en) * 2001-05-09 2006-07-05 日鉱金属株式会社 Manufacturing method of high purity ruthenium target
JP2004091843A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Manufacturing method of high purity high melting point metal powder
US20040065546A1 (en) * 2002-10-04 2004-04-08 Michaluk Christopher A. Method to recover spent components of a sputter target
JP2005154834A (en) 2003-11-26 2005-06-16 Hitachi Metals Ltd Ruthenium ultrafine powder and its production method
JP4527743B2 (en) * 2007-03-09 2010-08-18 アサヒプリテック株式会社 Method for producing ruthenium metal powder
US8118906B2 (en) * 2007-10-29 2012-02-21 Heraeus Inc. Methodology for recycling Ru and Ru-alloy deposition targets and targets made of recycled Ru and Ru-based alloy powders
JP5408993B2 (en) * 2008-12-24 2014-02-05 山本貴金属地金株式会社 Method for recovering platinum group elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002345A1 (en) * 2013-07-01 2015-01-08 희성금속 주식회사 Method for manufacturing ruthenium powder and ruthenium target
KR20150101647A (en) * 2014-02-27 2015-09-04 희성금속 주식회사 Preparation method of reuse ta targets for semiconductors and the ta sputtering target prepared thereby

Also Published As

Publication number Publication date
SG194598A1 (en) 2013-12-30
WO2012148074A1 (en) 2012-11-01
US20140105777A1 (en) 2014-04-17
JP2014518565A (en) 2014-07-31
KR101285284B1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
KR101285284B1 (en) Manufacturing method of a high purity Ru powder and target using a waste Ru target
JP5426173B2 (en) Mo-based sputtering target plate and manufacturing method thereof
KR101206416B1 (en) Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target
KR101883403B1 (en) Method for manufacturing high purity spherical titanium powder
JPWO2016072441A1 (en) ITO sputtering target, method for producing the same, ITO transparent conductive film, and method for producing ITO transparent conductive film
KR101469873B1 (en) Manufacturing method of a high purity and refining Ru alloy powder
KR101143860B1 (en) Manufacturing method of a Ru powder and Ru target material using a waste-Ru target
KR101175676B1 (en) Manufacturing method of a high purity and refining Ru powder using a waste-Ru target
JP4813182B2 (en) ITO sputtering target
KR20150031750A (en) Method for manufacturing powder of ruthenium-chromium with rf plasma process
KR20160050485A (en) Preparation method of ru or ru alloy target and the ru or ru alloy sputtering target prepared thereby
KR101153961B1 (en) Manufacturing method of a tantalum powder using eutectic composition
TW201516169A (en) Method for regenerating spent sputtering target and sputtering target regenerated thereby
KR20160073216A (en) Manufacturing method of nickel alloy targetfor semiconductor and nickel alloy target for semiconductor manufactured thereby
KR20150049884A (en) Method for regenerating a spent precious metal sputtering target and a precious metal sputtering target regenerated thereby
KR20160067490A (en) Refurbishing method of tungsten spent target and reuse tungsten target for forming wiring and electrode prepared thereby
JPH11100660A (en) Ito pellet for vapor deposition and its production
KR20100132792A (en) Manufacturing method for silicon ingot
KR101647997B1 (en) Density and sphericity enhanced RuCr alloy and the manufacturing method of the same
KR20150003580A (en) Manufacturing method of ruthenium powder and ruthenium target
KR20160050491A (en) Refurbishing method of ruthenium or ru alloy spent target and reuse ru or ru alloy target having uniform grain size prepared thereby
JP2009084667A (en) METHOD FOR PRODUCING Ru SPUTTERING TARGET MATERIAL
JP2003064472A (en) Ir SPUTTERING TARGET MATERIAL FOR FORMING THIN FILM AND METHOD FOR MANUFACTURING Ir SPUTTERING TARGET

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160504

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190528

Year of fee payment: 7